1
|
Mitrică M, Lorusso L, Badea AA, Sîrbu CA, Pleșa A, Stănescu AMA, Pleșa FC, Sîrbu OM, Munteanu AE. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1699. [PMID: 39459486 PMCID: PMC11509537 DOI: 10.3390/medicina60101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Stroke-heart syndrome (SHS), a critical yet underrecognized condition, encompasses a range of cardiac complications that arise following an ischemic stroke. This narrative review explores the pathophysiology, clinical manifestations, and implications of SHS, focusing on the complex interplay between the brain and the heart. Acute ischemic stroke (AIS) triggers autonomic dysfunction, leading to a surge in catecholamines and subsequent myocardial injury. Our review highlights the five cardinal manifestations of SHS: elevated cardiac troponin (cTn) levels, acute myocardial infarction, left ventricular dysfunction, arrhythmias, and sudden cardiac death. Despite the significant impact of these complications on patient outcomes, there is a notable absence of specific guidelines for their management. Through a comprehensive literature search, we synthesized findings from recent studies to elucidate the mechanisms underlying SHS and identified gaps in the current understanding. Our findings underscore the importance of early detection and multidisciplinary management of cardiac complications post-stroke. Future research should focus on establishing evidence-based protocols to improve clinical outcomes for stroke patients with SHS. Addressing this unmet need will enhance the care of stroke survivors and reduce mortality rates associated with cardiac complications.
Collapse
Affiliation(s)
- Marian Mitrică
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Lorenzo Lorusso
- Neurology Unit, Neuroscience Department A.S.S.T. Lecco, Merate Hospital, 23807 Merate, Italy;
| | - Alexandru-Andrei Badea
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
| | - Carmen-Adella Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Andreea Pleșa
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Florentina Cristina Pleșa
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
| | - Octavian Mihai Sîrbu
- Clinical Neurosciences Department, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.M.); (F.C.P.)
- Doctoral School, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alice Elena Munteanu
- Department of Cardiology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania; (A.-A.B.); (A.E.M.)
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| |
Collapse
|
2
|
Ma L, Keen LD, Steinberg JL, Eddie D, Tan A, Keyser-Marcus L, Abbate A, Moeller FG. Relationship between central autonomic effective connectivity and heart rate variability: A Resting-state fMRI dynamic causal modeling study. Neuroimage 2024; 300:120869. [PMID: 39332747 DOI: 10.1016/j.neuroimage.2024.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
The central autonomic network (CAN) serves as a regulatory hub with top-down regulatory control and integration of bottom-up physiological feedback via the autonomic nervous system. Heart rate variability (HRV)-the time variance of the heart's beat-to-beat intervals-is an index of the CAN's affective and behavioral regulatory capacity. Although neural functional connectivities that are associated with HRV and CAN have been well studied, no published report to date has studied effective (directional) connectivities (EC) that are associated with HRV and CAN. Better understanding of neural EC in the brain has the potential to improve our understanding of how the CAN sub-regions regulate HRV. To begin to address this knowledge gap, we employed resting-state functional magnetic resonance imaging and dynamic causal modeling (DCM) with parametric empirical Bayes analyses in 34 healthy adults (19 females; mean age= 32.68 years [SD= 14.09], age range 18-68 years) to examine the bottom-up and top-down neural circuits associated with HRV. Throughout the whole brain, we identified 12 regions associated with HRV. DCM analyses revealed that the ECs from the right amygdala to the anterior cingulate cortex and to the ventrolateral prefrontal cortex had a negative linear relationship with HRV and a positive linear relationship with heart rate. These findings suggest that ECs from the amygdala to the prefrontal cortex may represent a neural circuit associated with regulation of cardiodynamics.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States.
