1
|
Elagawany M, Abdel Ghany LMA, Ibrahim TS, Alharbi AS, Abdel-Aziz MS, El-labbad EM, Ryad N. Development of certain benzylidene coumarin derivatives as anti-prostate cancer agents targeting EGFR and PI3Kβ kinases. J Enzyme Inhib Med Chem 2024; 39:2311157. [PMID: 38348846 PMCID: PMC10866054 DOI: 10.1080/14756366.2024.2311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Novel coumarin derivatives were synthesised and tested for their cytotoxicity against human cancer cells (PC-3 and MDA-MB-231). Compounds 5, 4b, and 4a possessed potent cytotoxic activity against PC-3 cells with IC50 3.56, 8.99, and 10.22 µM, respectively. Compound 4c displayed cytotoxicity more than erlotinib in the MDA-MB-231 cells with IC50 8.5 µM. Moreover, compound 5 exhibited potent inhibitory activity on EFGR with IC50 0.1812 µM, as well as PI3Kβ inhibitory activity that was twofold higher than LY294002, suggesting that this compound has a dual EGFR and PI3Kβ inhibiting activity. Docking aligns with the in vitro results and sheds light on the molecular mechanisms underlying dual targeting. Furthermore, compound 5 decreased AKT and m-TOR expression in PC-3 cells, showing that it specifically targets these cells via the EGFR/PI3K/Akt/m-TOR signalling pathway. Simultaneously, compound 5 caused cell cycle arrest at S phase and induced activation of both intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Damanhour University, Damanhour, Buhaira, Egypt
| | - Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrhman S. Alharbi
- Department of Chemistry, College of Science and Arts, Shaqra University, Sajir, Shaqra, Saudi Arabia
| | - Mohamed S. Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Eman M. El-labbad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| |
Collapse
|
2
|
Dahan J, Pinthus J, Delouya G, Taussky D, Duceppe E, de Jesus A, Leong D. Investigation of association between clinically significant prostate cancer, obesity and platelet to-lymphocyte ratio and neutrophil -to-lymphocyte ratio. BMC Urol 2024; 24:226. [PMID: 39407194 PMCID: PMC11481316 DOI: 10.1186/s12894-024-01617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Several blood markers of inflammation are elevated in prostate cancer (PCa) and have prognostic value. Little is known about the relationship between these markers, PCa, and other factors associated with chronic inflammation, such as smoking and obesity. We analyzed the interaction between neutrophil and platelet counts indexed to lymphocyte count (NLR and PLR, resp.) and clinically significant PCa (csPCa), accounting for the potential confounding factors of systemic inflammation. METHODS NLR and PLR were evaluated in a multicenter prospective study in 443 patients. CsPCa was defined as a Gleason ≥ 4 + 3. Differences between patients with csPCa and non-csPCA were evaluated using the chi-square test, analysis of variance or the Kruskal-Wallis test. Multivariable logistic regression analysis adjusted for smoking, hypertension, diabetes, and cardiovascular disease, and in separate models, either body mass index or waist-to-hip ratio was used to characterize the relationship between inflammation and csPCa. RESULTS None of the factors such as plateletcrit, NLR, and PLR were significantly different between patients with csPCa or non-significant PCa. After adjustment, there was no association between PLR, NLR, plateletcrit or platelet count and csPCa. In an exploratory analysis, there was no association between markers of inflammation and PSA levels > 10 ng/mL. When testing different NLR cutoffs to predict csPCa in ROC analysis, none reached a clinically meaningful value. CONCLUSION In contrast to previous studies, we found no significant association between easily available blood markers of inflammation and indices of PCa aggressiveness. Further research is required to determine whether inflammation promotes PCa. (ClinicalTrials.gov: NCT03127631. Date of registration: April 25, 2017.
Collapse
Affiliation(s)
- Johanna Dahan
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, 1000 rue St Denis, Montréal, QC, H2X 0C1, Canada
| | - Jehonathan Pinthus
- Department of Surgery, Juravinski Cancer Center/Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Surgery, Division of Urology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada
| | - Guila Delouya
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, 1000 rue St Denis, Montréal, QC, H2X 0C1, Canada
| | - Daniel Taussky
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, 1000 rue St Denis, Montréal, QC, H2X 0C1, Canada.
| | - Emmanuelle Duceppe
- Department of Medicine, Centre hospitalier de l'Université de Montréal, Montréal, Canada
| | - Amanda de Jesus
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Darryl Leong
- Departments of Medicine and Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
3
|
Wilson TK, Zishiri OT. Prostate Cancer: A Review of Genetics, Current Biomarkers and Personalised Treatments. Cancer Rep (Hoboken) 2024; 7:e70016. [PMID: 39410867 PMCID: PMC11480670 DOI: 10.1002/cnr2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Prostate cancer is the second leading cause of cancer deaths in men, second only to lung cancer. Despite this, diagnosis and prognosis methods remain limited, with effective treatments being few and far between. Traditionally, prostate cancer is initially tested for through a prostate serum antigen (PSA) test and a digital rectum examination (DRE), followed by confirmation through an invasive prostate biopsy. The DRE and biopsy are uncomfortable for the patient, so less invasive, accurate diagnostic tools are needed. Current diagnostic tools, along with genes that hold possible biomarker uses in diagnosis, prognosis and indications for personalised treatment plans, were reviewed in this article. RECENT FINDINGS Several genes from multiple families have been identified as possible biomarkers for disease, including those from the MYC and ETS families, as well as several tumour suppressor genes, Androgen Receptor signalling genes and DNA repair genes. There have also been advances in diagnostic tools, including MRI-targeted and liquid biopsies. Several personalised treatments have been developed over the years, including those that target metabolism-driven prostate cancer or those that target inflammation-driven cancer. CONCLUSION Several advances have been made in prostate cancer diagnosis and treatment, but the disease still grows year by year, leading to more and more deaths annually. This calls for even more research into this disease, allowing for better diagnosis and treatment methods and a better chance of patient survival.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
4
|
He R, Ye Y, Zhu Q, Xie C. Systemic immune-inflammation index is associated with high risk for prostate cancer among the U.S. elderly: Evidence from NHANES 2001-2010. Front Oncol 2024; 14:1441271. [PMID: 39376981 PMCID: PMC11456397 DOI: 10.3389/fonc.2024.1441271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose The Systemic Immuno-Inflammation Index (SII) is a crucial clinical measure of inflammation, and there is currently no solid evidence linking SII to an increased risk of prostate cancer (PCa). Through the analysis of serum total prostate-specific antigen (tPSA), free prostate-specific antigen (fPSA), and the tPSA/fPSA (fPSA%) ratio, this study sought to investigate the relationship between SII and PCa risk among the U.S. elderly. Methods Elderly male participants were gathered from the NHANES database between 2001 and 2010.SII was calculated by platelet count * neutrophil count/lymphocyte count. High risk individuals for prostate cancer were defined as those with tPSA > 4 ng/ml and fPSA% < 16%. Multivariate logistic regression models, restricted cubic spline curves, and subgroup analyses were used to assess the relationship between SII and PCa risk. Results This research comprised 2664 people in total, 137 (5.14%) of whom were deemed to be at high risk of developing PCa. Multivariate logistic regression analysis, after controlling for variables, revealed a significant positive correlation between high PCa risk and an increase in SII (p = 0.009). The RCS suggested a turning point at 9.01. Restricted cubic spline curves revealed a non-linear U-shaped association between SII and high PCa risk (p for nonlinear = 0.028). Education level, marital status, PIR, alcohol status, smoking status, rheumatoid arthritis status, and heart problem were not significantly correlated with this positive connection, according to subgroup analyses and interaction tests. Conclusion The results of this study suggest that inflammation represented by SII is associated with high PCa risk.
Collapse
Affiliation(s)
- Ran He
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youjun Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qilei Zhu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changsheng Xie
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
5
|
Williams ME, Howard D, Donnelly C, Izadi F, Parra JG, Pugh M, Edwards K, Lutchman-Sigh K, Jones S, Margarit L, Francis L, Conlan RS, Taraballi F, Gonzalez D. Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer. Cell Commun Signal 2024; 22:443. [PMID: 39285292 PMCID: PMC11404028 DOI: 10.1186/s12964-024-01806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.
