1
|
Fang Y, Pan H, Zhu H, Wang H, Ye M, Ren J, Peng J, Li J, Lu X, Huang C. Intranasal LAG3 antibody infusion induces a rapid antidepressant effect via the hippocampal ERK1/2-BDNF signaling pathway in chronically stressed mice. Neuropharmacology 2024; 259:110118. [PMID: 39153731 DOI: 10.1016/j.neuropharm.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.
Collapse
Affiliation(s)
- Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, #388 Zuchongzhi South Road, Kunshan, Suzhou, 215300, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jinxin Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, #288 Yanling East Road, Changzhou 223000, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Zhai M, Sun X, Wang J, Xu J, Bian F, Wu M, Yang Y, Chen H, Lu J. The Monocyte-to-Lymphocyte Ratio Was Associated With Intraplaque Neovascularization of the Carotid Artery on AngioPLUS. Brain Behav 2024; 14:e70058. [PMID: 39344357 PMCID: PMC11440024 DOI: 10.1002/brb3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The monocyte-lymphocyte ratio (MLR) is a hematological test parameter that reflects the status of both monocytes and lymphocytes as inflammatory cells. This study aims to investigate the relationship between MLR and carotid intraplaque neovascularization (IPN) in patients with asymptomatic carotid stenosis. METHODS We performed the Angio Planewave Ultrasensitive (AngioPLUS) screening for patients with carotid plaques. The carotid plaque stability was evaluated by semiquantitative visual grading of carotid IPN. Binary logistic regression models were performed to determine the associations between different clinical and laboratory indicators and the presence of high IPN. RESULTS A total of 160 patients were eventually enrolled with 99 in the low IPN group (Scores 0-1) and 61 in the high IPN group (Score 2). Univariate logistic regression showed that age, monocytes, lymphocytes, glycated hemoglobin (HbA1c), fibrinogen, d-dimmer, and MLR were significantly associated with the presence of high IPN (all p < 0.05). Multivariate logistic regression models showed that MLR was significantly associated with the presence of high IPN after adjusting for other covariates. An MLR value of 32.9 was the optimal cutoff value to differentiate high and low IPN. High MLR was also significantly correlated with the presence of high IPN (odds ratio [OR] = 4.08, 95% confidence interval [CI]: 1.69-9.88, p = 0.002) when included in the above multivariate logistic regression model. CONCLUSION Elevated MLR is closely associated with the presence of high IPN and may serve as a surrogate biomarker for carotid IPN.
Collapse
Affiliation(s)
- Mingfeng Zhai
- Department of Neurology, The Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Xiao Sun
- Department of Neurology, The Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Jian Wang
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jimei Xu
- Department of Ultrasound, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Fuqin Bian
- Department of Ultrasound, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Menglin Wu
- Department of Ultrasound, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yafei Yang
- Department of Ultrasound, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Hongwei Chen
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, China
| | - Jinghong Lu
- Department of Neurology, The Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| |
Collapse
|
3
|
Motovilov K, Maguire C, Briggs D, Melamed E. Altered Cytokine Profile in Clinically Suspected Seronegative Autoimmune Associated Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24310337. [PMID: 39314975 PMCID: PMC11419235 DOI: 10.1101/2024.09.13.24310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background and Objectives Autoimmune-associated epilepsy (AAE), a condition which responds favorably to immune therapies but not traditional anti-seizure interventions, is emerging as a significant contributor to cases of drug-resistant epilepsy. Current standards for the diagnosis of AAE rely on screening for known neuronal autoantibodies in patient serum or cerebrospinal fluid. However, this diagnostic method fails to capture a subset of drug-resistant epilepsy patients with suspected AAE who respond to immunotherapy yet remain seronegative (snAAE) for known autoantibodies. Methods To identify potential biomarkers for snAAE, we evaluated the most comprehensive panel of assayed cytokines and autoantibodies to date, comparing patients with snAAE, anti-seizure medication (ASM) responsive epilepsy, and patients with other neuroinflammatory diseases. Results We found a unique signature of 14 cytokines significantly elevated in snAAE patients including: GM-CSF, MCP-2/CCL8, MIP-1a/CCL3, IL-1RA, IL-6, IL-8, IL-9, IL-10, IL-15, IL-20, VEGF-A, TNF-b, LIF, and