| | - Larry D Keen
- Department of Psychology, Virginia State University, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, VA, United States
| | - David Eddie
- Recovery Research Institute, Center for Addiction Medicine, Massachusetts General Hospital, MA, United States; Department of Psychiatry, Harvard Medical School, MA, United States
| | - Alex Tan
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Lori Keyser-Marcus
- Department of Psychiatry, Virginia Commonwealth University, VA, United States
| | - Antonio Abbate
- Department of Psychiatry, Harvard Medical School, MA, United States
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Department of Psychiatry, Virginia Commonwealth University, 203 East Cary Street, Suite 202, Richmond 23219, VA, United States; Department of Psychiatry, Virginia Commonwealth University, VA, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, VA, United States; Department of Neurology, Virginia Commonwealth University, VA, United States; C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, VA, United States
| |
Collapse
|
3
|
Yu JX, Hussein A, Mah L, Jean Chen J. The associations among glycemic control, heart variability, and autonomic brain function in healthy individuals: Age- and sex-related differences. Neurobiol Aging 2024; 142:41-51. [PMID: 39128180 DOI: 10.1016/j.neurobiolaging.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The purpose of this study was to clarify the relationships between glycemia and function of the autonomic nervous system (ANS), assessed via resting-state functional connectivity (FC) and heart-rate variability (HRV). METHODS Data for this study were extracted from the Leipzig Study for Mind-Body-Emotion Interactions, including 146 healthy adults (114 young, 32 older). Variables of interest were glycated hemoglobin (HbA1c), resting-state FC in the salience aspect of the central-autonomic (S-CAN) and salience network (SN) and HRV (RMSSD and high-frequency HRV (HF-HRV)). RESULTS HbA1c was inversely correlated with FC in the S-CAN but not SN. HbA1c was inversely correlated with HRV. Both RMSSD and log(HF-HRV) were correlated with FC in the S-CAN and SN. Age- (not sex-related) differences were observed in the Hb1Ac-FC associations (stronger in older adults) while sex- (not age-related) differences were observed in the HRV-FC (stronger in females). CONCLUSIONS These findings extend the diabetes literature to healthy adults in relating glycemia and brain function. The age- and sex-related differences in these relationships highlight the need to account for the potential effects of age and sex in future investigations.
Collapse
Affiliation(s)
- Jeffrey X Yu
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ahmad Hussein
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Linda Mah
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Gianlorenço AC, Pacheco-Barrios K, Daibes M, Camargo L, Choi H, Song JJ, Fregni F. Age as an Effect Modifier of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) on Heart Rate Variability in Healthy Subjects. J Clin Med 2024; 13:4267. [PMID: 39064307 PMCID: PMC11278058 DOI: 10.3390/jcm13144267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Evidence suggests that vagus nerve stimulation can modulate heart rate variability (HRV). However, there is a lack of mechanistic studies in healthy subjects assessing the effects of bilateral transcutaneous auricular vagus nerve stimulation (taVNS) on HRV. Our study aims to investigate how taVNS can influence the HRV response, including the influence of demographic variables in this response. Methods: Therefore, we conducted a randomized controlled study with 44 subjects, 22 allocated to active and 22 to sham taVNS. Results: Our results showed a significant difference between groups in the high-frequency (HF) metric. Active taVNS increased the HF metric significantly as compared to sham taVNS. Also, we found that age was a significant effect modifier of the relationship between taVNS and HF-HRV, as a larger increase in HF-HRV was seen in the older subjects. Importantly, there was a decrease in HF-HRV in the sham group. Conclusions: These findings suggest that younger subjects can adapt and maintain a constant level of HF-HRV regardless of the type of stimulation, but in the older subjects, only the active taVNS recipients were able to maintain and increase their HF-HRV. These results are important because they indicate that taVNS can enhance physiological regulation processes in response to external events.
