1
|
Pal B, Ghosh R, Sarkar RD, Roy GS. The irreversible, towards fatalic neuropathy: from the genesis of diabetes. Acta Diabetol 2024:10.1007/s00592-024-02429-4. [PMID: 39636401 DOI: 10.1007/s00592-024-02429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Diabetic neuropathy is the most prevalent diabetes-associated complication that negatively impacts the quality of life of the patients. The extensive complications of diabetic peoples in the world are the leading cause of neuropathic pain, and over-activation of different biochemical signalling process induces the pathogenic progression and are also corresponding the epidemic painful symptom of diabetic neuropathy. The main prevalent abnormality is neuropathy, which further causing distal symmetric polyneuropathy and focal neuropathy. The exact pathological complication of diabetes associated neuropathic algesia is still unclear, but the alteration in micro-angiopathy associated nerve fibre loss, hyper polyol formation, MAPK signalling, WNT signalling, tau-derived insulin signalling processes are well known. Furthermore, the post-translational modification of different ion channels, oxidative and nitrosative stress, brain plasticity and microvascular changes can contributes the development of neuropathic pain. However, in the current review we discussed about these pathogenic development of neuropathic pain from the genesis of diabetes, and how diabetes affects the physiological and psychological health, and quality of life of the patients. Furthermore, the treatment of diabetic neuropathy with conventional monotherapy and emerging therapy are discussed. In addition, the treatment with phytochemical constituents their mechanisms and clinical evidences are also reported. The future investigation is required on pathological alteration occurs in neuropathic individuals, and on molecular mechanisms as well as the adverse effect of phytochemicals to determine all aspects of neuropathic algesia including effective treatments, which will prevents the sympathetic pain in patients.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Mothabari, Malda, West Bengal, India.
| | - Rashmi Ghosh
- Bengal College of Pharmaceutical Science & Research, Durgapur, West Bengal, India
| | - Raktimava Das Sarkar
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| | - Gouranga Sundar Roy
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| |
Collapse
|
2
|
Taherkhani S, Ahmadi P, Nasiraie LR, Janzadeh A, Honardoost M, Sedghi Esfahani S. Flavonoids and the gut microbiome: a powerful duo for brain health. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39632543 DOI: 10.1080/10408398.2024.2435593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Flavonoids, a class of polyphenolic compounds, are widely distributed in plant-based foods and have been recognized for their potential to promote overall health and well-being. Flavonoids in fruits and vegetables offer various beneficial effects such as anti-aging, anticancer, and anti-inflammatory properties. Flavonoids have been extensively studied for their neuroprotective properties, which are attributed to their ability to cross the blood-brain barrier and interact with neural cells. Factors like gut microbiota composition, age, genetics, and diet can impact how well flavonoids are absorbed in the gut. The gut microbiota can enhance the absorption of flavonoids through enzymatic processes, making microbiota composition a key factor influenced by age, genetics, and diet. Flavonoids can modulate the gut microbiota through prebiotic and antimicrobial effects, affecting the production of beneficial microbial metabolites like short-chain fatty acids (SCFAs) such as butyrate, which play a role in brain function and health. The gut microbiome also modulates the immune system, which is critical for preventing neuroinflammation. Additionally, flavonoids can benefit mental and psychological health by influencing anti-inflammatory signaling pathways in brain cells and increasing the absorption of tyrosine and tryptophan, precursors to neurotransmitters like serotonin, dopamine, norepinephrine, adrenaline, and gamma-aminobutyric acid (GABA). The flavonoid-gut microbiome axis is a complex and multifaceted relationship that has significant implications for neurological health. This review will explore how genetic and environmental factors can impact flavonoid absorption and the positive effects of flavonoids on brain health and the gut microbiota network.
Collapse
Affiliation(s)
- Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Roozbeh Nasiraie
- Department of Food Science and Technology, Islamic Azad University, Nour Branch, Nour, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Sedghi Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
El-Seedi HR, El-Wahed AAA, Salama S, Agamy N, Altaleb HA, Du M, Saeed A, Di Minno A, Wang D, Daglia M, Guo Z, Zhang H, Khalifa SAM. Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity. Curr Nutr Rep 2024; 13:751-767. [PMID: 39302593 DOI: 10.1007/s13668-024-00567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF THE REVIEW Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition. RECENT FINDINGS Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools. BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Aida A Abd El-Wahed
- Department of Bee Research, Agricultural Research Centre, Plant Protection Research Institute, Giza, 12627, Egypt
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
| | - Neveen Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hamud A Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116024, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Daijie Wang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, 274000, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Neurology and Psychiatry Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
4
|
Naidoo K, Khathi A. Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats. Int J Mol Sci 2024; 25:12105. [PMID: 39596174 PMCID: PMC11594263 DOI: 10.3390/ijms252212105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Gossypetin (GTIN) is a naturally occurring flavonoid recognised for its pharmacological properties. This study examined the effects of GTIN on cardiovascular function in a diet-induced pre-diabetic rat model, which has not been previously studied. Pre-diabetes was induced using a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Thereafter, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both in the presence and absence of dietary intervention for 12 weeks. The results demonstrated that the pre-diabetic (PD) control group exhibited significantly higher plasma triglyceride, total cholesterol, low-density lipoprotein and very low-density lipoprotein levels, along with decreased high-density lipoprotein (HDL) levels in comparison to the non-pre-diabetic (NPD) group. This was accompanied by significantly higher mean arterial pressure (MAP), body mass index (BMI), waist circumference (WC) and plasma endothelial nitric oxide (eNOS) levels in PD control. Additionally, there were increased heart malondialdehyde levels, reduced heart superoxide dismutase and glutathione peroxidase activity as well as increased plasma interleukin-6, tumour necrosis factor alpha and c-reactive protein levels present in the PD control group. Notably, both GTIN-treated groups showed significantly reduced plasma lipid levels and increased HDL, as well as decreases in MAP, BMI, WC and eNOS levels in comparison to PD control. Additionally, GTIN significantly decreased heart lipid peroxidation, enhanced antioxidant activity and decreased plasma inflammation markers. These findings may suggest that GTIN administration in both the presence and absence of dietary intervention may offer therapeutic potential in ameliorating cardiovascular disturbances associated with the PD state. However, future studies are needed to determine the physiological mechanisms by which GTIN improves cardiovascular function in the PD state.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
5
|
Wang Q, Deng W, Yang J, Li Y, Huang H, Luo Y, Li Z, Dong Z. Association of Dietary Flavonoids Intake With All-Cause and Cardiovascular Disease Mortality in Diabetic Kidney Disease: A Cohort Study From the NHANES Database. J Diabetes Res 2024; 2024:8359294. [PMID: 39529845 PMCID: PMC11554414 DOI: 10.1155/2024/8359294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The relationship between dietary flavonoid intake and mortality in the diabetic kidney disease (DKD) population is unknown. So this study is aimed at investigating the association of total dietary flavonoid intake and their subclasses with all-cause and cardiovascular disease (CVD) mortality. Data of this cohort study were extracted from the NHANES (2007-2010 and 2017-2018). The survival status of participants was determined by linking to the National Death Index through the end of 2019. Flavonoid intake was measured using two 24-h dietary recall interviews. The Kaplan-Meier curves and weighted Cox proportional hazard regression models were used to assess the effect of dietary flavonoid intake on CVD and all-cause mortality, with adjustments for multiple covariates. A total of 1155 participants were included for analysis. After a median follow-up of 76.36 (S.E: 3.24) months, 409 participants died of all-cause mortality, of which 138 died of CVD. In the fully adjusted model, higher total dietary flavonoids intake (HR = 0.69, 95% CI: 0.52-0.92) was associated with lower all-cause mortality and subclasses of higher flavones (HR = 0.60, 95% CI: 0.35-0.85) was also with lower all-cause mortality. In subclasses of flavonoids, higher intake of both anthocyanidins (HR = 0.54, 95% CI: 0.28 to 0.87) and flavones (HR = 0.50, 95% CI: 0.28-0.87) were associated with lower odds of CVD mortality. Higher flavonoid intake was associated with a reduced risk of CVD and all-cause mortality in DKD. Higher flavonoid intake provides a potential opportunity to improve the prognosis of DKD. And future research into the mechanisms between flavonoids and mortality is needed.
