1
|
Huang L, Liu M, Li Z, Li B, Wang J, Zhang K. Systematic review of amyloid-beta clearance proteins from the brain to the periphery: implications for Alzheimer's disease diagnosis and therapeutic targets. Neural Regen Res 2025; 20:3574-3590. [PMID: 39820231 PMCID: PMC11974662 DOI: 10.4103/nrr.nrr-d-24-00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025] Open
Abstract
Amyloid-beta clearance plays a key role in the pathogenesis of Alzheimer's disease. However, the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclear. In this study, we conducted meta-analyses and a systematic review using studies from the PubMed, Embase, Web of Science, and Cochrane Library databases, including journal articles published from inception to June 30, 2023. The inclusion criteria included studies comparing the levels of functional proteins associated with amyloid-beta clearance in the blood, cerebrospinal fluid, and brain of healthy controls, patients with mild cognitive impairment, and patients with Alzheimer's disease. Additionally, we analyzed the correlation between these functional proteins and amyloid-beta levels in patients with Alzheimer's disease. The methodological quality of the studies was assessed via the Newcastle‒Ottawa Scale. Owing to heterogeneity, we utilized either a fixed-effect or random-effect model to assess the 95% confidence interval (CI) of the standard mean difference (SMD) among healthy controls, patients with mild cognitive impairment, and patients with Alzheimer's disease. The findings revealed significant alterations in the levels of insulin-degrading enzymes, neprilysin, matrix metalloproteinase-9, cathepsin D, receptor for advanced glycation end products, and P-glycoprotein in the brains of patients with Alzheimer's disease, patients with mild cognitive impairment, and healthy controls. In cerebrospinal fluid, the levels of triggering receptor expressed on myeloid cells 2 and ubiquitin C-terminal hydrolase L1 are altered, whereas the levels of TREM2, CD40, CD40L, CD14, CD22, cathepsin D, cystatin C, and α2 M in peripheral blood differ. Notably, TREM2 and cathepsin D showed changes in both brain (SMD = 0.31, 95% CI: 0.16-0.47, P < 0.001, I2 = 78.4%; SMD = 1.24, 95% CI: 0.01-2.48, P = 0.048, I2 = 90.1%) and peripheral blood (SMD = 1.01, 95% CI: 0.35-1.66, P = 0.003, I2 = 96.5%; SMD = 7.55, 95% CI: 3.92-11.18, P < 0.001, I2 = 98.2%) samples. Furthermore, correlations were observed between amyloid-beta levels and the levels of TREM2 ( r = 0.16, 95% CI: 0.04-0.28, P = 0.009, I2 = 74.7%), neprilysin ( r = -0.47, 95% CI: -0.80-0.14, P = 0.005, I2 = 76.1%), and P-glycoprotein ( r = -0.31, 95% CI: -0.51-0.11, P = 0.002, I2 = 0.0%) in patients with Alzheimer's disease. These findings suggest that triggering receptor expressed on myeloid cells 2 and cathepsin D could serve as potential diagnostic biomarkers for Alzheimer's disease, whereas triggering receptor expressed on myeloid cells 2, neprilysin, and P-glycoprotein may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mingyue Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Ze Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Bing Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Targas ABA, Victoriano PHM, Garcia MBB, Alexandre-Silva V, Cominetti MR. Exploring the connection between dementia and cardiovascular risk with a focus on ADAM10. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167825. [PMID: 40174790 DOI: 10.1016/j.bbadis.2025.167825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) represents a leading cause of dementia, characterized by progressive cognitive and functional decline. Although extensive research has unraveled critical aspects of AD pathology, its etiology remains incompletely understood, urging further exploration into potential risk factors. Growing evidence underscores a significant link between cardiovascular disease (CVD) risk factors and AD, with modifiable lifestyle elements - such as physical inactivity, high low-density lipoprotein (LDL) levels, obesity, hypertension, atherosclerosis, and diabetes - emerging as contributors to cerebrovascular damage and neurodegeneration. ADAM10, a disintegrin and metalloproteinase involved in the non-amyloidogenic processing of amyloid precursor protein (APP), has garnered interest for its dual role in cardiovascular and neurodegenerative processes. ADAM10's regulation of neuroinflammation, endothelial function, and proteolytic cleavage of APP potentially moderates amyloid-β (Aβ) peptide formation, thus influencing both cardiovascular and brain health. Given these interconnected roles, this narrative review investigates whether ADAM10-driven vascular dysfunction accelerates neurodegeneration, how lipid metabolism influences ADAM10 activity in CVD and AD, and whether targeting ADAM10 could offer a dual-benefit therapeutic strategy to mitigate disease burden. By exploring epidemiological data, clinical studies, and molecular pathways, we aim to clarify ADAM10's bridging function between AD and cardiovascular risk, offering a new perspective into therapeutic opportunities to alleviate the dual burden of these interrelated conditions.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Darabi S, Gorgich EAC, Moradi F, Rustamzadeh A. Lipidopathy disrupts peripheral and central amyloid clearance in Alzheimer's disease: Where are our knowledge. IBRO Neurosci Rep 2025; 18:191-199. [PMID: 39906286 PMCID: PMC11791331 DOI: 10.1016/j.ibneur.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
Amyloid-beta (Aβ) production is a normal physiological process, essential for neuronal function. However, an imbalance in Aβ production and clearance is the central pathological feature of Alzheimer's disease (AD), leading to the accumulation of Aβ plaques in the brain. Low-density lipoprotein receptor-related protein 1 (LRP1) plays a critical role in both the central clearance of Aβ from the brain and its peripheral transport to visceral organs. Disruptions in these processes contribute to the accumulation of Aβ in the central nervous system (CNS) and the progression of AD. Recent research emphasizes the need for a broader focus on the systemic effects of organs outside the brain, particularly in the context of AD prevention and treatment. The contribution of peripheral systems, such as the liver, in Aβ clearance, is vital, given that Aβ levels in the plasma correlate closely with those in the brain. Consequently, targeting systemic processes, rather than focusing solely on the CNS, may offer promising therapeutic approaches. Furthermore, high-density lipoprotein (HDL) facilitates the formation of lipoprotein-amyloid complexes, which are important for Aβ transport and clearance, using proteins such as apolipoproteins E and J (ApoE and ApoJ) to form complexes that help manage Aβ accumulation. On the other hand, low-density lipoprotein (LDL) facilitates Aβ efflux from the brain by binding to LRP1, promoting its clearance. Given the relationship between lipid profiles and Aβ levels, along with lipid-modifying drugs, may be effective in managing Aβ accumulation and mitigating AD progression.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Diseases, Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Diseases, Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
D'Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer's disease. Ageing Res Rev 2025; 107:102713. [PMID: 40023293 DOI: 10.1016/j.arr.2025.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive decline and distinct neuropathological features. The absence of a definitive cure presents a significant challenge in neurology and neuroscience. Early clinical manifestations, such as memory retrieval deficits and apathy, underscore the need for a deeper understanding of the disease's underlying mechanisms. While amyloid-β plaques and tau neurofibrillary tangles have dominated research efforts, accumulating evidence highlights mitochondrial dysfunction as a central factor in AD pathogenesis. Mitochondria, essential cellular organelles responsible for energy production necessary for neuronal function become impaired in AD, triggering several cellular consequences. Factors such as oxidative stress, disturbances in energy metabolism, failures in the mitochondrial quality control system, and dysregulation of calcium release are associated with mitochondrial dysfunction. These abnormalities are closely linked to the neurodegenerative processes driving AD development and progression. This review explores the intricate relationship between mitochondrial dysfunction and AD pathogenesis, emphasizing its role in disease onset and progression, while also considering its potential as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Maria Clara Bila D'Alessandro
- Universidade Federal Fluminense, Faculty of Medicine, Desembargador Athayde Parreiras road 100, Niterói, Rio de Janeiro, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| | - Mauro Geller
- Unifeso, Department of Immunology and Microbiology, Alberto Torres avenue 111, Teresópolis, Rio de Janeiro, Brazil
| | - Domenico Praticò
- Department of Neurosciences, Lewis Katz School of Medicine. Temple University, 3500 North Broad Street, Philadelphia, PA, United States.