TSLP. Based on prior literature, we highlight IL-6, IL-8, IL-10, IL-13, VEGF-A, and TNF-b as potentially actionable cytokine biomarkers for snAAE, which could be of diagnostic utility in clinical evaluations of snAAE patients. Autoantibody-ome screening failed to identify autoantibodies targeting neuronal channel proteins in snAAE patients. Interestingly, ASM-responsive epilepsy patients displayed elevations in the proportion of autoantibodies targeting brain plasma membrane proteins, possibly pointing to the presence of immune hyperactivity/dysfunction despite well-controlled seizure activity and suggesting ASM-responsive patients may experience disease progression independent of seizure activity (PISA). Discussion Overall, our findings suggest that simply expanding existing autoantibody screens may not sufficiently enhance diagnostic power for snAAE. Instead, we propose that cytokine analysis may serve as a promising diagnostic avenue for identifying immune dysregulation in AAE patients and enabling opportunities for trials of immunotherapies.
Collapse
Affiliation(s)
| | - Cole Maguire
- The University of Texas at Austin, Department of Neurology
| | - Deborah Briggs
- The University of Texas at Austin, Department of Neurology
| | - Esther Melamed
- The University of Texas at Austin, Department of Neurology
| |
Collapse
|
4
|
Naidoo SJ, Naicker T. The Enigmatic Interplay of Interleukin-10 in the Synergy of HIV Infection Comorbid with Preeclampsia. Int J Mol Sci 2024; 25:9434. [PMID: 39273381 PMCID: PMC11395227 DOI: 10.3390/ijms25179434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cytokines coordinate the intricate choreography of the immune system, directing cellular activities that mediate inflammation, pathogen defense, pathology and tissue repair. Within this spectrum, the anti-inflammatory prowess of interleukin-10 (IL-10) predominates in immune homeostasis. In normal pregnancy, the dynamic shift of IL-10 across trimesters maintains maternal immune tolerance ensuring fetal development and pregnancy success. Unravelling the dysregulation of IL-10 in pregnancy complications is vital, particularly in the heightened inflammatory condition of preeclampsia. Of note, a reduction in IL-10 levels contributes to endothelial dysfunction. In human immunodeficiency virus (HIV) infection, a complex interplay of IL-10 occurs, displaying a paradoxical paradigm of being immune-protective yet aiding viral persistence. Genetic variations in the IL-10 gene further modulate susceptibility to HIV infection and preeclampsia, albeit with nuanced effects across populations. This review outlines the conceptual framework underlying the role of IL-10 in the duality of normal pregnancy and preeclampsia together with HIV infection, thus highlighting its regulatory mechanisms and genetic influences. Synthesizing these findings in immune modulation presents avenues for therapeutic interventions in pregnancy complications comorbid with HIV infection.
Collapse
Affiliation(s)
| | - Thajasvarie Naicker
- Department of Optics and Imaging, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
5
|
Chaaban A, Yassine H, Hammoud R, Kanaan R, Karam L, Ibrahim JN. A narrative review on the role of cytokines in the pathogenesis and treatment of familial Mediterranean fever: an emphasis on pediatric cases. Front Pediatr 2024; 12:1421353. [PMID: 39132307 PMCID: PMC11310175 DOI: 10.3389/fped.2024.1421353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is a hereditary autoinflammatory disease characterized by an early onset of recurrent fever and serositis episodes. FMF is caused by mutations in the MEFV gene which encodes the pyrin protein, an IL-1β mediated inflammation regulator. Recent findings have identified a plethora of molecules and pathways involved in the regulation of inflammation and innate immunity, hence increasing our understanding of the etiology and inflammatory nature of FMF. Cytokines, in particular, have been found to play a key role in the pathogenesis and treatment of the disease. Indeed, various studies associated cytokines' genetic variations and expression with susceptibility to and severity of the disease, which was further supported by the positive response of patients, both children and adults, to targeted cytokine blocking therapies. These studies highlighted the potential use of cytokines as biomarkers and target in resistant/intolerant patients and contributed to improving the early detection of FMF in children, thus enhancing their quality of life and providing alternative treatment for severe cases. The aim of this review is to provide the latest updates on the pivotal role of cytokines in FMF and to discuss the efficacy and safety of anti-cytokine biologics by primarily focusing on pediatric FMF cases.
