1
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2024; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2024; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Wang L, Gao Y, Qiao Y, Wang X, Liang Z, Xu JT, Li L. Activation of MSK-1 exacerbates neuropathic pain through histone H3 phosphorylation in the rats' dorsal root ganglia and spinal dorsal horn. Brain Res Bull 2024; 219:111135. [PMID: 39557219 DOI: 10.1016/j.brainresbull.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exact mechanism underlies the development of neuropathic pain is not yet completely understood. Mitogen and stress-activated kinase 1 (MSK-1) is an important downstream kinase of the mitogen-activated protein kinase (MAPK). It has been extensively studied in the central nervous system, but whether MSK-1 is associated with the neuropathic pain remains elusive. In this experiment, Lumbar 5 spinal nerve ligation (SNL) was used to establish a neuropathic pain condition in the rats. Western blotting, qRT-PCR, immunohistochemistry, intrathecal catheterization and drugs delivery were evaluated to study the physiological responses of the animals. The results showed that SNL resulted in elevated phosphorylated MSK-1 (p-MSK-1) expression in the ipsilateral dorsal root ganglion (DRG) and the spinal dorsal horn in rats, while total MSK-1 (t-MSK-1) did not change significantly. Intrathecal injection of the MSK-1 inhibitor SB747651A partially reversed established neuropathic pain. Additionally, intrathecal administration of MSK-1 siRNA either preoperatively or 7 days postoperatively relieves the development and maintenance of pain, respectively. Meanwhile, the expression levels of p-H3S10, a downstream target of MSK-1, also displayed a significant increase after SNL. And these changes could be reversed by using MSK-1 siRNA. Collectively, the increase of MSK-1 induced by SNL participates in the development and maintenance of neuropathic pain by regulating the expression of p-H3S10 in DRG and spinal dorsal horn. Concentrating on MSK-1 may result in a novel approach to the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Kumar P, Kumar R, Kumar P, Kushwaha S, Kumari S, Yadav N, Srikrishna S. LC-Orbitrap HRMS-Based Proteomics Reveals Novel Mitochondrial Dynamics Regulatory Proteins Associated with RasV12-Induced Glioblastoma (GBM) of Drosophila. J Proteome Res 2024; 23:5030-5047. [PMID: 39413821 DOI: 10.1021/acs.jproteome.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor found in adult humans with a poor prognosis and average survival of 14-15 months. In order to have a comprehensive understanding of proteome and identify novel therapeutic targets, this study focused mainly on the differentially abundant proteins (DAPs) of RasV12-induced GBM. RasV12 is a constitutively active Ras mutant form essential for tumor progression by continuously activating signaling pathways leading to uncontrolled tumor growth. This study used a transgenic Drosophila model with RasV12 overexpression using the repo-GAL4 driver line, specifically in glial cells, to study GBM. The high-resolution mass spectrometry (HRMS)-based proteomic analysis of the GBM larval central nervous system identified three novel DAPs specific to mitochondria. These DAPs, probable maleylacetoacetate isomerase 2 (Q9VHD2), bifunctional methylene tetrahydrofolate dehydrogenase (Q04448), and glutamine synthetase1 (P20477), identified through HRMS were further validated by qRT-PCR. The protein-protein interaction analysis revealed interactions between RasV12 and DAPs, with functional links to mitochondrial dynamics regulators such as Drp1, Marf, Parkin, and HtrA2. Notably, altered expressions of Q9VHD2, P20477, and Q04448 were observed during GBM progression, which offers new insights into the involvement of mitochondrial dynamic regulators in RasV12-induced GBM pathophysiology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sunaina Kushwaha
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sandhya Kumari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
6
|
Lima JFC, Santos FM, de Miranda TB, Ramos GG, Andia DC, Lima AF, Ciotti DL. Inflammatory and adhesion profile of gingival fibroblasts to lithium disilicate ceramic surfaces. Dent Mater 2024; 40:2025-2033. [PMID: 39358190 DOI: 10.1016/j.dental.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Lithium disilicate (LS) ceramic emerges as a compelling option for customized implant abutments. However, ensuring its safety and reliability requires clarification on key aspects, notably its impact on inflammation and potential for cell adhesion. This study delves into these considerations, examining the influence of LS ceramic on cytokine release and the transcriptional profile of human gingival fibroblasts (hGFs) in direct contact with various LS surfaces. METHODS hGFs were cultured on LS disks featuring three distinct surfaces (unpolished, polished, and polished glaze), while titanium disks served as reference material and cells cultured directly on plates as controls. The surface of the disks was analyzed using a scanning electron microscope. The cell metabolism was analyzed by MTT test, cytokine release by MAGPIX and the expression of genes related to cell adhesion was evaluated by qPCR. RESULTS The disks exhibited similar topography with smooth surfaces, except for the unpolished LS disks, which had an irregular surface. Contact with LS surfaces did not substantially reduce cell metabolism. Moreover, it generally decreased cytokine release compared to controls, particularly pro-inflammatory mediators like IL-1β, IL-6, and TNF-α. Significantly increased expression of genes related to cell adhesion to LS was observed, comparable to titanium, the gold standard material for implant abutments. SIGNIFICANCE This study unveils that LS ceramic not only fails to trigger pro-inflammatory cytokine release, but also significantly enhances gene expression associated with cell adhesion. These mechanisms are closely linked to gene pathways such as PTK2, SRC, MAPK1, and transcription factors ELK-1 and MYC. In summary, the findings underscore LS ceramic's potential as a biocompatible material for implant abutments, shedding light on its favorable inflammatory response and enhanced cell adhesion properties.
Collapse
Affiliation(s)
| | - Filipe Milazzo Santos
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil
| | - Taís Browne de Miranda
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil
| | - Guilherme Gama Ramos
- São Leopoldo Mandic Institute and Dental Research Center, Campinas, São Paulo, Brazil
| | - Denise Carleto Andia
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil.