Collapse
Affiliation(s)
- Michael Ellis Williams
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - David Howard
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Claire Donnelly
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Fereshteh Izadi
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Jezabel Garcia Parra
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Megan Pugh
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kerryn Lutchman-Sigh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, SA2 8QA, UK
| | - Sadie Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lavinia Margarit
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, Wales, CF31 1RQ, UK
| | - Lewis Francis
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Deyarina Gonzalez
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
6
|
Wang J, Apizi A, Qiu H, Tao N, An H. Association between metabolic obesity phenotypes and the risk of developing prostate cancer: a propensity score matching study based on Xinjiang. Front Endocrinol (Lausanne) 2024; 15:1442740. [PMID: 39165513 PMCID: PMC11333236 DOI: 10.3389/fendo.2024.1442740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Background Obesity-induced metabolic dysfunction increases the risk of developing tumors, however, the relationship between metabolic obesity phenotypes and prostate cancer (PCa) remains unclear. Methods The term metabolic obesity phenotypes was introduced based on metabolic status and BMI categories. Participants were categorized into four groups: metabolically healthy nonobesity (MHNO), metabolically healthy obesity (MHO), metabolically unhealthy nonobesity (MUNO), and metabolically unhealthy obesity (MUO). Propensity score matching was conducted based on age, ethnicity, marriage, etc. Univariate and multivariate conditional logistic regression analyses were used to assess the relationship between metabolic obesity phenotypes, metabolic risk factors, and PCa. Sensitivity analysis was performed to verify the robustness of the results. Results After propensity score matching among 564 PCa patients and 1418 healthy individuals, 209 were selected for each of the case and control groups. There were no statistically significant differences in the basic characteristics between the two groups. Univariate and multivariate conditional logistic regression suggested that the risk of developing PCa in both MHO and MUO individuals was higher than in MHNO individuals. Specifically, the risk of developing PCa in MHO individuals was 2.166 times higher than in MHNO individuals (OR=2.166, 95%CI: 1.133-4.139), and the risk in MUO individuals was is 2.398 times higher than in MHNO individuals(OR=2.398, 95%CI:1.271-4.523). Individuals with hyperglycemia and elevated triglycerides also had a higher risk of developing PCa (hyperglycemia:OR=1.488, 95%CI: 1.001-2.210; elevated triglycerides: OR=2.292, 95%CI: 1.419-3.702). Those with more than or equal to three metabolic risk factors had an increased risk of PCa (OR=1.990, 95%CI: 1.166-3.396). Sensitivity analysis indicated an increased risk of PCa in MUO individuals compared to MHNO individuals. Conclusion In this retrospective study, individuals with MHO and MUO had a higher risk of developing PCa.
Collapse
Affiliation(s)
- Jinru Wang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Aireti Apizi
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Qiu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ning Tao
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Hengqing An
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Pagano AP, da Silva BR, Vieira FT, Meira Filho LF, Purcell SA, Lewis JD, Mackenzie ML, Robson PJ, Vena JE, Silva FM, Prado CM. Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies. World J Mens Health 2024; 42:42.e64. [PMID: 39028128 DOI: 10.5534/wjmh.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk. MATERIALS AND METHODS A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method. RESULTS Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61-0.83, I²=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79-1.13, I²=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77-1.18, I²=98%) at diagnosis. According to GRADE, the evidence certainty was very low. CONCLUSIONS Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
Collapse
Affiliation(s)
- Ana Paula Pagano
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bruna Ramos da Silva
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Flávio Teixeira Vieira
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Luiz Fernando Meira Filho
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Purcell
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John D Lewis
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle L Mackenzie
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paula J Robson
- Cancer Care Alberta and the Cancer Strategic Clinical Network, Alberta Health Services, Edmonton, Alberta, Canada
| | - Jennifer E Vena
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Alberta's Tomorrow Project, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Flávia Moraes Silva
- Nutrition Department and Nutrition Science Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Erdogan S, Serttas R, Dibirdik I, Turkekul K. Multifaceted impact of adipose conditioned media: Obesity-driven promotion of prostate cancer and cancer stem cell dynamics. Cell Biochem Funct 2024; 42:e3979. [PMID: 38481004 DOI: 10.1002/cbf.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Obesity is an established risk factor for the development and progression of prostate cancer (PC). This study used adipose conditioned media (ACM) from differentiated adipocytes to assess its effect on PC development and aggressiveness. Due to limited research on ACM's impact on isolated PC stem cells (PCSCs), we also examined CD44+ PCSCs. ACM notably boosted interleukin-1β (IL-1β), IL-6, and IL-8 production in normal prostate epithelial cells and LNCaP cells. It also increased IL-6 and IL-8 production in PC3 and CD44+ LNCaP cells, and IL-1β and IL-6 production in CD44+ PC3 cells. This indicates that ACM induces the production of inflammatory cytokines in both cancer and prostate epithelial cells. Furthermore, ACM promoted proliferation in androgen receptor (AR)-negative PC3 cells, CD44+ PC3 PCSCs, and nonmalignant RWPE cells, without affecting AR-positive LNCaP cells. In addition, ACM-enhanced invasion and migration potential in both PC3 and CD44+ PC3 cells. Western blot analysis indicated the involvement of NF-κB and AKT pathways in ACM-induced proliferation in PC3 cells and NF-κB in PCSCs. In ACM-treated PC3 cells, E-cadherin was downregulated, while N-cadherin, Snail, vimentin, fibronectin, and Twist were upregulated, suggesting ACM-induced invasion via classical epithelial-to-mesenchymal transition (EMT) pathways. In response to ACM, PCSCs exhibited increased expression of E-cadherin, Snail, and vimentin, which are partial EMT markers promoting stemness and resistance to apoptosis. In addition, increased expressions of Nanog, Oct3/4, survivin, and Bcl-2 were observed. Although the molecules we studied have diverse effects on cellular regulation, our data emphasize obesity's multifaceted role in promoting and aggressing PC, notably affecting PCSC populations.
Collapse
Affiliation(s)
- Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Türkiye
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Türkiye
| | - Ilker Dibirdik
- Department of Medical Biochemistry, School of Medicine, Trakya University, Balkan Campus, Edirne, Türkiye
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Türkiye
| |
Collapse
|
9
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Huang H, Liu Y, Wen Z, Chen C, Wang C, Li H, Yang X. Gut microbiota in patients with prostate cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:261. [PMID: 38402385 PMCID: PMC10893726 DOI: 10.1186/s12885-024-12018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/18/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that gut microbiota are closely related to prostate cancer. This study aims to assess the gut microbiota composition in patients with prostate cancer compared to healthy participants, thereby advancing understanding of gut microbiota's role in prostate cancer. METHODS A systematic search was conducted across PubMed, Web of Science, and Embase databases, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The methodological quality of included studies was evaluated using the Newcastle-Ottawa Scale (NOS), and pertinent data were analyzed. The kappa score assessed interrater agreement. RESULTS This study encompassed seven research papers, involving 250 prostate cancer patients and 192 controls. The kappa was 0.93. Meta-analysis results showed that alpha-diversity of gut microbiota in prostate cancer patients was significantly lower than in the control group. In terms of gut microbiota abundance, the ratio of Proteobacteria, Bacteroidia, Clostridia, Bacteroidales, Clostridiales, Prevotellaceae, Lachnospiraceae, Prevotella, Escherichia-Shigella, Faecalibacterium, and Bacteroides was higher in prostate cancer patients. Conversely, the abundance ratio of Actinobacteria, Bacteroidetes, Firmicutes, Selenomonadales, Veillonella, and Megasphaera was higher in the control group. CONCLUSION Our study reveals differences in alpha-diversity and abundance of gut microbiota between patients with prostate cancer and controls, indicating gut microbiota dysbiosis in those with prostate cancer. However, given the limited quality and quantity of selected studies, further research is necessary to validate these findings.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chongjian Wang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Afliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
11
|
Dai YN, Yi-Wen Yu E, Zeegers MP, Wesselius A. The Association between Dietary Inflammatory Potential and Urologic Cancers: A Meta-analysis. Adv Nutr 2024; 15:100124. [PMID: 37940476 PMCID: PMC10831898 DOI: 10.1016/j.advnut.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
A meta-analysis published in 2018 indicated a significant association between the dietary inflammatory index (DII) and risk of urologic cancers (UC). The number of included studies was limited, and more research has been published on this topic since then. The current study aimed to find a more precise estimate of the association between dietary inflammatory potential and risk of UC by updating the previous meta-analysis. The PubMed and Embase databases were searched between January 2015 and April 2023 to identify eligible articles. Combined relative risk (RR) and 95% confidence intervals (CI) were calculated by random-effects model to assess the association between dietary inflammatory potential and risk of UC by comparison of the highest versus the lowest category of the DII/empirical dietary inflammatory pattern (EDIP) or by using the continuous DII/EDIP score. The analysis, including 23 studies with 557,576 subjects, showed different results for UC. There was a significant association for prostate cancer among case-control studies (RR = 1.75, 95% CI: 1.34-2.28), whereas among cohort studies a null association was found (RR = 1.02, 95% CI: 0.96-1.08). For bladder cancer, a nonsignificant association was observed in both case-control (RR = 1.59, 95% CI: 0.95-2.64) and cohort studies (RR = 1.03, 95% CI: 0.86-1.24). Pooled RR from 3 case-control studies displayed a statistically significant association between the DII and risk of kidney cancer (RR = 1.27, 95% CI: 1.03-1.56). Although DII was positively associated with all types of UC, no association was found for EDIP. The present meta-analysis confirmed that an inflammatory diet has a direct effect on the development of prostate cancer and kidney cancer. Large-scale studies are needed to demonstrate the association between dietary inflammatory potential and risk of UC and provide effective nutritional advice for UC prevention. PROTOCOL REGISTRATION: The protocol was registered in the International Prospective Register of Systematic Reviews (CRD42023391204).
