1
|
Zhang Z, Yu J, Li Q, Zhao Y, Tang L, Peng Y, Liu Y, Gan C, Liu K, Wang J, Chen L, Luo Q, Qiu H, Ren H, Jiang C. Unraveling the causal pathways of maternal smoking and breastfeeding in the development of neuropsychiatric disorders: A Mendelian randomization perspective. J Affect Disord 2024; 373:35-43. [PMID: 39716673 DOI: 10.1016/j.jad.2024.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Maternal smoking around birth (MSAB) and early-life breastfeeding (BAB) represent critical factors that may exert enduring effects on neuropsychiatric health. Although previous research has examined these exposures separately, the combined impact of both on disorders such as ADHD, ASD, BD, MDD, ANX, and SCZ remains unclear. This study aims to evaluate the causal relationships between MSAB and BAB and the risk of developing these neuropsychiatric disorders through Mendelian randomization (MR) analysis. METHODS A two-sample MR analysis was conducted to investigate the potential causal effects of MSAB and BAB on a range of neuropsychiatric disorders. Genetic variants associated with MSAB and BAB were obtained from genome-wide association studies (GWAS), while summary data for neuropsychiatric disorders were gathered from large GWAS consortia. The primary MR analysis was conducted using the inverse-variance weighted (IVW) method, with additional sensitivity analyses performed to confirm the robustness of the findings. A False Discovery Rate (FDR) correction was applied to control for the issue of multiple comparisons and reduce the risk of Type I errors. RESULTS The IVW analysis indicated that there were significant associations between MSAB and an increased risk of the following conditions: The IVW analysis indicated significant associations between MSAB and an increased risk of ADHD (odds ratio [OR] = 5.36, 95 % confidence interval [CI] = 2.58-7.63, p-value for false discovery rate [PFDR] = 0.004) and major depressive disorder (MDD) (OR = 1.92, 95 % CI = 1.29-2.88, PFDR = 0. Furthermore, significant associations were observed between MSAB and an increased risk of bipolar disorder (BD) (OR = 6.33, 95 % CI = 1.56-8.73, PFDR = 0.020), anxiety disorders (ANX) (OR = 1.03, 95 % CI = 1.00-1.05, PFDR = 0.039), and attention deficit hyperactivity disorder (ADHD) (OR = 5.36, 95 % CI = 2.58-7.63, PFDR = 0.004). No significant associations were identified between MSAB and Autism Spectrum Disorder (ASD) or Schizophrenia (SCZ). In contrast, the results indicated that BAB was associated with a protective effect against ADHD (OR = 0.17, 95 % CI = 0.04-0.63, PFDR = 0.025), MDD (OR = 0.26, 95 % CI = 0.12-0.58, PFDR = 0.006), and ANX (OR = 0.96, 95 % CI = 0.49-0.99, PFDR = 0.030). No significant effects of BAB were observed for ASD, BD, or SCZ. CONCLUSIONS This study shows that maternal smoking around the time of birth increases the risk of attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), bipolar disorder (BD), and anxiety disorders (ANX). In contrast, breastfeeding during infancy offers protective benefits against ADHD, MDD, and ANX. These findings underscore the vital importance of maternal health behaviours during the perinatal and infant feeding periods. They also highlight the need for targeted public health interventions aimed at reducing the risk of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jiangyou Yu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qiyin Li
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yuan Zhao
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Liwei Tang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yadong Peng
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Ying Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Cheng Gan
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Keyi Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jing Wang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Lixia Chen
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haitang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Ren
- Chongqing Changshou District, Mental Health Center, Chongqing 401231, China.
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
2
|
Cui J, Li H, Hu C, Zhang F, Li Y, Weng Y, Yang L, Li Y, Yao M, Li H, Luo X, Hao Y. Unraveling pathogenesis and potential biomarkers for autism spectrum disorder associated with HIF1A pathway based on machine learning and experiment validation. Neurobiol Dis 2024; 204:106763. [PMID: 39657846 DOI: 10.1016/j.nbd.2024.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/05/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a high social burden and limited treatments. Hypoxic condition of the brain is considered an important pathological mechanism of ASD. HIF1A is a key participant in brain hypoxia, but its contribution to the pathophysiological landscape of ASD remains unclear. METHODS ASD-related datasets were obtained from GEO database, and HIF1A-related genes from GeneCards. Co-expression module analysis identified module genes, which were intersected with HIF1A-related genes to identify common genes. Machine learning identified hub genes from intersection genes and PPI networks were constructed to explore relationships among hub and HIF1A. Single-cell RNA sequencing analyzed hub gene distribution across cell clusters. ASD mouse model was created by inducing maternal immune activation (MIA) with poly(I:C) injections, verified through behavioral tests. Validation of HIF1A pathway and hub genes was confirmed through Western Blot, qPCR, and immunofluorescence in ASD mice and microglia BV-2 cells. RESULTS Using CEMiTool and GeneCards, 45 genes associated with ASD and HIF1A pathway were identified. Machine learning identified CDKN1A, ETS2, LYN, and SLC16A3 as potential ASD diagnostic markers. Single-cell sequencing pinpointed activated microglia as key immune cells. Behavioral tests showed MIA offspring mice exhibited typical ASD-like behaviors. Immunofluorescence confirmed the activation of microglia and HIF1A pathway in frontal cortex of ASD mice. Additionally, IL-6 contributed to ASD by activating JUN/HIF1A pathway, affecting CDKN1A, LYN, and SLC16A3 expression in microglia. CONCLUSIONS HIF1A-related genes CDKN1A, ETS2, LYN, and SLC16A3 are strong diagnostic markers for ASD and the activation of IL-6/JUN/HIF1A pathway in microglia contributes to the pathogenesis of ASD.
Collapse
Affiliation(s)
- Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyan Zhang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunjie Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Yang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingying Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minglan Yao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R, Shafiei-Irannejad V. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol 2024; 61:9993-10005. [PMID: 38057641 DOI: 10.1007/s12035-023-03749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.
Collapse
Affiliation(s)
- Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Golsa Babapour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Tooba Mohammadi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Tan Z, Xia R, Zhao X, Yang Z, Liu H, Wang W. Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia. Mol Cell Neurosci 2024; 131:103980. [PMID: 39580060 DOI: 10.1016/j.mcn.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication deficits, as well as restricted or repetitive behaviors or interests. Although the etiology of ASD remains unclear, there is abundant evidence suggesting that microglial dysfunction is likely to be a significant factor in the pathophysiology of ASD. Microglia, the primary innate immune cells in the central nervous system (CNS), play a crucial role in brain development and homeostasis. Recently, numerous studies have shown that microglia in ASD models display various abnormalities including morphology, function, cellular interactions, genetic and epigenetic factors, as well as the expression of receptors, transcription factors, and cytokines. They impact normal neural development through various mechanisms contributing to ASD, such as neuroinflammation, and alterations in synaptic formation and pruning. The focus of this review is on recent studies regarding microglial abnormalities in ASD and their effects on the onset and progression of ASD at both cellular and molecular levels. It can provide insight into the specific contribution of microglia to ASD pathogenesis and help in designing potential therapeutic and preventative strategies targeting microglia.
