1
|
Nilsson I, Su EJ, Fredriksson L, Sahlgren BH, Bagoly Z, Moessinger C, Stefanitsch C, Ning FC, Zeitelhofer M, Muhl L, Lawrence ALE, Scotney PD, Lu L, Samén E, Ho H, Keep RF, Medcalf RL, Lawrence DA, Eriksson U. Thrombolysis exacerbates cerebrovascular injury after ischemic stroke via a VEGF-B dependent effect on adipose lipolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617532. [PMID: 39416206 PMCID: PMC11483068 DOI: 10.1101/2024.10.11.617532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke. Reducing adipose lipolysis by VEGF-B antagonism improved vascular integrity by reducing ectopic cerebrovascular lipid deposition. Thrombolytic therapy in ischemic stroke using tissue plasminogen activator (tPA) leads to increased risk of hemorrhagic complications, substantially limiting the use of thrombolytic therapy. We provide evidence that thrombolysis with tPA promotes adipose tissue lipolysis, leading to a rise in plasma fatty acids and lipid accumulation in the ischemic cerebrovasculature after stroke. VEGF-B blockade improved the efficacy and safety of thrombolysis suggesting the potential use of anti-VEGF-B therapy to extend the therapeutic window for stroke management.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
- Lead contact: (I.N.)
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Hungary
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lisa E. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Li Lu
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, Kamyshnyi O. Methodological Approaches to Experimental Evaluation of Neuroprotective Action of Potential Drugs. Int J Mol Sci 2024; 25:10475. [PMID: 39408802 PMCID: PMC11477376 DOI: 10.3390/ijms251910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The authors propose a novel approach to a comprehensive evaluation of neuroprotective effects using both in vitro and in vivo methods. This approach allows for the initial screening of numerous newly synthesized chemical compounds and substances from plant and animal sources while saving animal life by reducing the number of animals used in research. In vitro techniques, including mitochondrial suspensions and neuronal cell cultures, enable the assessment of neuroprotective activity, which can be challenging in intact organisms. The preliminary methods help outline the neuroprotection mechanism depending on the neurodestruction agent. The authors have validated a model of acute cerebrovascular accident, which simulates key cerebrovascular phenomena such as reduced cerebral blood flow, energy deficit, glutamate-calcium excitotoxicity, oxidative stress, and early gene expression. A significant advantage of this model is its ability to reproduce the clinical picture of cerebral ischemia: impaired motor activity; signs of neurological deficits (paresis, paralysis, etc.); as well as disturbances in attention, learning, and memory. Crucial to this approach is the selection of biochemical, molecular, and cellular markers to evaluate nerve tissue damage and characterize potential neuroprotective agents. Additionally, a comprehensive set of molecular, biochemical, histological, and immunohistochemical methods is proposed for evaluating neuroprotective effects and underlying mechanisms of potential pharmaceutical compounds.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oksana Morozova
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
3
|
Liu C, Zhou X. TREM2 Impairs Glycolysis to Interrupt Microglial M1 Polarization and Inflammation via JAK2/STAT3 Axis. Cell Biochem Biophys 2024:10.1007/s12013-024-01520-5. [PMID: 39240442 DOI: 10.1007/s12013-024-01520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Chanyuan Liu
- Psychiatric Ward 1, Wuhan Wuchang Hospital, Wuhan, 430061, Hubei, China
| | - Xueying Zhou
- Department of Psychiatry, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
4
|
Wang Y, Shan T, Mao P, Jiang Y, Wang Z. FOXP3 gene is associated with susceptibility to ischemic stroke in the Chinese population. Clin Neurol Neurosurg 2024; 242:108313. [PMID: 38754303 DOI: 10.1016/j.clineuro.2024.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
AIM Immunoinflammatory response plays an important role in the pathophysiological process of ischemic stroke (IS). Forkhead box P3 (FOXP3) is a master regulator for immune cells. Polymorphisms of FOXP3 gene might contribute to the susceptibility of IS. This study aimed to explore the association between FOXP3 gene polymorphisms (rs3761548 and rs2232365) and IS susceptibility in the Chinese Han population. METHODS Polymerase chain reaction and Sanger sequencing were used to detect the genotype of FOXP3 gene rs3761548 and rs2232365 polymorphisms. RESULTS Smoking, diabetes mellitus (DM), and HBP histories, higher TG and HDL-C levels were more frequently observed in IS patients than in controls. In comparison with rs3761548 GG genotype, GT genotype (OR = 1.573, 95 %CI = 1.030-2.402; adjusted: OR = 