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2025; 46:1489-1507. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
VandeBunte AM, Ortiz BL, Paolillo EW, Saloner R, Diaz V, Dutt S, Cadwallader CJ, Chen C, Lago AL, Rojas JC, Chan B, Sible I, Kramer JH, Casaletto KB. Relationships between blood pressure indicators and fluid biomarkers of brain aging in functionally intact older adults. RESEARCH SQUARE 2025:rs.3.rs-6018137. [PMID: 40196000 PMCID: PMC11975004 DOI: 10.21203/rs.3.rs-6018137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background : Dementia risk is significantly shaped by cardiovascular health, with elevated blood pressure emerging as a key risk factor for adverse brain aging. Blood biomarkers such as pTau181, Aβ42/40, NfL, and GFAP have improved our understanding of dementia pathophysiology, however, few studies have explored how specific blood pressure metrics relate to biomarker levels, which could inform personalized dementia prevention strategies as these biomarkers move into clinic. We examined how different blood pressure metrics associated with molecular markers of astrocytic activation (GFAP), neuronal axon breakdown (NfL), and Alzheimer's disease pathobiology (pTau181, Aβ42/40) in plasma. Methods : 109 functionally intact (Clinical Dementia Rating Scale=0) older adults completed blood draws with plasma assayed for Aβ42/40, GFAP, NfL, and pTau181 (Quanterix Simoa) and in-lab blood pressure quantification. Blood pressure metrics included diastolic blood pressure, systolic blood pressure, and pulse pressure (systolic minus diastolic). Separate regression models evaluated plasma biomarkers as a function of each blood pressure metric, adjusting for age and biological sex. Interaction models tested whether relationships between blood pressure metrics and plasma biomarkers differed by sex, age, or APOE -ε4 status. Results : With the exception of Aβ42/40, higher pulse pressure related to higher levels of all plasma biomarkers examined (pTau181, NfL, GFAP). Additionally, higher systolic blood pressure related to higher pTau181, while diastolic blood pressure did not meaningfully associate with any biomarker. Interaction models revealed a significantly stronger relationship between elevated pulse pressure and higher GFAP concentrations in females compared to males, as well as a significantly stronger association between elevated pulse pressure and lower Aβ42/40 plasma concentrations in APOE -ε4 carriers compared to non-carriers. Conclusions : Our findings suggest that elevated pulse pressure, and to a lesser extent systolic blood pressure, are associated with increased Alzheimer's disease and neurodegenerative (axonal and astrocytic health) biology among typically aging adults. These associations underscore the importance of blood pressure management, particularly pulse pressure, for reducing dementia risk. Cardiovascular health may be incorporated with biomarkers to further personalize dementia prevention and management strategies.
Collapse
|
7
|
Gao L, Wang B, Cui X, Xia L, Li X, Figueredo YN, Li D, Liu K, Wang H, Jin M. Neochlorogenic acid ameliorates Alzheimer's disease-like pathology via scavenging oxidative stress and restoring blood-brain barrier function in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111334. [PMID: 40122506 DOI: 10.1016/j.pnpbp.2025.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease is the most widespread neurodegenerative disease characterized by insidious onset and slow progression. At present, most available medications serve to attenuate the progression of Alzheimer's disease with side effects and drug resistance. Neochlorogenic acid is a natural polyphenolic compound with excellent antioxidant properties. Based on zebrafish Alzheimer's disease model induced by AlCl3, we found that neochlorogenic acid significantly improved motor dysfunction, reduced brain cell apoptosis, and Aβ plaque. Because of antioxidant stress and improvement of blood-brain barrier dysfunction are important in treating Alzheimer's disease, we explored the interaction between these two mechanisms in alleviating the pathological course of Alzheimer's disease. Neochlorogenic acid inhibited the overproduction of reactive oxygen species, suppressed the gene expression encoding antioxidant-related proteins, and protected brain cell integrity while enhancing Nrf2, improving blood-brain barrier nerve resilience. Meanwhile, neochlorogenic acid attenuated blood-brain barrier dysfunction in Alzheimer's disease zebrafish by reducing blood hemoglobin leakage and upregulating the gene expression encoding blood-brain barrier endothelial cell-related proteins, resulting in reactive oxygen species in a controllable state. In conclusion, our research suggests that neochlorogenic acid ameliorates Alzheimer's disease-like pathology by inhibiting oxidative stress and restoring blood-brain barrier function, indicating that neochlorogenic acid may be a potential drug for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Li Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Pharmacy, Qingdao University, Qing'dao 266003, Shandong Province, People's Republic of China
| | - Xiaotong Cui
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China
| | - Xinjia Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Yanier Nuñez Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, La Habana CP10600, Cuba
| | - Dong Li
- R&D Department, Jinan Perfect Biological Technology Co., Ltd., Jinan 250101, Shandong Province, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Haitao Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Niu D, Qi K, Liang D, Long X. An imaging and genetic-based deep learning network for Alzheimer's disease diagnosis. Front Aging Neurosci 2025; 17:1532470. [PMID: 40191788 PMCID: PMC11968703 DOI: 10.3389/fnagi.2025.1532470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Conventional computer-aided diagnostic techniques for Alzheimer's disease (AD) predominantly rely on magnetic resonance imaging (MRI) in isolation. Genetic imaging methods, by establishing the link between genes and brain structures in disease progression, facilitate early prediction of AD development. While deep learning methods based on MRI have demonstrated promising results for early AD diagnosis, the limited dataset size has led most AD studies to lean on statistical approaches within the realm of imaging genetics. Existing deep-learning approaches typically utilize pre-defined regions of interest and risk variants from known susceptibility genes, employing relatively straightforward feature fusion methods that fail to fully capture the relationship between images and genes. To address these limitations, we proposed a multi-modal deep learning classification network based on MRI and single nucleotide polymorphism (SNP) data for AD diagnosis and mild cognitive impairment (MCI) progression prediction. Our model leveraged a convolutional neural network (CNN) to extract whole-brain structural features, a Transformer network to capture genetic features, and employed a cross-transformer-based network for comprehensive feature fusion. Furthermore, we incorporated an attention-map-based interpretability method to analyze and elucidate the structural and risk variants associated with AD and their interrelationships. The proposed model was trained and evaluated using 1,541 subjects from the ADNI database. Experimental results underscored the superior performance of our model in effectively integrating and leveraging information from both modalities, thus enhancing the accuracy of AD diagnosis and prediction.