Collapse
Affiliation(s)
- Zehua Tan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruixin Xia
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zile Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
Duarte RMF, Ribeiro-Barbosa ER, Ferreira FR, Espindola FS, Spini VBMG. Resveratrol prevents offspring's behavioral impairment associated with immunogenic stress during pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111188. [PMID: 39522792 DOI: 10.1016/j.pnpbp.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Evidence suggests that prenatal maternal immunological stress is associated with an increased risk of neurological and psychiatric disorders in the developing offspring. Protecting the embryo during this critical period of neurodevelopment, when the brain is especially vulnerable, is therefore crucial. Polyphenols, with their antioxidant and anti-inflammatory properties, offer promising therapeutic approaches. This study demonstrated a series of behavioral changes induced by maternal immune activation (MIA) triggered by an antigenic solution derived from the H1N1 virus. These changes include significant differences in anxiety and risk assessment behaviors, increased immobility in the forced swim test, impairments in memory and object recognition, and social deficits resembling autism. The phenolic compound resveratrol (RSV) was evaluated for its in vitro antioxidant capacity and characterized using infrared spectroscopy. Administering RSV from embryonic day 14 (E14) to embrionyc day 19 (E19) during MIA effectively reduced its harmful effects on the offspring. This was evidenced by a significant restoration of social behaviors, memory, and recognition, as well as anxiolytic and antidepressant effects in the adult offspring. These findings contribute to new therapeutic strategies for preventing psychiatric disorders associated with neurodevelopmental stressors.
Collapse
Affiliation(s)
- Rener Mateus Francisco Duarte
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Erika Renata Ribeiro-Barbosa
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Foued Salmen Espindola
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
7
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
9
|
Anastasescu CM, Gheorman V, Stoicanescu EC, Popescu F, Gheorman V, Udriștoiu I. Immunological Biomarkers in Autism Spectrum Disorder: The Role of TNF-Alpha and Dependent Trends in Serum IL-6 and CXCL8. Life (Basel) 2024; 14:1201. [PMID: 39337983 PMCID: PMC11432970 DOI: 10.3390/life14091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has seen a rise in prevalence, and the immune system's role in brain development is increasingly recognized. This study investigates the relationship between immune dysregulation and ASD by examining serum concentrations of interleukin 6 (IL-6), interleukin 8 (CXCL8), and tumor necrosis factor alpha (TNF-alpha) in children. METHODS Serum samples from 45 children with ASD and 30 controls, aged 2 to 12 years, were analyzed using electrochemiluminescence, chemiluminescent microparticle immunoassay, and chemiluminescent immunoassay. ASD symptoms were assessed using the Autism Spectrum Rating Scale (ASRS) and Social Communication Questionnaire (SCQ). RESULTS No significant correlation was observed between CXCL8 levels and ASD. IL-6 levels showed a trend toward elevation in boys with ASD. TNF-alpha levels were significantly higher in children with ASD under 5 years compared to older children and controls, though no correlation with symptom severity was found. CONCLUSIONS TNF-alpha may be a potential biomarker for early ASD detection, especially in younger children. Further research on larger cohorts is needed to understand the role of immune dysregulation in ASD.
Collapse
Affiliation(s)
| | - Veronica Gheorman
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen-Cristi Stoicanescu
- Pediatry Department, Emergency Clinical Hospital Râmnicu-Vâlcea, 200300 Râmnicu-Vâlcea, Romania;
| | - Florica Popescu
- Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| |
Collapse
|
10
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Kaliouli-Antonopoulou C. Deciphering the Role of Maternal Microchimerism in Offspring Autoimmunity: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1457. [PMID: 39336498 PMCID: PMC11433734 DOI: 10.3390/medicina60091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Feto-maternal microchimerism is the bidirectional transfer of cells through the placenta during pregnancy that can affect the health of both the mother and the offspring, even in childhood or adulthood. However, microchimerism seems to have different consequences in the mother, who already has a developed immune system, than in the fetus, which is vulnerable with immature defense mechanisms. Studies have shown that the presence of fetal microchimeric cells in the mother can be associated with reduced fetal growth, pre-eclampsia, miscarriage, premature birth, and the risk of autoimmune disease development in the future. However, some studies report that they may also play a positive role in the healing of maternal tissue, in cancer and cardiovascular disease. There are few studies in the literature regarding the role of maternal microchimeric cells in fetal autoimmunity. Even fewer have examined their association with the potential triggering of autoimmune diseases later in the offspring's life. The objectives of this review were to elucidate the mechanisms underlying the potential association between maternal cells and autoimmune conditions in offspring. Based on our findings, several hypotheses have been proposed regarding possible mechanisms by which maternal cells may trigger autoimmunity. In Type 1 diabetes, maternal cells have been implicated in either attacking the offspring's pancreatic β-cells, producing insulin, differentiating into endocrine and exocrine cells, or serving as markers of tissue damage. Additionally, several potential mechanisms have been suggested for the onset of neonatal lupus erythematosus. In this context, maternal cells may induce a graft-versus-host or host-versus-graft reaction in the offspring, function as effectors within tissues, or contribute to tissue healing. These cells have also been found to participate in inflammation and fibrosis processes, as well as differentiate into myocardial cells, potentially triggering an immune response. Moreover, the involvement of maternal microchimeric cells has been supported in conditions such as juvenile idiopathic inflammatory myopathies, Sjögren's syndrome, systemic sclerosis, biliary atresia, and rheumatoid arthritis. Conversely, no association has been found between maternal cells and celiac disease in offspring. These findings suggest that the role of maternal cells in autoimmunity remains a controversial topic that warrants further investigation.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | | |
Collapse
|
11
|
Rahmati-Dehkordi F, Birang N, Jalalian MN, Tamtaji Z, Dadgostar E, Aschner M, Shafiee Ardestani M, Jafarpour H, Mirzaei H, Nabavizadeh F, Tamtaji OR. Can infliximab serve as a new therapy for neuropsychiatric symptoms? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03397-w. [PMID: 39225829 DOI: 10.1007/s00210-024-03397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neuropsychiatric disorders present a global challenge to public health. Mechanisms associated with neuropsychiatric disorders etiology include apoptosis, oxidative stress, and neuroinflammation. Tumor necrosis factor alpha, an inflammatory cytokine, mediates pathophysiology of neuropsychiatric disorders. Therefore, its inhibition by infliximab might afford a valuable target for intervention. Infliximab is commonly used to treat inflammatory diseases, including ulcerative colitis, Crohn's disease, and rheumatoid arthritis. Recently, it has been shown that infliximab improves cognitive dysfunction, depression, anxiety, and life quality. Here, we review contemporary knowledge supporting the need to further characterize infliximab as a potential treatment for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Birang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Bjørklund G, Mkhitaryan M, Sahakyan E, Fereshetyan K, Meguid NA, Hemimi M, Nashaat NH, Yenkoyan K. Linking Environmental Chemicals to Neuroinflammation and Autism Spectrum Disorder: Mechanisms and Implications for Prevention. Mol Neurobiol 2024; 61:6328-6340. [PMID: 38296898 DOI: 10.1007/s12035-024-03941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
This article explores the potential link between endocrine-disrupting chemicals (EDCs), neuroinflammation, and the development of autism spectrum disorder (ASD). Neuroinflammation refers to the immune system's response to injury, infection, or disease in the central nervous system. Studies have shown that exposure to EDCs, such as bisphenol A and phthalates, can disrupt normal immune function in the brain, leading to chronic or excessive neuroinflammation. This disruption of immune function can contribute to developing neurological disorders, including ASD. Furthermore, EDCs may activate microglia, increasing pro-inflammatory cytokine production and astroglia-mediated oxidative stress, exacerbating neuroinflammation. EDCs may also modulate the epigenetic profile of cells by methyltransferase expression, thereby affecting neurodevelopment. This article also highlights the importance of reducing exposure to EDCs and advocating for policies and regulations restricting their use. Further research is needed to understand better the mechanisms underlying the link between EDCs, neuroinflammation, and ASD and to develop new treatments for ASD.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Meri Mkhitaryan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Elen Sahakyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Katarine Fereshetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | | | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia.
| |
Collapse
|
13
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Catania MV. Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective. Neurosci Biobehav Rev 2024; 162:105731. [PMID: 38763180 DOI: 10.1016/j.neubiorev.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.