| | - Danilo Lazzari Ciotti
- São Leopoldo Mandic Institute and Dental Research Center, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Ye Z, Xu Y, Zhang M, Cai C. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J Mol Cell Biol 2024; 16:mjae020. [PMID: 38740522 PMCID: PMC11520406 DOI: 10.1093/jmcb/mjae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
Collapse
Affiliation(s)
- Zi Ye
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yu Xu
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheguo Cai
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Ayten M, Díaz-Lezama N, Ghanawi H, Haffelder FC, Kajtna J, Straub T, Borso M, Imhof A, Hauck SM, Koch SF. Metabolic plasticity in a Pde6b STOP/STOP retinitis pigmentosa mouse model following rescue. Mol Metab 2024; 88:101994. [PMID: 39032643 PMCID: PMC11362769 DOI: 10.1016/j.molmet.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is a hereditary retinal disease characterized by progressive photoreceptor degeneration, leading to vision loss. The best hope for a cure for RP lies in gene therapy. However, given that RP patients are most often diagnosed in the midst of ongoing photoreceptor degeneration, it is unknown how the retinal proteome changes as RP disease progresses, and which changes can be prevented, halted, or reversed by gene therapy. METHODS Here, we used a Pde6b-deficient RP gene therapy mouse model and performed untargeted proteomic analysis to identify changes in protein expression during degeneration and after treatment. RESULTS We demonstrated that Pde6b gene restoration led to a novel form of homeostatic plasticity in rod phototransduction which functionally compensates for the decreased number of rods. By profiling protein levels of metabolic genes and measuring metabolites, we observed an upregulation of proteins associated with oxidative phosphorylation in mutant and treated photoreceptors. CONCLUSION In conclusion, the metabolic demands of the retina differ in our Pde6b-deficient RP mouse model and are not rescued by gene therapy treatment. These findings provide novel insights into features of both RP disease progression and long-term rescue with gene therapy.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hanaa Ghanawi
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felia C Haffelder
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Borso
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Imhof
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Vidal-Correoso D, Mateo SV, Muñoz-Morales AM, Lucas-Ruiz F, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, Sánchez-Redondo S, Santos V, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Peinado H, Baroja-Mazo A. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024; 108:e301-e312. [PMID: 38578699 DOI: 10.1097/tp.0000000000005008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Liver transplantation (LT) is crucial for end-stage liver disease patients, but organ shortages persist. Donation after circulatory death (DCD) aims to broaden the donor pool but presents challenges. Complications like acute rejection, hepatic artery thrombosis, and biliary issues still impact posttransplant prognosis. Biomarkers, including extracellular vesicles (EVs) and microRNAs (miRNAs), show promise in understanding and monitoring posttransplant events. This study explores the role of EVs and their miRNA cargo in LT, including their potential as diagnostic tools. METHODS EVs from intrahepatic end-ischemic organ preservation solution (eiOPS) in 79 donated livers were detected using different techniques (nanosight tracking analysis, transmission electron microscopy, and flow cytometry). EV-derived miRNAs were identified by quantitative real time-polymerase chain reaction. Bioinformatics analysis was performed using the R platform. RESULTS Different-sized and origin-specific EVs were found in eiOPS, with significantly higher concentrations in DCD compared with donation after brain death organs. Additionally, several EV-associated miRNAs, including let-7d-5p , miR-28-5p , miR-200a-3p , miR-200b-3p , miR-200c-3p , and miR-429 , were overexpressed in DCD-derived eiOPS. These miRNAs also exhibited differential expression patterns in liver tissue biopsies. Pathway analysis revealed enrichment in signaling pathways involved in extracellular matrix organization and various cellular processes. Moreover, specific EVs and miRNAs correlated with clinical outcomes, including survival and early allograft dysfunction. A predictive model combining biomarkers and clinical variables showed promise in acute rejection detection after LT. CONCLUSIONS These findings provide new insights into the use of EVs and miRNAs as biomarkers and their possible influence on posttransplantation outcomes, potentially contributing to improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Antonio Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
10
|
Xue P, Jin H, Zhou X, Cui Z, Cui D. The role of cytokine receptor-like factor 1 (CRLF1) in facet joint osteoarthritis pathogenesis. Exp Gerontol 2024; 195:112543. [PMID: 39128688 DOI: 10.1016/j.exger.2024.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Facet joint osteoarthritis (FJOA) is a prevalent condition contributing to low back pain, particularly in the elderly population. This study aimed to investigate the potential role of Cytokine Receptor-like Factor 1 (CRLF1) in FJOA pathogenesis and its therapeutic implications. METHODS Bioinformatics analysis was utilized to identify CRLF1 as the target gene, followed by quantification of CRLF1 expression levels and joint degeneration degree using immunohistochemistry (IHC). In primary chondrocytes, the inhibition of CRLF1 expression by siRNA was performed, and Western blot analysis was conducted to evaluate the involvement of the extracellular matrix and MAPK/ERK signaling pathway. Flow cytometry was employed to assess the apoptosis rate of chondrocytes, while immunofluorescence (IF) was utilized to evaluate the localization of CRLF1, cleaved-caspase3, MMP13, COL2A1, and ERK. RESULTS The expression of CRLF1 was found to be significantly elevated in FJOA tissues compared to normal tissues. Through the use of loss-of-function assays, it was determined that CRLF1 not only enhanced the rate of apoptosis in chondrocytes, but also facilitated the degradation of the extracellular matrix in vitro. Furthermore, CRLF1 was found to activate the ERK1/2 pathways. The pro-arthritic effects elicited by CRLF1 were mitigated by treatment with the MEK inhibitor U0126 in chondrocytes. CONCLUSION These results suggest that CRLF1 enhances chondrocytes apoptosis and extracellular matrix degration in FJOA and thus may therefore be a potential therapeutic target for FJOA.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China; Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Huricha Jin
- Department of orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaogang Zhou
- Department of orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhiming Cui
- Department of orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China
| | - Daoran Cui
- Department of orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
11
|
Marasco V, Fusani L, Haubensak P, Pola G, Smith S. Brain gene expression reveals pathways underlying nocturnal migratory restlessness. Sci Rep 2024; 14:22420. [PMID: 39341882 PMCID: PMC11439032 DOI: 10.1038/s41598-024-73033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Migration is one of the most extreme and energy demanding life history strategies to have evolved in the animal kingdom. In birds, champions of long-distance migrations, the seasonal emergence of the migratory phenotype is characterised by rapid physiological and metabolic remodelling, including substantial accumulation of fat stores and increases in nocturnality. The molecular underpinnings and brain adaptations to seasonal migrations remain poorly understood. Here, we exposed Common quails (Coturnix coturnix) to controlled changes in day length to simulate southward autumn migration, and then blocked the photoperiod until birds entered the non-migratory wintering phase. We first performed de novo RNA-Sequencing from selected brain samples (hypothalamus) collected from birds at a standardised time at night, either in a migratory state (when restlessness was highest and at their body mass peak), or in a non-migratory state and conducted differential gene expression and functional pathways analyses. We found that the migratory state was associated with up-regulation of a few, yet functionally well defined, gene expression networks implicated in fat trafficking, protein and carbohydrate metabolism. Further analyses that focused on candidate genes (apolipoprotein H or APOH, lysosomal associated membrane protein-2 or LAMP2) from samples collected during the day or night across the entire study population suggested differences in the expression of these genes depending on the time of the day with the largest expression levels being found in the migratory birds sampled at night. We also found that expression of APOH was positively associated with levels of nocturnal activity in the migratory birds; such an association was absent within the non-migratory birds. Our results provide novel experimental evidence revealing that hypothalamic changes in expression of apolipoprotein pathways, which regulate the circulatory transport of lipids, are likely key regulatory activators of nocturnal migratory movements. Our study paves the way for performing deeper functional investigations on seasonal molecular remodelling underlying the development of the migratory phenotype.