Collapse
Affiliation(s)
- Ya-Nan Dai
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Liaqat M, Kamal S, Fischer F. Illustration of association between change in prostate-specific antigen (PSA) values and time to tumor status after treatment for prostate cancer patients: a joint modelling approach. BMC Urol 2023; 23:202. [PMID: 38057759 DOI: 10.1186/s12894-023-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most prevalent tumor in men, and Prostate-Specific Antigen (PSA) serves as the primary marker for diagnosis, recurrence, and disease-free status. PSA levels post-treatment guide physicians in gauging disease progression and tumor status (low or high). Clinical follow-up relies on monitoring PSA over time, forming the basis for dynamic prediction. Our study proposes a joint model of longitudinal PSA and time to tumor shrinkage, incorporating baseline variables. The research aims to assess tumor status post-treatment for dynamic prediction, utilizing joint assessment of PSA measurements and time to tumor status. METHODS We propose a joint model for longitudinal PSA and time to tumor shrinkage, taking into account baseline BMI and post-treatment factors, including external beam radiation therapy (EBRT), androgen deprivation therapy (ADT), prostatectomy, and various combinations of these interventions. The model employs a mixed-effect sub-model for longitudinal PSA and an event time sub-model for tumor shrinkage. RESULTS Results emphasize the significance of baseline factors in understanding the relationship between PSA trajectories and tumor status. Patients with low tumor status consistently exhibit low PSA values, decreasing exponentially within one month post-treatment. The correlation between PSA levels and tumor shrinkage is evident, with the considered factors proving to be significant in both sub-models. CONCLUSIONS Compared to other treatment options, ADT is the most effective in achieving a low tumor status, as evidenced by a decrease in PSA levels after months of treatment. Patients with an increased BMI were more likely to attain a low tumor status. The research enhances dynamic prediction for PCa patients, utilizing joint analysis of PSA and time to tumor shrinkage post-treatment. The developed model facilitates more effective and personalized decision-making in PCa care.
Collapse
Affiliation(s)
- Madiha Liaqat
- College of Statistical and Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan
| | - Shahid Kamal
- College of Statistical and Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan
| | - Florian Fischer
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
14
|
Maghsoudi H, Sheikhnia F, Sitarek P, Hajmalek N, Hassani S, Rashidi V, Khodagholi S, Mir SM, Malekinejad F, Kheradmand F, Ghorbanpour M, Ghasemzadeh N, Kowalczyk T. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers (Basel) 2023; 15:5435. [PMID: 38001694 PMCID: PMC10670652 DOI: 10.3390/cancers15225435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the second most common type of cancer and the leading cause of death among men worldwide. Preventing the progression of cancer after treatments such as radical prostatectomy, radiation therapy, and hormone therapy is a major concern faced by prostate cancer patients. Inflammation, which can be caused by various factors such as infections, the microbiome, obesity and a high-fat diet, is considered to be the main cause of PC. Inflammatory cells are believed to play a crucial role in tumor progression. Therefore, nonsteroidal anti-inflammatory drugs along with their effects on the treatment of inflammation-related diseases, can prevent cancer and its progression by suppressing various inflammatory pathways. Recent evidence shows that nonsteroidal anti-inflammatory drugs are effective in the prevention and treatment of prostate cancer. In this review, we discuss the different pathways through which these drugs exert their potential preventive and therapeutic effects on prostate cancer.
Collapse
Affiliation(s)
- Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
| | - Sadaf Khodagholi
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran;
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-88349, Iran;
| | - Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
15
|
Malyshev IY, Budanova OP, Kuznetsova LV. Tumour adaptation to immune factors: old and new ideas for cancer immunotherapy. Can J Physiol Pharmacol 2023; 101:548-553. [PMID: 37728163 DOI: 10.1139/cjpp-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The tumour is fully functional in the zone of action of immune mediators. Moreover, the tumour needs immune system mediators to survive. "Adaptation" refers to a tumour's ability to withstand the effect of harmful elements. This gives birth to a new form of antitumour therapy: blocking tumour adaptability pathways. In this review, we will look at (i) tumour adaptation mechanisms as a result of pro-tumour immunoediting, (ii) how understanding tumour-adaptive mechanisms has led to ideas for developing cancer immunotherapies, and (iii) prospects for using the adaptation theory to substantiate new approaches to tumour growth inhibition. By considering the cancer problem through the lens of adaptability, a unique strategy for enhancing the efficacy of immunotherapy was proposed. The new approach is to utilise antisense treatment to erase the structural trace of adaptation in tumour cells or to disadapt tumour cells by "turning off" the immune system before initiating immunotherapy.
Collapse
Affiliation(s)
- I Yu Malyshev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russian Federation
- Federal State Budgetary Scientific Institution "Institute of general pathology and pathophysiology," Moscow 125315, Russian Federation
| | - O P Budanova
- Federal State Budgetary Scientific Institution "Institute of general pathology and pathophysiology," Moscow 125315, Russian Federation
| | - L V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russian Federation
| |
Collapse
|
16
|
Mumuni S, O’Donnell C, Doody O. The Risk Factors and Screening Uptake for Prostate Cancer: A Scoping Review. Healthcare (Basel) 2023; 11:2780. [PMID: 37893854 PMCID: PMC10606491 DOI: 10.3390/healthcare11202780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVES The purpose of this scoping review was to identify the risk factors and screening uptake for prostate cancer. DESIGN Scoping review. METHODS Arksey and O'Malley's framework guided this review; five databases (Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, PsycINFO, Academic Search Complete and Cochrane Library) and grey literature were searched. Screening was undertaken against predetermined inclusion criteria for articles published before July 2023 and written in English. This review is reported in line with PRISMA-Sc. RESULTS 10,899 database results were identified; 3676 papers were removed as duplicates and 7115 papers were excluded at title and abstract review. A total of 108 papers were full-text reviewed and 67 were included in the review. Grey literature searching yielded no results. Age, family history/genetics, hormones, race/ethnicity, exposure to hazards, geographical location and diet were identified as risk factors. Prostatic antigen test (PSA), digital rectal examination (DRE), transrectal ultrasound (TRUS), magnetic resonance imaging (MRI), magnetic resonance spectroscopic imaging (MRSI) and prostate biopsy were identified as screening/diagnostic methods. The evidence reviewed highlights moderate knowledge and screening uptake of prostate cancer with less than half of men reporting for PSA screening. On the other hand, there is a year-to-year increase in PSA and DRE screening, but factors such as poverty, religion, culture, communication barriers, language and costs affect men's uptake of prostate cancer screening. CONCLUSION As prostate cancer rates increase globally, there is a need for greater uptake of prostate cancer screening and improved health literacy among men and health workers. There is a need to develop a comprehensive prostate cancer awareness and screening programme that targets men and addresses uptake issues so as to provide safe, quality care. STRENGTHS AND LIMITATIONS OF THIS STUDY (1) A broad search strategy was utilised incorporating both databases and grey literature. (2) The PRISMA reporting guidelines were utilised. (3) Only English language papers were included, and this may have resulted in relevant articles being omitted.
Collapse
Affiliation(s)
- Seidu Mumuni
- Department of Nursing and Midwifery, University of Limerick, V94 T9PX Limerick, Ireland; (S.M.); (C.O.)
| | - Claire O’Donnell
- Department of Nursing and Midwifery, University of Limerick, V94 T9PX Limerick, Ireland; (S.M.); (C.O.)
- Health Research Institute, Department of Nursing and Midwifery, University of Limerick, V94 T9PX Limerick, Ireland
| | - Owen Doody
- Health Research Institute, Department of Nursing and Midwifery, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
17
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Tsujimura A, Uemura H, Nonomura N. Emerging Relationship between the Gut Microbiome and Prostate Cancer. World J Mens Health 2023; 41:759-768. [PMID: 36876743 PMCID: PMC10523130 DOI: 10.5534/wjmh.220202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 03/03/2023] Open
Abstract
The human gut microbiota changes under the influence of environmental and genetic factors, affecting human health. Extensive studies have revealed that the gut microbiome is closely associated with many non-intestinal diseases. Among these, the influence of the gut microbiome on cancer biology and the efficacy of cancer therapy has attracted much attention. Prostate cancer cells are affected by direct contact with the microbiota of local tissues and urine, and a relationship between prostate cancer cells and the gut microbiota has been suggested. In the human gut microbiota, bacterial composition differs depending on prostate cancer characteristics, such as histological grade and castration resistance. Moreover, the involvement of several intestinal bacteria in testosterone metabolism has been demonstrated, suggesting that they may affect prostate cancer progression and treatment through this mechanism. Basic research indicates that the gut microbiome also plays an important role in the underlying biology of prostate cancer through multiple mechanisms owing to the activity of microbial-derived metabolites and components. In this review, we describe the evidence surrounding the emerging relationship between the gut microbiome and prostate cancer, termed the "gut-prostate axis."