Collapse
Affiliation(s)
- Yuhan Li
- Research Centers for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Donghao Niu
- Research Centers for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Keying Qi
- Research Centers for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Research Centers for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Long
- Research Centers for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Alves L, Hashiguchi D, Loss CM, van Praag H, Longo BM. Vascular dysfunction in Alzheimer's disease: Exploring the potential of aerobic and resistance exercises as therapeutic strategies. J Alzheimers Dis 2025:13872877251321118. [PMID: 40079781 DOI: 10.1177/13872877251321118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of morbidity and mortality worldwide, as a result of cognitive decline and neurological dysfunction. In AD, reduced cerebral blood flow and impaired vascularization result from capillary bed degeneration and decreased angiogenesis, as observed in both patients and animal models. Physical exercise is recognized as a potential intervention to delay AD progression and reduce disease risk. While most studies have focused on the benefits of aerobic exercise (AE), emerging evidence suggests that resistance exercise (RE) also exerts positive effects on overall health and cognitive function in aging and AD. However, a notable gap in knowledge remains regarding the effects of RE on cerebral blood flow and vascular structure. This review explores the processes by which AE and RE influence brain vascularization in aging and AD, including blood flow, endothelial function, angiogenesis and neurotrophic factor levels. Based on pre-clinical and clinical studies, we conclude that both AE and RE contribute to improved cerebral blood flow and vascular function, promoting vascular repair in the aging and AD-affected brain. By examining the relationship between exercise modalities and brain vascularization, this review expands knowledge regarding the processes underlying the neuroprotective effects of exercise in neurodegenerative and aging conditions.
Collapse
Affiliation(s)
- Larissa Alves
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| | - Debora Hashiguchi
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brasil
| | - Cássio Morais Loss
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Beatriz Monteiro Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| |
Collapse
|
10
|
Beltran-Velasco AI, Clemente-Suárez VJ. Impact of Peripheral Inflammation on Blood-Brain Barrier Dysfunction and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2440. [PMID: 40141084 PMCID: PMC11942216 DOI: 10.3390/ijms26062440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis by regulating molecular exchange between the systemic circulation and the central nervous system. However, its dysfunction, often driven by peripheral inflammatory processes, has been increasingly linked to the development and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Emerging evidence suggests that the gut-brain axis plays a key role in BBB integrity, with intestinal dysbiosis and chronic inflammation contributing to barrier disruption through immune and metabolic pathways. Furthermore, the selective vulnerability of specific brain regions to BBB dysfunction appears to be influenced by regional differences in vascularization, metabolic activity, and permeability, making certain areas more susceptible to neurodegenerative processes. This review explored the molecular mechanisms linking peripheral inflammation, gut microbiota, and BBB dysfunction, emphasizing their role in neurodegeneration. A comprehensive literature review was conducted using Web of Science, PubMed, Scopus, Wiley, ScienceDirect, and Medline, covering publications from 2015 to 2025. The findings highlight a complex interplay between gut microbiota-derived metabolites, immune signaling, and BBB permeability, underscoring the need for targeted interventions such as microbiome modulation, anti-inflammatory therapies, and advanced drug delivery systems. The heterogeneity of the BBB across different brain regions necessitates the development of region-specific therapeutic strategies. Despite advancements, critical knowledge gaps persist regarding the precise mechanisms underlying BBB dysfunction. Future research should leverage cutting-edge methodologies such as single-cell transcriptomics and organ-on-chip models to translate preclinical findings into effective clinical applications. Addressing these challenges will be crucial for developing personalized therapeutic approaches to mitigate the impact of BBB dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Isabel Beltran-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28248 Madrid, Spain;
| | - Vicente Javier Clemente-Suárez
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
11
|
Fang X, Border JJ, Zhang H, Challagundla L, Kaur J, Hwang SH, Hammock BD, Fan F, Roman RJ. A Soluble Epoxide Hydrolase Inhibitor Improves Cerebrovascular Dysfunction, Neuroinflammation, Amyloid Burden, and Cognitive Impairments in the hAPP/PS1 TgF344-AD Rat Model of Alzheimer's Disease. Int J Mol Sci 2025; 26:2433. [PMID: 40141075 PMCID: PMC11942141 DOI: 10.3390/ijms26062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Alzheimer's disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We recently reported that SNPs in soluble epoxide hydrolase (sEH) are linked to AD in human genetic studies and that long-term administration of an sEH inhibitor attenuated cerebral vascular and cognitive dysfunction in a rat model of AD. However, the mechanisms linking changes in cerebral vascular function and neuroprotective actions of sEH inhibitors in AD remain to be determined. This study investigated the effects of administration of an sEH inhibitor, 1-(1-Propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), on neurovascular coupling, blood-brain barrier (BBB) function, neuroinflammation, and cognitive dysfunction in an hAPP/PS1 TgF344-AD rat model of AD. We observed predominant β-amyloid accumulation in the brains of 9-10-month-old AD rats and that TPPU treatment for three months reduced amyloid burden. The functional hyperemic response to whisker stimulation was attenuated in AD rats, and TPPU normalized the response. The sEH inhibitor, TPPU, mitigated capillary rarefaction, BBB leakage, and activation of astrocytes and microglia in AD rats. TPPU increased the expression of pre- and post-synaptic proteins and reduced loss of hippocampal neurons and cognitive impairments in the AD rats, which was confirmed in a transcriptome and GO analysis. These results suggest that sEH inhibitors could be a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Lavanya Challagundla
- Molecular and Genomics Facility, University of Mississippi Medical Center, Jackson, MS 39216, USA; (L.C.); (J.K.)
| | - Jasleen Kaur
- Molecular and Genomics Facility, University of Mississippi Medical Center, Jackson, MS 39216, USA; (L.C.); (J.K.)
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (S.H.H.); (B.D.H.)
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (S.H.H.); (B.D.H.)