Collapse
|
6
|
Tazoe K, Harada N, Makuuchi Y, Kuno M, Takakuwa T, Okamura H, Hirose A, Nakamae M, Nishimoto M, Nakashima Y, Koh H, Hino M, Nakamae H. Systemic inflammatory autoimmune disease before allogeneic hematopoietic stem cell transplantation is a risk factor for death in patients with myelodysplastic syndrome or chronic myelomonocytic leukemia. Ann Hematol 2024; 103:2059-2072. [PMID: 38662207 DOI: 10.1007/s00277-024-05772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Myelodysplastic syndrome (MDS) is well known to be complicated by systemic inflammatory autoimmune disease (SIADs). However, it remains unclear how the prognosis after allogenic hematopoietic stem cell transplantation (allo-HSCT) in patients with MDS is impacted by SIADs that occur before allo-HSCT. Therefore, we hypothesized that SIADs before allo-HSCT may be a risk factor for negative outcomes after allo-HSCT in patients with MDS. We conducted a single-center, retrospective, observational study of sixty-nine patients with MDS or chronic myelomonocytic leukemia who underwent their first allo-HCT. Fourteen of the patients had SIADs before allo-HSCT. In multivariate analysis, the presence of SIADs before allo-HSCT was an independent risk factor for overall survival (HR, 3.36, 95% confidence interval: 1.34-8.42, p = 0.009). Endothelial dysfunction syndrome was identified in five of 14 patients with SIADs who required immunosuppressive therapy or intensive chemotherapy, and notably, all patients with uncontrollable SIADs at allo-HSCT developed serious endothelial dysfunction syndrome and died in the early phase after allo-HSCT. The development of SIADs in the context of MDS is thought to reflect the degree of dysfunction of hematopoietic cells in MDS and suggests a higher risk of disease progression. In addition, MDS patients with SIADs before allo-HSCT are considered to be at higher risk of endothelial dysfunction syndrome because of preexisting vascular endothelial dysfunction due to SIADs. In conclusion, SIADs before allo-HSCT constitute an independent risk factor for death in MDS patients undergoing allo-HSCT.
Collapse
Affiliation(s)
- Kumiyo Tazoe
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naonori Harada
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
- Department of Hematology, Fuchu Hospital, Osaka, Japan.
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mika Nakamae
- Department of Clinical Laboratory, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hideo Koh
- Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Vlachakis PK, Theofilis P, Kachrimanidis I, Giannakopoulos K, Drakopoulou M, Apostolos A, Kordalis A, Leontsinis I, Tsioufis K, Tousoulis D. The Role of Inflammasomes in Heart Failure. Int J Mol Sci 2024; 25:5372. [PMID: 38791409 PMCID: PMC11121241 DOI: 10.3390/ijms25105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heart failure (HF) poses a significant world health challenge due to the increase in the aging population and advancements in cardiac care. In the pathophysiology of HF, the inflammasome has been correlated with the development, progression, and complications of HF disease. Discovering biomarkers linked to inflammasomes enhances understanding of HF diagnosis and prognosis. Directing inflammasome signaling emerges as an innovative therapeutic strategy for managing HF. The present review aims to delve into this inflammatory cascade, understanding its role in the development of HF, its potential role as biomarker, as well as the prospects of modulating inflammasomes as a therapeutic approach for HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.V.); (P.T.); (I.K.); (K.G.); (M.D.); (A.A.); (A.K.); (I.L.); (K.T.)