Collapse
Affiliation(s)
- Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Weizhu Deng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Jian Yang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hui Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yayong Luo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen District, Guangdong 518033, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou District 510663, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
6
|
Ma N, Xu C, Wang Y, Cui K, Kuang H. Telomerase reverse transcriptase protects against diabetic kidney disease by promoting AMPK/PGC-1a-regulated mitochondrial energy homeostasis. Chem Biol Interact 2024; 403:111238. [PMID: 39265716 DOI: 10.1016/j.cbi.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.
Collapse
Affiliation(s)
- Nan Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Valle-Velázquez E, Zambrano-Vásquez OR, Cortés-Camacho F, Sánchez-Lozada LG, Guevara-Balcázar G, Osorio-Alonso H. Naringenin - a potential nephroprotective agent for diabetic kidney disease: A comprehensive review of scientific evidence. BIOMOLECULES & BIOMEDICINE 2024; 24:1441-1451. [PMID: 38907737 PMCID: PMC11496875 DOI: 10.17305/bb.2024.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.
Collapse
Affiliation(s)
- Estefania Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oscar René Zambrano-Vásquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Fernando Cortés-Camacho
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Gustavo Guevara-Balcázar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
8
|
Yasir M, Park J, Han ET, Han JH, Park WS, Chun W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr Issues Mol Biol 2024; 46:11503-11518. [PMID: 39451563 PMCID: PMC11506312 DOI: 10.3390/cimb46100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic complications. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simulations. The three-dimensional structures of representative flavonoid compounds were obtained from PubChem, minimized, and docked against aldose reductase using Discovery Studio's CDocker module. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein, Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin maintained the highest stability, forming multiple conventional hydrogen bonds and strong hydrophobic interactions, consistent with their favorable interaction energies and stable RMSD values. Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions and stability, which could contribute to developing novel therapeutics for DM complications.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
9
|
Seguenka B, do Nascimento LH, Feiden T, Fernandes IA, Magro JD, Junges A, Valduga E, Steffens J. Ultrasound-assisted extraction and concentration of phenolic compounds from jabuticaba sabará (Plinia peruviana (Poir.) Govaerts) peel by nanofiltration membrane. Food Chem 2024; 453:139690. [PMID: 38781903 DOI: 10.1016/j.foodchem.2024.139690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Jabuticaba peel, rich in antioxidants, offering health benefits. In this study, the extraction of phenolic compounds from jabuticaba peel using ultrasound-assisted (UA) and their subsequent concentration by nanofiltration (NF) employing a polyamide 200 Da membrane was evaluated. The UA extractions were conducted using the Central Composite Rotatable Design (CCRD) 22 methodology, with independent variables extraction time (11.55 to 138 min) and temperature (16.87 to 53.3 °C), and fixed variables mass to ethanol solution concentration at pH 1.0 (1:25 g/mL), granulometry (1 mm), and ultrasonic power (52.8 W). The maximum concentrations obtained were 700.94 mg CE/100 g for anthocyanins, 945.21 mg QE/100 g for flavonoids, 133.19 mg GAE/g for phenols, and an antioxidant activity IC50 of 24.36 μg/mL. Key phenolic compounds identified included cyanidin-3-glucoside, delphinidin-3-glucoside, and various acids like syringic and gallic. NF successfully concentrated these compounds, enhancing their yield by up to 45%. UA and NF integrate for sustainable extraction.
Collapse
Affiliation(s)
- Bruna Seguenka
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | | | - Thais Feiden
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | | | - Jacir Dal Magro
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC 89809-900, Brazil.
| | - Alexander Junges
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Eunice Valduga
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Juliana Steffens
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| |
Collapse
|
10
|
Shahid M, Subhan F, Ahmad N, Din ZU, Ullah I, Ur Rahman S, Ullah R, Farooq U, Alam J, Nawaz NUA, Abbas S, Sewell RDE. 6-Methoxyflavone antagonizes chronic constriction injury and diabetes associated neuropathic nociception expression. Biochem Biophys Res Commun 2024; 724:150217. [PMID: 38865809 DOI: 10.1016/j.bbrc.2024.150217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nisar Ahmad
- School of Pharmacy, Institute of Health Sciences, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shafiq Ur Rahman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Javaid Alam
- Drug and Herbal Research Center, Faculty of Pharmacy, University Kebangsang Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Noor Ul Ain Nawaz
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Robert D E Sewell
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Sulaiman MK. Molecular mechanisms and therapeutic potential of natural flavonoids in diabetic nephropathy: Modulation of intracellular developmental signaling pathways. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100194. [PMID: 39071051 PMCID: PMC11276931 DOI: 10.1016/j.crphar.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Recognized as a common microvascular complication of diabetes mellitus (DM), diabetic nephropathy (DN) is the principal cause of chronic end-stage renal disease (ESRD). Patients with diabetes have an approximately 25% risk of developing progressive renal disease. The underlying principles of DN control targets the dual outcomes of blood glucose regulation through sodium glucose cotransporter 2 (SGLT 2) blockade and hypertension management through renin-angiotensin-aldosterone inhibition. However, these treatments are ineffective in halting disease progression to kidney failure and cardiovascular comorbidities. Recently, the dysregulation of subcellular signaling pathways has been increasingly implicated in DN pathogenesis. Natural compounds are emerging as effective and side-effect-free therapeutic agents that target intracellular pathways. This narrative review synthesizes recent insights into the dysregulation of maintenance pathways in DN, drawing from animal and human studies. To compile this review, articles reporting DN signaling pathways and their treatment with natural flavonoids were collected from PubMed, Cochrane Library Web of Science, Google Scholar and EMBASE databases since 2000. As therapeutic interventions are frequently based on the results of clinical trials, a brief analysis of data from current phase II and III clinical trials on DN is discussed.
Collapse
|
12
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
13
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
14
|
Kaviani F, Baratpour I, Ghasemi S. The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes. Curr Mol Med 2024; 24:1483-1493. [PMID: 37986269 DOI: 10.2174/0115665240268940231113044317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 11/22/2023]
Abstract
A natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.
Collapse
Affiliation(s)
- Fatemeh Kaviani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Baratpour
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
El-Shafai NM, Nada AI, Farrag MA, Alatawi K, Alalawy AI, Al-Qahtani SD, El-Mehasseb IM. Spectroscopic study to verify the anti-hepatitis C virus (HCV) treatment through a delivery system of the sofosbuvir drug on chitosan and pycnogenol nanoparticles surface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123063. [PMID: 37390719 DOI: 10.1016/j.saa.2023.123063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The target of the current study is to create a novel hybrid nanocomposite (Cs@Pyc.SOF) by combining the anti-hepatitis C virus (HCV) drug sofosbuvir with the nano antioxidant pycnogenol (Pyc) and nano biomolecules like chitosan nanoparticles (Cs NPs). The characterization procedure works to verify the creation of nanocomposite (NCP) using several different techniques. UV-Vis spectroscopy is used to measure SOF loading efficiency. The various concentrations of the SOF drug were used to determine the binding constant rate Kb, which was found to be 7.35 ± 0.95 min-1 with an 83% loading efficiency. At pH 7.4, the release rate was 80.6% after two hours and 92% after 48 h, whereas at pH 6.8, it was 29% after two hours and 94% after 48 h. After 2 and 48 h, the release rate in water was 38% and 77%, respectively. . The SRB technique for fast screening is used for the cytotoxicity test, where the investigated composites show a safety status and high viability against the examined cell line. The cytotoxicity assay of the SOF hybrid materials has been identified with cell lines like mouse normal liver cells (BNL). So, Cs@Pyc.SOF was recommended as a substitute medication for the therapy of HCV, but the results need clinical studies.