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan.
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Marco A De Velasco
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
18
|
Abdi Beshir S, Ahmed Elnour A, Soorya A, Parveen Mohamed A, Sir Loon Goh S, Hussain N, Al Haddad AH, Hussain F, Yousif Khidir I, Abdelnassir Z. A narrative review of approved and emerging anti-obesity medications. Saudi Pharm J 2023; 31:101757. [PMID: 37712012 PMCID: PMC10497995 DOI: 10.1016/j.jsps.2023.101757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023] Open
Abstract
Background Recently, many drugs have been approved for halting overweight and obesity-few types of research shifted to using Anti-obesity medications (AOM) solely for well-being and shape-keeping. Objective This narrative review's objective was to explore the use of AOM in relation to their medical indications, efficacy, and cardiovascular safety. Methods and materials We have conducted a narrative review of the literature on approved/non-approved AOM used for obesity and overweight. We have shed light on the emerging trials of therapies and evolving remedies. Results Recently, there has been an enormous change in the use of AOM with high consumption that deserves extensive surveillance for the long-term consequences and impact on social, mental, and physical health. Nearly six AOMs and combined therapy are approved by the Food and Drug Administration. The recent guidelines for obesity management have shifted the focus from weight loss to goals that the patient considers essential and toward targeting the root cause of obesity. Conclusion The use of AOM increased enormously despite its sometimes-dubious safety and ineffectiveness. The public and medical professionals should be vigilant to the real-world benefits of anti-obesity drugs and their achieved effectiveness with an improved safety profile.
Collapse
Affiliation(s)
- Semira Abdi Beshir
- Department of clinical pharmacy and Pharmacotherapeutics, Dubai Pharmacy College For Girls, Dubai, United Arab Emirates
| | - Asim Ahmed Elnour
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi Campus, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Aadith Soorya
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | | | - Sheron Sir Loon Goh
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, 105949, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Amal H.I. Al Haddad
- Chief Operation Officer, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi, United Arab Emirates
| | - Faizah Hussain
- Department of clinical pharmacy and Therapeutics, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Israa Yousif Khidir
- Department of Clinical Pharmacy and Pharmacy Practice, (PhD, MSc, B Pharm), College of Pharmacy, University of Hail (UOH), Saudi Arabia
| | - Zainab Abdelnassir
- Fourth-year pharmacy, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, United Arab Emirates
| |
Collapse
|
19
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
20
|
Chen X, Hou C, Yao L, Li J, Gui M, Wang M, Zhou X, Lu B, Fu D. Dietary inflammation index is associated with dyslipidemia: evidence from national health and nutrition examination survey, 1999-2019. Lipids Health Dis 2023; 22:149. [PMID: 37689717 PMCID: PMC10492364 DOI: 10.1186/s12944-023-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND AND AIMS This study aimed to investigate the association between the Dietary Inflammatory Index (DII) and dyslipidemia, as well as to evaluate the mortality risk associated with DII in participants with dyslipidemia. METHODS Data from the National Health and Nutrition Examination Survey database were divided into dyslipidemia and non-dyslipidemia groups. The association between DII and dyslipidemia was investigated using the weighted chi-square test, weighted t-test, and weighted logistic regression. Weighted Cox proportional hazards models were used to estimate the hazard ratios and 95% confidence intervals for all-cause and cardiovascular disease-related mortality within the dyslipidemia group. RESULTS A total of 17,820 participants, including 4,839 without and 12,981 with dyslipidemia were analyzed in this study. The results showed that DII was higher in the dyslipidemia group compared to the non-dyslipidemia group (1.42 ± 0.03 vs. 1.23 ± 0.04, P < 0.01). However, for energy, protein, carbohydrates, total fat, saturated fat, and iron, DII was lower in participants with dyslipidemia. Logistic regression analysis revealed a strong positive association between DII and dyslipidemia. The odds ratios for dyslipidemia from Q1 to Q4 were 1.00 (reference), 1.12 (0.96-1.31), 1.23 (1.04-1.44), and 1.33 (1.11-1.59), respectively. In participants with dyslipidemia, a high DII was associated with high all-cause and cardiovascular mortality. CONCLUSION DII was closely associated with dyslipidemia. A pro-inflammatory diet may play a role in unfavorable consequences and is linked to both all-cause mortality and cardiovascular death in patients with dyslipidemia. Participants with dyslipidemia should pay attention to their anti-inflammatory dietary patterns.
Collapse
Affiliation(s)
- Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Hou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
21
|
Guerrios-Rivera L, Howard LE, Wiggins EK, Hoyo C, Grant DJ, Erickson TR, Ithisuphalap J, Freedland AR, Vidal AC, Fowke JH, Freedland SJ. Metabolic syndrome is associated with aggressive prostate cancer regardless of race. Cancer Causes Control 2023; 34:213-221. [PMID: 36450931 PMCID: PMC11182659 DOI: 10.1007/s10552-022-01649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/29/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Recent meta-analyses suggest the Metabolic Syndrome (MS) increases high-grade prostate cancer (PC), although studies are inconsistent and few black men were included. We investigated MS and PC diagnosis in black and white men undergoing prostate biopsy in an equal access healthcare system. We hypothesized MS would be linked with aggressive PC, regardless of race. METHODS Among men undergoing prostate biopsy at the Durham Veterans Affairs Hospital, medical record data abstraction of diagnosis or treatment for hypertension (≥ 130/85 mmHg), dyslipidemia (HDL < 40 mg/dL), hypertriglyceridemia (≥ 150 mg/dL), diabetes, hyperglycemia (fasting glucose ≥ 100 ml/dL), and central obesity (waist circumference ≥ 40 inches) were done. Biopsy grade group (GG) was categorized as low (GG1) or high (GG2-5). Multinomial logistic regression was used to examine MS (3-5 components) vs. no MS (0-2 components) and diagnosis of high grade and low grade vs. no PC, adjusting for potential confounders. Interactions between race and MS were also tested. RESULTS Of 1,051 men (57% black), 532 (51%) had MS. Men with MS were older, more likely to be non-black, and had a larger prostate volume (all p ≤ 0.011). On multivariable analysis, MS was associated with high-grade PC (OR = 1.73, 95% CI 1.21-2.48, p = 0.003), but not overall PC (OR = 1.17, 95% CI 0.88-1.57, p = 0.29) or low grade (OR = 0.87, 95% CI 0.62-1.21, p = 0.39). Results were similar in black and non-black men (all p-interactions > 0.25). CONCLUSION Our data suggest that metabolic dysregulation advances an aggressive PC diagnosis in both black and non-black men. If confirmed, prevention of MS could reduce the risk of developing aggressive PC, including black men at higher risk of PC mortality.
Collapse
Affiliation(s)
- Lourdes Guerrios-Rivera
- Urology Section, Surgery Department, Veterans Administration Caribbean Healthcare System, San Juan, Puerto Rico.