Collapse
Affiliation(s)
- Anna Carolyna Gianlorenço
- Laboratory of Neuroscience and Neurological Rehabilitation, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil;
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA; (K.P.-B.); (M.D.); (L.C.)
| | - Kevin Pacheco-Barrios
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA; (K.P.-B.); (M.D.); (L.C.)
| | - Marianna Daibes
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA; (K.P.-B.); (M.D.); (L.C.)
| | - Lucas Camargo
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA; (K.P.-B.); (M.D.); (L.C.)
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea;
- Neurive Co., Ltd., Gimhae 08308, Republic of Korea;
| | - Jae-Jun Song
- Neurive Co., Ltd., Gimhae 08308, Republic of Korea;
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul 02841, Republic of Korea
| | - Felipe Fregni
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02139, USA; (K.P.-B.); (M.D.); (L.C.)
| |
Collapse
|
5
|
Książek K, Masarczyk W, Głomb P, Romaszewski M, Stokłosa I, Ścisło P, Dębski P, Pudlo R, Buza K, Gorczyca P, Piegza M. Assessment of symptom severity in psychotic disorder patients based on heart rate variability and accelerometer mobility data. Comput Biol Med 2024; 176:108544. [PMID: 38723395 DOI: 10.1016/j.compbiomed.2024.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Advancement in mental health care requires easily accessible, efficient diagnostic and treatment assessment tools. Viable biomarkers could enable objectification and automation of the diagnostic and treatment process, currently dependent on a psychiatric interview. Available wearable technology and computational methods make it possible to incorporate heart rate variability (HRV), an indicator of autonomic nervous system (ANS) activity, into potential diagnostic and treatment assessment frameworks as a biomarker of disease severity in mental disorders, including schizophrenia and bipolar disorder (BD). METHOD We used a commercially available electrocardiography (ECG) chest strap with a built-in accelerometer, i.e. Polar H10, to record R-R intervals and physical activity of 30 hospitalized schizophrenia or BD patients and 30 control participants through ca. 1.5-2 h time periods. We validated a novel approach to data acquisition based on a flexible, patient-friendly and cost-effective setting. We analyzed the relationship between HRV and the Positive and Negative Syndrome Scale (PANSS) test scores, as well as the HRV and mobility coefficient. We also proposed a method of rest period selection based on R-R intervals and mobility data. The source code for reproducing all experiments is available on GitHub, while the dataset is published on Zenodo. RESULTS Mean HRV values were lower in the patient compared to the control group and negatively correlated with the results of the PANSS general subcategory. For the control group, we also discovered the inversely proportional dependency between the mobility coefficient, based on accelerometer data, and HRV. This relationship was less pronounced for the treatment group. CONCLUSIONS HRV value itself, as well as the relationship between HRV and mobility, may be promising biomarkers in disease diagnostics. These findings can be used to develop a flexible monitoring system for symptom severity assessment.
Collapse
Affiliation(s)
- Kamil Książek
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland.
| | - Wilhelm Masarczyk
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pyskowicka 49, Tarnowskie Góry, 42-612, Poland
| | - Przemysław Głomb
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland
| | - Michał Romaszewski
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland
| | - Iga Stokłosa
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pyskowicka 49, Tarnowskie Góry, 42-612, Poland
| | - Piotr Ścisło
- Psychiatric Department of the Multidisciplinary Hospital, Tarnowskie Góry, 42-612, Poland
| | - Paweł Dębski
- Institute of Psychology, Humanitas University in Sosnowiec, Kilińskiego 43, Sosnowiec, 41-200, Poland
| | - Robert Pudlo
- Department of Psychoprophylaxis, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pyskowicka 49, Tarnowskie Góry, 42-612, Poland
| | - Krisztián Buza
- Budapest Business University, Buzogány utca 10-12, Budapest, 1149, Hungary; BioIntelligence Group, Department of Mathematics-Informatics, Sapientia Hungarian University of Transylvania, Târgu Mureş, Romania
| | - Piotr Gorczyca
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pyskowicka 49, Tarnowskie Góry, 42-612, Poland
| | - Magdalena Piegza
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pyskowicka 49, Tarnowskie Góry, 42-612, Poland
| |
Collapse
|
6
|
Miranda-Angulo AL, Sánchez-López JD, Vargas-Tejada DA, Hawkins-Caicedo V, Calderón JC, Gallo-Villegas J, Alzate-Restrepo JF, Suarez-Revelo JX, Castrillón G. Sympathovagal quotient and resting-state functional connectivity of control networks are related to gut Ruminococcaceae abundance in healthy men. Psychoneuroendocrinology 2024; 164:107003. [PMID: 38471256 DOI: 10.1016/j.psyneuen.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota (GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM taxa abundance, and the mediation effect of diet on these relationships. METHODS Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15 networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha diversity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM. RESULTS The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc). Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship between SQ and this genus. CONCLUSION Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance of gut microbiota taxa in healthy men. However, only HRV is related to habitual dietary intake; thus, HRV could serve as a marker of food choice and GM composition in the future.