Collapse
Affiliation(s)
- Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Ahmed I Nada
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Mahmoud A Farrag
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Kahdr Alatawi
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
16
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
17
|
Bozkurt AK, VAN Rijn MJ, Bouskela E, Gastaldi G, Glauser F, Haller H, Rosas-Saucedo J, Zingg D, Calabrese A, Rabe E, Mansilha A. Enhancing identification and treatment of patients with concomitant chronic venous insufficiency and diabetes mellitus. A modified Delphi study from the CODAC (ChrOnic venous disease and Diabetes Advisory Council) group. INT ANGIOL 2023; 42:427-435. [PMID: 37962898 DOI: 10.23736/s0392-9590.23.05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Chronic venous insufficiency (CVI) and diabetes mellitus (DM) pose significant burdens to patients and healthcare systems. While the two diseases share a number of commonalities in risk factors and pathophysiology, they are often assessed and managed separately. This can lead to a worsening of comorbidities and limitations in a patient's quality of life. This project aims to develop recommendations to enhance the identification and treatment of patients with concomitant CVI and DM. METHODS Using a modified Delphi method, a panel of experts developed 38 Likert Scale and two multiple choice questions across six key themes. These were used to form an online survey which was disseminated through a convenience sampling approach to CVI and DM healthcare professionals across Europe, Central America, South America, and the Middle East. The threshold for consensus was set at ≥75%. RESULTS A total of 238 responses were received. 27/38 statements attained >90% agreement, nine of 38 attained between 75-90%, and two failed to meet the threshold (<75%). The awareness around the impact of the two diseases was high, but a gap was highlighted in the identification of patients with concomitant CVI and DM. CONCLUSIONS The high level of agreement shows that healthcare professionals are aware of the gaps in identification and treatment of patients with concomitant CVI and DM, and of the need to approach this as a combined therapy area. An algorithm is proposed to help the identification of at-risk patients and to provide recommendations on the management of patients with concomitant disease.
Collapse
Affiliation(s)
- Ahmet K Bozkurt
- Department of Cardiovascular Surgery, Istanbul University-Cerrahpasa Medical Faculty, Istanbul, Türkiye
| | - Marie J VAN Rijn
- Department of Vascular Surgery, Erasmus Medical Center, Rotterdam, the Netherlands -
| | - Eliete Bouskela
- Biomedical Center, Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giacomo Gastaldi
- Division of Endocrinology, Diabetology, Nutrition, and Patient Education, University Hospital of Geneva, Geneva, Switzerland
| | - Frederic Glauser
- Division of Angiology and Hemostasis, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Hermann Haller
- Hannover Medical School, Department of Nephrology and Hypertension, Hanover, Germany
| | | | | | | | - Eberhard Rabe
- Department of Dermatology, University of Bonn, Bonn, Germany
| | - Armando Mansilha
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Angiology and Vascular Surgery, Hospital de S. João, Porto, Portugal
| |
Collapse
|
18
|
Zhou Y, Xu P, Qin S, Zhu Y, Gu K. The associations between dietary flavonoid intake and the prevalence of diabetes mellitus: Data from the National Health and Nutrition Examination Survey 2007-2010 and 2017-2018. Front Endocrinol (Lausanne) 2023; 14:1250410. [PMID: 37664856 PMCID: PMC10474301 DOI: 10.3389/fendo.2023.1250410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Diabetes mellitus (DM) is a prominent health concern worldwide, leading to the high incidence of disability and mortality and bringing in heavy healthcare and social burden. Plant-based diets are reported associated with a reduction of DM risk. Plant-based diets are rich in flavonoids, which possess properties such as scavenging free radicals and exerting both anti-inflammatory and antioxidant effects. Purpose However, whether dietary flavonoids are associated with the prevalence of DM remains controversial. The potential reasons for contradictory epidemiological outcomes on the association between dietary flavonoids and DM prevalence have not been determined. Methods To address these limitations, we employed data from 22,481 participants in the National Health and Nutrition Examination Survey to explore the association between the intake of flavonoids and DM prevalence by weighted Logistic regression and weighted restricted cubic splines. Results We found that the prevalence of DM was inversely associated with the intake of total flavonoids in the second quartile [Odds Ratio (OR) 0.78 95% confidence interval (CI) (0.63, 0.97), p = 0.028], in the third quartile [0.76 (0.60, 0.97), p = 0.031], and in the fourth quartile [0.80 (0.65, 0.97), p = 0.027]. However, the p for trend was not significant [0.94 (0.88, 1.01), p = 0.096]. Moreover, the association between DM prevalence and the intake of total flavonoids was significantly influenced by race (p for interaction = 0.006). In Mexican Americans, there was a significant positive association between DM prevalence and total flavonoid intake within the third quartile [1.04 (1.02, 1.07), p = 0.003]. Total flavan-3-ol and subtotal catechin intake exhibited a non-linear U-shaped association with DM prevalence (p for non-linearity < 0.0001 and p for non-linearity < 0.0001, respectively). Compared to the first quartile of corresponding intakes, consumption within the third quartile of subtotal catechins [0.70 (0.55, 0.89), p = 0.005] and total flavan-3-ols [0.65 (0.50, 0.84), p = 0.002] was associated with a lower prevalence of DM. Conclusion Taken together, our study may provide preliminary research evidence for personalized improvement of dietary habits to reduce the prevalence of diabetes.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Xu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Shaolei Qin
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Park J, Seo E, Jun HS. Bavachin alleviates diabetic nephropathy in db/db mice by inhibition of oxidative stress and improvement of mitochondria function. Biomed Pharmacother 2023; 161:114479. [PMID: 36921531 DOI: 10.1016/j.biopha.2023.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Psoralea corylifolia L. seed (PCS) is a traditional medicine effective against various diseases. In this study, we aimed to investigate the effect of bavachin, the major active component of PCS, on DN in db/db mice. Bavachin (10 mg/kg/day) was administered orally to 12-week-old male db/db mice for 6 wk. For in vitro experiments, SV40 MES13 cells were treated with bavachin in the presence of 25 mM glucose. Food and water intake and urine mass were significantly increased in db/db mice compared to wild-type CON mice, but bavachin administration significantly reduced these increases. Urinary microalbumin, blood urea nitrogen, and creatinine clearance which were significantly increased in db/db mice, were also decreased by bavachin administration. Glomerular area and collagen deposition in the kidney were significantly decreased in db/db mice following bavachin administration. Increased renal levels of fibrotic factors, fibronectin, COL1A1, and α-SMA, were reduced following bavachin administration. Protein expressions of antioxidant enzymes, namely SOD2, catalase, and HO-1, and mitochondrial function-related factors, namely SIRT1, PGC1α, Nrf1, and mtTFA, were reduced in the kidney tissues of db/db mice compared to wild-type CON mice, and bavachin administration upregulated these protein expressions. In vitro studies also showed that bavachin decreases mitochondria ROS production, increases the expression of PGC-1α and SIRT1, and decreases the expression of α-SMA in high glucose-treated SV40 MES13 cells. Based on these results, bavachin improved DN by inhibiting oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Jisu Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| | - Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea.