Collapse
Affiliation(s)
- Valeria Marasco
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, 1160, Austria.
| | - Leonida Fusani
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Patricia Haubensak
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Gianni Pola
- Istituto Sperimentale Zootecnico per la Sicilia, via Roccazzo 85, 90135, Palermo, Italy
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| |
Collapse
|
12
|
Azmal M, Paul JK, Prima FS, Talukder OF, Ghosh A. An in silico molecular docking and simulation study to identify potential anticancer phytochemicals targeting the RAS signaling pathway. PLoS One 2024; 19:e0310637. [PMID: 39298437 PMCID: PMC11412525 DOI: 10.1371/journal.pone.0310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The dysregulation of the rat sarcoma (RAS) signaling pathway, particularly the MAPK/ERK cascade, is a hallmark of many cancers, leading to uncontrolled cellular proliferation and resistance to apoptosis-inducing treatments. Dysregulation of the MAPK/ERK pathway is common in various cancers including pancreatic, lung, and colon cancers, making it a critical target for therapeutic intervention. Natural compounds, especially phytochemicals, offer a promising avenue for developing new anticancer therapies due to their potential to interfere with these signaling pathways. This study investigates the potential of anticancer phytochemicals to inhibit the MAPK/ERK pathway through molecular docking and simulation techniques. A total of 26 phytochemicals were screened from an initial set of 340 phytochemicals which were retrieved from Dr. Duke's database using in silico methods for their binding affinity and stability. Molecular docking was performed to identify key interactions with ERK2, followed by molecular dynamics (MD) simulations to evaluate the stability of these interactions. The study identified several phytochemicals, including luteolin, hispidulin, and isorhamnetin with a binding score of -10.1±0 Kcal/mol, -9.86±0.15 Kcal/mol, -9.76±0.025 Kcal/mol, respectively as promising inhibitors of the ERK2 protein. These compounds demonstrated significant binding affinities and stable interactions with ERK2 in MD simulation studies up to 200ns, particularly at the active site. The radius of gyration analysis confirmed the stability of these phytochemical-protein complexes' compactness, indicating their potential to inhibit ERK activity. The stability and binding affinity of these compounds suggest that they can effectively inhibit ERK2 activity, potentially leading to more effective and less toxic cancer treatments. The findings underscore the therapeutic promise of these phytochemicals, which could serve as a basis for developing new cancer therapies.
Collapse
Affiliation(s)
- Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fatema Sultana Prima
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Omar Faruk Talukder
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
13
|
Hao X, Li Y, Gao H, Wang Z, Fang B. Inhalation Anesthetics Play a Janus-Faced Role in Self-Renewal and Differentiation of Stem Cells. Biomolecules 2024; 14:1167. [PMID: 39334933 PMCID: PMC11430341 DOI: 10.3390/biom14091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Inhalation anesthesia stands as a pivotal modality within clinical anesthesia practices. Beyond its primary anesthetic effects, inhaled anesthetics have non-anesthetic effects, exerting bidirectional influences on the physiological state of the body and disease progression. These effects encompass impaired cognitive function, inhibition of embryonic development, influence on tumor progression, and so forth. For many years, inhaled anesthetics were viewed as inhibitors of stem cell fate regulation. However, there is now a growing appreciation that inhaled anesthetics promote stem cell biological functions and thus are now regarded as a double-edged sword affecting stem cell fate. In this review, the effects of inhaled anesthetics on self-renewal and differentiation of neural stem cells (NSCs), embryonic stem cells (ESCs), and cancer stem cells (CSCs) were summarized. The mechanisms of inhaled anesthetics involving cell cycle, metabolism, stemness, and niche of stem cells were also discussed. A comprehensive understanding of these effects will enhance our comprehension of how inhaled anesthetics impact the human body, thus promising breakthroughs in the development of novel strategies for innovative stem cell therapy approaches.
Collapse
Affiliation(s)
- Xiaotong Hao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hairong Gao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
14
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
15
|
Dooling KE, Kim RT, Kim EM, Chen E, Abouelela A, Tajer BJ, Lopez NJ, Paoli JC, Powell CJ, Luong AG, Wu SC, Thornton KN, Singer HD, Savage AM, Bateman J, DiTommaso T, Payzin-Dogru D, Whited JL. Amputation Triggers Long-Range Epidermal Permeability Changes in Evolutionarily Distant Regenerative Organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610385. [PMID: 39257748 PMCID: PMC11383696 DOI: 10.1101/2024.08.29.610385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Previous studies have reported that amputation invokes body-wide responses in regenerative organisms, but most have not examined the implications of these changes beyond the region of tissue regrowth. Specifically, long-range epidermal responses to amputation are largely uncharacterized, with research on amputation-induced epidermal responses in regenerative organisms traditionally being restricted to the wound site. Here, we investigate the effect of amputation on long-range epidermal permeability in two evolutionarily distant, regenerative organisms: axolotls and planarians. We find that amputation triggers a long-range increase in epidermal permeability in axolotls, accompanied by a long-range epidermal downregulation in MAPK signaling. Additionally, we provide functional evidence that pharmacologically inhibiting MAPK signaling in regenerating planarians increases long-range epidermal permeability. These findings advance our knowledge of body-wide changes due to amputation in regenerative organisms and warrant further study on whether epidermal permeability dysregulation in the context of amputation may lead to pathology in both regenerative and non-regenerative organisms.
Collapse
Affiliation(s)
- Kelly E. Dooling
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Elane M. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Erica Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Benjamin J. Tajer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Julia C. Paoli
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Anna G. Luong
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - S.Y. Celeste Wu
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Kara N. Thornton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Joel Bateman
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
16
|
Krutko M, Poling HM, Bryan AE, Sharma M, Singh A, Reza HA, Wikenheiser-Brokamp KA, Takebe T, Helmrath MA, Harris GM, Esfandiari L. Enhanced Piezoelectric Performance of PVDF-TrFE Nanofibers through Annealing for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608345. [PMID: 39229142 PMCID: PMC11370437 DOI: 10.1101/2024.08.16.608345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.