1.736, 95 %CI = 1.070-2.817) and GT + TT vs. GG model (OR = 1.581, 95 %CI = 1.0449-2.382; adjusted: OR = 1.720, 95 %CI = 1.074-2.755) of rs3761548 polymorphism was significantly correlated with elevated ischemic stroke susceptibility both at prior and after adjusted by smoking, HBP, DM, TG and HDL-C. Recessive model of rs2232365 polymorphism could elevate the susceptibility of ischemic stroke (OR = 11.962, 95 %CI = 1.144-3.3363; adjusted: OR = 1.876, 95 %CI = 1.016-3.463). Besides, rs3761548 dominant model (OR = 2.757, 95 %CI = 1.379-5.552; adjusted: OR = 2.601, 95 %CI = 1.268-5.336) and rs2232365 recessive model (OR = 3.103, 95 %CI = 1.463-6.583; adjusted: OR = 3.545, 95 %CI = 1.600-7.855) were related to the severity of ischemic stroke. CONCLUSION FOXP3 gene rs3761548 and rs2232365 polymorphisms were risk factors for susceptibility and severity of IS.
Collapse
Affiliation(s)
- Youpei Wang
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Tiru Shan
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Peipei Mao
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Yi Jiang
- Department of Neurology II, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Zhao Wang
- Health Management Center, Qingdao Chengyang People's Hospital, Qingdao 266109, China.
| |
Collapse
|
5
|
Sengking J, Mahakkanukrauh P. The underlying mechanism of calcium toxicity-induced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia. Anat Cell Biol 2024; 57:155-162. [PMID: 38680098 PMCID: PMC11184419 DOI: 10.5115/acb.24.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center (ORTC), Chaing Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Huang LY, Zhang YD, Liu YN, Liang ZY, Chen J, Wang B, Yin QL, Wang PP, Wang W, Qi SH. Remote Ischemic Postconditioning-Mediated Neuroprotection against Stroke by Promoting Ketone Body-Induced Ferroptosis Inhibition. ACS Chem Neurosci 2024; 15:2223-2232. [PMID: 38634698 DOI: 10.1021/acschemneuro.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Yi-de Zhang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
- Xuzhou Central Hospital, Xuzhou 221000, P.R China
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Bin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
| | - Qi-Long Yin
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| |
Collapse
|
7
|
Hayashi R, Okumura H, Isono M, Yamauchi M, Unami D, Lusi RT, Yamamoto M, Kato Y, Uchihara Y, Shibata A. Inhibition of intracellular ATP synthesis impairs the recruitment of homologous recombination factors after ionizing radiation. JOURNAL OF RADIATION RESEARCH 2024; 65:263-271. [PMID: 38461549 PMCID: PMC11115441 DOI: 10.1093/jrr/rrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Indexed: 03/12/2024]
Abstract
Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hikaru Okumura
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Mayu Isono
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Motohiro Yamauchi
- Hospital Campus Laboratory, Radioisotope Center, Central Institute of Radioisotope Science and Safety Management, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Unami
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Rahmartani Tania Lusi
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia – Dr. Cipto Mangunkusumo National General Hospital, Jl. Diponegoro No.71, Jakarta Pusat, DKI Jakarta 10430, Indonesia
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yu Kato
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Uchihara
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Atsushi Shibata
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
8
|
Arnalich-Montiel A, Burgos-Santamaría A, Pazó-Sayós L, Quintana-Villamandos B. Comprehensive Management of Stroke: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2024; 25:5252. [PMID: 38791292 PMCID: PMC11120719 DOI: 10.3390/ijms25105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Acute ischemic stroke (AIS) is a challenging disease, which needs urgent comprehensive management. Endovascular thrombectomy (EVT), alone or combined with iv thrombolysis, is currently the most effective therapy for patients with acute ischemic stroke (AIS). However, only a limited number of patients are eligible for this time-sensitive treatment. Even though there is still significant room for improvement in the management of this group of patients, up until now there have been no alternative therapies approved for use in clinical practice. However, there is still hope, as clinical research with novel emerging therapies is now generating promising results. These drugs happen to stop or palliate some of the underlying molecular mechanisms involved in cerebral ischemia and secondary brain damage. The aim of this review is to provide a deep understanding of these mechanisms and the pathogenesis of AIS. Later, we will discuss the potential therapies that have already demonstrated, in preclinical or clinical studies, to improve the outcomes of patients with AIS.
