1
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
2
|
Shao L, Cai G, Fu J, Zhang W, Ye Y, Ling Z, Ye S. Gut microbial 'TNFα-sphingolipids-steroid hormones' axis in children with autism spectrum disorder: an insight from meta-omics analysis. J Transl Med 2024; 22:1165. [PMID: 39741321 DOI: 10.1186/s12967-024-05973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a persistent neurodevelopmental disorder affecting brains of children. Mounting evidences support the associations between gut microbial dysbiosis and ASD, whereas detailed mechanisms are still obscure. METHODS Here we probed the potential roles of gut microbiome in ASD using fecal metagenomics and metabolomics. RESULTS Children with ASD were found to be associated with augmented serum cytokines milieu, especially TNFα. Metagenomic analysis generated 29 differential species and 18 dysregulated functional pathways such as Bifidobacterium bifidum, Segatella copri, and upregulated 'Sphingolipid metabolism' in children with ASD. Metabolomics revealed steroid hormone dysgenesis in children with ASD with lower abundances of metabolites such as estriol, estradiol and deoxycorticosterone. A three-way association analysis showed positive correlations between TNFα and microbial function potentials such as 'Bacterial toxins' and 'Lysosome', indicating the contribution of microbial dysbiosis to neuroinflammation. TNFα also correlated positively with 'Sphingolipid metabolism', which further showed negative correlations with metabolites estriol and deoxycorticosterone. Such results, in consistent with current findings, revealed the contribution of increased TNFα to upregulated sphingolipid metabolism, which further impaired steroid hormone biosynthesis. CONCLUSION Our study proposed the gut microbial 'TNFα-sphingolipids-steroid hormones' axis in children with ASD, which may provide new perspectives for developing gut microbiome-based treatments in the future.
Collapse
Affiliation(s)
- Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Guangyong Cai
- Department of Acupuncture and Chinese Tuina, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jinlong Fu
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Weishi Zhang
- Department of Otolaryngology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yuefang Ye
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Shiwei Ye
- Lishui Key Laboratory of mental Health and brain Disorders, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
3
|
Alipour S, Owrang M, Rajabnia M, Olfatifar M, Kazemian H, Houri H. Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli Isolates From Colonic Biopsies of Iranian Patients With Inflammatory Bowel Diseases: A Cross-Sectional Study. Health Sci Rep 2024; 7:e70204. [PMID: 39698518 PMCID: PMC11652390 DOI: 10.1002/hsr2.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Background and Aims Emerging evidence suggests that ciprofloxacin and other quinolones can be effectively used as adjuncts to immunosuppressive therapy in managing inflammatory bowel disease (IBD). Clinical isolates of Enterobacterales frequently exhibit quinolone resistance. Additionally, increased IBD severity has been linked to the proliferation of Enterobacterales in the gut. This study aimed to explore the frequency of fluoroquinolone resistance and the presence of associated resistance genes in Escherichia coli isolates obtained from intestinal biopsies of patients with IBD in Iran. Methods In this research, we conducted a study that involved the isolation and examination of E. coli bacteria from inflamed ileal and/or colonic tissues of patients diagnosed with IBD, specifically ulcerative colitis (UC) and Crohn's disease (CD), during colonoscopy procedures. We collected demographic and clinical information from the patients. To identify E. coli strains that were resistant to quinolone antibiotics, we performed both phenotypic and molecular analyses. Results From the colonic and ileal biopsies of 121 patients with IBD, we isolated 107 unique strains of E. coli. Among these strains, 18 (16.8%) were derived from patients with CD, and 89 (83.2%) came from those with UC. Antimicrobial susceptibility tests revealed that 61 out of 107 isolates (57%) of the isolates showed phenotypic resistance to at least one type of quinolone. Additionally, plasmid-mediated quinolone resistance (PMQR) genes, specifically oqxA, oqxB, and qnrS were detected in the E. coli strains linked to both UC and CD. Notably, there was a significant positive correlation observed between intestinal colonization by ciprofloxacin-resistant E. coli and the patients' history of extended ciprofloxacin antibiotic therapy. Conclusion Our results reveal that a significant number of patients with IBD carry quinolone-resistant E. coli. This colonization may pose a risk factor that could affect disease progression and contribute to potential complications.