Collapse
|
17
|
Gao B, Li C, Qu Y, Cai M, Zhou Q, Zhang Y, Lu H, Tang Y, Li H, Shen H. Progress and trends of research on mineral elements for depression. Heliyon 2024; 10:e35469. [PMID: 39170573 PMCID: PMC11336727 DOI: 10.1016/j.heliyon.2024.e35469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the research progress and trends on mineral elements and depression. Methods After querying the MeSH database and referring to the search rules, the search terms were selected and optimized to obtain the target literature collection. We analyzed the general characteristics of the literature, conducted network clustering and co-occurrence analysis, and carried out a narrative review of crucial literature. Results Bipolar disorder was a dominant topic in the retrieved literature, which saw a significant increase in 2010 and 2019-2020. Most studies focused on mineral elements, including lithium, calcium, magnesium, zinc, and copper. The majority of journals and disciplines were in the fields of psychiatry, neuropsychology, neuropharmacology, nutrition, medical informatics, chemistry, and public health. The United States had the highest proportion in terms of paper sources, most-cited articles, high-frequency citations, frontier citations, and high centrality citation. Regarding the influence of academic institutions, the top five were King's College London, the Chinese Academy of Sciences, University of Barcelona, INSERM, and Heidelberg University. Frontier keywords included bipolar disorder, drinking water, (neuro)inflammation, gut microbiota, and systematic analysis. Research on lithium response, magnesium supplementation, and treatment-resistant unipolar depression increased significantly after 2013. Conclusion Global adverse events may have indirectly driven the progress in related research. Although the literature from the United States represents an absolute majority, its influence on academic institutions is relatively weaker. Multiple pieces of evidence support the efficacy of lithium in treating bipolar disorder (BD). A series of key discoveries have led to a paradigm shift in research, leading to increasingly detailed studies on the role of magnesium, calcium, zinc, and copper in the treatment of depression. Most studies on mineral elements remain diverse and inconclusive. The potential toxicity and side effects of some elements warrant careful attention.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China
| | - Chenqi Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Department of Nutrition, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yicui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Mengyu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Qicheng Zhou
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yinyin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
18
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
19
|
Centeno F. Editorial for the Special Issue "MAPK in Health and Disease". Int J Mol Sci 2024; 25:6663. [PMID: 38928367 PMCID: PMC11203809 DOI: 10.3390/ijms25126663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of this Special Issue was to collate recent advances in the understanding of MAPKs' functions, particularly their roles in various pathologies, which constitute one of the most dynamic areas in cell signaling research [...].
Collapse
Affiliation(s)
- Francisco Centeno
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
20
|
Cano-Martínez A, Rubio-Ruiz ME, Guarner-Lans V. Homeostasis and evolution in relation to regeneration and repair. J Physiol 2024; 602:2627-2648. [PMID: 38781025 DOI: 10.1113/jp284426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Homeostasis constitutes a key concept in physiology and refers to self-regulating processes that maintain internal stability when adjusting to changing external conditions. It diminishes internal entropy constituting a driving force behind evolution. Natural selection might act on homeostatic regulatory mechanisms and control mechanisms including homeodynamics, allostasis, hormesis and homeorhesis, where different stable stationary states are reached. Regeneration is under homeostatic control through hormesis. Damage to tissues initiates a response to restore the impaired equilibrium caused by mild stress using cell proliferation, cell differentiation and cell death to recover structure and function. Repair is a homeorhetic change leading to a new stable stationary state with decreased functionality and fibrotic scarring without reconstruction of the 3-D pattern. Mechanisms determining entrance of the tissue or organ to regeneration or repair include the balance between innate and adaptive immune cells in relation to cell plasticity and stromal stem cell responses, and redox balance. The regenerative and reparative capacities vary in different species, distinct tissues and organs, and at different stages of development including ageing. Many cell signals and pathways play crucial roles determining regeneration or repair by regulating protein synthesis, cellular growth, inflammation, proliferation, autophagy, lysosomal function, metabolism and metalloproteinase cell signalling. Attempts to favour the entrance of damaged tissues to regeneration in those with low proliferative rates have been made; however, there are evolutionary constraint mechanisms leading to poor proliferation of stem cells in unfavourable environments or tumour development. More research is required to better understand the regulatory processes of these mechanisms.
Collapse
Affiliation(s)
- Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| |
Collapse
|
21
|
Peterson EA, Sun J, Chen X, Wang J. Neutrophils facilitate the epicardial regenerative response after zebrafish heart injury. Dev Biol 2024; 508:93-106. [PMID: 38286185 PMCID: PMC10923159 DOI: 10.1016/j.ydbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Despite extensive studies on endogenous heart regeneration within the past 20 years, the players involved in initiating early regeneration events are far from clear. Here, we assessed the function of neutrophils, the first-responder cells to tissue damage, during zebrafish heart regeneration. We detected rapid neutrophil mobilization to the injury site after ventricular amputation, peaking at 1-day post-amputation (dpa) and resolving by 3 dpa. Further analyses indicated neutrophil mobilization coincides with peak epicardial cell proliferation, and recruited neutrophils associated with activated, expanding epicardial cells at 1 dpa. Neutrophil depletion inhibited myocardial regeneration and significantly reduced epicardial cell expansion, proliferation, and activation. To explore the molecular mechanism of neutrophils on the epicardial regenerative response, we performed scRNA-seq analysis of 1 dpa neutrophils and identified enrichment of the FGF and MAPK/ERK signaling pathways. Pharmacological inhibition of FGF signaling indicated its' requirement for epicardial expansion, while neutrophil depletion blocked MAPK/ERK signaling activation in epicardial cells. Ligand-receptor analysis indicated the EGF ligand, hbegfa, is released from neutrophils and synergizes with other FGF and MAPK/ERK factors for induction of epicardial regeneration. Altogether, our studies revealed that neutrophils quickly motivate epicardial cells, which later accumulate at the injury site and contribute to heart regeneration.
Collapse
Affiliation(s)
- Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Zhang M, Jin Y, Guo X, Shan W, Zhang J, Yuan A, Shi Y. Resveratrol protects mesangial cells under high glucose by regulating the miR-1231/IGF1/ERK pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2326-2339. [PMID: 38156429 DOI: 10.1002/tox.24103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes mellitus and the main cause of end-stage renal disease (ESRD), which is a serious threat to human health. In DN, mesangial cells (MCs) are a critical target cell that perform a variety of key functions, and abnormal proliferation of MCs is a common and prominent pathological change in DN. In recent years, the investigation of Chinese medicine interventions for DN has increased significantly in recent years due to the many potential adverse effects and controversies associated with the treatment of DN with Western medicines. In this study, we evaluated the protective effect of resveratrol (RES), an active ingredient known as a natural antioxidant, on HMCs under high glucose and explored its possible mechanism of action. We found that RES inhibited the proliferation of human mesangial cell (HMC) under high glucose and blocked cell cycle progression. In the high glucose environment, RES upregulated miR-1231, reduced IGF1 expression, inhibited the activity of the extracellular signal-regulated kinase (ERK) signaling pathway and reduced levels of the inflammatory factors TNF-α and IL-6. In addition, we found that miR-1231 mimics were synergistically inhibited with RES, whereas miR-1231 inhibitor attenuated the protective effect of RES on HMCs. Thus, our results suggest that the protective effect of RES on HMCs under high glucose is achieved, at least in part, through modulation of the miR-1231/IGF1/ERK pathway. The discovery of this potential mechanism may provide a new molecular therapeutic target for the prevention and treatment of DN, and may also bring new ideas for the clinical research in DN.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Yingli Jin
- Department of Pharmacology, School of Basic Medical Science, Jilin University, Changchun, Jilin Province, China
| | - Xuerui Guo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Wanxin Shan
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Jinlong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Aoxue Yuan
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
23
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
24
|
Liu Z, Nong K, Qin X, Fang X, Zhang B, Chen W, Wang Z, Wu Y, Shi H, Wang X, Liu Y, Guan Q, Zhang H. The antimicrobial peptide Abaecin alleviates colitis in mice by regulating inflammatory signaling pathways and intestinal microbial composition. Peptides 2024; 173:171154. [PMID: 38242174 DOI: 10.1016/j.peptides.2024.171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Abaecin is a natural antimicrobial peptide (AMP) rich in proline from bees. It is an important part of the innate humoral immunity of bees and has broad-spectrum antibacterial ability. This study aimed to determine the effect of Abaecin on dextran sulfate sodium (DSS) -induced ulcerative colitis (UC) in mice and to explore its related mechanisms. Twenty-four mice with similar body weight were randomly divided into 4 groups. 2.5% DSS was added to drinking water to induce colitis in mice. Abaecin and PBS were administered rectally on the third, fifth, and seventh days of the experimental period. The results showed that Abaecin significantly alleviated histological damage and intestinal mucosal barrier damage caused by colitis in mice, reduced the concentration of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, IFN-γ, and the phosphorylation of NF-κB / MAPK inflammatory signaling pathway proteins, and improved the composition of intestinal microorganisms. These findings suggest that Abaecin may have potential prospects for the treatment of UC.