| |
Collapse
|
20
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
21
|
Singh S, Grewal S, Sharma N, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Mohan S, Bungau SG, Bumbu A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023; 28:1765. [PMID: 36838751 PMCID: PMC9958968 DOI: 10.3390/molecules28041765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Sonam Grewal
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15081, Peru
| | - Syam Mohan
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602117, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Adrian Bumbu
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
22
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. Int J Biol Macromol 2023; 227:1151-1161. [PMID: 36464189 DOI: 10.1016/j.ijbiomac.2022.11.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 10/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic, and anti-cancer effects. The current study aimed to see how quercetin interacts with pepsin in an aqueous environment under physiological conditions. Absorbance and emission spectroscopy, circular dichroism (CD), and kinetic methods, as well as molecular dynamic (MD) simulation and docking, were applied to study the effects of Qu on the structure, dynamics, and kinetics of pepsin. Stern-Volmer (Ksv) constants were computed for the pepsin-quercetin complex at three temperatures, showing that Qu reduces enzyme emission spectra using a static quenching. With Qu binding, the Vmax and the kcat/Km values decreased. UV-vis absorption spectra, fluorescence emission spectroscopy, and CD result indicated that Qu binding to pepsin leads to microenvironmental changes around the enzyme, which can alter the enzyme's secondary structure. Therefore, quercetin caused alterations in the function and structure of pepsin. Thermodynamic parameters, MD binding, and docking simulation analysis showed that non-covalent reactions, including the hydrophobic forces, played a key role in the interaction of Qu with pepsin. The findings conclude of spectroscopic experiments were supported by molecular dynamics simulations and molecular docking results.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
23
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
24
|
Tariq H, Asif S, Andleeb A, Hano C, Abbasi BH. Flavonoid Production: Current Trends in Plant Metabolic Engineering and De Novo Microbial Production. Metabolites 2023; 13:124. [PMID: 36677049 PMCID: PMC9864322 DOI: 10.3390/metabo13010124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Flavonoids are secondary metabolites that represent a heterogeneous family of plant polyphenolic compounds. Recent research has determined that the health benefits of fruits and vegetables, as well as the therapeutic potential of medicinal plants, are based on the presence of various bioactive natural products, including a high proportion of flavonoids. With current trends in plant metabolite research, flavonoids have become the center of attention due to their significant bioactivity associated with anti-cancer, antioxidant, anti-inflammatory, and anti-microbial activities. However, the use of traditional approaches, widely associated with the production of flavonoids, including plant extraction and chemical synthesis, has not been able to establish a scalable route for large-scale production on an industrial level. The renovation of biosynthetic pathways in plants and industrially significant microbes using advanced genetic engineering tools offers substantial promise for the exploration and scalable production of flavonoids. Recently, the co-culture engineering approach has emerged to prevail over the constraints and limitations of the conventional monoculture approach by harnessing the power of two or more strains of engineered microbes to reconstruct the target biosynthetic pathway. In this review, current perspectives on the biosynthesis and metabolic engineering of flavonoids in plants have been summarized. Special emphasis is placed on the most recent developments in the microbial production of major classes of flavonoids. Finally, we describe the recent achievements in genetic engineering for the combinatorial biosynthesis of flavonoids by reconstructing synthesis pathways in microorganisms via a co-culture strategy to obtain high amounts of specific bioactive compounds.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Eure et Loir Campus, Université d’Orléans, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
25
|
Jin Y, Arroo R. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Front Nutr 2023; 10:1020950. [PMID: 37032781 PMCID: PMC10080163 DOI: 10.3389/fnut.2023.1020950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder caused either by inadequate insulin secretion, impaired insulin function, or both. Uncontrolled diabetes is characterized by hyperglycemia which over time leads to fatal damage to both macro-and microvascular systems, causing complications such as cardiovascular diseases, retinopathy and nephropathy. Diabetes management is conventionally delivered through modifications of diet and lifestyle and pharmacological treatment, using antidiabetic drugs, and ultimately insulin injections. However, the side effects and financial cost of medications often reduce patient compliance to treatment, negatively affecting their health outcomes. Natural phytochemicals from edible plants such as fruits and vegetables (F&V) and medicinal herbs have drawn a growing interest as potential therapeutic agents for treating diabetes and preventing the onset and progression of diabetic complications. Flavonoids, the most abundant polyphenols in the human diet, have shown antidiabetic effects in numerous in vitro and preclinical studies. The underlying mechanisms have been linked to their antioxidant, anti-inflammatory and immunomodulatory activities. Carotenoids, another major group of dietary phytochemicals, have also shown antidiabetic potential in recent in vitro and in vivo experimental models, possibly through a mechanism of action similar to that of flavonoids. However, scientific evidence on the efficacy of these phytochemicals in treating diabetes or preventing the onset and progression of its complications in clinical settings is scarce, which delays the translation of animal study evidence to human applications and also limits the knowledge on their modes of actions in diabetes management. This review is aimed to highlight the potential roles of flavonoids and carotenoids in preventing or ameliorating diabetes-related complications based on in vivo study evidence, i.e., an array of preclinical animal studies and human intervention trials. The current general consensus of the underlying mechanisms of action exerted by both groups of phytochemicals is that their anti-inflammatory action is key. However, other potential mechanisms of action are considered. In total, 50 in vivo studies were selected for a review after a comprehensive database search via PubMed and ScienceDirect from January 2002 to August 2022. The key words used for analysis are type-2 diabetes (T2DM), diabetic complications, flavonoids, carotenoids, antioxidant, anti-inflammatory, mechanisms of prevention and amelioration, animal studies and human interventions.
Collapse
Affiliation(s)
- Yannan Jin
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
- *Correspondence: Yannan Jin,
| | - Randolph Arroo
- Leicester School of Pharmacy, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
26
|
Romero-Juárez PA, Visco DB, Manhães-de-Castro R, Urquiza-Martínez MV, Saavedra LM, González-Vargas MC, Mercado-Camargo R, Aquino JDS, Toscano AE, Torner L, Guzmán-Quevedo O. Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutr Neurosci 2023; 26:25-39. [PMID: 34905445 DOI: 10.1080/1028415x.2021.2012629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Obesity results from an unbalance in the ingested and burned calories. Energy balance (EB) is critically regulated by the hypothalamic arcuate nucleus (ARC) by promoting appetite or anorectic actions. Hypothalamic inflammation, driven by high activation of the microglia, has been reported as a key mechanism involved in the development of diet-induced obesity. Kaempferol (KF), a flavonoid-type polyphenol present in a large number of fruits and vegetables, was shown to regulate both energy metabolism and inflammation. OBJECTIVES In this work, we studied the effects of both the central and peripheral treatment with KF on hypothalamic inflammation and EB regulation in mice with obesity. METHODS Obese adult mice were chronically (40 days) treated with KF (0.5 mg/kg/day, intraperitoneally). During the treatment, body weight, food intake (FI), feed efficiency (FE), glucose tolerance, and insulin sensitivity were determined. Analysis of microglia activation in the ARC of the hypothalamus at the end of the treatment was also performed. Body weight, FI, and FE changes were also evaluated in response to 5µg KF, centrally administrated. RESULTS Chronic administration of KF decreased ∼43% of the density, and ∼30% of the ratio, of activated microglia in the arcuate nucleus. These changes were accompanied by body weight loss, decreased FE, reduced fasting blood glucose, and a tendency to improve insulin sensitivity. Finally, acute central administration of KF reproduced the effects on EB triggered by peripheral administration. CONCLUSION These findings suggest that KF might fight obesity by regulating central processes related to EB regulation and hypothalamic inflammation.