Collapse
Affiliation(s)
- Ana Arnalich-Montiel
- Department of Anaesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.B.-S.); (B.Q.-V.)
- Department of Pharmacology, College of Medicine, Complutense University, 28040 Madrid, Spain
| | - Alba Burgos-Santamaría
- Department of Anaesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.B.-S.); (B.Q.-V.)
| | - Laia Pazó-Sayós
- Department of Anaesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.B.-S.); (B.Q.-V.)
| | - Begoña Quintana-Villamandos
- Department of Anaesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.B.-S.); (B.Q.-V.)
- Department of Pharmacology, College of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
9
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Kim DW, Lee TK, Ahn JH, Yang SR, Shin MC, Cho JH, Won MH, Kang IJ, Park JH. Porphyran Attenuates Neuronal Loss in the Hippocampal CA1 Subregion Induced by Ischemia and Reperfusion in Gerbils by Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation. Mar Drugs 2024; 22:170. [PMID: 38667787 PMCID: PMC11050983 DOI: 10.3390/md22040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Republic of Korea;
| | - Se-Ran Yang
- Department of Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Moo-Ho Won
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| |
Collapse
|
11
|
Ma R, Norbo K, Zhu Y, Zhu C, Zhou F, Dhondub L, Gyaltsen K, Wu C, Dai J. Chemical proteomics unveils that seventy flavors pearl pill ameliorates ischemic stroke by regulating oxidative phosphorylation. Bioorg Chem 2024; 145:107187. [PMID: 38354502 DOI: 10.1016/j.bioorg.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Ischemic stroke has high mortality and morbidity rates and is the second leading cause of death in the world, but there is no definitive medicine. Seventy Flavors Pearl Pill (SFPP) is a classic formula in Tibetan Medicine. Clinical practice has shown the attenuation effect of SFPP on blood pressure disorders, strokes and their sequelae and other neurological symptoms, but its mechanism remains to be elucidated. In this study, we established three animal models in vivo and three cell models to evaluate the anti-hypoxia, anti-ischemia, and reperfusion injury prevention effects of SFPP. Quantitative proteomics revealed that oxidative phosphorylation (OXPHOS) is essential for SFPP's efficacy. Then, cysteine-activity based protein profiling technology, which reflects redox stress at the proteome level, was employed to illustrate that SFPP brought functional differences of critical proteins in OXPHOS. In addition, quantitative metabolomics revealed that SFPP affects whole energy metabolism with OXPHOS as the core. Finally, we performed a compositional identification of SFPP to initially explore the components of potential interventions in OXPHOS. These results provide new perspectives and tools to explore the mechanism of herbal medicine. The study suggests that OXPHOS could be a potential target for further research and intervention of ischemic stroke treatment.
Collapse
Affiliation(s)
- Ruyun Ma
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kelsang Norbo
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China; Technological Innovation Center of Traditional Tibetan Medicine Modernization of Tibet Autonomous Region, Lasa, P.R. China
| | - Yanning Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, P.R. China
| | - Feng Zhou
- Technological Innovation Center of Traditional Tibetan Medicine Modernization of Tibet Autonomous Region, Lasa, P.R. China
| | - Lobsang Dhondub
- Technological Innovation Center of Traditional Tibetan Medicine Modernization of Tibet Autonomous Region, Lasa, P.R. China
| | - Kelsang Gyaltsen
- Technological Innovation Center of Traditional Tibetan Medicine Modernization of Tibet Autonomous Region, Lasa, P.R. China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, P.R. China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China; Technological Innovation Center of Traditional Tibetan Medicine Modernization of Tibet Autonomous Region, Lasa, P.R. China; Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, P.R. China.