Collapse
Affiliation(s)
- Zhineng Liu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Keyi Nong
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xinyun Qin
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xin Fang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Wanyan Chen
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Zihan Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Yijia Wu
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Huiyu Shi
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Xuemei Wang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Qingfeng Guan
- College of Life and Health, Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- School of Tropical Agriculte and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Feng Y, An Q, Zhao Z, Wu M, Yang C, Liang W, Xu X, Jiang T, Zhang G. Beta-elemene: A phytochemical with promise as a drug candidate for tumor therapy and adjuvant tumor therapy. Biomed Pharmacother 2024; 172:116266. [PMID: 38350368 DOI: 10.1016/j.biopha.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND β-Elemene (IUPAC name: (1 S,2 S,4 R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl) cyclohexane), is a natural compound found in turmeric root. Studies have demonstrated its diverse biological functions, including its anti-tumor properties, which have been extensively investigated. However, these have not yet been reviewed. The aim of this review was to provide a comprehensive summary of β-elemene research, with respect to disease treatment. METHODS β-Elemene-related articles were found in PubMed, ScienceDirect, and Google Scholar databases to systematically summarize its structure, pharmacokinetics, metabolism, and pharmacological activity. We also searched the Traditional Chinese Medicine System Pharmacology database for therapeutic targets of β-elemene. We further combined these targets with the relevant literature for KEGG and GO analyses. RESULTS Studies on the molecular mechanisms underlying β-elemene activity indicate that it regulates multiple pathways, including STAT3, MAPKs, Cyclin-dependent kinase 1/cyclin B, Notch, PI3K/AKT, reactive oxygen species, METTL3, PTEN, p53, FAK, MMP, TGF-β/Smad signaling. Through these molecular pathways, β-elemene has been implicated in tumor cell proliferation, apoptosis, migration, and invasion and improving the immune microenvironment. Additionally, β-elemene increases chemotherapeutic drug sensitivity and reverses resistance by inhibiting DNA damage repair and regulating pathways including CTR1, pak1, ERK1/2, ABC transporter protein, Prx-1 and ERCC-1. Nonetheless, owing to its lipophilicity and low bioavailability, additional structural modifications could improve the efficacy of this drug. CONCLUSION β-Elemene exhibits low toxicity with good safety, inhibiting various tumor types via diverse mechanisms in vivo and in vitro. When combined with chemotherapeutic drugs, it enhances efficacy, reduces toxicity, and improves tumor killing. Thus, β-elemene has vast potential for research and development.
Collapse
Affiliation(s)
- Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Zhengqi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - WeiYu Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| |
Collapse
|
26
|
Wang X, Wu H, Tang L, Fu W, He Y, Zeng C, Wang WE. The novel antibody fusion protein rhNRG1-HER3i promotes heart regeneration by enhancing NRG1-ERBB4 signaling pathway. J Mol Cell Cardiol 2024; 187:26-37. [PMID: 38150867 DOI: 10.1016/j.yjmcc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Stimulating cardiomyocyte proliferation in the adult heart has emerged as a promising strategy for cardiac regeneration following myocardial infarction (MI). The NRG1-ERBB4 signaling pathway has been implicated in the regulation of cardiomyocyte proliferation. However, the therapeutic potential of recombinant human NRG1 (rhNRG1) has been limited due to the low expression of ERBB4 in adult cardiomyocytes. Here, we investigated whether a fusion protein of rhNRG1 and an ERBB3 inhibitor (rhNRG1-HER3i) could enhance the affinity of NRG1 for ERBB4 and promote adult cardiomyocyte proliferation. In vitro and in vivo experiments were conducted using postnatal day 1 (P1), P7, and adult cardiomyocytes. Western blot analysis was performed to assess the expression and activity of ERBB4. Cardiomyocyte proliferation was evaluated using Ki67 and pH 3 immunostaining, while fibrosis was assessed using Masson staining. Our results indicate that rhNRG1-HER3i, but not rhNRG1, promoted P7 and adult cardiomyocyte proliferation. Furthermore, rhNRG1-HER3i improved cardiac function and reduced cardiac fibrosis in post-MI hearts. Administration of rhNRG1-HER3i inhibited ERBB3 phosphorylation while increasing ERBB4 phosphorylation in adult mouse hearts. Additionally, rhNRG1-HER3i enhanced angiogenesis following MI compared to rhNRG1. In conclusion, our findings suggest that rhNRG1-HER3i is a viable therapeutic approach for promoting adult cardiomyocyte proliferation and treating MI by enhancing NRG1-ERBB4 signaling pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China
| | - Luxun Tang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Yanji He
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing 400042, China; Department of Cardiology, Chongqing General Hospital, Chongqing 401147, China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing 400722, China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou 350001, China.
| | - Wei Eric Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400042, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China.
| |
Collapse
|
27
|
Zhang J, Cheng D, Zhang H, Liu Z, Gao M, Wei L, Yan F, Li C, Wang L, Dong G, Wang C, Zhao M, Zhu Y, Xiong H. Interleukin 28A aggravates Con A-induced acute liver injury by promoting the recruitment of M1 macrophages. FASEB J 2024; 38:e23443. [PMID: 38265281 DOI: 10.1096/fj.202301454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1β, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
28
|
Feng K, Wu Y, Li J, Sun Q, Ye Z, Li X, Guo X, Kang J. Critical Role of miR-130b-5p in Cardiomyocyte Proliferation and Cardiac Repair in Mice After Myocardial Infarction. Stem Cells 2024; 42:29-41. [PMID: 37933895 DOI: 10.1093/stmcls/sxad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
Poor proliferative capacity of adult cardiomyocytes is the primary cause of heart failure after myocardial infarction (MI), thus exploring the molecules and mechanisms that promote the proliferation of adult cardiomyocytes is crucially useful for cardiac repair after MI. Here, we found that miR-130b-5p was highly expressed in mouse embryonic and neonatal hearts and able to promote cardiomyocyte proliferation both in vitro and in vivo. Mechanistic studies revealed that miR-130b-5p mainly promoted the cardiomyocyte proliferation through the MAPK-ERK signaling pathway, and the dual-specific phosphatase 6 (Dusp6), a negative regulator of the MAPK-ERK signaling, was the direct target of miR-130b-5p. Moreover, we found that overexpression of miR-130b-5p could promote the proliferation of cardiomyocytes and improve cardiac function in mice after MI. These studies thus revealed the critical role of miR-130b-5p and its targeted MAPK-ERK signaling in the cardiomyocyte proliferation of adult hearts and proved that miR-130b-5p could be a potential target for cardiac repair after MI.