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| |
Collapse
|
12
|
Halimi H, Ahmadi B, Asri N, Rostami-Nejad M, Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb Pathog 2025; 200:107363. [PMID: 39909290 DOI: 10.1016/j.micpath.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Bacterial biofilms, which are complex communities of microorganisms encapsulated in a self-produced extracellular matrix, play critical roles in various diseases. Recent research has underscored the dualistic nature of amyloids, structural proteins within these biofilms, in human health, particularly highlighting the significant role in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's disease (PD). These amyloids modulate the immune response by inducing the production of interleukin-10 (IL-10), which plays a role in anti-inflammatory processes. Additionally, they inhibit the aggregation of human amyloids and enhance the integrity of the intestinal barrier. Detrimentally, they exacerbate neuroinflammation by elevating inflammatory cytokines and promoting the aggregation of human amyloid proteins-amyloid-β (Aβ) in AD and α-synuclein (αS) in PD-through a process known as cross-seeding. Moreover, bacterial amyloids have also been shown to stimulate the production of anti-curli/DNA antibodies, which are implicated in the pathogenesis of autoimmune diseases. Given their dualistic nature, bacterial amyloids may, under specific conditions, function as beneficial proteins for human health. This understanding holds promise for the development of targeted therapeutic strategies aimed at modulating bacterial amyloids in the context of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Hossein Halimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ahmadi
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Huang L, Wu Q, Ye F, Che W, Zhao X, Yang C, Ren S, Wu G, Wang L. Apolipoprotein E-ε4 allele is associated with perihematomal brain edema and poor outcomes in patients with intracerebral hemorrhage. Sci Rep 2025; 15:5682. [PMID: 39956815 PMCID: PMC11830776 DOI: 10.1038/s41598-025-89868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
Intracerebral hemorrhage (ICH) poses significant disability and mortality risks and perihematomal edema (PHE) plays a crucial role in ICH prognosis. The ApoE-ε4 allele has been implicated in exacerbating PHE and influencing neurological recovery post-ICH, yet, this specific association has not been explored much. This study aimed to investigate the correlation between ApoE-ε4 allele, PHE, and clinical prognosis in patients with ICH. We conducted a prospective observational cohort study at the Affiliated Hospital of Guizhou Medical University from January 2020 to December 2023. We enrolled patients with supratentorial ICH patients and analyzed ApoE gene alleles, clinical baseline data, blood biochemical indices, and imaging findings. We considered ApoE-ε4 carrier status as an exposure variable and compared PHE volumes between ApoE-ε3 (ε3/ε3) and ApoE-ε4 (ε2/ε4, ε3/ε4, ε4/ε4) carriers. We also compared clinical and imaging characteristics between the good prognosis group (modified Rankin score 0-3) and the poor prognosis group (modified Rankin score 4-6). Finally, we examined the association between ApoEε4 and PHE volume and poor prognosis at discharge. Among 153 patients, 63 (41%) carried ApoE-ε4. ApoE-ε4 carriers had significantly higher PHE volumes at 24 h and on days 5-7 compared to ApoE-ε3 carriers. The poor prognosis group had a higher proportion of ApoE-ε4 carriers (53.9% vs. 28.6%, p = 0.001) and increased PHE volumes. ApoE-ε4 (OR 2.438, p = 0.02) and PHE (OR 1.048, p = 0.015) were independent predictors of poor prognosis. The area under the curve for ApoE-ε4 was 0.627, and for PHE volume, it was 0.698. The ICH patients carrying the ApoE-ε4 allele show severe PHE and poorer outcomes. Carrying ApoE-ε4 gene is an independent predictor for poor outcomes in patients with ICH.Trial registration: ClinicalTrials.gov, NCT05687201. Registered June 1, 2023, Effect of Apolipoprotein E on the Prognosis of Patients with Intracerebral Hemorrhage-Full Text View-ClinicalTrials.gov "prospective registered".
Collapse
Affiliation(s)
- Lei Huang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Key Lab of Acute Brain Injury and Function Repair in Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Qian Wu
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fei Ye
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Wei Che
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xu Zhao
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - ChaoZhen Yang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Key Lab of Acute Brain Injury and Function Repair in Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Siying Ren
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Guofeng Wu
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Likun Wang
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
| |
Collapse
|
14
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
15
|
Wang J, Meng X, Yang J, Tang Y, Zeng F, Wang Y, Chen Z, Chen D, Zou R, Liu W. Improvements in Exercise for Alzheimer's Disease: Highlighting FGF21-Induced Cerebrovascular Protection. Neurochem Res 2025; 50:95. [PMID: 39903342 DOI: 10.1007/s11064-025-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Currently, it has shown a trend of earlier onset, with most patients experiencing a progressive decline in cognitive function following the disease's onset, which places a heavy burden on society and family. Since no drug cure for AD exists, exploring new ways for its treatment and prevention has become critical. Early vascular damage is an initial trigger for neuronal injury in AD, underscoring the importance of vascular health in the early stages of the disease. Patients with early AD experience abnormal blood-brain barrier transport of amyloid-β (Aβ) peptides, with excess Aβ being deposited in the cerebral vasculature. The toxic effects of Aβ lead to abnormalities in cerebrovascular structure and function. Fibroblast growth factor21 (FGF21) is an endocrine factor that positively regulates energy homeostasis and glucose-lipid metabolism. Notably, it is one of the effective targets for metabolic disease prevention and treatment. Recent studies have found that FGF21 has anti-aging and vasoprotective effects, with receptors for FGF21 present in the brain. Exercise stimulates the liver to produce large amounts of FGF21, which enters the blood-brain barrier with the blood to exert neurovascular protection. Therefore, we review the biological properties of FGF21, its role in the cerebrovascular structure and function in AD, and the mechanism of exercise-regulated FGF21 action on AD-related cerebrovascular changes, aiming to provide a new theoretical basis for using exercise to ameliorate degenerative neurological diseases.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Hunan Normal University, Changsha, Hunan Province, 410081, China.
- Physical Education College, Yuelu District, Hunan Normal University, Changsha, Hunan Province, 410081, China.
| |
Collapse
|
16
|
Han S, Hwang J, Park T, Pyun J, Lee J, Park JS, Bice PJ, Liu S, Yun S, Jeong J, Risacher SL, Saykin AJ, Byun MS, Yi D, Sung J, Lee DY, Kim S, Nho K, Park YH. Transcriptome analysis of early- and late-onset Alzheimer's disease in Korean cohorts. Alzheimers Dement 2025; 21:e14563. [PMID: 39935412 PMCID: PMC11815242 DOI: 10.1002/alz.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The molecular mechanisms underlying early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) remain incompletely understood, particularly in Asian populations. METHODS RNA-sequencing was carried out on blood samples from 248 participants in the Seoul National University Bundang Hospital cohort to perform differential gene expression (DGE) and weighted gene co-expression network analysis. Findings were replicated in an independent Korean cohort (N = 275). RESULTS DGE analysis identified 18 and 88 dysregulated genes in EOAD and LOAD, respectively. Network analysis identified a LOAD-associated module showing a significant enrichment in pathways related to mitophagy, 5' adenosine monophosphate-activated protein kinase signaling, and ubiquitin-mediated proteolysis. In the replication cohort, downregulation of SMOX and PLVAP in LOAD was replicated, and the LOAD-associated module was highly preserved. In addition, SMOX and PLVAP were associated with brain amyloid beta deposition. DISCUSSION Our findings suggest distinct molecular signatures for EOAD and LOAD in a Korean population, providing deeper understanding of their diagnostic potential and molecular mechanisms. HIGHLIGHTS Analysis identified 18 and 88 dysregulated genes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD), respectively. Expression levels of SMOX and PLVAP were downregulated in LOAD. Expression levels of SMOX and PLVAP were associated with brain amyloid beta deposition. Pathways including mitophagy and 5' adenosine monophosphate-activated protein kinase signaling were enriched in a LOAD module. A LOAD module was highly preserved across two independent cohorts.