Collapse
Affiliation(s)
- Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mina Owrang
- Faculty of Medical Science, Sari BranchIslamic Azad UniversitySariIran
| | - Mohsen Rajabnia
- Non‐Communicable Diseases Research CenterAlborz University of Medical SciencesKarajIran
| | - Meysam Olfatifar
- Gastroenterology and Hepatology Diseases Research CenterQom University of Medical SciencesQomIran
| | - Hossein Kazemian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Liu T, Zhang X, Yan X, Cheng L, Yan X, Zeng F, Li X, Chen Z, Gu J, Zhang J. Smad4 Deficiency in S100A4 + Macrophages Enhances Colitis-associated Tumorigenesis by Promoting Macrophage Lipid Metabolism Augmented M2 Polarization. Int J Biol Sci 2024; 20:6114-6129. [PMID: 39664586 PMCID: PMC11628331 DOI: 10.7150/ijbs.98529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
S100A4 is primarily expressed in intestinal macrophages, and promotes colonic inflammation and colitis-associated colon tumorigenesis. Smad4 is also expressed in the colon; however, it inhibits colitis-associated cancer (CAC) development. The specific role of Smad4 in S100A4+ cells in CAC remains unknown. In this study, an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC model was established in mice with S100A4+ cell-specific Smad4 deletion (S100A4 Smad4-/-). Smad4 deficiency in S100A4+ cells exacerbated DSS-induced colitis and promoted colorectal tumorigenesis. In addition, S100A4+ cell-specific Smad4 ablation promoted the M2 polarization of macrophages in CAC. Mechanistically, Smad4 depletion in macrophages enhanced lipid metabolism by activating the FA binding protein 2 (Fabp2)/STAT6 pathway. Furthermore, Smad4 deficiency in macrophages promoted MC38 tumor growth in myeloid-specific Smad4 deficient (Lyz Smad4-/-) mice, whereas blocking Fabp2 expression reversed the tumor growth. Additionally, high Smad4 expression was associated with prolonged survival in patients with colorectal cancer. Thus, Smad4 in S100A4+ macrophages plays a tumor-inhibiting role in CAC development and supports its use as a prognostic marker in CRC patients.
Collapse
Affiliation(s)
- Ting Liu
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong Province, P.R. China
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Xinyuan Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
| | - Xuanxuan Yan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Leirong Cheng
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, P.R. China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan Province, P.R. China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan Province, P.R. China
| | - Zhinan Chen
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong Province, P.R. China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xian, Shanxi Province, P.R. China
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P.R. China
| |
Collapse
|
5
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
7
|
Pertiwi RB, Setiabudi YC, Mayangsari Y, Suroto DA, Rahayu ES. Probiotic Lactiplantibacillus plantarum subsp. plantarum Dad-13 Alleviates 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis Through Short-Chain Fatty Acid Production and Inflammatory Cytokine Regulation. Prev Nutr Food Sci 2024; 29:270-278. [PMID: 39371515 PMCID: PMC11450284 DOI: 10.3746/pnf.2024.29.3.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 10/08/2024] Open
Abstract
The development of inflammatory bowel disease (IBD) is closely linked to inflammatory damage and dysbiosis. Recently, probiotics are being increasingly used to improve intestinal health. Probiotic-based therapies can prevent IBD by restoring the balance of gastrointestinal microbiota, reducing gut inflammation, and increasing the concentration of short-chain fatty acids (SCFAs). The present study aimed to investigate the protective effects of Lactiplantibacillus plantarum subsp. plantarum Dad-13, a novel probiotic strain derived from dadih (Indonesian curd from buffalo milk), on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in BALB/c mice. The results showed that probiotic Dad-13 supplementation at a dose of 107 or 109 CFU/mL improved the clinical symptoms of IBD and enhanced the production of SCFAs, particularly propionate and butyrate. Moreover, probiotic Dad-13 supplementation significantly decreased the levels of pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1β] and significantly increased the levels of anti-inflammatory cytokines (IL-10). These findings show that L. plantarum Dad-13 can effectively prevent TNBS-induced colitis by modulating SCFA production and inflammatory cytokines.
Collapse
Affiliation(s)
- Rimba Bunga Pertiwi
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yosinta Christie Setiabudi
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yunika Mayangsari
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dian Anggraini Suroto
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- University Center of Excellence for Integrated Research and Application for Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Endang Sutriswati Rahayu
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- University Center of Excellence for Integrated Research and Application for Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Kulkarni C, Liu D, Fardeen T, Dickson ER, Jang H, Sinha SR, Gubatan J. Artificial intelligence and machine learning technologies in ulcerative colitis. Therap Adv Gastroenterol 2024; 17:17562848241272001. [PMID: 39247718 PMCID: PMC11378191 DOI: 10.1177/17562848241272001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
Interest in artificial intelligence (AI) applications for ulcerative colitis (UC) has grown tremendously in recent years. In the past 5 years, there have been over 80 studies focused on machine learning (ML) tools to address a wide range of clinical problems in UC, including diagnosis, prognosis, identification of new UC biomarkers, monitoring of disease activity, and prediction of complications. AI classifiers such as random forest, support vector machines, neural networks, and logistic regression models have been used to model UC clinical outcomes using molecular (transcriptomic) and clinical (electronic health record and laboratory) datasets with relatively high performance (accuracy, sensitivity, and specificity). Application of ML algorithms such as computer vision, guided image filtering, and convolutional neural networks have also been utilized to analyze large and high-dimensional imaging datasets such as endoscopic, histologic, and radiological images for UC diagnosis and prediction of complications (post-surgical complications, colorectal cancer). Incorporation of these ML tools to guide and optimize UC clinical practice is promising but will require large, high-quality validation studies that overcome the risk of bias as well as consider cost-effectiveness compared to standard of care.