Collapse
Affiliation(s)
- Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zihui Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuan Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Kong P, Liu X, Li Z, Wang J, Gao R, Feng S, Li H, Zhang F, Feng Z, Huang P, Wang S, Zhuang D, Ouyang W, Wang W, Pan X. Biodegradable Cardiac Occluder with Surface Modification by Gelatin-Peptide Conjugate to Promote Endogenous Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305967. [PMID: 37984880 PMCID: PMC10787076 DOI: 10.1002/advs.202305967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Transcatheter intervention has been the preferred treatment for congenital structural heart diseases by implanting occluders into the heart defect site through minimally invasive access. Biodegradable polymers provide a promising alternative for cardiovascular implants by conferring therapeutic function and eliminating long-term complications, but inducing in situ cardiac tissue regeneration remains a substantial clinical challenge. PGAG (polydioxanone/poly (l-lactic acid)-gelatin-A5G81) occluders are prepared by covalently conjugating biomolecules composed of gelatin and layer adhesive protein-derived peptides (A5G81) to the surface of polydioxanone and poly (l-lactic acid) fibers. The polymer microfiber-biomacromolecule-peptide frame with biophysical and biochemical cues could orchestrate the biomaterial-host cell interactions, by recruiting endogenous endothelial cells, promoting their adhesion and proliferation, and polarizing immune cells into anti-inflammatory phenotypes and augmenting the release of reparative cytokines. In a porcine atrial septal defect (ASD) model, PGAG occluders promote in situ tissue regeneration by accelerating surface endothelialization and regulating immune response, which mitigate inflammation and fibrosis formation, and facilitate the fusion of occluder with surrounding heart tissue. Collectively, this work highlights the modulation of cell-biomaterial interactions for tissue regeneration in cardiac defect models, ensuring endothelialization and extracellular matrix remodeling on polymeric scaffolds. Bioinspired cell-material interface offers a highly efficient and generalized approach for constructing bioactive coatings on medical devices.
Collapse
Affiliation(s)
- Pengxu Kong
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Xiang Liu
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Zefu Li
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Shuyi Feng
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Hang Li
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Fengwen Zhang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Shouzheng Wang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Donglin Zhuang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Wenbin Ouyang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Xiangbin Pan
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| |
Collapse
|
30
|
Zhong T, Gao N, Guan Y, Liu Z, Guan J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS NANO 2023; 17:25157-25174. [PMID: 38063490 PMCID: PMC10790628 DOI: 10.1021/acsnano.3c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Collapse
Affiliation(s)
- Ting Zhong
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ning Gao
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ya Guan
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhongting Liu
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
31
|
Fan X, Huang T, Wang S, Yang Z, Song W, Zeng Y, Tong Y, Cai Y, Yang D, Zeng B, Zhang M, Ni Q, Li Y, Li D, Yang M. The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila. J Biol Chem 2023; 299:105414. [PMID: 37918806 PMCID: PMC10724694 DOI: 10.1016/j.jbc.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Technology Institute of Silk and Mulberry, Chong Qing Academy of Animal Sciences, Chongqing, P. R. China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yujuan Cai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Demircan T, Süzek BE. The Dynamic Landscapes of Circular RNAs in Axolotl, a Regenerative Medicine Model, with Implications for Early Phase of Limb Regeneration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:526-535. [PMID: 37943672 DOI: 10.1089/omi.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.
Collapse
Affiliation(s)
- Turan Demircan
- Medical Biology Department, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
33
|
Liu Y, Wang X, Liu Y, Yang J, Mao W, Feng C, Wu X, Chen X, Chen L, Dong P. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway. Cell Death Dis 2023; 14:712. [PMID: 37914704 PMCID: PMC10620198 DOI: 10.1038/s41419-023-06245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that regulates in various important biological processes. However, its role in human cancer, especially lymph node metastasis, remains largely unknown. Here, we demonstrated N-Acetyltransferase 10 (NAT10), as the only known "writer" of ac4C mRNA modification, was highly expressed in head and neck squamous cell carcinoma (HNSCC) patients with lymph node metastasis. High NAT10 levels in the lymph nodes of patients with HNSCC patients are a predictor of poor overall survival. Moreover, we found that high expression of NAT10 was positively upregulated by Nuclear Respiratory Factor 1 (NRF1) transcription factor. Gain- and loss-of-function experiments displayed that NAT10 promoted cell metastasis in mice. Mechanistically, NAT10 induced ac4C modification of Glycosylated Lysosomal Membrane Protein (GLMP) and stabilized its mRNA, which triggered the activation of the MAPK/ERK signaling pathway. Finally, the NAT10-specific inhibitor, remodelin, could inhibit HNSCC tumorigenesis in a 4-Nitroquinoline 1-oxide (4NQO)-induced murine tumor model and remodel the tumor microenvironment, including angiogenesis, CD8+ T cells and Treg recruitment. These results demonstrate that NAT10 promotes lymph node metastasis in HNSCC via ac4C-dependent stabilization of the GLMP transcript, providing a potential epitranscriptomic-targeted therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Wang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330046, China
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yuying Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Wei Mao
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chen Feng
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoliang Wu
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
34
|
Juul N, Willacy O, Mamand DR, Andaloussi SE, Eisfeldt J, Chamorro CI, Fossum M. Insights into cellular behavior and micromolecular communication in urothelial micrografts. Sci Rep 2023; 13:13589. [PMID: 37604899 PMCID: PMC10442416 DOI: 10.1038/s41598-023-40049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Autologous micrografting is a technique currently applied within skin wound healing, however, the potential use for surgical correction of other organs with epithelial lining, including the urinary bladder, remains largely unexplored. Currently, little is known about the micrograft expansion potential and the micromolecular events that occur in micrografted urothelial cells. In this study, we aimed to evaluate the proliferative potential of different porcine urothelial micrograft sizes in vitro, and, furthermore, to explore how urothelial micrografts communicate and which microcellular events are triggered. We demonstrated that increased tissue fragmentation subsequently potentiated the yield of proliferative cells and the cellular expansion potential, which confirms, that the micrografting principles of skin epithelium also apply to uroepithelium. Furthermore, we targeted the expression of the extracellular signal-regulated kinase (ERK) pathway and demonstrated that ERK activation occurred predominately at the micrograft borders and that ERK inhibition led to decreased urothelial migration and proliferation. Finally, we successfully isolated extracellular vesicles from the micrograft culture medium and evaluated their contents and relevance within various enriched biological processes. Our findings substantiate the potential of applying urothelial micrografting in future tissue-engineering models for reconstructive urological surgery, and, furthermore, highlights certain mechanisms as potential targets for future wound healing treatments.