| |
Collapse
|
12
|
Yu W, Ma J, Guo W, Xu J, Xu J, Li S, Ren C, Wu L, Wu C, Li C, Chen J, Duan J, Ma Q, Song H, Zhao W, Ji X. Night shift work was associated with functional outcomes in acute ischemic stroke patients treated with endovascular thrombectomy. Heliyon 2024; 10:e25916. [PMID: 38390161 PMCID: PMC10881325 DOI: 10.1016/j.heliyon.2024.e25916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Objective This study aimed to explore the impact of late night shift work on the functional outcomes of patients with acute ischemic stroke (AIS) treated with endovascular thrombectomy (EVT). Methods Consecutive AIS patients who underwent EVT between June 2019 and June 2021 were enrolled and divided into non-night shift work and night shift work groups based on their occupational histories. The primary outcome was the modified Rankin Scale score defined 3-month functional outcome. The secondary outcomes were 3-month mortality, symptomatic intracerebral hemorrhage (sICH), ICH and early recanalization. Results A total of 285 patients were enrolled, 35 patients (12.3%) were night shift workers, who were younger (P < 0.001) and had a significantly higher prevalence of smoking (P < 0.001), hyperlipidemia (P = 0.002), coronary heart disease (P = 0.031), and atrial fibrillation (P < 0.001). The 3-month favorable outcomes were achieved in 44.8% and 25.7% of patients in the non-night shift work and night shift work groups, respectively (adjusted odds ratio [OR]: 0.24, 95% CI: 0.10-0.57; adjusted P = 0.001). No difference was found in 3-month mortality (adjusted OR: 0.43; 95% CI: 0.14-1.25, adjusted P = 0.121), rates of ICH (adjusted OR: 0.73; 95% CI: 0.33-1.60; adjusted P = 0.430), sICH (adjusted OR: 0.75; 95% CI: 0.34-1.67; adjusted P = 0.487), or early successful recanalization (adjusted OR: 0.42; 95% CI: 0.12-1.56; adjusted P = 0.197). These results were consistent after PSM analysis. Conclusion Our findings suggest that late night shift work is significantly associated with unfavorable outcomes in patients with AIS after EVT.
Collapse
Affiliation(s)
- Wantong Yu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Chuanhui Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
14
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Gong L, Chen S, Yang Y, Hu W, Cai J, Liu S, Zhao Y, Pei L, Ma J, Chen F. Designing machine learning for big data: A study to identify factors that increase the risk of ischemic stroke and prognosis in hypertensive patients. Digit Health 2024; 10:20552076241288833. [PMID: 39386108 PMCID: PMC11462574 DOI: 10.1177/20552076241288833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ischemic stroke (IS) accounts large amount of stroke incidence. The aim of this study was to discover the risk and prognostic factors that affecting the occurrence of IS in hypertensive patients. Method Study data were obtained from the Medical Information Mart for Intensive Care (MIMIC)-IV database. To avoid biased factors selection process, several approaches were studied including logistic regression, elastic net regression, random forest, correlation analysis, and multifactor logistic regression methods. And seven different machine-learning methods are used to construct predictive models. The performance of the developed models was evaluated using AUC (Area Under the Curve), prediction accuracy, precision, recall, F1 score, PPV (Positive Predictive Value) and NPV (Negative Predictive Value). Interaction analysis was conducted to explore potential relationships between influential factors. Results The study included 92,514 hypertensive patients, of which 1746 hypertensive patients experienced IS. The Gradient Boosted Decision Tree (GBDT) model outperformed the other prediction model terms of prediction accuracy and AUC values in both ischemic and prognosis cases. By using the SHapley Additive exPlanations (SHAP), we found that a range of factors and corresponding interactions between factors are important risk factors for IS and its prognosis in hypertensive patients. Conclusion The study identified factors that increase the risk of IS and poor prognosis in hypertensive patients, which may provide guidance for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Lingmin Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shiyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Weiwei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jiaxin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sitong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yaling Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Leilei Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jiaojiao Ma
- Department of Neurology, Xi’an Gaoxin Hospital, Xi’an, Shaanxi, China
| | - Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Radiology, The First Affiliate Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Xia X, Chen S, Cao C, Ye Y, Shen Y. New Score Models for Predicting Bleeding and Ischemic of Ticagrelor Therapy in Patients with Diabetes Mellitus. Clin Appl Thromb Hemost 2024; 30:10760296241254107. [PMID: 38780348 PMCID: PMC11119327 DOI: 10.1177/10760296241254107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Ticagrelor is an antiplatelet drug, and its use increases the risk of bleeding. Coronary artery disease is significantly influenced by the widespread occurrence of diabetes mellitus. In order to decrease the incidence of clinical adverse events, a novel bleeding and thrombosis score is developed in this research. METHODS We conducted a retrospective analysis of patient data from two medical centers who were diagnosed with diabetes mellitus and treated with ticagrelor. We gathered information on every patient from the electronic database of the hospital and follow-up. The collected data were statistically analyzed to obtain risk factors for bleeding and ischemic events. RESULTS A total of 851 patients with diabetes mellitus who have been administered ticagrelor are included in our investigation. A total of 76 patients have bleeding events and 80 patients have ischemic events. The analysis of multiple variables indicates that characteristics like the age of >65, having a previous occurrence of bleeding, experiencing anemia, using aspirin, and taking atorvastatin are linked to a higher likelihood of bleeding. Additionally, the age of >65, smoking, having a history of blood clots, and having a BMI ≥ 30 are found to increase the risk of ischemia. CONCLUSION The A4B score established in this study was better than the HAS-BLED score,and the same is true for the ABST score to the CHA2DS-VASc score. This new risk assessment model can potentially detect patients who are at high risk for bleeding and ischemic events. For high-risk patients, the dose of ticagrelor can be adjusted appropriately or the medication can be adjusted.(2023-09-11, ChiCTR2300075627).
Collapse
Affiliation(s)
- Xiaotong Xia
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Fujian Xiamen, China
| | - Shu Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Fujian Xiamen, China
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Fujian Xiamen, China
| | - YanRong Ye
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Chichai AS, Popova TN, Kryl'skii ED, Oleinik SA, Razuvaev GA. Indole-3-carbinol mitigates oxidative stress and inhibits inflammation in rat cerebral ischemia/reperfusion model. Biochimie 2023; 213:1-11. [PMID: 37120006 DOI: 10.1016/j.biochi.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
Ischemia is a significant pathogenetic factor of stroke with very limited treatment options. The objective of our research was to evaluate the protective properties of indole-3-carbinol (I3C) and its effect on redox status parameters, inflammation, and apoptosis intensity in cerebral ischemia/reperfusion injury (CIRI) in rats. I3C administration to CIRI rats decreased levels of oxidative stress markers and improved aerobic metabolism compared to the animals with CIRI. A decrease in myeloperoxidase activity, proinflammatory cytokines mRNA levels, and expression of redox-sensitive factor Nuclear Factor-κB was observed in rats with CIRI that received I3C. I3C-treated rats with pathology showed decreased caspase activity and apoptosis-inducing factor expression, compared to the animals in the CIRI group. Obtained data indicate that I3C has a neuroprotective and anti-ischemic effect in CIRI that may be related to its antioxidant properties and ability to reduce the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Aleksandra Sergeevna Chichai
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Tatyana Nikolaevna Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Evgenii Dmitrievich Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Sergei Aleksandrovich Oleinik
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Grigorii Andreevich Razuvaev
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| |
Collapse
|
18
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Jiang Y, Xie C, Zhang G, Liu M, Xu Y, Zhong W, Ge Z, Tao Z, Qian M, Gong C, Shen X. Establishment of a dynamic nomogram including thyroid function for predicting the prognosis of acute ischemic stroke with standardized treatment. Front Neurol 2023; 14:1139446. [PMID: 37396756 PMCID: PMC10311209 DOI: 10.3389/fneur.2023.1139446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Many patients with acute ischemic stroke (AIS) cannot undergo thrombolysis or thrombectomy because they have missed the time window or do not meet the treatment criteria. In addition, there is a lack of an available tool to predict the prognosis of patients with standardized treatment. This study aimed to develop a dynamic nomogram to predict the 3-month poor outcomes in patients with AIS. Methods This was a retrospective multicenter study. We collected the clinical data of patients with AIS who underwent standardized treatment at the First People's Hospital of Lianyungang from 1 October 2019 to 31 December 2021 and at the Second People's Hospital of Lianyungang