Collapse
Affiliation(s)
- Chiraag Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Derek Liu
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Touran Fardeen
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Eliza Rose Dickson
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Hyunsu Jang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Xia K, Gao R, Li L, Wu X, Wu T, Ruan Y, Yin L, Chen C. Transformation of colitis and colorectal cancer: a tale of gut microbiota. Crit Rev Microbiol 2024; 50:653-662. [PMID: 37671830 DOI: 10.1080/1040841x.2023.2254388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.
Collapse
Affiliation(s)
- Kai Xia
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Li
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Li Huili Hospital, Ningbo, China
| | - Xiaocai Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Yang YN, Han B, Zhang MQ, Chai NN, Yu FL, Qi WH, Tian MY, Sun DZ, Huang Y, Song QX, Li Y, Zhu MC, Zhang Y, Li X. Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders. Inflammopharmacology 2024; 32:1983-1998. [PMID: 38642223 DOI: 10.1007/s10787-024-01472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wen-Hui Qi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Dong-Zhi Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Ying Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qing-Xin Song
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yan Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mao-Cui Zhu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
11
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Bullard BM, McDonald SJ, Cardaci TD, VanderVeen BN, Mohammed AD, Kubinak JL, Pierre JF, Chatzistamou I, Fan D, Hofseth LJ, Murphy EA. Panaxynol improves crypt and mucosal architecture, suppresses colitis-enriched microbes, and alters the immune response to mitigate colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G591-G606. [PMID: 38469632 PMCID: PMC11376977 DOI: 10.1152/ajpgi.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.
Collapse
Affiliation(s)
- Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Ahmed D Mohammed
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
13
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Wang D, Wang Q, Wang Y, Li T, Tian M. Effects of acupuncture and moxibustion on ulcerative colitis: An overview of systematic reviews. Heliyon 2024; 10:e27524. [PMID: 38510004 PMCID: PMC10951544 DOI: 10.1016/j.heliyon.2024.e27524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Ulcerative colitis (UC) is a gastrointestinal disease with an unknown etiology that severely affects patients' quality of life. Acupuncture and moxibustion therapies are effective in the treatment of UC, but existing systematic reviews (SRs) and meta-analyses (MAs) on this subject have variable methodological and outcome quality. Therefore, this study aimed to summarize and evaluate the evidence of existing SRs and MAs to provide more reliable evidence for clinical practice. Data were extracted from seven databases through systematic search and evaluated in terms of the methodological quality, reporting quality, risk of bias, and quality of evidence using the AMSTAR-2, PRISMA, ROBIS, and GRADE systems, respectively. Ten studies were finally included, and all of them showed many problems with the overall design and quality of outcomes. Because of the lack of high-quality evidence to support the findings from the existing studies, we should take this conclusion with caution and strictly implement the registration, design, and implementation of trials based on evidence to provide high-quality results in future studies.
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Qi Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yunhe Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ting Li
- Department of Liver, Spleen and Stomach Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Mi Tian
- Department of Liver, Spleen and Stomach Diseases, Jilin Province Academy of Chinese Medical Sciences, Changchun 130021, Jilin, China
| |
Collapse
|
15
|
Caputi V, Hill L, Figueiredo M, Popov J, Hartung E, Margolis KG, Baskaran K, Joharapurkar P, Moshkovich M, Pai N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: a systematic review of pediatric and adult studies. Front Neurosci 2024; 18:1341656. [PMID: 38516317 PMCID: PMC10954784 DOI: 10.3389/fnins.2024.1341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration https://clinicaltrials.gov/, CRD42020158734.
Collapse
Affiliation(s)
- Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Figueiredo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jelena Popov
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Harvard Medical School, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| | - Emily Hartung
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
- New York University Pain Research Center, New York, NY, United States
- New York University College of Dentistry, New York, NY, United States
| | - Kanish Baskaran
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Papiha Joharapurkar
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Moshkovich
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, the Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
16
|
Hill L, Roofigari N, Faraz M, Popov J, Moshkovich M, Figueiredo M, Hartung E, Talbo M, Lalanne-Mistrih ML, Sherlock M, Zachos M, Timmons BW, Obeid J, Pai N. Physical Activity in Pediatric Inflammatory Bowel Disease: A Scoping Review. Pediatr Exerc Sci 2024; 36:44-56. [PMID: 37487582 DOI: 10.1123/pes.2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, systemic condition affecting the gastrointestinal tract. IBD can be severe and are associated with impairment in growth, school absences, abdominal pain, and fatigue. Physical activity (PA) could have an anti-inflammatory effect in addition to other benefits. It is important to address the possible risks, physiological effects of PA, and potential barriers, and facilitators for PA participation in pediatric IBD. However, potential barriers and facilitators to PA have yet to be adequately described. METHODS We conducted a scoping review to map and describe the current literature on PA in pediatric IBD populations between 1980 and April 2022 using Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines for Scoping reviews. RESULTS Nineteen articles were identified including 10 descriptive, 6 interventional, and 3 physiological responses to PA studies. Patients and healthy controls demonstrated similar responses to exercise. Barriers to participation were low self-esteem, body image, and active IBD symptoms. Facilitators included personal interest, activity with friends, and support from family. CONCLUSION This review highlighted that PA participation may reduce in children with IBD-related symptoms. Short- and medium-term impacts of PA on immune modulation require further study; it is possible that regular PA does not negatively affect biomarkers of disease activity.