Collapse
Affiliation(s)
- Pedro A Romero-Juárez
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Diego Bulcão Visco
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México.,Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brasil.,Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raul Manhães-de-Castro
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brasil.,Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mercedes V Urquiza-Martínez
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Luis Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Mari C González-Vargas
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Rosalio Mercado-Camargo
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Jailane de Souza Aquino
- Laboratório de Nutrição Experimental, Departamento de Nutrição, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana E Toscano
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Departmento de Enfermagem, Universidade Federal de Pernambuco, Recife, Brasil.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brasil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Omar Guzmán-Quevedo
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brasil
| |
Collapse
|
27
|
Jiménez-Castilla L, Opazo-Ríos L, Marin-Royo G, Orejudo M, Rodrigues-Diez R, Ballesteros-Martínez C, Soto-Catalán M, Caro-Ordieres T, Artaiz I, Suarez-Cortés T, Zazpe A, Hernández G, Cortés M, Tuñón J, Briones AM, Egido J, Gómez-Guerrero C. The Synthetic Flavonoid Hidrosmin Improves Endothelial Dysfunction and Atherosclerotic Lesions in Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11122499. [PMID: 36552707 PMCID: PMC9774734 DOI: 10.3390/antiox11122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción-Talcahuano 4301099, Chile
- Correspondence: (L.O.-R.); (R.R.-D.); (C.G.-G.); Tel.: +56-920463280 (L.O.-R.); +34-686826139 (R.R.-D.); +34-915504800 (ext. 3126) (C.G.-G.)
| | - Gema Marin-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (L.O.-R.); (R.R.-D.); (C.G.-G.); Tel.: +56-920463280 (L.O.-R.); +34-686826139 (R.R.-D.); +34-915504800 (ext. 3126) (C.G.-G.)
| | - Constanza Ballesteros-Martínez
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, 28029 Madrid, Spain
| | - Manuel Soto-Catalán
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Teresa Caro-Ordieres
- Department of Research, Development, and Innovation, FAES Farma, 48940 Bilbao, Spain
| | - Inés Artaiz
- Department of Research, Development, and Innovation, FAES Farma, 48940 Bilbao, Spain
| | - Tatiana Suarez-Cortés
- Department of Research, Development, and Innovation, FAES Farma, 48940 Bilbao, Spain
| | - Arturo Zazpe
- Department of Research, Development, and Innovation, FAES Farma, 48940 Bilbao, Spain
| | - Gonzalo Hernández
- Department of Research, Development, and Innovation, FAES Farma, 48940 Bilbao, Spain
| | - Marcelino Cortés
- Department of Cardiology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - José Tuñón
- Department of Cardiology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Ana M. Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (L.O.-R.); (R.R.-D.); (C.G.-G.); Tel.: +56-920463280 (L.O.-R.); +34-686826139 (R.R.-D.); +34-915504800 (ext. 3126) (C.G.-G.)
| |
Collapse
|
28
|
Martínez-Solís J, Calzada F, Barbosa E, Gutiérrez-Meza JM. Antidiabetic and Toxicological Effects of the Tea Infusion of Summer Collection from Annona cherimola Miller Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233224. [PMID: 36501263 PMCID: PMC9740447 DOI: 10.3390/plants11233224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Annona cherimola Miller (Ac) is a plant used in Mexican traditional medicine for the treatment of diabetes. In this work, the tea infusion extracts obtained from 1.5 g of leaf powder from Ac collected in May (AcMa), June (AcJun), July (AcJul), and August (AcAu) were evaluated on streptozocin-induced diabetic (STID) mice and for subchronic toxicity in STID and non-diabetic (ND) mice. In addition, extracts were subjected to high-performance liquid chromatography with diode array detection (HPLC-DAD). Results showed that the tea infusion extract of the sample collected in August (AcAu) exhibited the most significant antihyperglycemic activity during all acute assays. The analysis of the extracts (AcMa, AcJu, AcJul, and AcAu) by HPLC-DAD revealed that flavonoid glycosides, rutin, narcissin, and nicotiflorin were the major components. In addition, the sample AcAu contained the best concentration of flavonoids. In the case of subchronic oral toxicity, the AcAu sample did not cause mortality in STID mice, and histopathological analysis revealed significant improvement in the changes associated with diabetes in the liver and kidneys. These findings suggest that the Ac leaves collected in August may be a source of flavonoids such as rutin, with antidiabetic potential. In addition, these findings support the use of Ac to treat diabetes in traditional medicine.
Collapse
Affiliation(s)
- Jesús Martínez-Solís
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City CP 06720, Mexico
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City CP 11340, Mexico
| |
Collapse
|
29
|
Meléndez-Salcido CG, Ramírez-Emiliano J, Pérez-Vázquez V. Hypercaloric Diet Promotes Metabolic Disorders and Impaired Kidney Function. Curr Pharm Des 2022; 28:3127-3139. [PMID: 36278446 DOI: 10.2174/1381612829666221020162955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Poor dietary habits such as overconsumption of hypercaloric diets characterized by a high content of fructose and fat are related to metabolic abnormalities development such as obesity, diabetes, and dyslipidemia. Accumulating evidence supports the hypothesis that if energy intake gradually exceeds the body's ability to store fat in adipose tissue, the prolonged metabolic imbalance of circulating lipids from endogenous and exogenous sources leads to ectopic fat distribution in the peripheral organs, especially in the heart, liver, and kidney. The kidney is easily affected by dyslipidemia, which induces lipid accumulation and reflects an imbalance between fatty acid supply and fatty acid utilization. This derives from tissue lipotoxicity, oxidative stress, fibrosis, and inflammation, resulting in structural and functional changes that lead to glomerular and tubule-interstitial damage. Some authors indicate that a lipid-lowering pharmacological approach combined with a substantial lifestyle change should be considered to treat chronic kidney disease (CKD). Also, the new therapeutic target identification and the development of new drugs targeting metabolic pathways involved with kidney lipotoxicity could constitute an additional alternative to combat the complex mechanisms involved in impaired kidney function. In this review article, we first provide the pathophysiological evidence regarding the impact of hypercaloric diets, such as high-fat diets and high-fructose diets, on the development of metabolic disorders associated with impaired renal function and the molecular mechanisms underlying tissue lipid deposition. In addition, we present the current progress regarding translational strategies to prevent and/or treat kidney injury related to the consumption of hypercaloric diets.
Collapse
Affiliation(s)
- Cecilia Gabriela Meléndez-Salcido
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, 20 de enero, 929 Col. Obregón CP 37320. León, Guanajuato, México
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, 20 de enero, 929 Col. Obregón CP 37320. León, Guanajuato, México
| | - Victoriano Pérez-Vázquez
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, 20 de enero, 929 Col. Obregón CP 37320. León, Guanajuato, México
| |
Collapse
|
30
|
Rashid F, Javaid A, Ashfaq UA, Sufyan M, Alshammari A, Alharbi M, Nisar MA, Khurshid M. Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of Syzygium cumini and Its Anti-Diabetic Potential. Molecules 2022; 27:molecules27175734. [PMID: 36080496 PMCID: PMC9458221 DOI: 10.3390/molecules27175734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by improper insulin secretion leading to hyperglycemia. Syzygium cumini has excellent therapeutic properties due to its high levels of phytochemicals. The current research aimed to evaluate the anti-diabetic potential of S. cumini plant's seeds and the top two phytochemicals (kaempferol and gallic acid) were selected for further analysis. These phytochemicals were selected via computational tools and evaluated for α-Glucosidase inhibitory activity via enzymatic assay. Gallic acid (IC50 0.37 µM) and kaempferol (IC50 0.87 µM) have shown a stronger α-glucosidase inhibitory capacity than acarbose (5.26 µM). In addition, these phytochemicals demonstrated the highest binding energy, hydrogen bonding, protein-ligand interaction and the best MD simulation results at 100 ns compared to acarbose. Furthermore, the ADMET properties of gallic acid and kaempferol also fulfilled the safety criteria. Thus, it was concluded that S. cumini could potentially be used to treat DM. The potential bioactive molecules identified in this study (kaempferol and gallic acid) may be used as lead drugs against diabetes.