Collapse
Affiliation(s)
- Ana L Miranda-Angulo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia.
| | - Juan D Sánchez-López
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Daniel A Vargas-Tejada
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Valentina Hawkins-Caicedo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Juan C Calderón
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Grupo de Investigación en Medicina Aplicada a la Actividad Física y el Deporte (GRINMADE), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia; Centro Clínico y de Investigación SICOR, Calle 19 No. 42-40, Medellín, Colombia
| | - Juan F Alzate-Restrepo
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jazmin X Suarez-Revelo
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia
| | - Gabriel Castrillón
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia; Department of Neuroradiology, Universitätsklinikum Erlangen, Maximiliansplatz 2, Erlangen, Germany
| |
Collapse
|
7
|
Pollatou A, Holland CM, Stockton TJ, Peterson BS, Scheinost D, Monk C, Spann MN. Mapping Early Brain-Body Interactions: Associations of Fetal Heart Rate Variation with Newborn Brainstem, Hypothalamic, and Dorsal Anterior Cingulate Cortex Functional Connectivity. J Neurosci 2024; 44:e2363232024. [PMID: 38604780 PMCID: PMC11140686 DOI: 10.1523/jneurosci.2363-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46 weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Cristin M Holland
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Thirsten J Stockton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California 90027
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Dustin Scheinost
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut 06520
- Child Study Center, Yale School of Medicine, New Haven, Connecticut 06520
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06511
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06506
| | - Catherine Monk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
8
|
Philippi CL, Weible E, Ehlers A, Walsh EC, Hoks RM, Birn RM, Abercrombie HC. Effects of cortisol administration on heart rate variability and functional connectivity across women with different depression histories. Behav Brain Res 2024; 463:114923. [PMID: 38408523 PMCID: PMC10942667 DOI: 10.1016/j.bbr.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Abnormalities within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system have been implicated in depression. Studies have reported glucocorticoid insensitivity and reduced heart rate variability (HRV) in depressive disorders. However, little is known about the effects of cortisol on HRV and resting-state functional connectivity (rsFC) of the central autonomic network (CAN) in depression. We collected resting-state fMRI and cardiac data for women with different depression histories (n = 61) after administration of cortisol and placebo using a double-blind crossover design. We computed rsFC for R-amygdala and L-amygdala seeds and assessed the change in HRV after cortisol (cortisol-placebo). Analyses examined the effects of acute cortisol administration on HRV and rsFC of the R-amygdala and L-amygdala. There was a significant interaction between HRV and treatment for rsFC between the amygdala and CAN regions. We found lower rsFC between the L-amygdala and putamen for those with a greater decrease in HRV after cortisol. There was also reduced rsFC between the R-amygdala and dorsomedial prefrontal cortex, putamen, middle cingulate cortex, insula, and cerebellum in those with lower HRV after cortisol. These results remained significant after adjusting for depression symptoms, age, and race. Our findings suggest that the effect of cortisol on CAN connectivity is related to its effects on HRV. Overall, these results could inform transdiagnostic interventions targeting HRV and the stress response systems across clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA.