Collapse
Affiliation(s)
- S D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - M Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - C M Bonaccorso
- Oasi Research Institute - IRCCS, via Conte Ruggero 73, Troina 94018, Italy
| | - M V Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
14
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Herrera Choque AG, Cuna WR, Gabrielli S, Mattiucci S, Passera R, Rodriguez C. Parasitic Effects on the Congenital Transmission of Trypanosoma cruzi in Mother-Newborn Pairs. Microorganisms 2024; 12:1243. [PMID: 38930625 PMCID: PMC11206037 DOI: 10.3390/microorganisms12061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal parasitemia and placental parasite load were examined in mother-newborn pairs to determine their effect on the congenital transmission of Trypanosoma cruzi. Parasitemia was qualitatively assessed in mothers and newborns by the microhematocrit test; parasite load was determined in the placental tissues of transmitting and non-transmitting mothers by the detection of T. cruzi DNA and by histology. Compared to transmitter mothers, the frequency and prevalence of parasitemia were found to be increased in non-transmitter mothers; however, the frequency and prevalence of parasite load were higher among the transmitter mothers than among their non-transmitter counterparts. Additionally, serum levels of interferon (IFN)-γ were measured by an enzyme-linked immunosorbent assay (ELISA) in peripheral, placental, and cord blood samples. Median values of IFN-γ were significantly increased in the cord blood of uninfected newborns. The median IFN-γ values of transmitter and non-transmitter mothers were not significantly different; however, non-transmitter mothers had the highest total IFN-γ production among the group of mothers. Collectively, the results of this study suggest that the anti-T. cruzi immune response occurring in the placenta and cord is under the influence of the cytokines from the mother's blood and results in the control of parasitemia in uninfected newborns.
Collapse
Affiliation(s)
- Ana Gabriela Herrera Choque
- Unidad de Inmunología Parasitaria, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia; (A.G.H.C.); (W.R.C.)
| | - Washington R. Cuna
- Unidad de Inmunología Parasitaria, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia; (A.G.H.C.); (W.R.C.)
| | - Simona Gabrielli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (S.M.)
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (S.M.)
| | - Roberto Passera
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Celeste Rodriguez
- Unidad de Inmunología Parasitaria, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia; (A.G.H.C.); (W.R.C.)
| |
Collapse
|
16
|
Almanaa TN, Alwetaid MY, Bakheet SA, Attia SM, Ansari MA, Nadeem A, Ahmad SF. Aflatoxin B 1 exposure deteriorates immune abnormalities in a BTBR T + Itpr3 tf/J mouse model of autism by increasing inflammatory mediators' production in CD19-expressing cells. J Neuroimmunol 2024; 391:578365. [PMID: 38723577 DOI: 10.1016/j.jneuroim.2024.578365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
18
|
Adiguzel E, Bozkurt NM, Unal G. Independent and combined effects of astaxanthin and omega-3 on behavioral deficits and molecular changes in a prenatal valproic acid model of autism in rats. Nutr Neurosci 2024; 27:590-606. [PMID: 37534957 DOI: 10.1080/1028415x.2023.2239575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1β, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1β, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.
Collapse
Affiliation(s)
- Emre Adiguzel
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Nuh Mehmet Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
19
|
Pesch MH, Leung J, Lanzieri TM, Tinker SC, Rose CE, Danielson ML, Yeargin-Allsopp M, Grosse SD. Autism Spectrum Disorder Diagnoses and Congenital Cytomegalovirus. Pediatrics 2024; 153:e2023064081. [PMID: 38808409 PMCID: PMC11153325 DOI: 10.1542/peds.2023-064081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE To examine the association between congenital cytomegalovirus (cCMV) and autism spectrum disorder (ASD) administrative diagnoses in US children. METHODS Cohort study using 2014 to 2020 Medicaid claims data. We used diagnosis codes to identify cCMV (exposure), ASD (outcome), and covariates among children enrolled from birth through ≥4 to <7 years. Covariates include central nervous system (CNS) anomaly or injury diagnosis codes, including brain anomaly, microcephaly within 45 days of birth, cerebral palsy, epilepsy, or chorioretinitis. We used Cox proportional hazards regression models to estimate hazard ratios and 95% confidence intervals, overall and stratified by sex, birth weight and gestational age outcome (low birth weight or preterm birth), and presence of CNS anomaly or injury. RESULTS Among 2 989 659 children, we identified 1044 (3.5 per 10 000) children with cCMV and 74 872 (25.0 per 1000) children with ASD. Of those with cCMV, 49% also had CNS anomaly or injury diagnosis codes. Children with cCMV were more likely to have ASD diagnoses (hazard ratio: 2.5; 95% confidence interval: 2.0-3.2, adjusting for birth year, sex, and region). This association differed by sex and absence of CNS anomaly or injury but not birth outcome. CONCLUSIONS Children with (versus without) cCMV diagnoses in Medicaid claims data, most of whom likely had symptomatic cCMV, were more likely to have ASD diagnoses. Future research investigating ASD risk among cohorts identified through universal cCMV screening may help elucidate these observed associations.
Collapse
Affiliation(s)
- Megan H. Pesch
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Jessica Leung
- National Center for Immunization and Respiratory Diseases
| | | | - Sarah C. Tinker
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charles E. Rose
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa L. Danielson
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marshalyn Yeargin-Allsopp
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Scott D. Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
20
|
Lubrano C, Parisi F, Cetin I. Impact of Maternal Environment and Inflammation on Fetal Neurodevelopment. Antioxidants (Basel) 2024; 13:453. [PMID: 38671901 PMCID: PMC11047368 DOI: 10.3390/antiox13040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
During intrauterine life, external stimuli including maternal nutrition, lifestyle, socioeconomic conditions, anxiety, stress, and air pollution can significantly impact fetal development. The human brain structures begin to form in the early weeks of gestation and continue to grow and mature throughout pregnancy. This review aims to assess, based on the latest research, the impact of environmental factors on fetal and neonatal brain development, showing that oxidative stress and inflammation are implied as a common factor for most of the stressors. Environmental insults can induce a maternal inflammatory state and modify nutrient supply to the fetus, possibly through epigenetic mechanisms, leading to significant consequences for brain morphogenesis and neurological outcomes. These risk factors are often synergic and mutually reinforcing. Fetal growth restriction and preterm birth represent paradigms of intrauterine reduced nutrient supply and inflammation, respectively. These mechanisms can lead to an increase in free radicals and, consequently, oxidative stress, with well-known adverse effects on the offspring's neurodevelopment. Therefore, a healthy intrauterine environment is a critical factor in supporting normal fetal brain development. Hence, healthcare professionals and clinicians should implement effective interventions to prevent and reduce modifiable risk factors associated with an increased inflammatory state and decreased nutrient supply during pregnancy.