| |
Collapse
|
8
|
Obeagu EI. Role of cytokines in immunomodulation during malaria clearance. Ann Med Surg (Lond) 2024; 86:2873-2882. [PMID: 38694310 PMCID: PMC11060309 DOI: 10.1097/ms9.0000000000002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Malaria remains a significant global health challenge, demanding a deeper understanding of host immune responses for effective clearance of the parasitic infection. Cytokines, as crucial mediators of the immune system, orchestrate a complex interplay during the various stages of malaria infection. Throughout the course of the disease, an intricate balance of pro-inflammatory and anti-inflammatory cytokines dictate the immune response's outcome, influencing parasitic clearance and disease severity. During the initial stages, interleukins such as interleukin-12 (IL-12), interferon-gamma (IFN-γ), and tumour necrosis factor-alpha (TNF-α) play pivotal roles in activating innate immune cells, initiating the anti-parasitic response. Simultaneously, regulatory cytokines like interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) modulate this immune activation, preventing excessive inflammation and tissue damage. As the infection progresses, a delicate shift occurs, characterized by a transition to adaptive immunity, guided by cytokines like interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), promoting antibody production and T-cell responses. Notably, the resolution of malaria infection crucially relies on a fine-tuned balance of cytokine networks. Dysregulation or imbalances in these mediators often result in immune hyperactivation, contributing to severe manifestations and prolonged infection. Understanding the multi-faceted roles of cytokines in malaria clearance offers promising avenues for therapeutic interventions. Targeting cytokine pathways to restore immune equilibrium or bolster protective responses could potentially enhance treatment strategies and vaccine development. In conclusion, the pivotal role of cytokines in immunomodulation during malaria clearance underscores their significance as potential targets for therapeutic interventions, offering promising prospects in the global fight against this infectious disease.
Collapse
|
9
|
El Hajj W, El Khatib N, Volpert V. Inflammation propagation modeled as a reaction-diffusion wave. Math Biosci 2023; 365:109074. [PMID: 37689347 DOI: 10.1016/j.mbs.2023.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Inflammation is a physiological process aimed to protect the organism in various diseases and injuries. This work presents a generic inflammation model based on the reaction-diffusion equations for the concentrations of uninflamed cells, inflamed cells, immune cells and the inflammatory cytokines. The analysis of the model shows the existence of three different regimes of inflammation progression depending on the value of a parameter R called the inflammation number. If R>1, then inflammation propagates in cell culture or tissue as a reaction-diffusion wave due to diffusion of inflammatory cytokines produced by inflamed cells. If 0
Collapse
Affiliation(s)
- W El Hajj
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
| | - N El Khatib
- Department of Computer Science and Mathematics, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | - V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| |
Collapse
|
10
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kounatidis D, Vallianou N, Evangelopoulos A, Vlahodimitris I, Grivakou E, Kotsi E, Dimitriou K, Skourtis A, Mourouzis I. SGLT-2 Inhibitors and the Inflammasome: What's Next in the 21st Century? Nutrients 2023; 15:nu15102294. [PMID: 37242177 DOI: 10.3390/nu15102294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in the kidney and the heart is increasingly being suggested to play a key role in mediating inflammation. In the kidney, NLRP3 activation was associated with the progression of diabetic kidney disease. In the heart, activation of the NLRP3 inflammasome was related to the enhanced release of interleukin-1β (IL-1β) and the subsequent induction of atherosclerosis and heart failure. Apart from their glucose-lowering effects, SGLT-2 inhibitors were documented to attenuate activation of the NLRP3, thus resulting in the constellation of an anti-inflammatory milieu. In this review, we focus on the interplay between SGLT-2 inhibitors and the inflammasome in the kidney, the heart and the neurons in the context of diabetes mellitus and its complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iordanis Mourouzis
- Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
12
|
Hwang IC, Valeriano VD, Song JH, Pereira M, Oh JK, Han K, Engstrand L, Kang DK. Mucosal immunization with lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 epitopes on the surface induces humoral and mucosal immune responses in mice. Microb Cell Fact 2023; 22:96. [PMID: 37161468 PMCID: PMC10169176 DOI: 10.1186/s12934-023-02100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
13
|
From Pathogens to Cancer: Are Cancer Cells Evolved Mitochondrial Super Cells? Diagnostics (Basel) 2023; 13:diagnostics13040813. [PMID: 36832301 PMCID: PMC9954806 DOI: 10.3390/diagnostics13040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Life is based on a highly specific combination of atoms, metabolism, and genetics which eventually reflects the chemistry of the Universe which is composed of hydrogen, oxygen, nitrogen, sulfur, phosphorus, and carbon. The interaction of atomic, metabolic, and genetic cycles results in the organization and de-organization of chemical information of that which we consider as living entities, including cancer cells. In order to approach the problem of the origin of cancer it is therefore reasonable to start from the assumption that the sub-molecular level, the atomic structure, should be the considered starting point on which metabolism, genetics, and external insults eventually emanate. Second, it is crucial to characterize which of the entities and parts composing human cells may live a separate life; certainly, this theoretical standpoint would consider mitochondria, an organelle of "bacteria" origin embedded in conditions favorable for the onset of both. This organelle has not only been tolerated by immunity but has also been placed as a central regulator of cell defense. Virus, bacteria, and mitochondria are also similar in the light of genetic and metabolic elements; they share not only equivalent DNA and RNA features but also many basic biological activities. Thus, it is important to finalize that once the cellular integrity has been constantly broken down, the mitochondria like any other virus or bacteria return to their original autonomy to simply survive. The Warburg's law that states the ability of cancers to ferment glucose in the presence of oxygen, indicates mitochondria respiration abnormalities may be the underlying cause of this transformation towards super cancer cells. Though genetic events play a key part in altering biochemical metabolism, inducing aerobic glycolysis, this is not enough to impair mitochondrial function since mitochondrial biogenesis and quality control are constantly upregulated in cancers. While some cancers have mutations in the nuclear-encoded mitochondrial tricarboxylic acid (TCA) cycle, enzymes that produce oncogenic metabolites, there is also a bio-physic pathway for pathogenic mitochondrial genome mutations. The atomic level of all biological activities can be considered the very beginning, marked by the electron abnormal behavior that consequently affects DNA of both cells and mitochondria. Whilst the cell's nucleus DNA after a certain number of errors and defection tends to gradually switch off, the mitochondria DNA starts adopting several escape strategies, switching-on a few important genes that belong back at their original roots as independent beings. The ability to adopt this survival trick, by becoming completely immune to current life-threatening events, is probably the beginning of a differentiation process towards a "super-power cell", the cancer cells that remind many pathogens, including virus, bacteria, and fungi. Thus, here, we present a hypothesis regarding those changes that first begin at the mitochondria atomic level to steadily involve molecular, tissue and organ levels in response to the virus or bacteria constant insults that drive a mitochondria itself to become an "immortal cancer cell". Improved insights into this interplay between these pathogens and mitochondria progression may disclose newly epistemological paradigms as well as innovative procedures in targeting cancer cell progressive invasion.