| | - Emily Weible
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA
| | - Alissa Ehlers
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Heather C Abercrombie
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| |
Collapse
|
9
|
Wooten T, Esterman M, Brunyé TT, Taylor HA, Ward N. The relationship between sustained attention and parasympathetic functioning. Int J Psychophysiol 2024; 197:112298. [PMID: 38199297 DOI: 10.1016/j.ijpsycho.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Sustained attention (SA) is an important cognitive ability that plays a crucial role in successful cognitive control. Resting vagally-mediated heart rate variability (vmHRV) has emerged as an informative index of parasympathetic nervous system activity and a sensitive correlate of individual differences in cognitive control. However, it is unclear how resting vmHRV is associated with individual differences in sustained attention. The primary aim of the current study was to assess if resting vmHRV was associated with individual differences in performance on a neuropsychological assessment of sustained attention. We further aimed to characterize the relationship between resting vmHRV and dispositional factors related to sustained attention, specifically attentional errors in daily life, self-regulation, mindfulness and media-multitasking. Based on previous work, we hypothesized higher resting vmHRV would be associated with better sustained attention across task-based and self-report measures. We did not find resting vmHRV to be significantly associated with performance measures on a task-based assessment of sustained attention. Further, resting vmHRV was not significantly associated with attention errors, self-regulation, mindfulness, or media-multitasking. This work stands to expand the current understanding between parasympathetic functioning, cognition, and behavior, investigating the unexplored domain of sustained attention and related dispositional factors.
Collapse
Affiliation(s)
- Thomas Wooten
- Department of Psychology, Tufts University, Medford, MA, USA.
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Healthcare System, Boston, MA, USA
| | - Tad T Brunyé
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA; U.S. Army DEVCOM, Natick, MA, USA
| | - Holly A Taylor
- Department of Psychology, Tufts University, Medford, MA, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, USA
| |
Collapse
|
10
|
Costa V, Gianlorenço AC, Pacheco-Barrios K, Fregni F. Brain-heart interactions in fibromyalgia syndrome. PRINCIPLES AND PRACTICE OF CLINICAL RESEARCH (2015) 2024; 9:1-4. [PMID: 38434480 PMCID: PMC10906947 DOI: 10.21801/ppcrj.2023.94.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Affiliation(s)
- Valton Costa
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory of Neuroscience and Neurological Rehabilitation, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Anna Carolyna Gianlorenço
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory of Neuroscience and Neurological Rehabilitation, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Heckbert SR, Jensen PN, Erus G, Nasrallah IM, Rashid T, Habes M, Austin TR, Floyd JS, Schaich CL, Redline S, Bryan RN, Costa MD. Heart rate fragmentation and brain MRI markers of small vessel disease in MESA. Alzheimers Dement 2024; 20:1397-1405. [PMID: 38009395 PMCID: PMC10917025 DOI: 10.1002/alz.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.
Collapse
Affiliation(s)
- Susan R. Heckbert
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Paul N. Jensen
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guray Erus
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mohamad Habes
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Thomas R. Austin
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - James S. Floyd
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Christopher L. Schaich
- Department of SurgeryHypertension and Vascular Research CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Susan Redline
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - R. Nick Bryan
- Department of RadiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Madalena D. Costa
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
12
|
Zhong Y, Li J, Hong Y, Yang S, Pei L, Chen X, Wu H, Wang T. Resting heart rate causally affects the brain cortical structure: Mendelian randomization study. Cereb Cortex 2024; 34:bhad536. [PMID: 38212288 PMCID: PMC10839837 DOI: 10.1093/cercor/bhad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.