Collapse
Affiliation(s)
- Chiara Lubrano
- Nutritional Sciences, Doctoral Programme (PhD), Università degli Studi di Milano, 20157 Milan, Italy;
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Parisi
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Irene Cetin
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy;
| |
Collapse
|
21
|
Asaka MK, Nishimura T, Kuwabara H, Itoh H, Takahashi N, Tsuchiya KJ. Interleukin-23 levels in umbilical cord blood are associated with neurodevelopmental trajectories in infancy. PLoS One 2024; 19:e0301982. [PMID: 38593153 PMCID: PMC11003674 DOI: 10.1371/journal.pone.0301982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Our previous study, which aimed to understand the early neurodevelopmental trajectories of children with and without neurodevelopmental disorders, identified five classes of early neurodevelopmental trajectories, categorized as high normal, normal, low normal, delayed, and markedly delayed. This investigation involved measurement using the Mullen Scale of Early Learning in a representative sample of Japanese infants followed up from the age of 0 to 2 years (Nishimura et al., 2016). In the present study, we investigated the potential association between cytokine concentrations in umbilical cord serum with any of the five classes of neurodevelopmental trajectories previously assigned, as follows: high normal (N = 85, 13.0%), normal (N = 322, 49.1%), low normal (N = 137, 20.9%), delayed (N = 87, 13.3%), and markedly delayed (N = 25, 3.8%) in infancy. Decreased interleukin (IL)-23 levels in the cord blood were associated with the markedly delayed class, independent of potential confounders (odds ratio, 0.44; 95%confidence interval: 0.26-0.73). Furthermore, IL-23 levels decreased as the developmental trajectory became more delayed, demonstrating that IL-23 plays an important role in development, and is useful for predicting the developmental trajectory at birth.
Collapse
Affiliation(s)
- Machiko K. Asaka
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Centre for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Psychiatry, Saitama Medical University, Moroyama-chou, Saitama, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nagahide Takahashi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji J. Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Centre for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
22
|
Salari Z, Moslemizadeh A, Tezerji SS, Sabet N, Parizi AS, Khaksari M, Sheibani V, Jafari E, Shafieipour S, Bashiri H. Sex-dependent alterations of inflammatory factors, oxidative stress, and histopathology of the brain-gut axis in a VPA-induced autistic-like model of rats. Birth Defects Res 2024; 116:e2310. [PMID: 38563145 DOI: 10.1002/bdr2.2310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/23/2023] [Accepted: 01/21/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION In this study, we aimed to investigate the inflammatory factors, oxidative stress, and histopathological consequences of the brain-gut axis in male and female rats prenatally exposed to VPA. METHODS Pregnant Wistar rats were randomly divided into two groups. The animals received saline, and valproic acid (VPA) (600 mg/kg, i.p.) on embryonic day 12.5 (E12.5). All offspring were weaned on postnatal day 21, and the experiments were done in male and female rats on day 60. The brain and intestine tissues were extracted to assess histopathology, inflammation, and oxidative stress. RESULTS An increase of interleukin-1β (IL-1β) and interleukin-6 (IL-6) and a decrease of interleukin-10 (IL-10) were observed in the two sexes and two tissues of the autistic rats. In the VPA-exposed animals, malondialdehyde (MDA) and protein carbonyl (PC) increased in the brain of both sexes and the intestines of only the males. The total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) significantly decreased in both tissues of male and female autistic groups. Histopathological evaluation showed that the %apoptosis of the cortex in the autistic male and female groups was more than in controls whereas this parameter in the CA1 and CA3 was significant only in the male rats. In the intestine, histopathologic changes were seen only in the male autistic animals. CONCLUSION The inflammatory and antioxidant factors were in line in the brain-gut axis in male and female rats prenatally exposed to VPA. Histopathological consequences were more significant in the VPA-exposed male animals.
Collapse
Affiliation(s)
- Zahra Salari
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sara Sheibani Tezerji
- Department of Behavioural and Molecular Neurobiology, Regensburg Center for Neuroscience, University of Regensburg, Regensburg, Germany
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Saeidpour Parizi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
24
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. RESEARCH SQUARE 2024:rs.3.rs-3684653. [PMID: 38260618 PMCID: PMC10802704 DOI: 10.21203/rs.3.rs-3684653/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 255 genes that have been reported to play fundamental roles in fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The set of genes meeting these criteria provides potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G. Dorsey
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
| | - Evelina Mocci
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Malcolm V. Lane
- Translational Toxicology/Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bruce K. Krueger
- Departments of Physiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
25
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
26
|
Zhou J, Tong J, Ru X, Teng Y, Geng M, Yan S, Tao F, Huang K. Placental inflammatory cytokines mRNA expression and preschool children's cognitive performance: a birth cohort study in China. BMC Med 2023; 21:449. [PMID: 37981714 PMCID: PMC10658981 DOI: 10.1186/s12916-023-03173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The immunologic milieu at the maternal-fetal interface has profound effects on propelling the development of the fetal brain. However, accessible epidemiological studies concerning the association between placental inflammatory cytokines and the intellectual development of offspring in humans are limited. Therefore, we explored the possible link between mRNA expression of inflammatory cytokines in placenta and preschoolers' cognitive performance. METHODS Study subjects were obtained from the Ma'anshan birth cohort (MABC). Placental samples were collected after delivery, and real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the mRNA expression levels of IL-8, IL-1β, IL-6, TNF-α, CRP, IFN-γ, IL-10, and IL-4. Children's intellectual development was assessed at preschool age by using the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV). Multiple linear regression and restricted cubic spline models were used for statistical analysis. RESULTS A total of 1665 pairs of mother and child were included in the analysis. After adjusting