Collapse
Affiliation(s)
- Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Doste R Mamand
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Clara I Chamorro
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Henrik Harpestrengs Vej 4C, 2100, Copenhagen, Denmark.
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
36
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
37
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Xu X, Huang B, Fang X, Zhang Q, Qi T, Gong M, Zheng X, Wu M, Jian Y, Deng J, Cheng Y, Li Z, Deng W. SlMYB99-mediated auxin and abscisic acid antagonistically regulate ascorbic acids biosynthesis in tomato. THE NEW PHYTOLOGIST 2023. [PMID: 37247338 DOI: 10.1111/nph.18988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xu Fang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Tiancheng Qi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jie Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
39
|
Zhang Y, Mei Y, Cao A, Li S, He C, Song L, Gao J, Zhu Y, Cao X. Transcriptome analyses of betta fish (Betta splendens) provide novel insights into fin regeneration and color-related genes. Gene 2023:147508. [PMID: 37230203 DOI: 10.1016/j.gene.2023.147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The betta fish (Betta splendens), an important ornamental fish, haswell-developed and colorful fins.After fin amputation, betta fish can easily regenerate finssimilar to the originalsin terms of structureand color. The powerful fin regeneration ability and a variety of colors in the betta fish are fascinating. However, the underlying molecular mechanisms are still not fully understood. In this study, tail fin amputation and regeneration experiments were performed on two kinds of betta fish: red and white color betta fish. Then, transcriptome analyseswere conducted to screen out fin regeneration and color-relatedgenes in betta fish. Through enrichment analyses of differentially expressed genes (DEGs), we founda series of enrichment pathways and genes related to finregeneration, including cell cycle (i.e. plcg2), TGF-beta signaling pathway (i.e. bmp6), PI3K-Akt signaling pathway (i.e. loxl2aand loxl2b), Wnt signaling pathway(i.e. lef1), gap junctions (i.e. cx43), angiogenesis (i.e. foxp1), and interferon regulatory factor (i.e. irf8). Meanwhile, some fin color-related pathways and genes were identified in betta fish, especially melanogenesis (i.e. tyr, tyrp1a, tyrp1b, and mc1r) and carotenoid color genes (i.e. pax3, pax7, sox10, and ednrba). In conclusion, this studycan not only enrich the research onfish tissue regeneration, but also has a potential significance for the aquaculture and breeding of the betta fish.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiying Cao
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Sen Li
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Chuan He
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Liyuan Song
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
40
|
Toh PJY, Sudol M, Saunders TE. Optogenetic control of YAP can enhance the rate of wound healing. Cell Mol Biol Lett 2023; 28:39. [PMID: 37170209 PMCID: PMC10176910 DOI: 10.1186/s11658-023-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Tissues need to regenerate to restore function after injury. Yet, this regenerative capacity varies significantly between organs and between species. For example, in the heart, some species retain full regenerative capacity throughout their lifespan but human cardiac cells display a limited ability to repair the injury. After a myocardial infarction, the function of cardiomyocytes is impaired and reduces the ability of the heart to pump, causing heart failure. Therefore, there is a need to restore the function of an injured heart post myocardial infarction. We investigate in cell culture the role of the Yes-associated protein (YAP), a transcriptional co-regulator with a pivotal role in growth, in driving repair after injury. METHODS We express optogenetic YAP (optoYAP) in three different cell lines. We characterised the behaviour and function of optoYAP using fluorescence imaging and quantitative real-time PCR of downstream YAP target genes. Mutant constructs were generated using site-directed mutagenesis. Nuclear localised optoYAP was functionally tested using wound healing assay. RESULTS Utilising optoYAP, which enables precise control of pathway activation, we show that YAP induces the expression of downstream genes involved in proliferation and migration. optoYAP can increase the speed of wound healing in H9c2 cardiomyoblasts. Interestingly, this is not driven by an increase in proliferation, but by collective cell migration. We subsequently dissect specific phosphorylation sites in YAP to identify the molecular driver of accelerated healing. CONCLUSIONS This study shows that optogenetic YAP is functional in H9c2 cardiomyoblasts and its controlled activation can potentially enhance wound healing in a range of conditions.
Collapse
Affiliation(s)
- Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Edward Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
41
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
42
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
43
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
44
|
An Z, Chen F, Hao H, Xiong M, Peng H, Sun H, Wang KJ. Growth-promoting effect of antimicrobial peptide Scy-hepc on mariculture large yellow croaker Larimichthys crocea and the underlying mechanism. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108649. [PMID: 36849046 DOI: 10.1016/j.fsi.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
With the antibiotics prohibition in feedstuffs worldwide, antimicrobial peptides (AMPs) are considered a more promising substitute for antibiotics to be used as feed additives, and positive results have been reported in livestock feeding studies. However, whether dietary supplementation of AMPs could promote the growth of mariculture animals such as fish and the underlying mechanism has not been elucidated yet. In the study, a recombinant AMP product of Scy-hepc was used as a dietary supplement (10 mg/kg) to feed mariculture juvenile large yellow croaker (Larimichthys crocea) with an average initial body weight (BW) of 52.9 g for 150 days. During the feeding trial, the fish fed with Scy-hepc showed a significant growth-promoting performance. Especially at 60 days after feeding, fish fed with Scy-hepc weighed approximately 23% more than the control group. It was further confirmed that the growth-related signaling pathways such as the GH-Jak2-STAT5-IGF1 growth axis, the PI3K-Akt and Erk/MAPK pathways were all activated in the liver after Scy-hepc feeding. Furthermore, a second repeated feeding trial was scheduled for 30 days using much smaller juvenile L. crocea with an average initial BW of 6.3 g, and similar positive results were observed. Further investigation revealed that the downstream effectors of the PI3K-Akt pathway, such as p70S6K and 4EBP1, were significantly phosphorylated, suggesting that Scy-hepc feeding might promote translation initiation and protein synthesis processes in the liver. Taken together, as an effector of innate immunity, AMP Scy-hepc played a role in promoting the growth of L. crocea and the underlying mechanism was associated with the activation of the GH-Jak2-STAT5-IGF1 axis, as well as the PI3K-Akt and Erk/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhe An
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
45
|
Li XL, Zhu HJ, Zhang Q, Li YS, Li YC, Feng X, Yuan RY, Sha QQ, Ma JY, Luo SM, Sun QY, Chen LN, Ou XH. Continuous light exposure influences luteinization and luteal function of ovary in ICR mice. J Pineal Res 2023; 74:e12846. [PMID: 36428267 DOI: 10.1111/jpi.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.