- University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
| | - Lauren E Howard
- Duke Cancer Institute, Duke University School of Medicine, Duke, USA
- Veterans Affairs Medical Center Durham, Urology Section, 508 Fulton St, Durham, NC, 27705, USA
| | - Emily K Wiggins
- Veterans Affairs Medical Center Durham, Urology Section, 508 Fulton St, Durham, NC, 27705, USA
| | - Cathrine Hoyo
- North Carolina State Department of Biology and Cancer Research Program, 2200 Hillsborough, Raleigh, NC, 27695, USA
| | - Delores J Grant
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 1801 Fayetteville Street, Durham, NC, USA
| | - Tyler R Erickson
- Veterans Affairs Medical Center Durham, Urology Section, 508 Fulton St, Durham, NC, 27705, USA
| | - Jaruda Ithisuphalap
- Veterans Affairs Medical Center Durham, Urology Section, 508 Fulton St, Durham, NC, 27705, USA
| | - Alexis R Freedland
- Dept of Epidemiology, UCI School of Medicine, University of California, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Adriana C Vidal
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8635 West 3rd Street Suite 1070W, Los Angeles, CA, 90048, USA
| | - Jay H Fowke
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Preventive Medicine, University of Tennessee Health Science Center, Doctor's Office Building, 66 N. Pauline Street, Suite 600, Memphis, TN, 38163, USA
| | - Stephen J Freedland
- Veterans Affairs Medical Center Durham, Urology Section, 508 Fulton St, Durham, NC, 27705, USA
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8635 West 3rd Street Suite 1070W, Los Angeles, CA, 90048, USA
| |
Collapse
|
22
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
23
|
Associations between Body Mass Index and Prostate Cancer: The Impact on Progression-Free Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020289. [PMID: 36837490 PMCID: PMC9967817 DOI: 10.3390/medicina59020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Background and objectives: This study aimed to evaluate the impact of body mass index on PCa outcomes in our institution and also to find if there are statistically significant differences between the variables. Materials and Methods: A retrospective chart review was performed to extract information about all male patients with prostate cancer between 1 February 2015, and 25 October 2022, and with information about age, weight, height, follow-up, and PSA. We identified a group of 728 patients, of which a total of 219 patients resulted after the inclusion and exclusion criteria were applied. The primary endpoint was progression-free survival, which was defined as the length of time that the patient lives with the disease, but no relapses occur, and this group included 105 patients. In this case, 114 patients had a biological, local or metastatic relapse and were included in the progression group. Results: Our study suggests that prostate cancer incidence rises with age (72 ± 7.81 years) in men with a normal BMI, but the diagnostic age tends to drop in those with higher BMIs, i.e., overweight, and obese in the age range of 69.47 ± 6.31 years, respectively, 69.1 ± 7.51 years. A statistically significant difference was observed in the progression group of de novo metastases versus the absent metastases group at diagnostic (p = 0.04). The progression group with metastases present (n = 70) at diagnostic had a shorter time to progression, compared to the absent metastases group (n = 44), 18.04 ± 11.37 months, respectively, 23.95 ± 16.39 months. Also, PSA levels tend to diminish with increasing BMI classification, but no statistically significant difference was observed. Conclusions: The median diagnostic age decreases with increasing BMI category. Overweight and obese patients are more likely to have an advanced or metastatic prostate cancer at diagnosis. The progression group with metastatic disease at diagnostic had a shorter time to progression, compared to the absent metastases group. Regarding prostate serum antigen, the levels tend to become lower in the higher BMI groups, possibly leading to a late diagnosis.
Collapse
|
24
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
25
|
Tzenios N, Tazanios ME, Chahine M. The impact of body mass index on prostate cancer: An updated systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30191. [PMID: 36397423 PMCID: PMC9666096 DOI: 10.1097/md.0000000000030191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggested obesity was associated with the risk of prostate cancer. Also, the association between prostate cancer risk and obesity has received much attention in recent years, but the results are still unclear. Therefore, the current systematic review and meta-analysis aimed to evaluate the impact of body mass index (BMI) on prostate cancer. METHODS We systematically searched PubMed, Google Scholar, Scopus and Cochrane databases with the appropriate key terms to identify the eligible articles related to the impact of BMI on prostate cancer. The Newcastle-Ottawa checklist was used for the quality assessment of studies, and the meta-analysis was carried out using Review Manager 5.3. RESULTS The present review includes 23 studies that fulfilled the criteria for inclusion. In the meta-analysis, a significant difference was observed between the obese and normal weight (P < .001) and 54% of obese has a risk compared to normal weight. Heterogeneity between the fifteen studies was high (I2 = 100%). Test for overall effect: Z = 8.77 (P < .001) (odds ratio [OR] = 0.32 confidence interval [CI]: 0.25-0.42). However, there was no significant difference observed between the overweight and normal weight (P = .75). Heterogeneity between the fifteen studies is high (I2 = 100%). CONCLUSION Prostate cancer is a common malignancy that poses a threat to the health of men. Obesity is associated with a higher risk of death from prostate cancer based on the findings of the included studies. Furthermore, wherever possible, the impact of weight change on prostate cancer patient mortality should be investigated.
Collapse
Affiliation(s)
- Nikolaos Tzenios
- Public Health and Medical Research, Charisma University, Grace Bay, Turks and Caicos Islands, Train to Teach in Medicine, Department of Postgraduate Medical Education, Harvard Medical School, Boston, Massachusetts. Doctor of Health Sciences Candidate, MCPHS University, Boston, MA, USA
- * Correspondence: Nikolaos Tzenios, Public Health and Medical Research, Charisma University, Grace Bay, Turks and Caicos Islands, Train to Teach in Medicine, Department of Postgraduate Medical Education, Harvard Medical School, Boston, Massachusetts. Doctor of Health Sciences Candidate, MCPHS University, 3 Walham Yard, London SW6 1JA, UK (e-mail: )
| | | | - Mohamed Chahine
- Biological and Chemical Technology, International Medical Institute, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
26
|
Sudeep HV, Aman K, Jestin TV, Shyamprasad K. Aframomum melegueta Seed Extract with Standardized Content of 6-Paradol Reduces Visceral Fat and Enhances Energy Expenditure in Overweight Adults - A Randomized Double-Blind, Placebo-Controlled Clinical Study. Drug Des Devel Ther 2022; 16:3777-3791. [PMID: 36329722 PMCID: PMC9624637 DOI: 10.2147/dddt.s367350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Aframomum melegueta (grains of paradise) seeds have been demonstrated to possess thermogenic potential. However, it is necessary to validate the functional attributes of A. melegueta seed extract in human subjects. METHODS In a double-blind, placebo-controlled clinical trial design, we have examined the thermogenic effects of a standardized A. melegueta seed extract (AfperFit). A total of 70 overweight male and female subjects (BMI ≥25.0 to ≤30.0 kg/m2) aged 20-50 years were enrolled and administered with either 250 mg of AfperFit or placebo in capsule form twice daily for 12 weeks. The primary efficacy endpoints included energy expenditure (indirect calorimetry), body composition (dual-energy X-ray absorptiometry (DEXA)) and fat distribution (computed tomography (CT scan)), analyzed at baseline and after 12 weeks of treatment. The effect of intervention on the quality of life was examined using SF-12 questionnaire. RESULTS Consumption of AfperFit significantly increased the energy expenditure (p<0.01), visceral fat area (p<0.001) and visceral to subcutaneous fat ratio (p<0.01) compared to placebo group. Consequently, there was significant body weight loss and reduction in BMI of subjects in AfperFit group compared to placebo (p<0.01). The safety evaluation showed that biochemical and hematological parameters were in the normal range. Supplementation of AfperFit was well tolerated during the study and no adverse effects were observed. CONCLUSION Overall, this study validates the health benefits of A. melegueta seed extract as fat burner and recommends its use as a functional ingredient to improve the quality of life and general health.
Collapse
Affiliation(s)
- Heggar Venkataramana Sudeep
- Department of Biomedicinal Research (R&D), Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India,Correspondence: Heggar Venkataramana Sudeep, Research Scientist, R&D Center for Excellence, Vidya Herbs Pvt Ltd, No. 14/A, KIADB, Jigani Industrial Area, Anekal Taluk, Bangalore, Karnataka, 560 105, India, Tel +91 80-42094158, Email ;
| | - Khanna Aman
- Aman Hospital and Research Center, Vadodara, Gujarat, 390021, India
| | - Thomas V Jestin
- Leads Clinical Research and Bio Services Private Ltd, Bangalore, India
| | - Kodimule Shyamprasad
- Department of Biomedicinal Research (R&D), Vidya Herbs Pvt Ltd, Bangalore, Karnataka, 560 105, India
| |
Collapse
|
27
|
Moon C, Gallegos AM, Sheikh B, Kumar P, Liss M, Patel DI. Pilot Study on the Impact of a Home-Based Exercise Program on Inflammatory Cytokines and Quality of Life in Men with Prostate Cancer Under Active Surveillance. Cancer Control 2022; 29:10732748221130964. [PMID: 36200522 PMCID: PMC9549098 DOI: 10.1177/10732748221130964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aimed to demonstrate potential translation of pre-clinical studies to a home-based exercise intervention in mediating inflammatory cytokine markers and tumor progression in men under active surveillance for prostate cancer. METHODS A 2-arm randomized control parallel group design was used. The exercise intervention consisted of 24 weeks of an aerobic and resistance home-based exercise program and results were compared to a waitlist control group. Data were collected at baseline and end of study for eotaxin, interferon-γ (INF-γ), interleukin-12 (IL-12), interleukin-1α (IL-1α), interleukin-5 (IL-5), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF), distanced walked during a 6-minute walk test (6MWT), body mass index, and health-related quality of life. RESULTS Non-significant decreases were observed in all biomarkers, especially VEGF (pre: 125.16 ± 198.66, post: 80.29 ± 124.30, P = .06) and INF-γ (pre: 152.88 ± 312.71, post: 118.93 ± 158.79, P = .08), in the intervention group; only IL- α (pre: 332.15 ± 656.77, post: 255.12 ± 502.09, P = .20) decreased in the control group while all other biomarkers increased from baseline to end of study. A non-significant increase in 6MWT distance was observed in the intervention group, while a decrease was seen in the control group. Significant decreases in physical function, emotional wellbeing, and total composite scale on the FACIT-F were observed in the intervention group, possibly due to the isolation restrictions of COVID-19. Physical function on the SF-36 significantly increased in the control group. CONCLUSIONS Future studies with powered samples are needed to confirm the trends observed for inflammatory biomarkers and functional fitness.