for confounders and after correction for multiple comparisons, we observed that mRNA expression of IL-8 (β = - 0.53; 95% CI, - 0.92 to - 0.15), IL-6 (β = - 0.58; 95% CI, - 0.97 to - 0.19), TNF-α (β = - 0.37; 95% CI, - 0.71 to - 0.02), and IFN-γ (β = - 0.31; 95% CI, - 0.61 to - 0.03) in the placenta was negatively associated with preschoolers' full scale intelligence quotient (FSIQ). Both higher IL-8 and IL-6 were associated with lower children's low fluid reasoning index (FRI), and higher IFN-γ was associated with lower children's working memory index (WMI). After further adjusting for confounders and children's age at cognitive testing, the integrated index of six pro-inflammatory cytokines (index 2) was found to be significantly and negatively correlated with both the FSIQ and each sub-dimension (verbal comprehension index (VCI), visual spatial index (VSI), FRI, WMI, processing speed index (PSI)). Sex-stratified analyses showed that the association of IL-8, IFN-γ, and index 2 with children's cognitive development was mainly concentrated in boys. CONCLUSIONS Evidence of an association between low cognitive performance and high expression of placental inflammatory cytokines (IL-8, IL-6, TNF-α, and IFN-γ) was found, highlighting the potential importance of intrauterine placental immune status in dissecting offspring cognitive development.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Menglong Geng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
27
|
Wu D, Li Y, Chen L, Klein M, Franke B, Chen J, Buitelaar J. Maternal gestational weight gain and offspring's neurodevelopmental outcomes: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 153:105360. [PMID: 37573899 DOI: 10.1016/j.neubiorev.2023.105360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Abnormal gestational weight gain (GWG) has been increasing globally, up to 47% of all pregnancies. Multiple studies have focused on the association between GWG and adverse neurodevelopmental outcomes in the offspring, however with inconsistent results. We performed a systematic review and meta-analysis to evaluate associations between excessive or insufficient GWG and offspring's neurodevelopmental outcomes. Meta-analysis of these 23 studies using a random-effects model revealed associations between excessive GWG and neurodevelopmental disorders (ASD & ID & ADHD together: OR=1.12 [95% CI 1.06-1.19]), ASD (OR=1.18 [95% CI 1.08-1.29]), ADHD (OR=1.08 [95% CI 1.02-1.14]), ASD with ID (OR=1.15 [95% CI 1.01-1.32]), and ASD without ID (OR=1.12 [95% CI 1.06-1.19]). Insufficient GWG was associated with higher risk for ID (OR=1.14 [95% CI 1.03-1.26]). These results emphasize the significant impact, though of small effect size, of GWG across multiple neurodevelopmental disorders. It is important to note that these results do not establish causality. Other factors such as genetic factors, gene-environment interactions may confound the relationship between GWG and neurodevelopmental outcomes. To better understand the role of GWG in neurodevelopmental disorders, future studies should consider using genetically sensitive designs that can account for these potential confounders.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child Health Care, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yicheng Li
- Department of Child Health Care, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Lingyan Chen
- Department of Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki-city, 852-8520, Japan
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
28
|
Bernstein HG, Smalla KH, Keilhoff G, Dobrowolny H, Kreutz MR, Steiner J. The many "Neurofaces" of Prohibitins 1 and 2: Crucial for the healthy brain, dysregulated in numerous brain disorders. J Chem Neuroanat 2023; 132:102321. [PMID: 37524128 DOI: 10.1016/j.jchemneu.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, RG Neuroplasticity, D-39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology, RG Neuroplastcity, D-39118 Magdeburg, Germany; University Medical Center Hamburg Eppendorf, Leibniz Group "Dendritic Organelles and Synaptic Function" ZMNH, Hamburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
29
|
Luo Y, Lv K, Du Z, Zhang D, Chen M, Luo J, Wang L, Liu T, Gong H, Fan X. Minocycline improves autism-related behaviors by modulating microglia polarization in a mouse model of autism. Int Immunopharmacol 2023; 122:110594. [PMID: 37441807 DOI: 10.1016/j.intimp.2023.110594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with few pharmacological treatments. Minocycline, a tetracycline derivative that inhibits microglial activation, has been well-identified with anti-inflammatory properties and neuroprotective effects. A growing body of research suggests that ASD is associated with neuroinflammation, abnormal neurotransmitter levels, and neurogenesis. Thus, we hypothesized that minocycline could improve autism-related behaviors by inhibiting microglia activation and altering neuroinflammation. To verify our hypothesis, we used a mouse model of autism, BTBR T + Itpr3tf/J (BTBR). As expected, minocycline administration rescued the sociability and repetitive, stereotyped behaviors of BTBR mice while having no effect in C57BL/6J mice. We also found that minocycline improved neurogenesis and inhibited microglia activation in the hippocampus of BTBR mice. In addition, minocycline treatment inhibited Erk1/2 phosphorylation in the hippocampus of BTBR mice. Our findings show that minocycline administration alleviates ASD-like behaviors in BTBR mice and improves neurogenesis, suggesting that minocycline supplementation might be a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Mei Chen
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
30
|
Wang Y, Yu S, Li M. Neurovascular crosstalk and cerebrovascular alterations: an underestimated therapeutic target in autism spectrum disorders. Front Cell Neurosci 2023; 17:1226580. [PMID: 37692552 PMCID: PMC10491023 DOI: 10.3389/fncel.2023.1226580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Normal brain development, function, and aging critically depend on unique characteristics of the cerebrovascular system. Growing evidence indicated that cerebrovascular defects can have irreversible effects on the brain, and these defects have been implicated in various neurological disorders, including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder with heterogeneous clinical manifestations and anatomical changes. While extensive research has focused on the neural abnormalities underlying ASD, the role of brain vasculature in this disorder remains poorly understood. Indeed, the significance of cerebrovascular contributions to ASD has been consistently underestimated. In this work, we discuss the neurovascular crosstalk during embryonic development and highlight recent findings on cerebrovascular alterations in individuals with ASD. We also discuss the potential of vascular-based therapy for ASD. Collectively, these investigations demonstrate that ASD can be considered a neurovascular disease.