from 1 January 2022 to 17 July 2022. Baseline demographic, clinical, and laboratory information of patients were recorded. The outcome was the 3-month modified Rankin Scale (mRS) score. The least absolute shrinkage and selection operator regression were used to select the optimal predictive factors. Multiple logistic regression was performed to establish the nomogram. A decision curve analysis (DCA) was applied to assess the clinical benefit of the nomogram. The calibration and discrimination properties of the nomogram were validated by calibration plots and the concordance index. Results A total of 823 eligible patients were enrolled. The final model included gender (male; OR 0.555; 95% CI, 0.378-0.813), systolic blood pressure (SBP; OR 1.006; 95% CI, 0.996-1.016), free triiodothyronine (FT3; OR 0.841; 95% CI, 0.629-1.124), National Institutes of Health stroke scale (NIHSS; OR 18.074; 95% CI, 12.264-27.054), Trial of Org 10172 in Acute Stroke Treatment (TOAST; cardioembolic (OR 0.736; 95% CI, 0.396-1.36); and other subtypes (OR 0.398; 95% CI, 0.257-0.609). The nomogram showed good calibration and discrimination (C-index, 0.858; 95% CI, 0.830-0.886). DCA confirmed the clinical usefulness of the model. The dynamic nomogram can be obtained at the website: predict model (90-day prognosis of AIS patients). Conclusion We established a dynamic nomogram based on gender, SBP, FT3, NIHSS, and TOAST, which calculated the probability of 90-day poor prognosis in AIS patients with standardized treatment.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Geriatrics, Bengbu Medical College Clinical College of Lianyungang Second People's Hospital, Lianyungang, China
| | - Chunhui Xie
- Department of Geriatrics, Bengbu Medical College Clinical College of Lianyungang Second People's Hospital, Lianyungang, China
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Guanghui Zhang
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Mengqian Liu
- Department of Geriatrics, Lianyungang Second People's Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Yiwen Xu
- Department of Geriatrics, Lianyungang Second People's Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Wen Zhong
- Department of Geriatrics, Lianyungang Second People's Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Zhonglin Ge
- Department of Neurology, Lianyungang Second People's Hospital, Lianyungang, China
| | - Zhonghai Tao
- Department of Neurology, Lianyungang Second People's Hospital, Lianyungang, China
| | - Mingyue Qian
- Department of Neurology, Lianyungang Second People's Hospital, Lianyungang, China
| | - Chen Gong
- Department of Geriatrics, Lianyungang Second People's Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Xiaozhu Shen
- Department of Geriatrics, Bengbu Medical College Clinical College of Lianyungang Second People's Hospital, Lianyungang, China
| |
Collapse
|
20
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
21
|
Abdul Y, Jamil S, Li W, Ergul A. Cerebral microvascular matrix metalloproteinase-3 (MMP3) contributes to vascular injury after stroke in female diabetic rats. Neurochem Int 2023; 162:105462. [PMID: 36509234 PMCID: PMC9839584 DOI: 10.1016/j.neuint.2022.105462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Diabetes exacerbates hemorrhagic transformation (HT) after stroke and worsens clinical outcomes. Female patients with diabetes are at a greater risk of stroke and worsened recovery. We have shown that activation of matrix metalloprotease 3 (MMP3) in hyperglycemic settings mediates HT in male rats. In light of our recent findings that diabetic female rats develop greater HT, the current study was designed to test the hypotheses that: 1) cerebral microvascular MMP3 activation contributes to poor functional outcomes and increased hemorrhagic transformations (HT) after ischemic stroke, and 2) MMP3 inhibition can improve functional outcomes in female diabetic rats. Female control and diabetic Wistar rats were subjected to 60 min of middle cerebral artery occlusion (MCAO). One cohort of diabetic animals received a single dose of MMP3 inhibitor (UK356618; 15 mg/kg; iv) or vehicle after reperfusion. Neurobehavioral outcomes, brain infarct size, edema, HT, and MMPs were measured in brain tissue. Diabetic rats had significant neurological deficits on Day 3 after stroke. MMP3 expression and enzyme activity were significantly increased in both micro and macro vessels of diabetic animals. MMP3 inhibition improved functional outcomes and reduced brain edema and HT scores. In conclusion, cerebral endothelial MMP3 activation to vascular injury in female diabetic rats. Our findings identify MMP3 as a potential therapeutic target in diabetic stroke.
Collapse
Affiliation(s)
- Yasir Abdul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Sarah Jamil
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Weiguo Li
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Adviye Ergul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA.
| |
Collapse
|