Collapse
Affiliation(s)
- Crisann Moon
- Biobehavioral Laboratory, School of
Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Amber M. Gallegos
- Biobehavioral Laboratory, School of
Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Bilal Sheikh
- Biobehavioral Laboratory, School of
Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Pratap Kumar
- School of Medicine, UT Health San Antonio, San Antonio, TX, USA,Mays Cancer Center, UT Health San Antonio, San Antonio, TX, USA
| | - Michael Liss
- School of Medicine, UT Health San Antonio, San Antonio, TX, USA,Mays Cancer Center, UT Health San Antonio, San Antonio, TX, USA
| | - Darpan I. Patel
- Biobehavioral Laboratory, School of
Nursing, UT Health San Antonio, San Antonio, TX, USA,Mays Cancer Center, UT Health San Antonio, San Antonio, TX, USA,Barshop Institute for Longevity and
Aging Studies, UT Health San Antonio, San Antonio, TX, USA,Darpan I. Patel, The University of Texas
Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229,
USA.
| |
Collapse
|
28
|
Immunopathogenesis of Sjogren's syndrome: Current state of DAMPs. Semin Arthritis Rheum 2022; 56:152062. [DOI: 10.1016/j.semarthrit.2022.152062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
|
29
|
Saglam BS, Kanli A, Yanar S, Kasap M, Akpinar G. Investigation of the effect of meclofenamic acid on the proteome of LNCaP cells reveals changes in alternative polyadenylation and splicing machinery. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:190. [PMID: 36071279 DOI: 10.1007/s12032-022-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common type of cancer among men, and there is still no definitively effective drug treatment. Thus, the search for novel drug agents that may be used for the effective treatment continues. Meclofenamic acid (MA), a non-steroidal anti-inflammatory drug, with anti-tumor effects in various types of cancers was used to investigate its effects on LNCaP cells, a prostate cancer cell line, at the proteome level. The cells were treated with 80 µM MA for 24 h and a comparative proteomic analysis was performed with their untreated control cells. Proteins were extracted from the cells and then were subjected to two-dimensional gel electrophoresis. Protein spots displaying changes in their regulation ratios for more than two-fold were excised from the gels and identified with MALDI-TOF/TOF mass spectrometry. Bioinformatics analysis of the differentially regulated proteins that we identified showed that they were all associated with and took part in related pathways. Glycolytic pathway, cytoskeletal formation, transport activity, protein metabolism, and most notably an mRNA processing pathway were affected by the MA treatment. In addition to presenting a detailed information for what is happening inside the cells upon MA treatment, the proteins affected by MA treatment hold the potential to be novel targets for prostate cancer treatment provided that further in vivo experiments are carried out.
Collapse
Affiliation(s)
- Busra Sahinoz Saglam
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Aylin Kanli
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey.
| | - Sevinc Yanar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Serdivan, Sakarya, Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
30
|
Grenville ZS, Noor U, His M, Viallon V, Rinaldi S, Aglago EK, Amiano P, Brunkwall L, Chirlaque MD, Drake I, Eichelmann F, Freisling H, Grioni S, Heath AK, Kaaks R, Katzke V, Mayén-Chacon AL, Milani L, Moreno-Iribas C, Pala V, Olsen A, Sánchez MJ, Schulze MB, Tjønneland A, Tsilidis KK, Weiderpass E, Winkvist A, Zamora-Ros R, Key TJ, Smith-Byrne K, Travis RC, Schmidt JA. Diet and BMI Correlate with Metabolite Patterns Associated with Aggressive Prostate Cancer. Nutrients 2022; 14:3306. [PMID: 36014812 PMCID: PMC9415102 DOI: 10.3390/nu14163306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Three metabolite patterns have previously shown prospective inverse associations with the risk of aggressive prostate cancer within the European Prospective Investigation into Cancer and Nutrition (EPIC). Here, we investigated dietary and lifestyle correlates of these three prostate cancer-related metabolite patterns, which included: 64 phosphatidylcholines and three hydroxysphingomyelins (Pattern 1), acylcarnitines C18:1 and C18:2, glutamate, ornithine, and taurine (Pattern 2), and 8 lysophosphatidylcholines (Pattern 3). In a two-stage cross-sectional discovery (n = 2524) and validation (n = 518) design containing 3042 men free of cancer in EPIC, we estimated the associations of 24 dietary and lifestyle variables with each pattern and the contributing individual metabolites. Associations statistically significant after both correction for multiple testing (False Discovery Rate = 0.05) in the discovery set and at p < 0.05 in the validation set were considered robust. Intakes of alcohol, total fish products, and its subsets total fish and lean fish were positively associated with Pattern 1. Body mass index (BMI) was positively associated with Pattern 2, which appeared to be driven by a strong positive BMI-glutamate association. Finally, both BMI and fatty fish were inversely associated with Pattern 3. In conclusion, these results indicate associations of fish and its subtypes, alcohol, and BMI with metabolite patterns that are inversely associated with risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Zoe S. Grenville
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Elom K. Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Louise Brunkwall
- Department of Clinical Sciences, Lund University, 221 84 Malmö, Sweden
| | - María Dolores Chirlaque
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Isabel Drake
- Department of Clinical Sciences, Lund University, 221 84 Malmö, Sweden
- Skåne University Hospital, 214 28 Malmö, Sweden
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ana-Lucia Mayén-Chacon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Lorenzo Milani
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Conchi Moreno-Iribas
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Navarra Public Health Institute, 31003 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Anja Olsen
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Anna Winkvist
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
- Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, University Hospital, Aarhus University and Aarhus, DK-8200 Aarhus N, Denmark
| |
Collapse
|
31
|
Munir H, Ahmad F, Ullah S, Almutairi SM, Asghar S, Siddique T, Abdel-Maksoud MA, Rasheed RA, Elkhamisy FAA, Aufy M, Yaz H. Screening a novel six critical gene-based system of diagnostic and prognostic biomarkers in prostate adenocarcinoma patients with different clinical variables. Am J Transl Res 2022; 14:3658-3682. [PMID: 35836886 PMCID: PMC9274568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms behind prostate adenocarcinoma (PRAD) pathogenicity remain to be understood due to tumor heterogeneity. In the current study, we identified by microarray technology six eligible real hub genes from already identified hub genes through a systematic in silico approach that could be useful to lower the heterogenetic-specific barriers in PRAD patients for diagnosis, prognosis, and treatment. For this purpose, microarray technology-based, already-identified PRAD-associated hub genes were initially explored through extensive literature mining; then, a protein-protein interaction (PPI) network construction of those hub genes and its analysis helped us to identify six most critical genes (real hub genes). Various online available expression databases were then used to explore the tumor driving, diagnostic, and prognostic roles of real hub genes in PRAD patients with different clinicopathologic variables. In total, 124 hub genes were extracted from the literature, and among those genes, six, including CDC20, HMMR, AURKA, CDK1, ASF1B, and CCNB1 were identified as real hub genes by the degree method. Further expression analysis revealed the significant up-regulation of real hub genes in PRAD patients of different races, age groups, and nodal metastasis status relative to controls. Moreover, through correlational analyses, different valuable correlations between treal hub genes expression and different other data (promoter methylation status, genetic alterations, overall survival (OS), tumor purity, CD4+ T, CD8+ T immune cells infiltration, and different other mutant genes and a few more) across PRAD samples were also documented. Ultimately, from this study, a few important transcription factors (TFS), miRNAs, and chemotherapeutic drugs showing a great therapeutic potential were also identified. In conclusion, we have discovered a set of six real hub genes that might be utilized as new biomarkers for lowering heterogenetic-specific barriers in PRAD patients for diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Hadia Munir
- Akhtar Saeed Medical and Dental CollegePakistan
| | - Fawad Ahmad
- Rural Health Center MantharRahim Yar Khan, Pakistan
| | - Sajid Ullah
- Cardiac ICU Medikay Cardiac Center Park Road IslamabadIslamabad 4400, Pakistan
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Samra Asghar
- Department of Medical Laboratory Technology, Faculty of Rehablitation and Allied Health Sciences, Riphah International UniversityFaisalabad, Faisalabad, Pakistan
| | - Tehmina Siddique
- Department of Biotechnology, Faculty of Life Sciences, University of OkaraOkara, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology and Cell Biology Department, Faculty of Medicine, King Salman International UniversitySouth Sinai, Egypt
| | - Fatma Alzahraa A Elkhamisy
- Pathology Department, Faculty of Medicine, Helwan UniversityCairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, King Salman International UniversitySouth Sinai, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of ViennaVienna, Austria
| | - Hamid Yaz
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Barnes O, Wilson RL, Gonzalo-Encabo P, Kang DW, Christopher CN, Bentley T, Dieli-Conwright CM. The Effect of Exercise and Nutritional Interventions on Body Composition in Patients with Advanced or Metastatic Cancer: A Systematic Review. Nutrients 2022; 14:nu14102110. [PMID: 35631251 PMCID: PMC9145470 DOI: 10.3390/nu14102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced and metastatic cancers significantly alter body composition, leading to decreased lean mass and variable effects on fat mass. These effects on body composition are associated with significant physical dysfunction and poor prognosis in patients with cancer. Whilst exercise and nutritional interventions are likely to be of benefit in counteracting these effects, relatively little is known about using such interventions in patients with advanced or metastatic cancer. Therefore, in this systematic review we examine the effect of exercise and combined exercise and nutritional interventions on lean mass and fat mass among patients diagnosed with advanced or metastatic cancer. Following PRISMA guidelines, we identified 20 articles from PubMed, EMBASE, CINAHL, Cochrane CENTRAL, PEDro, SPORTDiscus, and REHABDATA. Overall, advanced or metastatic cancer populations comprising of mixed cancer types were most commonly examined (n = 8) with exercise or combined exercise and nutritional interventions being well-tolerated with few adverse effects. Both intervention approaches may preserve lean mass, while only combined interventions may lead to alterations in fat mass. However, further exercise and nutritional studies are needed to definitively understand their effects on body composition. As exercise and nutrition-related research continues in this understudied population, the knowledge gained will help guide supportive clinical treatments.