Collapse
Affiliation(s)
- Yiran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shunyu Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Manzar S. Maternal infection, prenatal antibiotics, and risk of autism in the offspring. Paediatr Perinat Epidemiol 2023; 37:569-570. [PMID: 37188350 DOI: 10.1111/ppe.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Shabih Manzar
- College of Medicine, Louisiana State University of Health Sciences, Shreveport, Louisiana, USA
| |
Collapse
|
32
|
Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Bujnakova I, Kovacova V, Macejova A, Tonhajzerova I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci 2023; 24:11710. [PMID: 37511467 PMCID: PMC10380731 DOI: 10.3390/ijms241411710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are associated with immune dysregulation. We aimed to estimate the pro- and anti-inflammatory activity/balance in ASD and ADHD patients at a little-studied adolescent age with respect to sex. We evaluated 20 ASD patients (5 girls, average age: 12.4 ± 1.9 y), 20 ADHD patients (5 girls, average age: 13.4 ± 1.8 y), and 20 age- and gender-matched controls (average age: 13.2 ± 1.9 y). The evaluated parameters included (1) white blood cells (WBCs), neutrophils, monocytes, lymphocytes, platelets, platelet distribution width (PDW), mean platelet volume, and derived ratios, as well as (2) cytokines-interferon-gamma, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, tumor necrosis factor-alpha (TNF-α), and derived profiles and ratios. ASD adolescents showed higher levels of WBC, monocytes, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, macrophages (M)1 profile, and anti-inflammatory profile than the controls, with ASD males showing higher monocytes, IL-6 and IL-10, anti-inflammatory profile, and a lower T-helper (Th)1/Th2+T-regulatory cell ratio than control males. The ADHD adolescents showed higher levels of PDW, IL-1β and IL-6, TNF-α, M1 profile, proinflammatory profile, and pro-/anti-inflammatory ratio than the controls, with ADHD females showing a higher TNF-α and pro-/anti-inflammatory ratio than the control females and ADHD males showing higher levels of IL-1β and IL-6, TNF-α, and M1 profile than the control males. Immune dysregulation appeared to be different for both neurodevelopmental disorders in adolescence.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Iveta Bujnakova
- Society to Help People with Autism (SPOSA-Turiec), 03601 Martin, Slovakia
| | - Veronika Kovacova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Andrea Macejova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
33
|
Pavlov D, Gorlova A, Haque A, Cavalcante C, Svirin E, Burova A, Grigorieva E, Sheveleva E, Malin D, Efimochkina S, Proshin A, Umriukhin A, Morozov S, Strekalova T. Maternal Chronic Ultrasound Stress Provokes Immune Activation and Behavioral Deficits in the Offspring: A Mouse Model of Neurodevelopmental Pathology. Int J Mol Sci 2023; 24:11712. [PMID: 37511470 PMCID: PMC10380915 DOI: 10.3390/ijms241411712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3β, IL-1β, and IL-6 and increased serum concentrations of IL-1β, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Abrar Haque
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carlos Cavalcante
- Department of Human Health and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Grigorieva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dmitry Malin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sofia Efimochkina
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
34
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
35
|
McCanlies EC, Gu JK, Kashon M, Yucesoy B, Ma CC, Sanderson WT, Kim K, Ludeña-Rodriguez YJ, Hertz-Picciotto I. Parental occupational exposure to solvents and autism spectrum disorder: An exploratory look at gene-environment interactions. ENVIRONMENTAL RESEARCH 2023; 228:115769. [PMID: 37004853 PMCID: PMC10273405 DOI: 10.1016/j.envres.2023.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Erin C McCanlies
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Ja Kook Gu
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Berran Yucesoy
- Former Affiliate of Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Claudia C Ma
- Former Affiliate of Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | | | - Kyoungmi Kim
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
| | | | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
36
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
37
|
Lin F, Wang X, Luo R, Yuan B, Ye S, Yang T, Xiao L, Chen J. Maternal LPS Exposure Enhances the 5-HT Level in the Prefrontal Cortex of Autism-like Young Offspring. Brain Sci 2023; 13:958. [PMID: 37371436 DOI: 10.3390/brainsci13060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by reduced social interactions, impaired communication, and stereotyped behavior. The aim of this research is to investigate the changes in serotonin (5-HT) in the medial prefrontal cortex (PFC) of autism-like offspring induced by maternal lipopolysaccharide (LPS) exposure. Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS to establish an autism-like model in their offspring. Offspring prenatally exposed to LPS showed autism-like behavior. The serotonin level in the mPFC of 2-week-old offspring was noticeably increased after maternal LPS exposure. Differentially expressed genes (DEGs) were enriched in pathways related to tryptophan metabolism and the serotonin system, as shown in RNA-seq findings. Consistently, tryptophan and serotonin metabolisms were altered in 2-week-old LPS-exposed offspring. The mRNA expression levels of 5-HT catabolic enzymes were remarkably reduced or tended to decrease. Moreover, maternal LPS exposure resulted in a higher serotonin 1B receptor (5-HT1BR) expression level in the mPFC but no difference in tryptophan hydroxylase 2 (TPH2) or serotonin reuptake transporter (SERT). The concentrations of 5-HT in serum and colon were increased in LPS-exposed offspring. Meanwhile, the expression level of tryptophan hydroxylase 1 (TPH1) in the colon was increased after maternal LPS treatment, whereas SERT was reduced. Furthermore, Golgi-Cox staining showed that neuronal dendritic length and spine density were significantly reduced in the mPFC of LPS-exposed offspring. The current study reveals that maternal LPS treatment resulted in an exaltation of the 5-HT of mPFC in ASD-like young rats, which may partly be caused by the abnormal elevation of 5-HT metabolism in its colon.
Collapse
Affiliation(s)
- Fang Lin
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Xinyuan Wang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Ruifang Luo
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Binlin Yuan
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Shasha Ye
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| | - Lu Xiao
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing 400015, China
| |
Collapse
|
38
|
Zong W, Lu X, Dong G, Zhang L, Li K. Molecular mechanisms of exercise intervention in alleviating the symptoms of autism spectrum disorder: Targeting the structural alterations of synapse. Front Psychiatry 2023; 14:1096503. [PMID: 37065903 PMCID: PMC10102432 DOI: 10.3389/fpsyt.2023.1096503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder characterized by stereotyped behaviors, specific interests, and impaired social and communication skills. Synapses are fundamental structures for transmitting information between neurons. It has been reported that synaptic deficits, such as the increased or decreased density of synapses, may contribute to the onset of ASD, which affects the synaptic function and neuronal circuits. Therefore, targeting the recovery of the synaptic normal structure and function may be a promising therapeutic strategy to alleviate ASD symptoms. Exercise intervention has been shown to regulate the structural plasticity of synapses and improve ASD symptoms, but the underlying molecular mechanisms require further exploration. In this review, we highlight the characteristics of synaptic structural alterations in the context of ASD and the beneficial effects of an exercise intervention on improving ASD symptoms. Finally, we explore the possible molecular mechanisms of improving ASD symptoms through exercise intervention from the perspective of regulating synaptic structural plasticity, which contributes to further optimizing the related strategies of exercise intervention promoting ASD rehabilitation in future.
Collapse
Affiliation(s)
- Wenhao Zong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Sports, Quzhou University, Quzhou, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiaowen Lu
- Department of Sports, Quzhou University, Quzhou, China
| | - Guijun Dong
- Department of Sports, Quzhou University, Quzhou, China
| | - Li Zhang
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kefeng Li
- Department of Medicine, Quzhou College of Technology, Quzhou, China
| |
Collapse
|
39
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
40
|
Huang L, Zhan D, Xing Y, Yan Y, Li Q, Zhang J, Li S, Ning Q, Zhang C, Luo X. FGL2 deficiency alleviates maternal inflammation-induced blood-brain barrier damage by blocking PI3K/NF-κB mediated endothelial oxidative stress. Front Immunol 2023; 14:1157027. [PMID: 37051251 PMCID: PMC10083319 DOI: 10.3389/fimmu.2023.1157027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionThe impairment of blood-brain barrier (BBB) is one of the key contributors to maternal inflammation induced brain damage in offspring. Our previous studies showed Fibrinogen-like protein 2 (FGL2) deficiency alleviated maternal inflammation induced perinatal brain damage. However, its role in BBB remains undefined.MethodsLipopolysaccharide (LPS) was intraperitoneally injected to dams at Embryonic day 17 to establish maternal inflammation model. FGL2 knockout mice and primary brain microvascular endothelial cells (BMECs) were used for the in-vivo and in-vitro experiments. BBB integrity was assessed by sodium fluorescein extravasation and tight junction (TJ) protein expression. Oxidative stress and the activation of PI3K/NF-κB pathway were evaluated to explore the mechanisms underlying.ResultsUpon maternal inflammation, BBB integrity was remarkedly reduced in neonatal mice. Meanwhile, FGL2 expression was consistently increased in BBB-impaired brain as well as in LPS-treated BMECs. Moreover, FGL2 deficiency attenuated the hyperpermeability of BBB, prevented the decline of TJ proteins, and reduced the cytokine expressions in LPS-exposed pups. Mechanistically, the indicators of oxidative stress, as well as the activation of PI3K/NF-κB pathway, were upregulated after LPS exposure in vivo and in vitro. FGL2 deletion decreased the generation of ROS and NO, reduced the endothelial iNOS and NOX2 expressions, and suppressed the PI3K/NF-κB pathway activation. Besides, inhibition of PI3K by LY294002 decreased the oxidative stress in LPS-treated wild-type BMECs. While, overexpression of PI3K by lentivirus reemerged the induction of NOX2 and iNOS as well as NF-κB activation in FGL2-deleted BMECs.ConclusionOur findings indicate that FGL2 deficiency alleviates the maternal inflammation-induced BBB disruption by inhibiting PI3K/NF-κB mediated oxidative stress in BMECs. Targeting FGL2 may provide a new therapy for prenatal brain damage of offspring.