Collapse
Affiliation(s)
- Lee Hill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Endocrinology, Research Institute of the McGill University Health Center, Montreal, QC,Canada
| | | | - Maria Faraz
- Department of Pathology, Albany Medical Center, Albany, NY,USA
| | - Jelena Popov
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Michal Moshkovich
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON,Canada
| | - Melanie Figueiredo
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON,Canada
| | - Emily Hartung
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Meryem Talbo
- School of Human Nutrition, McGill University, Montreal, QC,Canada
| | - Marie-Laure Lalanne-Mistrih
- Montreal Clinical Research Institute, Montreal, QC,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
- UFR of Medicine, University of French West Indies, Abymes, Guadeloupe,France
| | - Mary Sherlock
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
| | - Mary Zachos
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
| | - Brian W Timmons
- Child Health and Exercise Medicine Program, McMaster University, Hamilton, ON,Canada
| | - Joyce Obeid
- Child Health and Exercise Medicine Program, McMaster University, Hamilton, ON,Canada
| | - Nikhil Pai
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON,Canada
| |
Collapse
|
17
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Guo X, Liu L, Zhao W, Li X, Wang X, Ning A, Cao J, Zhang W, Cao L, Zhong M. The protective effect of Schisandra chinensis (Turcz.) Baill. polysaccharide on DSS-induced ulcerative colitis in mice via the modulation of gut microbiota and inhibition of NF-κB activation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:196-206. [PMID: 37555248 DOI: 10.1002/jsfa.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Schisandra chinensis (Turcz.) Baill, a fruit utilized in traditional Chinese medicine (TCM), has a long history of medical application. It has been used to treat diseases of the gastrointestinal tract. Schisandra chinensis (Turcz.) Baill polysaccharide (SACP) is an important biologically active ingredient that has been shown to have a variety of beneficial effects including immune regulation and anti-oxidative properties. Ulcerative colitis (UC) is a complicated gastrointestinal inflammatory disease. We explore the protective effect of SACP against UC. RESULTS Schisandra chinensis (Turcz.) Baill polysaccharide significantly reduced the disease activity index (DAI) and levels of myeloperoxidase(MPO) and malondialdehyde (MDA) in colonic tissue. It also alleviated weight loss and histopathological damage of mice. The expression of MUC2 and occludin proteins was increased and the barrier function of the colonic mucosa was enhanced by SACP treatment. NF-κB pathway activation was also inhibited and the production of pro-inflammatory cytokines was decreased whereas anti-inflammatory cytokines were increased. 16SrDNA sequencing of fecal flora showed that SACP increased the abundance of Muribaculaceaeunclassified, LachnospiraceaeNK4A136group and reduced the abundance of Bacteroides and Erysipelatoclostridium. CONCLUSION Schisandra chinensis (Turcz.) Baill polysaccharide can protect against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis in mice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaorong Guo
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
- The Liaoning Province People's Hospital, Shenyang, P.R. China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Wenqi Zhao
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Xingyun Li
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Xiaoli Wang
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Anhong Ning
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Jing Cao
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
19
|
Li H, Wang K, Hao M, Liu Y, Liang X, Yuan D, Ding L. The role of intestinal microecology in inflammatory bowel disease and colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36590. [PMID: 38134100 PMCID: PMC10735145 DOI: 10.1097/md.0000000000036590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Intestinal microecology is a dominant and complex microecological system in human body. Generally, intestinal microecosystem consists of normal symbiotic flora and its living environment (including intestinal epithelial tissue and intestinal mucosal immune system). Commensal flora is the core component of microecology. Both structures of intestinal mucosa and functions of immune system are essential to maintain homeostasis of intestinal microecosystem. Under normal conditions, intestinal microorganisms and intestinal mucosa coordinate with each other to promote host immunity. When certain factors in the intestine are altered, such as disruption of the intestinal barrier causing dysbiosis of the intestinal flora, the immune system of the host intestinal mucosa makes a series of responses, which leads to the development of intestinal inflammation and promotes colorectal cancer. In this review, to further understand the relationship between intestinal microecology and intestinal diseases, we systematically elaborate the composition of the intestinal mucosal immune system, analyze the relationship between intestinal flora and mucosal immune system, and the role of intestinal flora on intestinal inflammatory diseases and colorectal cancer.