Collapse
Affiliation(s)
- Xiao-Long Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Jing Zhu
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-Shi Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yan-Chu Li
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rui-Ying Yuan
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qian-Qian Sha
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shi-Ming Luo
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ning Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Cho YH, Seo TB. Effect of concurrent aerobic exercise and bone marrow stromal cell transplantation on time-dependent changes of myogenic differentiation-related cascades in soleus muscle after sciatic nerve injury. J Exerc Rehabil 2023; 19:11-18. [PMID: 36910676 PMCID: PMC9993002 DOI: 10.12965/jer.2346004.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023] Open
Abstract
The purpose of this study was to investigate the time-dependent alteration in whether concurrent aerobic exercise and bone marrow stromal cell (BMSC) engraftment could regulate myogenic differentiation-related signaling pathway in the soleus up to 35 days after sciatic nerve injury (SNI). The rats were divided as follows: the normal control (CON, n=5), sedentary group (SED, n=20), treadmill exercise group (TEX, n=20), BMSC transplantation group (BMSC, n=20), TEX+BMSC transplantation group (TEX+BMSC, n=20) 7, 14, 21, and 35 days after SNI. SNI was applied into the thigh and treadmill exercise was comprised of walking at a speed of 4 to 8 m/min for 30 min once a day. Harvested BMSC at a density of 5×106 in 50-μL phosphate-buff-ered saline was injected into the injury site. Phosphorylated (p) extracellular signal-regulated kinase 1/2 expression was dramatically upregulated in BMSC and BMSC+EX groups from 21 days after SNI compared to those in the SED group. P-ribosomal s6 kinase (RSK) was sharply increased 14 days later, and then rapidly downregulated from day 21, whereas TEX, BMSC and TEX+ BMSC groups significantly kept up expression levels of p-RSK until 35 days post injury than SED group. TEX+BMSC group significantly increased activation of protein kinase B-mammalian target of rapamycin in the soleus from day 14 and myoblast determination protein 1-myogen-in pathways was activated in TEX+BMSC group from day 21. Present findings provide information that combined intervention of aerobic exercise and BMSC transplantation might be a reliable therapeutic strategy for overcoming the morphological and functional problems in denervated soleus muscle.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
47
|
Analysis of Long Noncoding RNAs-Related Regulatory Mechanisms in Duchenne Muscular Dystrophy Using a Disease-Related lncRNA-mRNA Pathway Network. Genet Res (Camb) 2022; 2022:8548804. [PMID: 36619896 PMCID: PMC9771664 DOI: 10.1155/2022/8548804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to investigate the molecular regulatory mechanisms underpinning Duchenne muscular dystrophy (DMD). Methods Using microarray data, differentially expressed long noncoding RNAs (DELs) and DMD-related differentially expressed mRNAs (DEMs) were screened based on the comparative toxicogenomics database, using a cutoff of |log2 fold change| > 1 and false discovery rate (FDR) < 0.05. Then, protein-protein interaction (PPI), coexpression network of lncRNA-mRNA, and DMD-related lncRNA-mRNA pathway networks were constructed, and functional analyses of the genes in the network were performed. Finally, the proportions of immune cells infiltrating the muscle tissues in DMD were analyzed, and the correlation between the immune cells and expression of the DELs/DEMs was studied. Results A total of 46 DELs and 313 DMD-related DEMs were identified. The PPI network revealed STAT1, VEGFA, and CCL2 to be the top three hub genes. The DMD-related lncRNA-mRNA pathway network comprising two pathways, nine DELs, and nine DMD-related DEMs showed that PYCARD, RIPK2, and CASP1 were significantly enriched in the NOD-like receptor signaling pathway, whereas MAP2K2, LUM, RPS6, PDCD4, TWIST1, and HIF1A were significantly enriched with proteoglycans in cancers. The nine DELs in this network were DBET, MBNL1-AS1, MIR29B2CHG, CCDC18-AS1, FAM111A-DT, GAS5, LINC01290, ATP2B1-AS1, and PSMB8-AS1. Conclusion The nine DMD-related DEMs and DELs identified in this study may play important roles in the occurrence and progression of DMD through the two pathways of the NOD-like receptor signaling pathway and proteoglycans in cancers.
Collapse
|
48
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
49
|
Yang XC, Wu XL, Li WH, Wu XJ, Shen QY, Li YX, Peng S, Hua JL. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation. Zool Res 2022; 43:911-922. [PMID: 36052561 PMCID: PMC9700490 DOI: 10.24272/j.issn.2095-8137.2022.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 08/18/2023] Open
Abstract
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Collapse
Affiliation(s)
- Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Hao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Jie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
50
|
Fang L, Zhang M, Li J, Zhou L, Tamm M, Roth M. Airway Smooth Muscle Cell Mitochondria Damage and Mitophagy in COPD via ERK1/2 MAPK. Int J Mol Sci 2022; 23:ijms232213987. [PMID: 36430467 PMCID: PMC9694999 DOI: 10.3390/ijms232213987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by irreversible deterioration of the airway wall. Cigarette smoking is the major trigger, and in vitro studies showed that cigarette smoke extract (CSE) induced mitophagy in airway epithelial cells via oxidative stress, but this mechanism was not studied in airway smooth muscle cells (ASMCs). Primary ASMCs isolated from COPD patients or non-disease donors were investigated for CSE-induced remodeling and mitochondria structure. Proteins were assessed by Western blots for remodeling: collagen type-I, α-smooth muscle actin (α-SMA) and fibronectin; autophagy: beclin-1, protein62 (p62), light chain (LC)3A/B; mitochondria activity: mitochondrially encoded cytochrome c oxidase II & -IV (MTCO2, MTCO4), peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α); lysosomes: early endosome antigen 1, lysosome activated membrane protein 1; and cell signaling: extracellular signal regulated kinase (ERK1/2). Lysotracker and Mitotracker were used to monitor mitochondria morphology and organelle co-localization. Compared with controls, untreated COPD ASMCs showed lower collagen type-I and α-SMA expressions, but increased fibronectin levels. CSE further downregulated collagen type-I and α-SMA expression, but upregulated fibronectin. CSE decreased PGC-1α, MTCO2, and MTCO4, but increased beclin-1, p62, and LC3. CSE upregulated mitophagy and lysosomes activity via ERK1/2 phosphorylation. In vitro, cigarette smoke induced the deterioration of ASMCs, which might explain the tissue loss and structural remodeling in COPD bronchi. The results suggest that preventing exceeded mitophagy in ASMCs might present a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ming Zhang
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| | - Junling Li
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523000, China
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Clinic of Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|