Collapse
Affiliation(s)
- Sang‐Won Han
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulRepublic of Korea
- Department of NeurologyChuncheon Sacred Heart Hospital, Hallym University College of MedicineChuncheon‐siRepublic of Korea
| | - Jiyun Hwang
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
| | - Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jung‐Min Pyun
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulRepublic of Korea
| | - Joo‐Yeon Lee
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
- Institute of Health and EnvironmentsSeoul National UniversitySeoulRepublic of Korea
| | - Jeong Su Park
- Department of Laboratory MedicineSeoul National University Bundang Hospital, Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| | - Paula J. Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sunmin Yun
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siRepublic of Korea
| | - Jibin Jeong
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siRepublic of Korea
| | - Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Min Soo Byun
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Joohon Sung
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
- Institute of Health and EnvironmentsSeoul National UniversitySeoulRepublic of Korea
| | - Dong Young Lee
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
| | - SangYun Kim
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Young Ho Park
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| |
Collapse
|
17
|
Ishizaka H, Sekine A, Naka M, Nakano S, Nagase H, Tsushima Y. Hyperintensity of the left piriform cortex and amygdala on T2-weighted FLAIR images in patients with probable Alzheimer's disease correlates with cerebral cortical atrophy. Acta Radiol Open 2025; 14:20584601251317629. [PMID: 39916994 PMCID: PMC11795602 DOI: 10.1177/20584601251317629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Background The left piriform cortex and amygdala (PC&A) tend to be slightly hyperintense relative to the right PC&A on T2-weighted fluid-attenuated inversion recovery (T2W-FLAIR) images in patients with probable Alzheimer's disease (pAD). This likely represents the antecedent and thus advanced degeneration of the left PC&A. Purpose To investigate the relationship between left PC&A hyperintensities and cerebral cortical atrophy on magnetic resonance (MR) voxel-based morphometry in patients with pAD and discuss how this finding could relate to AD progression. Material and Methods Patients with pAD (n = 47; age range = 68-93 years, mean = 80.8 ± 6.7 years; 14 men and 33 women) who underwent T2W-FLAIR imaging and MR morphometric study using a voxel-based specific regional analysis system for AD (VSRAD) were retrospectively examined. To measure signal intensity ratios of the left to right PC&A (L-PC&A/R-PC&A), regions of interest (ROIs) were set on the transaxial images in which both PC&As were most broadly depicted; the ROIs were defined as large as possible. Correlations between the L-PC&A/R-PC&A and medial temporal lobe cortical atrophy (MTLCA) as well as whole cerebral cortical atrophy (WCCA) on VSRAD were determined. Correlation between the L-PC&A/R-PC&A and age was also determined. Results The L-PC&A/R-PC&A correlated with both MTLCA (r = 0.375, p = .010, 95% confidence interval [CI] = 0.095-0.600) and WCCA (r = 0.576, p < .001, 95% CI = 0.343-0.742). The L-PC&A/R-PC&A did not correlate with age (r = 0.013, p = .932, 95% CI = -0.282-0.305). Conclusion Left-sided dominance of PC&A degeneration appeared to accelerate with the progression of AD stages.
Collapse
Affiliation(s)
- Hiroshi Ishizaka
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Akiko Sekine
- Department of Neurology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Minoru Naka
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Saeki Nakano
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Hiroyuki Nagase
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
18
|
Dewey CW. Poop for thought: Can fecal microbiome transplantation improve cognitive function in aging dogs? Open Vet J 2025; 15:556-564. [PMID: 40201831 PMCID: PMC11974304 DOI: 10.5455/ovj.2025.v15.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Canine cognitive dysfunction (CCD) is the dog version of human Alzheimer's disease (AD), and it has strikingly similar pathological features to those of this neurodegenerative disorder. The gastrointestinal system is in constant communication with the brain via several conduits collectively termed the gut-brain axis. The microbial population of the gut, referred to as the microbiota, has a profound effect on the interactions that occur along this communication route. Recent evidence suggests that dysbiosis, an abnormal gastrointestinal microbial population, is linked to cognitive impairment in rodent AD models and human AD. There is also evidence from rodent AD models that correcting dysbiosis by transferring fecal material from healthy donors to the gastrointestinal tracts of cognitively impaired recipients [fecal microbiome transplantation (FMT)] reverses AD-associated brain pathology and improves cognitive function. Although limited, some clinical reports have described the improvement of cognitive function with FMT in human AD. The goals of this review article are to provide an overview of the mechanisms involved in dysbiosis- associated cognitive decline and the role of FMT in therapy for such decline. The potential role of FMT in CCD is also discussed.
Collapse
|
19
|
Liu Z, Song SY. Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases. Genes (Basel) 2025; 16:135. [PMID: 40004464 PMCID: PMC11855287 DOI: 10.3390/genes16020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a growing societal challenge due to their irreversible progression and significant impact on patients, caregivers, and healthcare systems. Despite advances in clinical and imaging-based diagnostics, these diseases are often detected at advanced stages, limiting the effectiveness of therapeutic interventions. Recent breakthroughs in genomic and transcriptomic technologies, including whole-genome sequencing, single-cell RNA sequencing (scRNA-seq), and CRISPR-based screens, have revolutionized the field, offering new avenues for early diagnosis and personalized prognosis. Genomic approaches have elucidated disease-specific genetic risk factors and molecular pathways, while transcriptomic studies have identified stage-specific biomarkers that correlate with disease progression and severity. Furthermore, genome-wide association studies (GWAS), polygenic risk scores (PRS), and spatial transcriptomics are enabling the stratification of patients based on their risk profiles and prognostic trajectories. Advances in functional genomics have uncovered actionable targets, such as ATXN2 in ALS and TREM2 in AD, paving the way for tailored therapeutic strategies. Despite these achievements, challenges remain in translating genomic discoveries into clinical practice due to disease heterogeneity and the complexity of neurodegenerative pathophysiology. Future integration of genetic technologies holds promise for transforming diagnostic and prognostic paradigms, offering hope for improved patient outcomes and precision medicine approaches.
Collapse
Affiliation(s)
- Zheng Liu
- Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Padti AC, Bhavi SM, Thokchom B, Singh SR, Bhat SS, Harini BP, Sillanpää M, Yarajarla RB. Nanoparticle Interactions with the Blood Brain Barrier: Insights from Drosophila and Implications for Human Astrocyte Targeted Therapies. Neurochem Res 2025; 50:80. [PMID: 39832031 DOI: 10.1007/s11064-025-04333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport. The ability to engineer nanoparticles with specific physicochemical properties-such as size, surface charge, and functionalization-enhances their targeting capabilities, particularly towards astrocytes, which play a crucial role in maintaining BBB integrity and responding to neuroinflammation. Insights gained from Drosophila studies have informed the design of personalized nanomedicine strategies aimed at treating neurodegenerative diseases, including Alzheimer's, Parkinson's disease etc. As research progresses, the integration of findings from Drosophila models with emerging humanized BBB systems will pave the way for innovative therapeutic approaches that improve drug delivery and patient outcomes in neurological disorders.