Collapse
Affiliation(s)
- Fatima Rashid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.-u.-R.); (U.A.A.)
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park 5042, Australia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
31
|
Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6038996. [PMID: 36071869 PMCID: PMC9441372 DOI: 10.1155/2022/6038996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the serious and progressive neurodegenerative disorders in the elderly worldwide. Various genetic, environmental, and lifestyle factors are associated with its pathogenesis that affect neuronal cells to degenerate over the period of time. AD is characterized by cognitive dysfunctions, behavioural disability, and psychological impairments due to the accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFT). Several research reports have shown that flavonoids are the polyphenolic compounds that significantly improve cognitive functions and inhibit or delay the amyloid beta aggregation or NFT formation in AD. Current research has uncovered that dietary use of flavonoid-rich food sources essentially increases intellectual abilities and postpones or hinders the senescence cycle and related neurodegenerative problems including AD. During AD pathogenesis, multiple signalling pathways are involved and to target a single pathway may relieve the symptoms but not provides the permanent cure. Flavonoids communicate with different signalling pathways and adjust their activities, accordingly prompting valuable neuroprotective impacts. Flavonoids likewise hamper the movement of obsessive indications of neurodegenerative disorders by hindering neuronal apoptosis incited by neurotoxic substances. In this short review, we briefly discussed about the classification of flavonoids and their neuroprotective properties that could be used as a potential source for the treatment of AD. In this review, we also highlight the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
Collapse
|
32
|
Oliveira WQD, Neri-Numa IA, Arruda HS, McClements DJ, Pastore GM. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Devi A, Dwibedi V, Rath SK, Khan ZA. Theories and Mechanism of Aging and Longevity Through Evolutionary Lens: a Coalition of Plant Anti-oxidants. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:291-320. [DOI: 10.1007/s43450-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2025]
|
34
|
Quality Control, Anti-Hyperglycemic, and Anti-Inflammatory Assessment of Colvillea racemosa Leaves Using In Vitro, In Vivo Investigations and Its Correlation with the Phytoconstituents Identified via LC-QTOF-MS and MS/MS. PLANTS 2022; 11:plants11060830. [PMID: 35336712 PMCID: PMC8948708 DOI: 10.3390/plants11060830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/23/2023]
Abstract
Colvillea racemosa is a cultivated ornamental plant that is a monotypic genus of Fabaceae. It is native to Madagascar, with limited studies. For the first time, the leaf quality control parameters, the anti-hyperglycemic and anti-inflammatory in vitro activity of Colvillea racemosa ethanol extract (CRE) and its fractions of petroleum ether (CRP), methylene chloride (CRMC), ethyl acetate (CREA), n-butanol (CRB), and methanol (CRME) were evaluated. It exhibited significant inhibition against α-amylase, α-glucosidase and membrane stabilization. CRB was the most active fraction, and in vivo studies revealed that oral treatment with CRB of STZ-induced diabetic rats efficiently lowered blood glucose by 67.78%, reduced serum nitric oxide and lipid peroxide levels by 41.23% and 38.45%, respectively, and increased the GSH level by 90.48%. In addition, compared with the diabetic group, there was a 52.2% decrease in serum VCAM, a 55.5% increase in paraoxonase, an improved lipid profile, and improved liver and kidney functions for a treated diabetic group with CRB. Metabolite profiling of CRB was determined by UPLC-ESI-QTOF-MS and tandem MS/MS. Twenty-three chromatographic peaks were identified, which were classified into phenolic compounds and amino acids. The characterized flavonoids were apigenin and luteolin derivatives.
Collapse
|
35
|
Tonelli CA, de Oliveira SQ, Silva Vieira AAD, Biavatti MW, Ritter C, Reginatto FH, Campos AMD, Dal-Pizzol F. Clinical efficacy of capsules containing standardized extract of Bauhinia forficata Link (pata-de-vaca) as adjuvant treatment in type 2 diabetes patients: A randomized, double blind clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114616. [PMID: 34506937 DOI: 10.1016/j.jep.2021.114616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bauhinia forficata Link, is a Brazilian native plant and popularly known as pata-de-vaca ("paw-of-cow"). The tea prepared with their leaves has been extensively used in the Brazilian traditional practices for the diabetes treatment. The aim of the present study was to investigate the effect of capsules containing granules of a standardized extract of B. forficata leaves as adjuvant treatment on the glycemic control of patients with type-2 diabetes melitus. MATERIALS AND METHODS A double-blind, randomized clinical trial using capsules containing granules prepared by wet granulation of a standardized extract from B. forficata leaves as adjuvant treatment, was conducted. 92 patients aged 18-75 years from an outpatient clinic with type-2 diabetes were randomly assigned by a simple randomization scheme, in a 1:1 ratio to receive capsules of B. forficata or placebo for four months. The capsules used contain 300 mg of standardized extract from B. forficata leaves, yielding 2% of total flavonoid content per capsule. Primary outcome was glycated hemoglobin levels and fasting plasma glucose at 4 months. Possible harms were also determined. RESULTS The findings showed that at 4 months, the mean fasting plasma glucose levels and glycated hemoglobin were both significantly lower in the B. forficata group than in the placebo group. CONCLUSION The present study suggests that the adjunctive use of capsules containing standardized extract of B. forficata can add to regular oral anti-diabetics in the metabolic and inflammatory control of type-2 diabetes patients.
Collapse
Affiliation(s)
- Carlos André Tonelli
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Simone Quintana de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Andriele Aparecida da Silva Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Flávio Henrique Reginatto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
36
|
Salvia spinosa L. Protects against Diabetes-Induced Nephropathy by Attenuation of Mitochondrial Oxidative Damage in Mice. Adv Pharmacol Pharm Sci 2022; 2021:4657514. [PMID: 34988461 PMCID: PMC8720605 DOI: 10.1155/2021/4657514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial oxidative damage is a crucial factor in the pathogenesis of diabetic nephropathy (DN), which is among the most prevalent problems of diabetes, and there hasn't been an effective treatment for DN yet. This study planned to investigate the effects of Salvia spinosa L. on mitochondrial function along with its protection against streptozotocin-induced nephropathy in diabetic mice. After the injection of streptozotocin (STZ) and verification of the establishment of diabetes, mice (n = 30) were randomly divided into the following groups: control group, diabetic-control, S. spinosa-treated diabetic (50, 100, and 200 mg/kg), and metformin-treated diabetic group (500 mg/kg). After four weeks of treatment, the mice were weighed. Blood and kidney tissues were examined for biochemical and histological evaluation. Hematoxylin and eosin staining was used for evaluating renal pathologic damage. Oxidative damage in the kidney was assessed by the evaluation of lipid peroxidation and glutathione oxidation. Furthermore, differential centrifugation was used to obtain the isolated mitochondria, and mitochondrial toxicity endpoints (mitochondrial function and mitochondrial oxidative markers) were determined in them. S. spinosa remarkably reduced the blood urea and creatinine concentrations, and also normalized kidney weight/body weight coefficient in the diabetic mice. S. spinosa ameliorated the incidence of glomerular and tubular pathological changes in histological analyses. Moreover, the oxidative and mitochondrial damages were notably attenuated in renal tissues of S. spinosa-treated mice. These results indicate that the methanolic extract of S. spinosa modulates the nephropathy in the diabetic mice by the amelioration of oxidatively induced mitochondrial damage and provides a reliable scientific base, suggesting S. spinosa as a promising alternative remedy against DN.