Collapse
Affiliation(s)
- Oscar Barnes
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (O.B.); (T.B.)
| | - Rebekah L. Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Paola Gonzalo-Encabo
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Cami N. Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Epidemiology, Boston University, Boston, MA 02118, USA
| | - Thomas Bentley
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (O.B.); (T.B.)
| | - Christina M. Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 375 Longwood Avenue, Boston, MA 02215, USA; (R.L.W.); (P.G.-E.); (D.-W.K.); (C.N.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
33
|
Matsushita M, Fujita K, Hatano K, Hayashi T, Kayama H, Motooka D, Hase H, Yamamoto A, Uemura T, Yamamichi G, Tomiyama E, Koh Y, Kato T, Kawashima A, Uemura M, Nojima S, Imamura R, Mubeen A, Netto GJ, Tsujikawa K, Nakamura S, Takeda K, Morii E, Nonomura N. High‐fat diet promotes prostate cancer growth through histamine signaling. Int J Cancer 2022; 151:623-636. [DOI: 10.1002/ijc.34028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
- Department of Urology, Kindai University Faculty of Medicine Osakasayama Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
- Institute for Advanced Co‐Creation Studies Osaka University Suita Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Hiroaki Hase
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Toshihiko Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Aysha Mubeen
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - George J. Netto
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
34
|
Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol 2022; 29:793-798. [PMID: 35388531 DOI: 10.1111/iju.14894] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
The gut microbiome is linked to several diseases such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The gut microbiome is also associated with the modulation of immune function, resulting in a different response to immune checkpoint therapy. The gut microbiome differs according to lifestyle, diet, sex, race, genetic background, and country. Lifestyle, especially diet, plays an important role in the development and progression of prostate cancer. Recent studies have revealed a connection between the gut microbiome and prostate cancer. A high-fat diet causes gut dysbiosis and gut bacterial metabolites, such as short-chain fatty acids and phospholipids that enter systemic circulation result in promoting prostate cancer growth. Additionally, the gut microbiota can serve as a source of testosterone, which affects prostate cancer progression. Men with castration-resistant prostate cancer have an increased abundance of gut bacteria with androgenic functions. Men with high-risk prostate cancer share a specific gut microbial profile and profiling gut microbiota could be a potentially effective tool to screen men with high-risk prostate cancer. Lifestyle modifications can improve the gut microbiome. Furthermore, altering the gut microbiome using prebiotic or probiotic interventions may prevent or delay prostate cancer development. Further study into the "Gut-Prostate Axis" would help in the discovery of new strategies for the prevention, screening, and treatment of prostate cancer.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
35
|
Evaluating the Effects of Separate and Concomitant Use of MK-2206 and Salinomycin on Prostate Cancer Cell Line. Rep Biochem Mol Biol 2022; 11:157-165. [PMID: 35765523 PMCID: PMC9208569 DOI: 10.52547/rbmb.11.1.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line. Methods The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells. Results A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05). Conclusion The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.
Collapse
|
36
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
37
|
Gao Y, Yuan S, Chen Y, Liu F, Wei Z, Cao W, Li RW, Xu J, Xue C, Tang Q. The improvement effect of astaxanthin-loaded emulsions on obesity is better than that of astaxanthin in the oil phase. Food Funct 2022; 13:3720-3731. [PMID: 35266464 DOI: 10.1039/d1fo03185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsion-based delivery systems have been reported to improve the solubility, stability and bioavailability of astaxanthin. In this study, the ability of astaxanthin-loaded emulsions (AL) to ameliorate obesity induced by a high-fat and high-sucrose diet was explored, using astaxanthin in the oil phase (ASTA) as a comparison. After the administration of AL, ASTA (30 mg per kg body weight), or saline on normal or obese mice for 4 weeks, the body fat accumulation levels, hepatic lipid contents and hepatic fatty acid profiles were detected, and AL showed better anti-obesity properties than ASTA. In an acute feeding experiment, it was first observed that the astaxanthin concentration of AL was higher than that of ASTA in the blood and liver of obese mice. What's more, AL altered the microbial co-occurrence patterns in obese mice. Some gut microbial modules that were significantly correlated with obesity-related physiological parameters were identified. Overall, the improvement effect of AL on obesity is better than that of ASTA due to their higher oral absorbability and modulating effects on the gut microbiota, and we suggest AL as a more suitable astaxanthin product type for obese bodies.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuze Chen
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zihao Wei
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanxiu Cao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
38
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
39
|
Adebola TM, Fennell HWW, Druitt MD, Bonin CA, Jenifer VA, van Wijnen AJ, Lewallen EA. Population-Level Patterns of Prostate Cancer Occurrence: Disparities in Virginia. CURRENT MOLECULAR BIOLOGY REPORTS 2022; 8:1-8. [PMID: 35909818 PMCID: PMC9337710 DOI: 10.1007/s40610-022-00147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostate cancer is the most common cancer and the second leading cause of cancer-related deaths among men in the United States. In Virginia, which is a representative, ethnically diverse state of more than 8 million people that was established nearly 400 years ago, prostate cancer has the highest rate of new detection for any type of cancer. All men are at risk of developing prostate cancer regardless of demographics, but some men have an increased mortality risk due to cancer metastasis. Notably, one in five African American men will be diagnosed with prostate cancer in their lifetime and they have the highest prostate cancer mortality rate of any ethnic group in the United States, including Virginia. A person's genetic profile and family history are important biological determinants of prostate cancer risk, but modifiable environmental factors (e.g., pollution) appear to be correlated with patterns of disease prevalence and risk. In this review, we examine current perspectives on population-level spatial patterns of prostate cancer in Virginia. For context, recent, publicly available data from the Centers for Disease Control and Prevention are highlighted and presented in spatial format. In addition, we explore possible co-morbidities of prostate cancer that may have demographic underpinnings highlighted in recent health disparity studies.
Collapse
Affiliation(s)
- Tunde M Adebola
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Michael D Druitt
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Carolina A Bonin
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | | | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| |
Collapse
|
40
|
Prostate cancer management with lifestyle intervention: From knowledge graph to Chatbot. CLINICAL AND TRANSLATIONAL DISCOVERY 2022. [DOI: 10.1002/ctd2.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Interrogating Patterns of Cancer Disparities by Expanding the Social Determinants of Health Framework to Include Biological Pathways of Social Experiences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042455. [PMID: 35206642 PMCID: PMC8872134 DOI: 10.3390/ijerph19042455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The objective of this article is to call for integrating biological pathways of social experiences in the concept model of cancer disparities and social determinants of health (SDH) fields. Black, Indigenous, and People of Color (BIPOC) populations experience more negative outcomes across the cancer continuum. Social conditions are instrumental in better understanding the contemporary and historical constructs that create these patterns of disparities. There is an equally important body of evidence that points to the ways that social conditions shape biological pathways. To date, these areas of research are, for the most part, separate. This paper calls for a bridging of these two areas of research to create new directions for the field of cancer disparities. We discuss inflammation, epigenetic changes, co-morbidities, and early onset as examples of the biological consequences of social conditions that BIPOC populations experience throughout their lifespan that may contribute to disproportionate tumorigenesis and tumor progression.