Collapse
Affiliation(s)
- Akshata Choudhari Padti
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Santosh Mallikarjun Bhavi
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Bothe Thokchom
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sapam Riches Singh
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Shivanand S Bhat
- Department of Botany, Smt. Indira Gandhi Government First Grade Women's College, Sagar, Karnataka, 577401, India
| | - B P Harini
- Department of Zoology and Centre for Applied Genetics, Bangalore University, Bangaluru, Karnataka, 560056, India
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C, 8000, Denmark
| | - Ramesh Babu Yarajarla
- Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
21
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
22
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
23
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
24
|
Lu YW, Wang YJ, Wang Z, Ren S, Gong XJ, Hu JN, Zhang JT, Li W. Ginsenoside Rg2 alleviates astrocyte inflammation and ameliorates the permeability of the Alzheimer's disease related blood-brain barrier. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156063. [PMID: 39305744 DOI: 10.1016/j.phymed.2024.156063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Damage to the blood-brain barrier (BBB) is vital for the development of Alzheimer's disease (AD). Ginsenoside Rg2 (G-Rg2) has been shown to improve a variety of brain injuries, but whether G-Rg2 can improve the BBB leakage related to AD is still unclear. PURPOSE Illuminate the effect and mechanism of G-Rg2 on AD-related BBB damage. To clarify the role of G-Rg2 in Toll-like receptor pathway and oxidative stress pathway and its effect on tight junction proteins (TJs) expression in vivo and in vitro experiments. METHODS AND RESULTS In our research, the tightness of the BBB was improved and the inflammatory pathway was suppressed after 4 weeks of treatment with G-Rg2 (10 mg kg-1 and 20 mg kg-1) in aluminum trichloride (AlCl3) plus d-galactose (D-gal) caused AD mice (p < 0.05; p < 0.01). Concurrently, the stability of TJs in mouse brain endothelial cells (bEnd3) was improved after okadaic acid (OA) -induced AD model cells were pretreated with G-Rg2 (5 μM, 10 μM, and 20 μM) for 24 h (p < 0.05; p < 0.01). The oxidative stress pathway and Toll-like receptor pathway in mouse astrocyte-cerebellum (MA-c) were inhibited (p < 0.05; p < 0.01). Meanwhile, in vitro interaction model results showed that G-Rg2 reduced the activation of MA-c, thereby alleviating the degradation of TJs in bEnd3 (p < 0.05; p < 0.01). The co-culture system of MA-c and bEnd3 further clearly demonstrated that G-Rg2 (20 μM) could improve their interaction and enhance BBB tightness. CONCLUSION This study suggests that G-Rg2 can inhibit the TLR4/MyD88/MMP9 inflammatory pathway by reducing the activation of MA-c and the binding of TLR4 to MyD88, thereby decreasing the secretion of inflammatory factors and matrix metalloproteinases (MMPs), hence maintaining the stability of TJs in bEnd3, which may be one of the mechanisms of G-Rg2 in reducing AD-related BBB damage.
Collapse
Affiliation(s)
- Ya-Wei Lu
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Zi Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Shen Ren
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China.
| | - Wei Li
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
25
|
Boboc IKS, Dumitrelea PD, Meca AD, Mititelu-Tartau L, Bogdan M. Exploring the Impact of Semaglutide on Cognitive Function and Anxiety-Related Behaviors in a Murine Model of Alzheimer's Disease. Biomedicines 2024; 12:2689. [PMID: 39767596 PMCID: PMC11673043 DOI: 10.3390/biomedicines12122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive decline and behavioral disturbances, with an increasing incidence as the global population ages. This study investigates the effects of semaglutide (SEM), a glucagon-like peptide-1 analog, on cognitive function and anxiety-like behavior in a transgenic murine model of AD. METHODS 20 mice were randomly distributed into the following groups (n = 5): (WT + VEH) group: C57BL/6J + saline, (WT + SEM) group: C57BL/6J + semaglutide, (AD + VEH) group: AD + saline, (AD + SEM) group: AD + semaglutide. The animals underwent a four-week treatment, during which we monitored blood glucose levels, body weight, and responses in an open field test, novel object recognition test, social chamber test, and 0-maze test. RESULTS Post-treatment, SEM significantly reduced blood glucose levels in AD mice, aligning them with those of wild-type controls. Cognitive assessments indicated an improvement in the investigation index for SEM-treated mice compared to those receiving a vehicle, suggesting cognitive benefits. Although SEM did not significantly enhance motor and exploratory activities, it displayed a potential anxiolytic effect, particularly evident in the combined anxiety index, with notable differences observed before and after treatment in the AD group. CONCLUSIONS The findings of this pilot study suggest that SEM may play a dual role in managing AD by improving glycemic control and potentially enhancing cognitive function. As the landscape of AD treatment evolves, the comprehensive approach of utilizing SEM could pave the way for innovative interventions targeting the complex interplay of metabolic and cognitive dysfunctions in this challenging neurodegenerative disorder.