Collapse
|
37
|
Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J Immunol Res 2021; 2021:4560012. [PMID: 34938814 PMCID: PMC8687819 DOI: 10.1155/2021/4560012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), a nutraceutical compound derived from safflower (Carthamus tinctorius), has been shown as an effective therapeutic agent in cardiovascular diseases, cancer, and diabetes. Our previous study showed that the effect of HSYA on high-glucose-induced podocyte injury is related to its anti-inflammatory activities via macrophage polarization. Based on the information provided on PubMed, Scopus and Wanfang database, we currently aim to provide an updated overview of the role of HSYA in antidiabetic research from the following points: pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications. The pharmacokinetic research of HSYA has laid foundations for the clinical applications of HSYA injection in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. The application of HSYA as an antidiabetic oral medicament has been investigated based on its recent oral delivery system research. In vivo and in vitro pharmacological research indicated that the antidiabetic activities of HSYA were based mainly on its antioxidant and anti-inflammatory mechanisms via JNK/c-jun pathway, NOX4 pathway, and macrophage differentiation. Further anti-inflammatory exploration related to NF-κB signaling, MAPK pathway, and PI3K/Akt/mTOR pathway might deserve attention in the future. The anti-inflammatory activities of HSYA related to diabetes and diabetic complications will be a highlight in our following research.
Collapse
|
38
|
Shrestha R, Mohankumar K, Martin G, Hailemariam A, Lee SO, Jin UH, Burghardt R, Safe S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J Exp Clin Cancer Res 2021; 40:392. [PMID: 34906197 PMCID: PMC8670039 DOI: 10.1186/s13046-021-02199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavonoids exhibit both chemopreventive and chemotherapeutic activity for multiple tumor types, however, their mechanisms of action are not well defined. Based on some of their functional and gene modifying activities as anticancer agents, we hypothesized that kaempferol and quercetin were nuclear receptor 4A1 (NR4A1, Nur77) ligands and confirmed that both compounds directly bound NR4A1 with KD values of 3.1 and 0.93 μM, respectively. METHODS The activities of kaempferol and quercetin were determined in direct binding to NR4A1 protein and in NR4A1-dependent transactivation assays in Rh30 and Rh41 rhabdomyosarcoma (RMS) cells. Flavonoid-dependent effects as inhibitors of cell growth, survival and invasion were determined in XTT and Boyden chamber assays respectively and changes in protein levels were determined by western blots. Tumor growth inhibition studies were carried out in athymic nude mice bearing Rh30 cells as xenografts. RESULTS Kaempferol and quercetin bind NR4A1 protein and inhibit NR4A1-dependent transactivation in RMS cells. NR4A1 also regulates RMS cell growth, survival, mTOR signaling and invasion. The pro-oncogenic PAX3-FOXO1 and G9a genes are also regulated by NR4A1 and, these pathways and genes are all inhibited by kaempferol and quercetin. Moreover, at a dose of 50 mg/kg/d kaempferol and quercetin inhibited tumor growth in an athymic nude mouse xenograft model bearing Rh30 cells. CONCLUSION These results demonstrate the clinical potential for repurposing kaempferol and quercetin for clinical applications as precision medicine for treating RMS patients that express NR4A1 in order to increase the efficacy and decrease dosages of currently used cytotoxic drugs.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Greg Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Amanuel Hailemariam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, Republic of Korea
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Robert Burghardt
- Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
39
|
Jiménez-Castilla L, Marín-Royo G, Orejudo M, Opazo-Ríos L, Caro-Ordieres T, Artaiz I, Suárez-Cortés T, Zazpe A, Hernández G, Gómez-Guerrero C, Egido J. Nephroprotective Effects of Synthetic Flavonoid Hidrosmin in Experimental Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:1920. [PMID: 34943023 PMCID: PMC8750193 DOI: 10.3390/antiox10121920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a high-impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid hidrosmin (5-O-(beta-hydroxyethyl) diosmin) in experimental DN induced by streptozotocin injection in apolipoprotein E deficient mice. Oral administration of hidrosmin (300 mg/kg/day, n = 11) to diabetic mice for 7 weeks markedly reduced albuminuria (albumin-to-creatinine ratio: 47 ± 11% vs. control) and ameliorated renal pathological damage and expression of kidney injury markers. Kidneys of hidrosmin-treated mice exhibited lower content of macrophages and T cells, reduced expression of cytokines and chemokines, and attenuated inflammatory signaling pathways. Hidrosmin treatment improved the redox balance by reducing prooxidant enzymes and enhancing antioxidant genes, and also decreased senescence markers in diabetic kidneys. In vitro, hidrosmin dose-dependently reduced the expression of inflammatory and oxidative genes in tubuloepithelial cells exposed to either high-glucose or cytokines, with no evidence of cytotoxicity at effective concentrations. In conclusion, the synthetic flavonoid hidrosmin exerts a beneficial effect against DN by reducing inflammation, oxidative stress, and senescence pathways. Hidrosmin could have a potential role as a coadjutant therapy for the chronic complications of DM.
Collapse
Affiliation(s)
- Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Teresa Caro-Ordieres
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Inés Artaiz
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Tatiana Suárez-Cortés
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Arturo Zazpe
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Gonzalo Hernández
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
40
|
Bondonno NP, Dalgaard F, Murray K, Davey RJ, Bondonno CP, Cassidy A, Lewis JR, Kyrø C, Gislason G, Scalbert A, Tjønneland A, Hodgson JM. Higher Habitual Flavonoid Intakes Are Associated with a Lower Incidence of Diabetes. J Nutr 2021; 151:3533-3542. [PMID: 34313759 PMCID: PMC8562076 DOI: 10.1093/jn/nxab269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Higher flavonoid intakes are hypothesized to confer protection against type 2 diabetes mellitus. OBJECTIVES We aimed to 1) investigate associations between flavonoid intakes and diabetes, 2) examine the mediating impact of body fat, and 3) identify subpopulations that may receive the greatest benefit from higher flavonoid intakes in participants of the Danish Diet, Cancer, and Health Study followed up for 23 y. METHODS Cross-sectional associations between baseline flavonoid intake, estimated using FFQs and the Phenol Explorer database, and body fat, estimated by bioelectrical impedance, were assessed using multivariable-adjusted linear regression models. Nonlinear associations between flavonoid intake and incident diabetes were examined using restricted cubic splines with multivariable-adjusted Cox proportional hazards models. RESULTS Among 54,787 participants (median age: 56 y; IQR: 52-60 y; 47.3% men), 6700 individuals were diagnosed with diabetes. Participants in the highest total flavonoid intake quintile (median, 1202 mg/d) had a 1.52 kg lower body fat (95% CI: -1.74, -1.30 kg) and a 19% lower risk of diabetes (HR: 0.81; 95% CI: 0.75, 0.87) after multivariable adjustments and compared with participants in the lowest intake quintile (median: 174 mg/d). Body fat mediated 57% (95% CI: 42, 83%) of the association between flavonoid intake and incident diabetes. Of the flavonoid subclasses, moderate to high intakes of flavonols, flavanol monomers, flavanol oligo + polymers, and anthocyanins were significantly associated with a lower risk of diabetes. Although associations were not modified by sex, smoking status, BMI, or physical activity (Pinteraction > 0.05 for all), findings on an absolute scale suggest that those at a higher risk (those with obesity) may benefit the most from a higher flavonoid intake. CONCLUSIONS The findings reported in this study suggest that a diet abundant in flavonoid-rich foods may help ameliorate diabetes risk, in part through a reduction in body fat.