Collapse
Affiliation(s)
- Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
20
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
21
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Kierasińska M, Stear M, Donskow-Łysoniewska K. The Impact of Intestinal Inflammation on Nematode's Excretory-Secretory Proteome. Int J Mol Sci 2023; 24:14127. [PMID: 37762428 PMCID: PMC10531923 DOI: 10.3390/ijms241814127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| | - Ludmiła Szewczak
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 00-096 Warsaw, Poland;
| | - Katarzyna Krawczak-Wójcik
- Department of Biomedical Sciences, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Magdalena Kierasińska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland;
| | - Michael Stear
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| |
Collapse
|
22
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
23
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
24
|
Pucca MB, Villena J, de Oliveira GLV. Editorial: Dietary habits, microbiota and autoimmune diseases. Front Nutr 2023; 10:1233863. [PMID: 37426185 PMCID: PMC10327567 DOI: 10.3389/fnut.2023.1233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Manuela Berto Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-National Council of Scientific and Technological Research), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Gislane Lelis Vilela de Oliveira
- Microbiology Program, Department of Food Science and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, Brazil
- Laboratory of Immunomodulation and Microbiota, Department of Chemical and Biological Sciences, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
25
|
Drissi F, Bourreille A, Neunlist M, Meurette G. Sacral neuromodulation for refractory ulcerative colitis: safety and efficacy in a prospective observational series of eight patients. Tech Coloproctol 2023; 27:501-505. [PMID: 37043102 PMCID: PMC10169876 DOI: 10.1007/s10151-023-02793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE Ulcerative colitis (UC) treatment is mainly based on immunosuppressive therapy. As anti-inflammatory effects of sacral neuromodulation (SNM) have been previously reported in animal models, we conducted a pilot study aimed at assessing clinical, biological, and endoscopic response but also safety of SNM use in UC refractory to medical therapy. METHODS Adult patients with histologically proven UC resistant to immunosuppressive therapy were invited to enroll in the study. Primary outcome was the rate of UC remission (UCDAI score ≤ 2, without any criteria > 1) at 8 weeks (W8). Secondary outcomes were biological and endoscopic response also evaluated at W8 and W16. Subsequently, every patient was followed every 6 months. Adverse events were prospectively collected for safety assessment during the follow-up. RESULTS Eight patients, with mean age 47 years old, suffering from UC for 2-13 years were included. There were no complications in relation to SNM procedure. The acceptance of the device was excellent in all patients. Clinical and endoscopic remission was obtained at W8 in one patient (12.5%) and three other patients (37.5%) were responders at W16. At review (mean follow-up of 4 years), two patients (25%) were in remission and two (25%) were responders. CONCLUSION SNM application is safe in patients suffering from refractory UC. Effects on disease activity were mainly observed after 16 weeks. Larger prospective studies are mandatory, but SNM could be a way to reinforce medical therapy and reduce the use of immunosuppressive drugs.
Collapse
Affiliation(s)
- Farouk Drissi
- Chirurgie Cancérologique Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, University Hospital of Nantes, Hôtel Dieu, 1 Place Alexis Ricordeau, 44093, Nantes, Cedex 01, France
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, University of Nantes, Inserm, TENS, Nantes, France
- University Hospital of Nantes, Hôtel Dieu, Nantes, France
| | - Arnaud Bourreille
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, University of Nantes, Inserm, TENS, Nantes, France
- University Hospital of Nantes, Hôtel Dieu, Nantes, France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, University of Nantes, Inserm, TENS, Nantes, France
- University Hospital of Nantes, Hôtel Dieu, Nantes, France
| | - Guillaume Meurette
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, University of Nantes, Inserm, TENS, Nantes, France.
- Division of Digestive Surgery, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Hsu M, Tun KM, Batra K, Haque L, Vongsavath T, Hong AS. Safety and Efficacy of Fecal Microbiota Transplantation in Treatment of Inflammatory Bowel Disease in the Pediatric Population: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1272. [PMID: 37317246 DOI: 10.3390/microorganisms11051272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Background and Aims: Fecal microbiota transplantation (FMT) has been increasingly studied in the inflammatory bowel disease (IBD) population. However, most studies have focused on the adult population, and the safety and efficacy of FMT in a pediatric population is less well understood. This systematic review and meta-analysis investigates the safety and efficacy of FMT in a pediatric IBD population. Methods: A comprehensive literature search of publications published prior to 30 June 2022 was undertaken. Safety data, IBD-related outcomes, and microbiome analysis were obtained from these studies when accessible. Individual estimates of each study were pooled, and sensitivity analysis was conducted. Results: Eleven studies satisfied our eligibility criteria. The calculated pooled rate of adverse events was 29% (95% confidence interval [CI]: 15.0%, 44.0%; p < 0.001; I2 = 89.0%, Q = 94.53), and the calculated pooled rate of serious adverse events was 10% (95% confidence interval [CI]: 6.0%, 14.0%; p = 0.28; I2 = 18.0%, Q = 9.79). One month after FMT, clinical response was achieved in 20/34 (58.8%) pediatric IBD patients, clinical remission was achieved in 22/34 (64.7%), and both clinical response and remission were achieved in 15/34 (44.1%) pediatric IBD patients. Conclusions: FMT can be a safe and effective treatment in the pediatric IBD population and may demonstrate improved safety and efficacy in the pediatric population compared to the adult population. However, our results are limited by a lack of established protocol as well as long-term follow-up for FMT in a pediatric IBD population.