Collapse
Affiliation(s)
- Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | | | - Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| |
Collapse
|
26
|
Teglas T, Marcos AC, Torices S, Toborek M. Circadian control of polycyclic aromatic hydrocarbon-induced dysregulation of endothelial tight junctions and mitochondrial bioenergetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175886. [PMID: 39218115 PMCID: PMC11444715 DOI: 10.1016/j.scitotenv.2024.175886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The study evaluates the impact of environmental toxicants, such as polycyclic aromatic hydrocarbons (PAHs), on circadian regulations and functions of brain endothelial cells, which form the main structural element of the blood-brain barrier (BBB). PAH are lipophilic and highly toxic environmental pollutants that accumulate in human and animal tissues. Environmental factors related to climate change, such as an increase in frequency and intensity of wildfires or enhanced strength of hurricanes or tropical cyclones, may lead to redistribution of these toxicants and enhanced human exposure. These natural disasters are also associated with disruption of circadian rhythms in affected populations, linking increased exposure to environmental toxicants to alterations of circadian rhythm pathways. Several vital physiological processes are coordinated by circadian rhythms, and disruption of the circadian clock can contribute to the development of several diseases. The blood-brain barrier (BBB) is crucial for protecting the brain from blood-borne harmful substances, and its integrity is influenced by circadian rhythms. Exposure of brain endothelial cells to a human and environmentally-relevant PAH mixture resulted in dose-dependent alterations of expression of critical circadian modulators, such as Clock, Bmal1, Cry1/2, and Per1/2. Moreover, silencing of the circadian Clock gene potentiated the impact of PAHs on the expression of the main tight junction genes and proteins (namely, claudin-5, occludin, JAM-2, and ZO-2), as well as mitochondrial bioenergetics. Findings from this study contribute to a better understanding of pathological influence of PAH-induced health effects, especially those related to circadian rhythm disruption.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Anne Caroline Marcos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
27
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Burke MR, Sotiropoulos I, Waites CL. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis. Trends Neurosci 2024; 47:933-948. [PMID: 39307629 PMCID: PMC11563862 DOI: 10.1016/j.tins.2024.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024]
Abstract
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
Collapse
Affiliation(s)
- Mia R Burke
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Pathobiology and Mechanisms of Disease Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
31
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
32
|
Marques D, Moura-Louro D, Silva IP, Matos S, Santos CND, Figueira I. Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier. Neurochem Int 2024; 179:105836. [PMID: 39151552 DOI: 10.1016/j.neuint.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are an increasing group of chronic and progressive neurological disorders that ultimately lead to neuronal cell failure and death. Despite all efforts throughout decades, their burden on individuals and society still casts one of the most massive socioeconomic problems worldwide. The neuronal failure observed in NDDs results from an intricacy of events, mirroring disease complexity, ranging from protein aggregation, oxidative stress, (neuro)inflammation, and even blood-brain barrier (BBB) dysfunction, ultimately leading to cognitive and motor symptoms in patients. As a result of such complex pathobiology, to date, there are still no effective treatments to treat/halt NDDs progression. Fortunately, interest in the bioavailable low molecular weight (LMW) phenolic metabolites derived from the metabolism of dietary (poly)phenols has been rising due to their multitargeted potential in attenuating multiple NDDs hallmarks. Even if not highly BBB permeant, their relatively high concentrations in the bloodstream arising from the intake of (poly)phenol-rich diets make them ideal candidates to act within the vasculature and particularly at the level of BBB. In this review, we highlight the most recent - though still scarce - studies demonstrating LMW phenolic metabolites' ability to modulate BBB homeostasis, including the improvement of tight and adherens junctional proteins, as well as their power to decrease pro-inflammatory cytokine secretion and oxidative stress levels in vitro and in vivo. Specific BBB-permeant LMW phenolic metabolites, such as simple phenolic sulfates, have been emerging as strong BBB properties boosters, pleiotropic compounds capable of improving cell fitness under oxidative and pro-inflammatory conditions. Nevertheless, further studies should be pursued to obtain a holistic overview of the promising role of LMW phenolic metabolites in NDDs prevention and management to fully harness their true therapeutic potential.
Collapse
Affiliation(s)
- Daniela Marques
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Diogo Moura-Louro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Inês P Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Sara Matos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.
| |
Collapse
|
33
|
Al Rihani SB, Elfakhri KH, Ebrahim HY, Al-Ghraiybah NF, Alkhalifa AE, El Sayed KA, Kaddoumi A. The Usnic Acid Analogue 4-FPBUA Enhances the Blood-Brain Barrier Function and Induces Autophagy in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2024; 15:3152-3167. [PMID: 39145537 DOI: 10.1021/acschemneuro.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Preclinical and clinical studies have indicated that compromised blood-brain barrier (BBB) function contributes to Alzheimer's disease (AD) pathology. BBB breakdown ranged from mild disruption of tight junctions (TJs) with increased BBB permeability to chronic integrity loss, affecting transport across the BBB, reducing brain perfusion, and triggering inflammatory responses. We recently developed a high-throughput screening (HTS) assay to identify hit compounds that enhance the function of a cell-based BBB model. The HTS screen identified (S,E)-2-acetyl-6-[3-(4'-fluorobiphenyl-4-yl)acryloyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo-[b,d]furan-1(9bH)-one (4-FPBUA), a semisynthetic analogue of naturally occurring usnic acid, which protected the in vitro model against Aβ toxicity. Usnic acid is a lichen-derived secondary metabolite with a unique dibenzofuran skeleton that is commonly found in lichenized fungi of the genera Usnea. In this study, we aimed to evaluate the effect of 4-FPBUA in vitro on the cell-based BBB model function and its in vivo ability to rectify BBB function and reduce brain Aβ in two AD mouse models, namely, 5xFAD and TgSwDI. Our findings demonstrated that 4-FPBUA enhanced cell-based BBB function, increased Aβ transport across the monolayer, and reversed BBB breakdown in vivo by enhancing autophagy as an mTOR inhibitor. Induced autophagy was associated with a significant reduction in Aβ accumulation and related pathologies and improved memory function. These results underscore the potential of 4-FPBUA as a candidate for further preclinical exploration to better understand its mechanisms of action and to optimize dosing strategies. Continued research may also elucidate additional pathways through which 4-FPBUA contributed to the amelioration of BBB dysfunction in AD. Collectively, our findings supported the development of 4-FPBUA as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Sweilem B Al Rihani
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khaled H Elfakhri
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Hassan Y Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Nour F Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Amer E Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
34
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
35
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
36
|
Daraban BS, Popa AS, Stan MS. Latest Perspectives on Alzheimer's Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024; 29:4056. [PMID: 39274904 PMCID: PMC11397357 DOI: 10.3390/molecules29174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
There has been a growing interest recently in exploring the role of the blood-brain barrier (BBB) in the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline and memory loss that affects millions of people worldwide. Research has shown that the BBB plays a crucial role in regulating the entry of therapeutics into the brain. Also, the potential benefits of using antioxidant molecules for drug delivery were highlighted in Alzheimer's treatment to enhance the therapeutic efficacy and reduce oxidative stress in affected patients. Antioxidant-based nanomedicine shows promise for treating AD by effectively crossing the BBB and targeting neuroinflammation, potentially slowing disease progression and improving cognitive function. Therefore, new drug delivery systems are being developed to overcome the BBB and improve the delivery of therapeutics to the brain, ultimately improving treatment outcomes for AD patients. In this context, the present review provides an in-depth analysis of recent advancements in AD treatment strategies, such as silica nanoparticles loaded with curcumin, selenium nanoparticles loaded with resveratrol, and many others, focusing on the critical role of the BBB and the use of antioxidant-based drug delivery systems.
Collapse
Affiliation(s)
- Bianca Sânziana Daraban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Andrei Sabin Popa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
37
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
38
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
39
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
40
|
Shityakov S, Förster CY, Skorb E. Comparative in silico analysis of CNS-active molecules targeting the blood-brain barrier choline transporter for Alzheimer's disease therapy. In Silico Pharmacol 2024; 12:71. [PMID: 39099798 PMCID: PMC11291784 DOI: 10.1007/s40203-024-00245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
This study investigated the blood‒brain barrier (BBB) permeability of the central nervous system (CNS)-active compounds donepezil (DON), methionine (MET), and memantine (MEM) by employing a comprehensive in silico approach. These compounds are of particular interest for Alzheimer's disease (AD) therapy. Rigid-flexible molecular docking simulations indicated favorable binding affinities of all the compounds with BBB-ChT, with DON exhibiting the highest binding affinity (ΔGbind = -10.26 kcal/mol), predominantly mediated by significant hydrophobic interactions. In silico kinetic profiling suggested the stability of the DON/BBB-ChT complex, with ligand release prompted by conformational changes. 3D molecular alignment corroborated a minor conformational shift for DON in its minimal binding energy pose. Predictions indicated that active transport mechanisms notably enhance the brain distribution of donepezil compared to that of MET and MEM. Additionally, DON and MEM exhibited low mutagenic probabilities, while MET was identified as highly mutagenic. Overall, these findings highlight the potential of donepezil for superior BBB penetration, primarily through active transport mechanisms, underscoring the need for further validation through in vitro and in vivo studies for effective AD treatment. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00245-w.