Collapse
Affiliation(s)
- Yinsheng Zhong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Jun Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Yinghui Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Shujun Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Liying Pei
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P. R. China
| |
Collapse
|
13
|
Matusik PS, Alomar O, Hussain MR, Akrmah M, Matusik PT, Chen DM, Alomar M, Stein PK. Heart Rate Variability and Coronary Artery Bypass Grafting: A Systematic Review. Rev Cardiovasc Med 2024; 25:36. [PMID: 39077663 PMCID: PMC11262371 DOI: 10.31083/j.rcm2501036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 07/31/2024] Open
Abstract
Background Coronary artery bypass grafting (CABG) is a well-established surgical procedure used to treat significant coronary artery disease. Nevertheless, unfavorable cardiovascular events and complications, including cardiac arrhythmias may be observed in patients after CABG. Previous studies have revealed a relationship between risk of cardiac arrhythmias and abnormal heart rate variability (HRV), which reflects adverse alterations in cardiac autonomic functioning, that may occur in patients after a CABG procedure. The aim of this article was to provide a systematic review of the major research findings in this area. Methods A literature search was carried out using PubMed, Cochrane, and Embase databases and relevant articles, published in English, were analyzed in detail. Results Studies performed so far have shown time depending changes in HRV after CABG. Time and frequency domain HRV decrease acutely after CABG but recover almost completely to pre-operative values by 6 months after surgery. Some preoperative clinical states such as: heart failure, type 2 diabetes mellitus and depression adversely affect post-CABG HRV. Finally, post-CABG cardiac rehabilitation appears to improve exercise capacity and speed up recovery of HRV. Conclusions Generally, traditional time and frequency domain HRV parameters fail to predict complications post-CABG. Altered non-linear measures of HRV may identify subgroups of subjects at increased risk of potential complications, including atrial fibrillation post-CABG. However, data available currently does not appear to unequivocally support the hypothesis that early HRV assessment in post-CABG patients predicts long-term mortality.
Collapse
Affiliation(s)
- Patrycja S. Matusik
- Chair of Radiology, Jagiellonian University Medical College and University Hospital, 30-688 Kraków, Poland
| | - Omar Alomar
- Heart Rate Variability Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA
| | | | - Muhammad Akrmah
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Daniel M. Chen
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Muhammed Alomar
- Heart Rate Variability Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA
| | - Phyllis K. Stein
- Heart Rate Variability Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
14
|
Sidorenko L, Sidorenko I, Gapelyuk A, Wessel N. Pathological Heart Rate Regulation in Apparently Healthy Individuals. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1023. [PMID: 37509970 PMCID: PMC10378381 DOI: 10.3390/e25071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in adults worldwide. There is one common pathophysiological aspect present in all cardiovascular diseases-dysfunctional heart rhythm regulation. Taking this aspect into consideration for cardiovascular risk predictions opens important research perspectives, allowing for the development of preventive treatment techniques. The aim of this study was to find out whether certain pathologically appearing signs in the heart rate variability (HRV) of an apparently healthy person, even with high HRV, can be defined as biomarkers for a disturbed cardiac regulation and whether this can be treated preventively by a drug-free method. This multi-phase study included 218 healthy subjects of either sex, who consecutively visited the physician at Gesundheit clinic because of arterial hypertension, depression, headache, psycho-emotional stress, extreme weakness, disturbed night sleep, heart palpitations, or chest pain. In study phase A, baseline measurement to identify individuals with cardiovascular risks was done. Therefore, standard HRV, as well as the new cardiorhythmogram (CRG) method, were applied to all subjects. The new CRG analysis used here is based on the recently introduced LF drops and HF counter-regulation. Regarding the mechanisms of why these appear in a steady-state cardiorhythmmogram, they represent non-linear event-based dynamical HRV biomarkers. The next phase