Collapse
Affiliation(s)
- Mark Hsu
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Kyaw Min Tun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Kavita Batra
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
- Office of Research, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Lubaba Haque
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Tahne Vongsavath
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| | - Annie S Hong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, NV 89102, USA
| |
Collapse
|
27
|
Suau R, Garcia A, Bernal C, Llaves M, Schiering K, Jou-Ollé E, Pertegaz A, Garcia-Jaraquemada A, Bartolí R, Lorén V, Vergara P, Mañosa M, Domènech E, Manyé J. Response Variability to Drug Testing in Two Models of Chemically Induced Colitis. Int J Mol Sci 2023; 24:ijms24076424. [PMID: 37047397 PMCID: PMC10094987 DOI: 10.3390/ijms24076424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The lack of knowledge regarding the pathogenesis of IBD is a challenge for the development of more effective and safer therapies. Although in vivo preclinical approaches are critical for drug testing, none of the existing models accurately reproduce human IBD. Factors that influence the intra-individual response to drugs have barely been described. With this in mind, our aim was to compare the anti-inflammatory efficacy of a new molecule (MTADV) to that of corticosteroids in TNBS and DSS-induced colitis mice of both sexes in order to clarify further the response mechanism involved and the variability between sexes. The drugs were administered preventively and therapeutically, and real-time bioluminescence was performed for the in vivo time-course colitis monitoring. Morphometric data were also collected, and colonic cytokines and acute plasma phase proteins were analyzed by qRT-PCR and ELISA, respectively-bioluminescence images correlated with inflammatory markers. In the TNBS model, dexamethasone worked better in females, while MTADV improved inflammation in males. In DSS-colitis, both therapies worked similarly. Based on the molecular profiles, interaction networks were constructed to pinpoint the drivers of therapeutic response that were highly dependent on the sex. In conclusion, our results suggest the importance of considering sex in IBD preclinical drug screening.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Anna Garcia
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carla Bernal
- Laboratory of Genetic Metabolic Diseases, Faculty of Biosciences, National University of San Marcos, Lima 15088, Peru
| | - Mariona Llaves
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Katharina Schiering
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Eva Jou-Ollé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Alex Pertegaz
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | - Ramon Bartolí
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Hepatology Unit IGTP, 08916 Badalona, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Patri Vergara
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Department of Physiology, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Míriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
28
|
Su Y, Liang J, Zhang M, Zhao M, Xie X, Wang X, Pan Z, Huang S, Yan R, Wang Q, Zhou L, Luo X. Wogonin regulates colonocyte metabolism via PPARγ to inhibit Enterobacteriaceae against dextran sulfate sodium-induced colitis in mice. Phytother Res 2023; 37:872-884. [PMID: 36451541 DOI: 10.1002/ptr.7677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022]
Abstract
To investigate the potential effects and mechanism of wogonin on dextran sulfate sodium (DSS)-induced colitis, 70 male mice were administered wogonin (12.5, 25, 50 mg·kg-1 ·d-1 , i.g.) for 10 days, meanwhile, in order to induce colitis, the mice were free to drink 3% DSS for 6 days. We found that wogonin could obviously ameliorate DSS-induced colitis, including preventing colon shortening and inhibiting pathological damage. In addition, wogonin could increase the expression of PPARγ, which not only restores intestinal epithelial hypoxia but also inhibits iNOS protein to reduce intestinal nitrite levels. All these effects facilitated a reduction in the abundance of Enterobacteriaceae in DSS-induced colitis mice. Therefore, compared with the DSS group, the number of Enterobacteriaceae in the intestinal flora was significantly reduced after administration of wogonin or rosiglitazone by 16s rDNA technology. We also verified that wogonin could promote the expression of PPARγ mRNA and protein in Caco-2 cells, and this effect disappeared when PPARγ signal was inhibited. In conclusion, our study suggested that wogonin can activate the PPARγ signal of the Intestinal epithelium to ameliorate the Intestinal inflammation caused by Enterobacteriaceae bacteria expansion.