Collapse
|
14
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
15
|
Ma M, Liu Y, Wang L, Yang R, Li Z, Gao S, Li L, Yu C. Relationship Between Monocyte-to-Lymphocyte Ratio as Well as Other Leukocyte-Derived Ratios and Carotid Plaques in Patients with Coronary Heart Disease: A RCSCD-TCM Study. J Inflamm Res 2022; 15:5141-5156. [PMID: 36105384 PMCID: PMC9464636 DOI: 10.2147/jir.s375759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study explored the relationship between monocyte-to-lymphocyte ratio (MLR) as well as other leukocyte-derived ratios and carotid plaques in patients with coronary heart disease (CHD). Patients and Methods A total of 12,093 patients with CHD were selected as research participants. Leukocyte-derived ratios assessed in this study included neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), MLR, platelet-to-lymphocyte ratio (PLR), white blood cell-to-mean platelet volume ratio (WMR), lymphocyte×neutrophil/104 ratio (MNM), systemic immune inflammation index (SII), and systemic inflammation response index (SIRI). Leukocyte-derived ratios were divided into four groups according to quarters. Logistic regression analysis was performed to evaluate the relationship between leukocyte-derived ratios and the incidence, number, and echo characteristics of carotid plaques in patients with CHD. Further analysis was performed after adjusting for confounding factors. Results Among the 12,093 participants, 71.7% had carotid plaques. After adjusting for confounding factors, MLR, NLR, dNLR, PLR, SII, SIRI, and WMR were found to be associated with carotid plaque formation. Among them, MLR had the strongest association with the incidence of carotid plaques (odd ratio[OR]:1.889; 95% confidence interval[CI]:1.406–2.539) and hyperechoic plaques (OR:2.024; 95% CI:1.481–2.767). When MLR was viewed as a categorical variable, the risk of carotid plaque formation in Q4 was 1.4 times higher than that in Q1. The relationship between MLR and carotid plaques in females (OR:2.250; 95% CI:1.458–3.473) was stronger than that in males (OR: 1.638; 95% CI:1.102–-2.436). The relationship between MLR and carotid plaques in patients younger than 65 years (OR:3.597; 95% CI:2.379–5.439) was stronger than that in those older than 65 years (OR:1.577; 95% CI:1.046–2.378). Conclusion Leukocyte-derived ratios were related to the incidence, number, and echo characteristics of carotid plaques. In particular, MLR, an inflammatory biomarker that encompasses innate and adaptive immunity, may be of great value in revealing the incidence and echo characteristics of plaques.
Collapse
Affiliation(s)
- Mei Ma
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yijia Liu
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lichun Wang
- Department of Information Center, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rongrong Yang
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhu Li
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Gao
- Department of Endocrine Metabolic Diseases, Nankai Hospital, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, People's Republic of China
| | - Lin Li
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chunquan Yu
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Renson T, Hamiwka L, Benseler S. Central nervous system manifestations of monogenic autoinflammatory disorders and the neurotropic features of SARS-CoV-2: Drawing the parallels. Front Pediatr 2022; 10:931179. [PMID: 36034552 PMCID: PMC9399631 DOI: 10.3389/fped.2022.931179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Central nervous system (CNS) involvement in monogenic autoinflammatory disorders (AID) is increasingly recognized and can be life threatening. Therefore, a low threshold to consider CNS disease should be maintained in patients with systemic inflammation. Hyperinflammation is also a key feature of severe acute COVID-19 and post COVID-19 entities such as multisystem inflammatory syndrome in children. Like AID, COVID-19 patients can present with severe CNS involvement. The impact of COVID-19 on AID and CNS involvement in particular is still obscure, nevertheless dreaded. In the current review, we synthesize the spectrum of CNS manifestations in monogenic AID. We explore common pathophysiological and clinical features of AID and COVID-19. Moreover, we assess the impact of immune dysregulation associated with SARS-CoV-2 infections and post COVID-19 hyperinflammation in AID. The striking commonalities found between both disease entities warrant caution in the management of AID patients during the current pandemic.