of the study, phase B, tested whether the pathologically appearing signs identified via CRG in phase A could be clinically influenced by drug-free treatment. In order to validate the new CRG method, it was supported by non-linear HRV analysis in both phase A and in phase B. Out of 218 subjects, the pathologically appearing signs could be detected in 130 cases (60%), p < 0.01, by the new CRG method, and by the standard HRV analysis in 40 cases (18%), p < 0.05. Thus, the CRG method was able to detect 42% more cases with pathologically appearing cardiac regulation. In addition, the comparative CRG analysis before and after treatment showed that the pathologically appearing signs could be clinically influenced without the use of medication. After treatment, the risk group decreased eight-fold-from 130 people to 16 (p < 0.01). Therefore, progression of the detected pathological signs to structural cardiac pathology or arrhythmia could be prevented in most of the cases. However, in the remaining risk group of 16 apparently healthy subjects, 8 people died due to all-cause mortality. In contrast, no other subject in this study has died so far. The non-linear parameter which is able to quantify the changes in CRGs before versus after treatment is FWRENYI4 (symbolic dynamic feature); it decreased from 2.85 to 2.53 (p < 0.001). In summary, signs of pathological cardiac regulation can be identified by the CRG analysis of apparently healthy subjects in the early stages of development of cardiac pathology. Thus, our method offers a sensitive biomarker for cardiovascular risks. The latter can be influenced by non-drug treatments (acupuncture) to stop the progression into structural cardiac pathologies or arrhythmias in most but not all of the patients. Therefore, this could be a real and easy-to-use supplemental method, contributing to primary prevention in cardiology.
Collapse
Affiliation(s)
- Ludmila Sidorenko
- Department of Molecular Biology and Human Genetics, State University of Medicine and Pharmacy, "Nicolae Testemitanu", Stefan cel Mare Str. 165, MD-2004 Chisinau, Moldova
| | - Irina Sidorenko
- Medical Center "Gesundheit", Mihai Kogalniceanu Str. 45/2, MD-2009 Chisinau, Moldova
| | - Andrej Gapelyuk
- Cardiovascular Physics, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Niels Wessel
- Cardiovascular Physics, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
- MSB Medical School Berlin GmbH, D-14197 Berlin, Germany
| |
Collapse
|
15
|
Wójcik M, Siatkowski I. The effect of cranial techniques on the heart rate variability response to psychological stress test in firefighter cadets. Sci Rep 2023; 13:7780. [PMID: 37179419 PMCID: PMC10183023 DOI: 10.1038/s41598-023-34093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Heart rate variability (HRV) is a simple tool to monitor cardiovascular stress. The proper function of the cardiovascular system is a problem among firefighters. Physical activity has health benefits correlated with psychological stress. Physically active people should be more resilient to psychological stress, but this has not always been demonstrated. The aim of this study was to determine whether cranial techniques would have an effect on HRV parameters. Osteopathy in the cranium reduces stress and improves cardiovascular function. Fifty-seven firefighter cadets aged 18-24 years (21.63 ± 1.41) participated in the study. All subjects had their heart rate variability measured and were randomly assigned either to the cranial techniques (CS) group, with therapy performed once a week for 5 weeks), or to the control group (CO). After 5 weeks, heart rate variability was measured again in both groups. In the Friedman test, in the CS group there was a statistically significant effect of cranial techniques on Heart Rate (HR) and Low Frequency (LF), but not on High Frequency (HF); in the CO group, a statistically significant difference was observed for HR, HF and LF. In the Nemenyi test, in the CS group there was a statistically significant difference for HR and LF and in the CO group for HR, HF and LF. After applying hierarchical clustering with Euclidean measure and the complete method, dendrograms were drawn up showing similarities for HR, HF and LF values. The cranial techniques and touch might exert a beneficial effect on HRV. Both factors can be used in stressful situations to lower HRV.
Collapse
Affiliation(s)
- Małgorzata Wójcik
- Department of Physiotherapy, Poznan University of Physical Education, Faculty of Sport Sciences in Gorzow Wlkp., 61-871, Poznan, Poland.
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Science, 60-637, Poznan, Poland
| |
Collapse
|