Collapse
|
42
|
Ide H, Tsukada S, Asakura H, Hattori A, Sakamaki K, Lu Y, Okada H, Maeda-Yamamoto M, Horie S. A Japanese Box Lunch Bento Comprising Functional Foods Reduce Oxidative Stress in Men: A Pilot Study. Am J Mens Health 2022; 16:15579883221075498. [PMID: 35135369 PMCID: PMC8832604 DOI: 10.1177/15579883221075498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The elder population has increased, introducing the profound medical and social challenge of maintaining health in aging seniors and the need for a medical approach to sustaining physical and mental health. The relationship between diseases and lifestyle-related factors such as diet and exercise are important. A health-conscious lifestyle improves one's health condition from a medical perspective, as indicated by new wellness monitoring using health devices and recent research into the efficacy of functional lunches incorporating utilitarian agricultural, forestry, and fishery products and foods. For a period of 3 months, and solely at lunchtime, 21 participants consumed the contents of a bento (Japanese box lunch), which incorporated functional (healthy) foods. A variety of factors were analyzed, including: weight, weight fluctuation rate, abdominal girth, triglycerides, total cholesterol value, and 8-OHdG (8-hydroxy-2'-deoxyguanosine). The bento comprising functional foods resulted in a reduction in both weight and abdominal girth without calorie restrictions. A reduction over time was observed in 8-OHdG, an oxidative stress marker, as compared to values prior to initiation of the study. Usage of a health device, exercise/dietary advice from a physician and nutritionist, and the availability of meals incorporating functional agricultural products might help prevent lifestyle disease and lead to improved health management.
Collapse
Affiliation(s)
- Hisamitsu Ide
- Department of Urology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | | | - Hitomi Asakura
- Department of Nutrition, Teikyo University Hospital, Tokyo, Japan
| | - Ayaka Hattori
- Department of Nutrition, Teikyo University Hospital, Tokyo, Japan
| | - Kentaro Sakamaki
- Center for Data Science, Yokohama City University, Yokohama, Japan
| | - Yan Lu
- Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Okada
- Department of Urology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | - Mari Maeda-Yamamoto
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Ghanemi A, Yoshioka M, St-Amand J. Exercise, Diet and Sleeping as Regenerative Medicine Adjuvants: Obesity and Ageing as Illustrations. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9010007. [PMID: 35049940 PMCID: PMC8778846 DOI: 10.3390/medicines9010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
Abstract
Regenerative medicine uses the biological and medical knowledge on how the cells and tissue regenerate and evolve in order to develop novel therapies. Health conditions such as ageing, obesity and cancer lead to an impaired regeneration ability. Exercise, diet choices and sleeping pattern have significant impacts on regeneration biology via diverse pathways including reducing the inflammatory and oxidative components. Thus, exercise, diet and sleeping management can be optimized towards therapeutic applications in regenerative medicine. It could allow to prevent degeneration, optimize the biological regeneration and also provide adjuvants for regenerative medicine.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296
| |
Collapse
|
44
|
Zhu D, Toker M, Shyr W, Fram E, Watts KL, Agalliu I. Association of obesity and diabetes with prostate cancer risk groups in a multiethnic population. Clin Genitourin Cancer 2022; 20:299-299.e10. [DOI: 10.1016/j.clgc.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
|
45
|
Anisman H, Kusnecov AW. Dietary components associated with being overweight, having obesity, and cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
OUP accepted manuscript. Carcinogenesis 2022; 43:504-516. [DOI: 10.1093/carcin/bgac013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
|
47
|
Sun BL, Tang L, Sun X, Garcia AN, Camp SM, Posadas E, Cress AE, Garcia JGN. A Humanized Monoclonal Antibody Targeting Extracellular Nicotinamide Phosphoribosyltransferase Prevents Aggressive Prostate Cancer Progression. Pharmaceuticals (Basel) 2021; 14:ph14121322. [PMID: 34959723 PMCID: PMC8706080 DOI: 10.3390/ph14121322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the major cause of cancer-related death in males; however, effective treatments to prevent aggressive progression remain an unmet need. We have previously demonstrated that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator that promotes PCa invasion. In the current study, we further investigate the therapeutic effects of an eNAMPT-neutralizing humanized monoclonal antibody (ALT-100 mAb) in preclinical PCa orthotopic xenograft models. We utilized human aggressive PCa cells (DU145 or PC3) for prostate implantation in SCID mice receiving weekly intraperitoneal injections of either ALT-100 mAb or IgG/PBS (control) for 12 weeks. Prostatic tumors and solid organs were examined for tumor growth, invasion, and metastasis and for biochemical and immunohistochemistry evidence of NFκB activation. ALT-100 mAb treatment significantly improved overall survival of SCID mice implanted with human PCa orthotopic prostate xenografts while inducing tumor necrosis, decreasing PCa proliferation and reducing local invasion and distal metastases. The ALT-100 mAb inhibits NFκB phosphorylation and signaling in PCa cells both in vitro and in vivo. This study demonstrates that eNAMPT neutralization effectively prevents human PCa aggressive progression in preclinical models, indicating its high potential to directly address the unmet need for an effective targeted therapy for patients with aggressive PCa.
Collapse
Affiliation(s)
- Belinda L. Sun
- Department of Pathology, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA;
| | - Lin Tang
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA; (L.T.); (X.S.); (S.M.C.)
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA; (L.T.); (X.S.); (S.M.C.)
| | - Alexander N. Garcia
- Department of Radiation Oncology, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA;
| | - Sara M. Camp
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA; (L.T.); (X.S.); (S.M.C.)
| | - Edwin Posadas
- Department of Medicine, Cedar Sinai Health Sciences, Los Angeles, CA 90048, USA;
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA;
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ 85719, USA; (L.T.); (X.S.); (S.M.C.)
- Correspondence: ; Tel.: +1-520-626-3151
| |
Collapse
|
48
|
Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, Khateb AM, Eldakhakhny BM, Fahmy UA, Abdulaal WH, Fresta CG, Caruso G. Updates on Molecular and Biochemical Development and Progression of Prostate Cancer. J Clin Med 2021; 10:5127. [PMID: 34768647 PMCID: PMC8585085 DOI: 10.3390/jcm10215127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment.
Collapse
Affiliation(s)
- Omar Fahmy
- Department of Urology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aiah M. Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42224, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21555, Saudi Arabia
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
49
|
16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms221910747. [PMID: 34639088 PMCID: PMC8509685 DOI: 10.3390/ijms221910747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the Western world and intestinal dysbiosis might contribute to its pathogenesis. The mucosal colon microbiome and C-C motif chemokine 2 (CCL2) were investigated in 20 healthy controls (HC) and 20 CRC patients using 16S rRNA sequencing and immunoluminescent assay, respectively. A total of 10 HC subjects were classified as overweight/obese (OW/OB_HC) and 10 subjects were normal weight (NW_HC); 15 CRC patients were classified as OW/OB_CRC and 5 patients were NW_CRC. Results: Fusobacterium nucleatum and Escherichia coli were more abundant in OW/OB_HC than in NW_HC microbiomes. Globally, Streptococcus intermedius, Gemella haemolysans, Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were significantly increased in CRC patient tumor/lesioned tissue (CRC_LT) and CRC patient unlesioned tissue (CRC_ULT) microbiomes compared to HC microbiomes. CCL2 circulating levels were associated with tumor presence and with the abundance of Fusobacterium nucleatum, Bacteroides fragilis and Gemella haemolysans. Our data suggest that mucosal colon dysbiosis might contribute to CRC pathogenesis by inducing inflammation. Notably, Fusobacterium nucleatum, which was more abundant in the OW/OB_HC than in the NW_HC microbiomes, might represent a putative link between obesity and increased CRC risk.
Collapse
|
50
|
Liu X, Yin L, Shen S, Hou Y. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis 2021; 10:151-164. [PMID: 37013041 PMCID: PMC10066281 DOI: 10.1016/j.gendis.2021.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation caused by persistent infections and metabolic disorders is thought to contribute to the increased cancer risk and the accelerated cancer progression. Oppositely, acute inflammation induced by bacteria-based vaccines or that is occurring after cancer selectively inhibits cancer progression and metastasis. However, the interaction between inflammation and cancer may be more complex than the current explanations for the relationship between chronic and acute inflammation and cancer. In this review, we described the impact of inflammation on cancer on the basis of three perspectives, including inflammation with different durations (chronic and acute inflammation), different scopes (systemic and local inflammation) and different occurrence sequences (inflammation occurring after and before cancer). In addition, we also introduced bacteria/virus-based cancer immunotherapies. We perceive that inflammation may be a double-edged sword with cancer-promoting and cancer-suppressing functions in certain cases. We expect to further improve the understanding of the relationship between inflammation and cancer and provide a theoretical basis for further research on their complex interaction.
Collapse
Affiliation(s)
- Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lijie Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China. Fax: +86 25 8968 8441.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China. Fax: +86 25 8968 8441.
| |
Collapse
|