Collapse
Affiliation(s)
- Lianjing Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Zhan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Xing
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqin Yan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sujuan Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaoping Luo, ; Cai Zhang,
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaoping Luo, ; Cai Zhang,
| |
Collapse
|
41
|
Usui N, Kobayashi H, Shimada S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24065487. [PMID: 36982559 PMCID: PMC10049423 DOI: 10.3390/ijms24065487] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by impairments in social communication, repetitive behaviors, restricted interests, and hyperesthesia/hypesthesia caused by genetic and/or environmental factors. In recent years, inflammation and oxidative stress have been implicated in the pathogenesis of ASD. In this review, we discuss the inflammation and oxidative stress in the pathophysiology of ASD, particularly focusing on maternal immune activation (MIA). MIA is a one of the common environmental risk factors for the onset of ASD during pregnancy. It induces an immune reaction in the pregnant mother’s body, resulting in further inflammation and oxidative stress in the placenta and fetal brain. These negative factors cause neurodevelopmental impairments in the developing fetal brain and subsequently cause behavioral symptoms in the offspring. In addition, we also discuss the effects of anti-inflammatory drugs and antioxidants in basic studies on animals and clinical studies of ASD. Our review provides the latest findings and new insights into the involvements of inflammation and oxidative stress in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-668-79-3124
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Suita 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
42
|
Möhrle D, Yuen M, Zheng A, Haddad FL, Allman BL, Schmid S. Characterizing maternal isolation-induced ultrasonic vocalizations in a gene-environment interaction rat model for autism. GENES, BRAIN, AND BEHAVIOR 2023:e12841. [PMID: 36751016 DOI: 10.1111/gbb.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the "double-hit hypothesis" of autism spectrum disorder risk gene-environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Megan Yuen
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Faraj L Haddad
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
43
|
Simone M, De Giacomo A, Palumbi R, Palazzo C, Lucisano G, Pompamea F, Micella S, Pascali M, Gabellone A, Marzulli L, Giordano P, Gargano CD, Margari L, Frigeri A, Ruggieri M. Serum Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Potential Diagnostic Biomarkers in Autism Spectrum Disorders: A Preliminary Study. Int J Mol Sci 2023; 24:ijms24033057. [PMID: 36769380 PMCID: PMC9917818 DOI: 10.3390/ijms24033057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopment disorders, characterized by a multifactorial etiology based on the interaction of genetic and environmental factors. Recent evidence supports the neurobiological hypothesis based on neuroinflammation theory. To date, there are no sufficiently validated diagnostic and prognostic biomarkers for ASD. Therefore, we decided to investigate the potential diagnostic role for ASD of two biomarkers well known for other neurological inflammatory conditions: the glial fibrillary acidic protein (GFAP) and the neurofilament (Nfl). Nfl and GFAP serum levels were analyzed using SiMoA technology in a group of ASD patients and in a healthy control group (CTRS), age- and gender-matched. Then we investigated the distribution, frequency, and correlation between serum Nfl and GFAP levels and clinical data among the ASD group. The comparison of Nfl and GFAP serum levels between ASD children and the control group showed a mean value of these two markers significantly higher in the ASD group (sNfL mean value ASD pt 6.86 pg/mL median value ASD pt 5.7 pg/mL; mean value CTRS 3.55 pg/mL; median value CTRS 3.1 pg; GFAP mean value ASD pt 205.7 pg/mL median value ASD pt 155.4 pg/mL; mean value CTRS 77.12 pg/mL; median value CTRS 63.94 pg/mL). Interestingly, we also found a statistically significant positive correlation between GFAP levels and hyperactivity symptoms (p-value <0.001). Further investigations using larger groups are necessary to confirm our data and to verify in more depth the potential correlation between these biomarkers and ASD clinical features, such as the severity of the core symptoms, the presence of associated symptoms, and/or the evaluation of a therapeutic intervention. However, these data not only might shed a light on the neurobiology of ASD, supporting the neuroinflammation and neurodegeneration hypothesis, but they also might support the use of these biomarkers in the early diagnosis of ASD, to longitudinally monitor the disease activity, and even more as future prognostic biomarkers.
Collapse
Affiliation(s)
- Marta Simone
- Regenerative and Precision Medicine Department and Jonic Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Andrea De Giacomo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Palumbi
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence:
| | - Claudia Palazzo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucisano
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Pompamea
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Micella
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mara Pascali
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessandra Gabellone
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucia Marzulli
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Concetta Domenica Gargano
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucia Margari
- Regenerative and Precision Medicine Department and Jonic Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Frigeri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maddalena Ruggieri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
44
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
45
|
Antepartum periodontitis treatment and risk of offspring screening positive for autism spectrum disorder. J Perinatol 2023; 43:470-476. [PMID: 36697694 DOI: 10.1038/s41372-023-01610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND To evaluate if treating maternal periodontal disease, a pro-inflammatory condition, during pregnancy (intervention) compared to after pregnancy (control) reduces the likelihood of offspring screening positive for autism spectrum disorder (ASD). METHODS In a follow-up study to the MOTOR randomized trial, we compared rates of positive screens on the Modified Checklist for Autism in Toddlers (M-CHAT) among n = 306 two-year-old toddlers and correlated findings to maternal and cord blood pro-inflammatory interleukin-6 (IL-6). RESULTS Toddlers in the intervention group had decreased risk of a positive M-CHAT screen (adjusted RR = 0.53, 95% CI 0.29-0.99). Toddlers screening positive compared to negative had higher mean IL-6 in cord blood (1.58 ± 1.14 vs. 1.09 ± 0.72 p = 0.001) and maternal IL-6 change from baseline (1.30 ± 0.61 vs 0.96 ± 0.62 p = 0.03). CONCLUSIONS Treating periodontal disease during pregnancy reduced risk of a positive ASD screen. M-CHAT positivity was associated with increased IL-6 in maternal and cord blood. CLINICAL TRIAL Trial Registration numbers: Clinicaltrials.gov NCT03423836.