Collapse
Affiliation(s)
- Thomas Renson
- Division of Rheumatology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Lorraine Hamiwka
- Division of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Susanne Benseler
- Division of Rheumatology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Fouda MA, Mohamed YF, Fernandez R, Ruben PC. Anti-inflammatory effects of cannabidiol against lipopolysaccharides in cardiac sodium channels. Br J Pharmacol 2022; 179:5259-5272. [PMID: 35906756 DOI: 10.1111/bph.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Sepsis, caused by a dysregulated host response to infections, can lead to cardiac arrhythmias. However, the mechanisms underlying sepsis-induced inflammation, and how inflammation provokes cardiac arrhythmias, are not well understood. We hypothesized that CBD may ameliorate lipopolysaccharides (LPS)-induced cardiotoxicity via Toll-like receptor 4 (TLR-4) and cardiac sodium channels (Nav1.5). METHODS AND RESULTS We incubated human immune cells (THP-1 macrophages) with LPS for 24 hours, then extracted the THP-1 incubation media. ELISA assay showed that LPS (1 or 5 μg/ml), in a concentration-dependent manner, or MPLA (TLR-4 agonist, 5 μg/ml) stimulated the THP-1 cells to release inflammatory cytokines (TNF-α and IL-6). Prior incubation (4 hours) with cannabidiol (CBD: 5 μM) or C34 (TLR-4 antagonist: 5 μg/ml) inhibited LPS and MPLA-induced release of both IL-6 and TNF-α. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) were subsequently incubated for 24 hours in the media extracted from THP-1 cells incubated with LPS, MPLA alone, or in combination with CBD or C34. Voltage-clamp experiments showed a right shift in the voltage dependence of Nav1.5 activation, steady state fast inactivation (SSFI), increased persistent current and prolonged in silico action potential duration in hiSPC-CM incubated in the LPS or MPLA-THP-1 media. Co-incubation with CBD or C34 rescued the biophysical dysfunction caused by LPS and MPLA. CONCLUSION Our results suggest that CBD may protect against sepsis-induced inflammation and subsequent arrhythmias through (i) inhibition of the release of inflammatory cytokines, antioxidant and anti-apoptotic effects and/or (ii) direct effect on Nav1.5.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Yasmine Fathy Mohamed
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, Alexandria University, Alexandria, Egypt
| | - Rachel Fernandez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
18
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
19
|
Xu J, Ren Z, Cao K, Li X, Yang J, Luo X, Zhu L, Wang X, Ding L, Liang J, Jin D, Yuan T, Li L, Xu J. Boosting Vaccine-Elicited Respiratory Mucosal and Systemic COVID-19 Immunity in Mice With the Oral Lactobacillus plantarum. Front Nutr 2022; 8:789242. [PMID: 35004816 PMCID: PMC8733898 DOI: 10.3389/fnut.2021.789242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Boosting and prolonging SARS-CoV-2 vaccine-elicited immunity is paramount for containing the COVID-19 pandemic, which wanes substantially within months after vaccination. Here we demonstrate that the unique strain of probiotic Lactobacillus plantarum GUANKE (LPG) could promote SARS-CoV-2-specific immune responses in both effective and memory phases through enhancing interferon signaling and suppressing apoptotic and inflammatory pathways. Interestingly, oral LPG administration promoted SARS-CoV-2 neutralization antibodies even 6 months after immunization. Furthermore, when LPG was given immediately after SARS-CoV-2 vaccine inoculation, specific neutralization antibodies could be boosted >8-fold in bronchoalveolar lavage (BAL) and >2-fold in sera, T-cell responses were persistent and stable for a prolonged period both in BAL and the spleen. Transcriptional analyses showed that oral application of LPG mobilized immune responses in the mucosal and systemic compartments; in particular, gut-spleen and gut-lung immune axes were observed. These results suggest that LPG could be applied in combination with SARS-CoV-2 vaccines to boost and prolong both the effective and memory immune responses in mucosal and systemic compartments, thereby improving the efficacy of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Jianqing Xu
- Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhihong Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Kangli Cao
- Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junrong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lianfeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China.,Institute of Public Health, Nankai University, Tianjing, China
| |
Collapse
|