Collapse
Affiliation(s)
- Yulin Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjie Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zengfeng Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Yan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Laredo V, García-Mateo S, Martínez-Domínguez SJ, López de la Cruz J, Gargallo-Puyuelo CJ, Gomollón F. Risk of Cancer in Patients with Inflammatory Bowel Diseases and Keys for Patient Management. Cancers (Basel) 2023; 15:871. [PMID: 36765829 PMCID: PMC9913122 DOI: 10.3390/cancers15030871] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in patients with Inflammatory Bowel Disease (IBD) leads to an increased risk of colorectal cancer, small bowel cancer, intestinal lymphoma and cholangiocarcinoma. However, treatments for IBD have also been associated with an increased risk of neoplasms. Patients receiving Thiopurines (TPs) have an increased risk of hematologic malignancies, non-melanoma skin cancer, urinary tract neoplasms and cervical cancer. Anti-TNFs have been associated with a higher risk of neoplasms, mainly lymphomas and melanomas; however, the data are controversial, and some recent studies do not confirm the association. Nevertheless, other biologic agents, such as ustekinumab and vedolizumab, have not shown an increased risk of any neoplasm to date. The risk of malignancies with tofacitinib exists, but its magnitude and relationship with previous treatment with TPs is not defined, so more studies from daily clinical practice are needed. Although biologic therapy seems to be safe for patients with current cancer or a prior history of cancer, as has been demonstrated in other chronic inflammatory conditions, prospective studies in this specific population are needed. Until that time, it is crucial to manage such conditions via the combined clinical expertise of the gastroenterologist and oncologist.
Collapse
Affiliation(s)
- Viviana Laredo
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sandra García-Mateo
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Samuel J. Martínez-Domínguez
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Julia López de la Cruz
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Carla J. Gargallo-Puyuelo
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Fernando Gomollón
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER for Liver and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
30
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:cells12010184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| |
Collapse
|
31
|
Shang Y, Zhai Z, Huang J, Li L, Zuo X. Specific alterations in mucosa-associated bacterial composition in ulcerative colitis (UC) patients with different degrees of inflammation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yansheng Shang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhenzhen Zhai
- Department of Gastroenterology, Dezhou People’s Hospital, Dezhou, Shandong, PR China
| | - Jiaguo Huang
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
32
|
Bullard BM, VanderVeen BN, McDonald SJ, Cardaci TD, Murphy EA. Cross talk between the gut microbiome and host immune response in ulcerative colitis: nonpharmacological strategies to improve homeostasis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G554-G561. [PMID: 36283090 PMCID: PMC9678428 DOI: 10.1152/ajpgi.00210.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/31/2023]
Abstract
Ulcerative colitis (UC) is a chronic disease that is characterized by diffuse inflammation of the colonic and rectal mucosa. The burden of UC is rising globally with significant disparities in levels and trends of disease in different countries. The pathogenesis of UC involves the presence of pathogenic factors including genetic, environmental, autoimmune, and immune-mediated components. Evidence suggests that disturbed interactions between the host immune system and gut microbiome contribute to the origin and development of UC. Current medications for UC include antibiotics, corticosteroids, and biological drugs, which can have deleterious off-target effects on the gut microbiome, contributing to increased susceptibility to severe infections and chronic immunosuppression. Alternative, nonpharmacological, and behavioral interventions have been proposed as safe and effective treatments to alleviate UC, while also holding the potential to improve overall life quality. This mini-review will discuss the interactions between the immune system and the gut microbiome in the case of UC. In addition, we suggest nonpharmacological and behavioral strategies aimed at restoring a proper microbial-immune relationship.
Collapse
Affiliation(s)
- Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
33
|
Xiong S, Liu K, Yang F, Dong Y, Zhang H, Wu P, Zhou Y, Zhang L, Wu Q, Zhao X, Li W, Yuan L, Huang B, Yue R, Feng L, Chen J, Zhang Y. Global research trends on inflammatory bowel diseases and colorectal cancer: A bibliometric and visualized study from 2012 to 2021. Front Oncol 2022; 12:943294. [PMID: 36523998 PMCID: PMC9746337 DOI: 10.3389/fonc.2022.943294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 09/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease of intestinal tract and a common digestive system disease. Current studies have shown that IBD significantly increases the incidence of colorectal cancer (CRC), and is positively correlated with the degree and extent of inflammation of IBD. The relationship between IBD and CRC has attracted extensive attention. However, the relationship between IBD and CRC has not been systematically studied by bibliometrics and visual analysis. This study conducted bibliometric analysis based on 3528 publications from the Core Collection of Web of Science to determine the research status, research hotspots and frontiers of this field. The results show that the number of publications has increased significantly over the past 10 years. The cooperative network analysis shows that the United States, Mayo Clin and Bo Shen are the country, institution and author with the most publications respectively. Belgium, Icahn Sch Med Mt Sinai and Erik Mooiweer are the most collaborative country, institution and author respectively. Analysis of keywords and references showed that inflammation, intestinal flora, and obesity were hot topics in this field. Analysis of keyword outbreaks shows that the gut microbiome and metabolism will be an emerging new research area and a potential hot spot for future research. This study is the first to visually examine the association between IBD and CRC using bibliometrics and visual analysis, and to predict potential future research trends.