Collapse
|
46
|
Ibroci E, Liu X, Lieb W, Jessel R, Gigase FAJ, Chung K, Graziani M, Lieber M, Ohrn S, Lynch J, Castro J, Marshall C, Tubassum R, Mutawakil F, Kaplowitz ET, Ellington S, Molenaar N, Sperling RS, Howell EA, Janevic T, Dolan SM, Stone J, De Witte LD, Bergink V, Rommel AS. Impact of prenatal COVID-19 vaccination on delivery and neonatal outcomes: Results from a New York City cohort. Vaccine 2023; 41:649-656. [PMID: 36526507 PMCID: PMC9749885 DOI: 10.1016/j.vaccine.2022.09.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Research suggest prenatal vaccination against coronavirus disease-19 (COVID-19) is safe. However, previous studies utilized retrospectively collected data or examined late pregnancy vaccinations. We investigated the associations of COVID-19 vaccination throughout pregnancy with delivery and neonatal outcomes. We included 1,794 mother-neonate dyads enrolled in the Generation C Study with known prenatal COVID-19 vaccination status and complete covariate and outcome data. We used multivariable quantile regressions to estimate the effect of prenatal COVID-19 vaccination on birthweight, delivery gestational age, and blood loss at delivery; and Poisson generalized linear models for Caesarean delivery (CD) and Neonatal Intensive Care Unit (NICU) admission. Using the above methods, we estimated effects of trimester of vaccine initiation on these outcomes. In our sample, 13.7% (n = 250) received at least one prenatal dose of any COVID-19 vaccine. Vaccination was not associated with birthweight (β = 12.42 g [-90.5, 114.8]), gestational age (β = 0.2 days [-1.1, 1.5]), blood loss (β = -50.6 ml [-107.0, 5.8]), the risks of CD (RR = 0.8; [0.6, 1.1]) or NICU admission (RR = 0.9 [0.5, 1.7]). Trimester of vaccine initiation was also not associated with these outcomes. Our findings suggest that there is no associated risk between prenatal COVID-19 vaccination and adverse delivery and neonatal outcomes in a cohort sample from NYC.
Collapse
Affiliation(s)
- Erona Ibroci
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Xiaoqin Liu
- National Centre for Register-based Research, Aarhus University, Aarhus 8000, Denmark
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Rebecca Jessel
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Kyle Chung
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Molly Lieber
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Sophie Ohrn
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Jezelle Lynch
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Juliana Castro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Christina Marshall
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Rushna Tubassum
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Farida Mutawakil
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Elianna T Kaplowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Sascha Ellington
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta 30329, GA, USA
| | - Nina Molenaar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Rhoda S Sperling
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA; Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Elizabeth A Howell
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 109104, PA, USA
| | - Teresa Janevic
- Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Siobhan M Dolan
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Joanne Stone
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA.
| |
Collapse
|
47
|
Singh R, Kisku A, Kungumaraj H, Nagaraj V, Pal A, Kumar S, Sulakhiya K. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 2023; 11:115. [PMID: 36672623 PMCID: PMC9856079 DOI: 10.3390/biomedicines11010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous category of developmental psychiatric disorders which is characterized by inadequate social interaction, less communication, and repetitive phenotype behavior. ASD is comorbid with various types of disorders. The reported prevalence is 1% in the United Kingdom, 1.5% in the United States, and ~0.2% in India at present. The natural anti-inflammatory agents on brain development are linked to interaction with many types of inflammatory pathways affected by genetic, epigenetic, and environmental variables. Inflammatory targeting pathways have already been linked to ASD. However, these routes are diluted, and new strategies are being developed in natural anti-inflammatory medicines to treat ASD. This review summarizes the numerous preclinical and clinical studies having potential protective effects and natural anti-inflammatory agents on the developing brain during pregnancy. Inflammation during pregnancy activates the maternal infection that likely leads to the development of neuropsychiatric disorders in the offspring. The inflammatory pathways have been an effective target for the subject of translational research studies on ASD.
Collapse
Affiliation(s)
- Ramu Singh
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Anglina Kisku
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Haripriya Kungumaraj
- Department of Kinesiology and Health, School of Art and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vini Nagaraj
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Ajay Pal
- Shriners Hospitals Pediatric Research Center (Center for Neural Rehabilitation and Repair), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
48
|
Hall MB, Willis DE, Rodriguez EL, Schwarz JM. Maternal immune activation as an epidemiological risk factor for neurodevelopmental disorders: Considerations of timing, severity, individual differences, and sex in human and rodent studies. Front Neurosci 2023; 17:1135559. [PMID: 37123361 PMCID: PMC10133487 DOI: 10.3389/fnins.2023.1135559] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Epidemiological evidence suggests that one's risk of being diagnosed with a neurodevelopmental disorder (NDD)-such as autism, ADHD, or schizophrenia-increases significantly if their mother had a viral or bacterial infection during the first or second trimester of pregnancy. Despite this well-known data, little is known about how developing neural systems are perturbed by events such as early-life immune activation. One theory is that the maternal immune response disrupts neural processes important for typical fetal and postnatal development, which can subsequently result in specific and overlapping behavioral phenotypes in offspring, characteristic of NDDs. As such, rodent models of maternal immune activation (MIA) have been useful in elucidating neural mechanisms that may become dysregulated by MIA. This review will start with an up-to-date and in-depth, critical summary of epidemiological data in humans, examining the association between different types of MIA and NDD outcomes in offspring. Thereafter, we will summarize common rodent models of MIA and discuss their relevance to the human epidemiological data. Finally, we will highlight other factors that may interact with or impact MIA and its associated risk for NDDs, and emphasize the importance for researchers to consider these when designing future human and rodent studies. These points to consider include: the sex of the offspring, the developmental timing of the immune challenge, and other factors that may contribute to individual variability in neural and behavioral responses to MIA, such as genetics, parental age, the gut microbiome, prenatal stress, and placental buffering.
Collapse
|
49
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
50
|
Duan L, Liu J, Yin H, Wang W, Liu L, Shen J, Wang Z. Dynamic changes in spatiotemporal transcriptome reveal maternal immune dysregulation of autism spectrum disorder. Comput Biol Med 2022; 151:106334. [PMID: 36442276 DOI: 10.1016/j.compbiomed.2022.106334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is known to be an environmental risk factor for neurodevelopment and autism spectrum disorder (ASD). However, it is unclear at which fetal brain developmental windows and regions MIA induces ASD-related neurodevelopmental transcriptional abnormalities. The non-chasm differentially expressed genes (DEGs) involved in MIA inducing ASD during fetal brain developmental windows were identified by performing the differential expression analysis and comparing the common DEGs among MIA at four different gestational development windows, ASD with multiple brain regions from human patients and mouse models, and human and mouse embryonic brain developmental trajectory. The gene set and functional enrichment analyses were performing to identify MIA dysregulated ASD-related the fetal neurodevelopmental windows and brain regions and function annotations. Additionally, the networks were constructed using Cytoscape for visualization. MIA at E12.5 and E14.5 increased the risk of distinct brain regions for ASD. MIA-driven transcriptional alterations of non-chasm DEGs, during the coincidence brain developmental windows between human and mice, involving ASD-relevant synaptic components, as well as immune- and metabolism-related functions and pathways. Furthermore, a great number of non-chasm brain development-, immune-, and metabolism-related DEGs were overlapped in at least two existing ASD-associated databases, suggesting that the others could be considered as the candidate targets to construct the model mice for explaining the pathological changes of ASD when environmental factors (MIA) and gene mutation effects co-occur. Overall, our search supported that transcriptome-based MIA dysregulated the brain development-, immune-, and metabolism-related non-chasm DEGs at specific embryonic brain developmental window and region, leading to abnormal embryonic neurodevelopment, to induce the increasing risk of ASD.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Huamin Yin
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China.
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|