Collapse
Affiliation(s)
- Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint- Petersburg, Russian Federation
| | - Carola Y Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Ekaterina Skorb
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint- Petersburg, Russian Federation
| |
Collapse
|
41
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
42
|
Jain N. The molecular interplay between human and bacterial amyloids: Implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141018. [PMID: 38641088 DOI: 10.1016/j.bbapap.2024.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Alzheimer's diseases (AD) are linked with the assembly and accumulation of proteins into structured scaffold called amyloids. These diseases pose significant challenges due to their complex and multifaceted nature. While the primary focus has been on endogenous amyloids, recent evidence suggests that bacterial amyloids may contribute to the development and exacerbation of such disorders. The gut-brain axis is emerging as a communication pathway between bacterial and human amyloids. This review delves into the novel role and potential mechanism of bacterial amyloids in modulating human amyloid formation and the progression of AD and PD.
Collapse
Affiliation(s)
- Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, 342030, Rajasthan, India.
| |
Collapse
|
43
|
Olloquequi J, Díaz-Peña R, Verdaguer E, Ettcheto M, Auladell C, Camins A. From Inhalation to Neurodegeneration: Air Pollution as a Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2024; 25:6928. [PMID: 39000036 PMCID: PMC11241587 DOI: 10.3390/ijms25136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Air pollution, a growing concern for public health, has been linked to various respiratory and cardiovascular diseases. Emerging evidence also suggests a link between exposure to air pollutants and neurodegenerative diseases, particularly Alzheimer's disease (AD). This review explores the composition and sources of air pollutants, including particulate matter, gases, persistent organic pollutants, and heavy metals. The pathophysiology of AD is briefly discussed, highlighting the role of beta-amyloid plaques, neurofibrillary tangles, and genetic factors. This article also examines how air pollutants reach the brain and exert their detrimental effects, delving into the neurotoxicity of air pollutants. The molecular mechanisms linking air pollution to neurodegeneration are explored in detail, focusing on oxidative stress, neuroinflammation, and protein aggregation. Preclinical studies, including in vitro experiments and animal models, provide evidence for the direct effects of pollutants on neuronal cells, glial cells, and the blood-brain barrier. Epidemiological studies have reported associations between exposure to air pollution and an increased risk of AD and cognitive decline. The growing body of evidence supporting air pollution as a modifiable risk factor for AD underscores the importance of considering environmental factors in the etiology and progression of neurodegenerative diseases, in the face of worsening global air quality.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ester Verdaguer
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Miren Ettcheto
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Antoni Camins
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
44
|
Vilardo B, De Marchi F, Raineri D, Manfredi M, De Giorgis V, Bebeti A, Scotti L, Kustrimovic N, Cappellano G, Mazzini L, Chiocchetti A. Shotgun Proteomics Links Proteoglycan-4 + Extracellular Vesicles to Cognitive Protection in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:727. [PMID: 38927130 PMCID: PMC11202157 DOI: 10.3390/biom14060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder lacking reliable biomarkers for early diagnosis and disease progression monitoring. This study aimed to identify the novel biomarkers in plasmatic extracellular vesicles (EVs) isolated from ALS patients and healthy controls (HCs). A total of 61 ALS patients and 30 age-matched HCs were enrolled in the study and the protein content of circulating EVs was analyzed by shotgun proteomics. The study was divided into a discovery phase (involving 12 ALS and 12 HC patients) and a validation one (involving 49 ALS and 20 HC patients). In the discovery phase, more than 300 proteins were identified, with 32 proteins showing differential regulation in ALS patients compared to HCs. In the validation phase, over 400 proteins were identified, with 20 demonstrating differential regulation in ALS patients compared to HCs. Notably, seven proteins were found to be common to both phases, all of which were significantly upregulated in EVs from ALS patients. Most of them have previously been linked to ALS since they have been detected in the serum or cerebrospinal fluid of ALS patients. Among them, proteoglycan (PRG)-4, also known as lubricin, was of particular interest since it was significantly increased in ALS patients with normal cognitive and motor functions. This study highlights the significance of EVs as a promising avenue for biomarker discovery in ALS. Moreover, it sheds light on the unexpected role of PRG-4 in relation to cognitive status in ALS patients.
Collapse
Affiliation(s)
- Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Fabiola De Marchi
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Veronica De Giorgis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Alen Bebeti
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
| | - Lorenza Scotti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Letizia Mazzini
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| |
Collapse
|
45
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
46
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
47
|
Berger S, Moseholm KF, Hegelund ER, Tesch F, Nguyen MCS, Mortensen LH, Jensen MK, Schmitt J, Mukamal KJ. Association of Tumor Necrosis Factor-α Inhibitors with Incident Dementia: Analysis Based on Population-Based Cohort Studies. Drugs Aging 2024; 41:423-430. [PMID: 38609734 PMCID: PMC11093812 DOI: 10.1007/s40266-024-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND OBJECTIVE Preliminary evidence suggests a possible preventive effect of tumor necrosis factor-α inhibitors (TNFi) on incident dementia. The objective of the analysis was to investigate the association between TNFi and the risk of incident dementia in a population undergoing treatment for rheumatological disorders. METHODS We followed patients aged ≥ 65 years with dementia and rheumatological conditions in two cohort studies, DANBIO (N = 21,538), a Danish clinical database, and AOK PLUS (N = 7112), a German health insurance database. We defined incident dementia using diagnostic codes and/or medication use and used Cox regression to compare the associations of TNFi with other rheumatological therapies on the risk of dementia. To ensure that the patients were receiving long-term medication, we included patients with rheumatic diseases and systemic therapies. RESULTS We observed similar trends towards a lower risk of dementia associated with TNFi versus other anti-inflammatory agents in both cohorts (hazard ratios were 0.92 [95% confidence interval 0.76, 1.10] in DANBIO and 0.89 [95% confidence interval 0.63, 1.24] in AOK PLUS, respectively). CONCLUSIONS Tumor necrosis factor-α inhibitors may decrease the risk of incident dementia although the association did not reach statistical significance in this analysis. Further research, ideally with randomization, is needed to gauge the potential of repurposing TNFi for dementia prevention and/or treatment.
Collapse
Affiliation(s)
- Saskia Berger
- Center for Evidence-Based Healthcare, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Hospital Pharmacy, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Emilie R Hegelund
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Falko Tesch
- Center for Evidence-Based Healthcare, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Minh Chau S Nguyen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jochen Schmitt
- Center for Evidence-Based Healthcare, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
48
|
Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-Virgin Olive Oil in Alzheimer's Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int J Mol Sci 2024; 25:1914. [PMID: 38339193 PMCID: PMC10856527 DOI: 10.3390/ijms25031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aβ aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.
Collapse
Affiliation(s)
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.)
| |
Collapse
|