Collapse
Affiliation(s)
- Shuai Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanwei Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongcai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengning Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Wu
- XinDu Hospital of Traditional Chinese Medicine, Chengdu, China
| | | | - Wei Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingling Yuan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Biao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rensong Yue
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Fan S, Xing J, Jiang Z, Zhang Z, Zhang H, Wang D, Tang D. Effects of Long Non-Coding RNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14235813. [PMID: 36497293 PMCID: PMC9735521 DOI: 10.3390/cancers14235813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although an imbalanced gut microbiome is closely associated with colorectal cancer (CRC), how the gut microbiome affects CRC is not known. Long non-coding RNAs (lncRNAs) can affect important cellular functions such as cell division, proliferation, and apoptosis. The abnormal expression of lncRNAs can promote CRC cell growth, proliferation, and metastasis, mediating the effects of the gut microbiome on CRC. Generally, the gut microbiome regulates the lncRNAs expression, which subsequently impacts the host transcriptome to change the expression of downstream target molecules, ultimately resulting in the development and progression of CRC. We focused on the important role of the microbiome in CRC and their effects on CRC-related lncRNAs. We also reviewed the impact of the two main pathogenic bacteria, Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis, and metabolites of the gut microbiome, butyrate, and lipopolysaccharide, on lncRNAs. Finally, available therapies that target the gut microbiome and lncRNAs to prevent and treat CRC were proposed.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-18952783556
| |
Collapse
|
35
|
Comprehensive analysis of microbiome, metabolome and transcriptome revealed the mechanisms of Moringa oleifera polysaccharide on preventing ulcerative colitis. Int J Biol Macromol 2022; 222:573-586. [PMID: 36115453 DOI: 10.1016/j.ijbiomac.2022.09.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the protective effect of Moringa oleifera polysaccharide (MOP) on ulcerative colitis (UC) and explore its mechanism through the combined analysis of microbiome, metabolome and transcriptome. A UC model in mice was established using dextran sulphate sodium. After a 21-day experiment, results showed that MOP could inhibit the weight loss and disease activity index in UC mice. The intervention of MOP decreased the expression of inflammatory cytokines and promoted the secretion of tight junctions. MOP could promote the growth of probiotics such as Lachnospiraceae_NK4A136, Intestinimonas and Bifidobacterium in UC mice. The results of metabolomic and transcriptomic analysis indicated that MOP could regulated the metabolism of polyunsaturated fatty acid and PPAR, TLR and TNF signalling pathways might play important roles in the process. Altogether, MOP could be used as a functional food to prevent UC.
Collapse
|
36
|
Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:4053-4060. [PMID: 36157114 PMCID: PMC9403435 DOI: 10.3748/wjg.v28.i30.4053] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that inhabit the digestive tracts of humans, living in symbiosis with the host. Dysbiosis, characterized by an imbalance between the beneficial and opportunistic gut microbiota, is associated with several gastrointestinal disorders, such as irritable bowel syndrome (IBS); inflammatory bowel disease (IBD), represented by ulcerative colitis and Crohn’s disease; and colorectal cancer (CRC). Dysbiosis can disrupt the mucosal barrier, resulting in perpetuation of inflammation and carcinogenesis. The increase in some specific groups of harmful bacteria, such as Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF), has been associated with chronic tissue inflammation and the release of pro-inflammatory and carcinogenic mediators, increasing the chance of developing CRC, following the inflammation-dysplasia-cancer sequence in IBD patients. Therefore, the aim of the present review was to analyze the correlation between changes in the gut microbiota and the development and maintenance of IBD, CRC, and IBD-associated CRC. Patients with IBD and CRC have shown reduced bacterial diversity and abundance compared to healthy individuals, with enrichment of Firmicute sand Bacteroidetes. Specific bacteria are also associated with the onset and progression of CRC, such as Fusobacterium nucleatum, E. coli, Enterococcus faecalis, Streptococcus gallolyticus, and ETBF. Future research can evaluate the advantages of modulating the gut microbiota as preventive measures in CRC high-risk patients, directly affecting the prognosis of the disease and the quality of life of patients.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Ellen Cristina Souza De Oliveira
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Luiz Claudio Di Stasi
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| |
Collapse
|
37
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
38
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Tsigalou C, Konstantinidis T, Aloizou AM, Bezirtzoglou E, Tsakris A. Future Therapeutic Prospects in Dealing with Autoimmune Diseases: Treatment Based on the Microbiome Model. ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:489-520. [DOI: 10.1007/978-981-19-4800-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|