Collapse
Affiliation(s)
- Nicola P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Health and Medical Sciences, University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Raymond J Davey
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Health and Medical Sciences, University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Health and Medical Sciences, University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Cecilie Kyrø
- The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
- The National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | | | - Anne Tjønneland
- The Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Health and Medical Sciences, University of Western Australia, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
41
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
42
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
43
|
Apios Americana Medicus: A potential staple food candidate with versatile bioactivities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
de Oliveira WQ, Neri-Numa IA, Arruda HS, Lopes AT, Pelissari FM, Barros FFC, Pastore GM. Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Wang X, He S, Yuan L, Deng H, Zhang Z. Synthesis, Structure Characterization, and Antioxidant and Antibacterial Activity Study of Iso-orientin-Zinc Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3952-3964. [PMID: 33764779 DOI: 10.1021/acs.jafc.0c06337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flavonoid-metal complexes possess more effective functional properties than flavonoids. However, the research of iso-orientin (Iso)-metal complex has rarely been reported. In this study, Iso-zinc complex (Iso-Zn, [Zn3(C21H14O11)2]·4H2O) had been synthesized and characterized. From the UV-vis spectra and IR spectra, the 4-carbonyl group in the C-ring of Iso was involved in the metal chelation besides A-ring and B-ring hydroxyl group. Thermal gravimetric analysis and the water contact angle test showed that Iso-Zn had higher thermal stability and better hydrophilicity than Iso, respectively. The radical scavenger and antibacterial potencies of Iso-Zn were significantly stronger than those of Iso. Furthermore, Iso-Zn showed lower erythrocytes hemolysis ratio and cytotoxicity. The present study demonstrated that Iso-Zn exhibited better water solubility, antioxidative and antibacterial activities, and lower cytotoxicity and provided a theoretical basis for expanding the utilization scope of Iso through enhancing its hydrophilicity.
Collapse
Affiliation(s)
- Xiao Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shenyuan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hong Deng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
46
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
47
|
The subgroup of 2'-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg Med Chem 2021; 32:116001. [PMID: 33444847 DOI: 10.1016/j.bmc.2021.116001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.
Collapse
|
48
|
Carvalho JDS, Ramadan D, de Paiva Gonçalves V, Maquera-Huacho PM, Assis RP, Lima TFO, Brunetti IL, Spolidorio DMP, Cesar T, Manthey JA, Spolidorio LC. Impact of citrus flavonoid supplementation on inflammation in lipopolysaccharide-induced periodontal disease in mice. Food Funct 2021; 12:5007-5017. [PMID: 33950049 DOI: 10.1039/d0fo03338c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In general, the consumption of flavonoid-rich foods may influence the control/dysregulation of the magnitude and duration of inflammation and oxidative stress, which are known to contribute to multiple pathologies. Information regarding the impact of citrus flavonoid dietary supplementation on periodontal disease is still scarce. Herein, we investigated whether a diet supplemented with eriocitrin and eriodictyol could alter the course of the inflammatory response associated with LPS-induced periodontal disease in mice. Sixty BALB/c mice received a standard diet or a diet supplemented with different concentrations of eriocitrin or eriodictyol. After 30 days of food supplementation, a solution containing LPS from Escherichia coli was injected into the gingival tissues three times per week for four weeks. Neutrophils, mononuclear cells and eosinophils were assessed using a severity analysis system in H&E-stained sections and modified picrosirius red. The activities of myeloperoxidase (MPO), a marker of granulocyte infiltration, and eosinophil peroxidase (EPO) were determined spectrophotometrically. The oxidative damage was determined by measuring the malondialdehyde (MDA) content and anti-oxidative activity through the assessment of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Interleukin (IL)-1β, TNF-α, and IL-10 were quantified by multiplex immunoassay. Periodontal inflammation was significantly inhibited by citrus flavonoid supplementation, including reduced flatness of the gingival epithelium and chronic and acute inflammatory cell infiltration, as well as loss of connective tissue in the gingival papillae. Both eriocitrin and eriodictyol inhibited gingival IL-1β and TNF-α and increased IL-10 secondary to periodontitis. Significant protection and decreased MPO and EPO activity were detected in the periodontal tissue of citrus flavonoid-treated animals. In comparison with the LPS group, SOD, CAT and GPx activities were increased, while the MDA content was reduced, indicating decreased oxidative damage. These results suggest that a diet supplemented with the citrus flavonoids eriocitrin or eriodictyol may aid in the prevention of periodontitis, representing a potential method to enhance local immunity and host defense.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinícius de Paiva Gonçalves
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | | | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | | | - Thais Cesar
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - John A Manthey
- U.S. Horticultural Research Laboratory, Agricultural Research Service, USDA, 2001 South Rock Road/Port Fierce, FL 34945, USA
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
49
|
Al Duhaidahawi D, Hasan SA, Al Zubaidy HFS. Flavonoids in the Treatment of Diabetes: Clinical Outcomes and Mechanism to Ameliorate Blood Glucose Levels. Curr Diabetes Rev 2021; 17:e120720188794. [PMID: 33290200 DOI: 10.2174/1573399817666201207200346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For thousands of years, natural food products have been used as a medicine for treating diseases that affect the human body, including diabetes mellitus (DM). Lately, several investigations have been performed on the flavonoid derivatives of plant origin, and their biological activity has been extensively studied. METHODS Given our need to know more mechanisms for treating DM, we performed a thorough research review on treating diabetes mellitus based on flavonoids, their therapeutic potential, and biological action. RESULTS Flavonoids reduce complications in addition to their vital role as effective supplements for preventing diabetes mellitus by regulating glucose metabolism, lipid profile, liver enzyme activity, a protein kinase inhibitor, PPAR, and AMPK with NF-κB. CONCLUSION The articles that we reviewed showed the positive role of flavonoids, which in a certain way reduce diabetes, but their side effects still need to be studied further.This review is focused on describing the different types of dietary flavonoids along with their mechanisms of reducing blood glucose and enhancing insulin sensitivity, as well as their side effects.
Collapse
Affiliation(s)
- Dunya Al Duhaidahawi
- Faculty of Pharmacy, Department of Pharmacognacy, University of Kufa, AL-Najaf, Iraq
| | - Samer A Hasan
- Pharmacognacy, Pharmacy, University of Kufa, AL-Najaf, Iraq
| | | |
Collapse
|
50
|
Zhang Y, Yu X, Wang M, Ding Y, Guo H, Liu J, Cheng Y. Hyperoside from Z. bungeanum leaves restores insulin secretion and mitochondrial function by regulating pancreatic cellular redox status in diabetic mice. Free Radic Biol Med 2021; 162:412-422. [PMID: 33161043 DOI: 10.1016/j.freeradbiomed.2020.10.320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by peripheral insulin resistance and insufficient insulin secretion caused by pancreatic β-cell dysfunction. Excessive production of reactive oxygen species (ROS) and activation of caspases in mitochondria inhibit insulin secretion and promote apoptosis of pancreatic β-cells. Studies have demonstrated that positive correlation between the consumption of flavonoid-rich diets and diabetes prevention. Zanthoxylum bungeanum leaves have been used as food for a long time and are rich in flavonoids with strong radical scavenging abilities. We and others have identified hyperoside as the major bioactive component of total flavonoids exacted from Zanthoxylum bungeanum leaves. We hypothesize that hyperoside from Z. bungeanum leaves (HZL) may prevent T2DM by inhibiting excessive ROS formation and reducing pancreatic β-cells apoptosis. In current study, HZL was administered to high fat diet and alloxan-induced diabetic mice, and appeared to significantly ameliorate the damage of glucose metabolism and insulin secretion as well as restore the structural integrity of pancreas, and inhibit β-cell apoptosis. Pancreatic antioxidant enzyme activities were also restored by HZL supplementation. In cultured MIN6 cells, which produce and secret insulin, HZL treatment restored insulin secretion through inhibiting the expression of TXNIP and lowering intracellular calcium concentration. These observations mechanistically linked the beneficial effects of HZL with the regulation on cellular redox status and mitochondrial function. Taken together, our findings suggest that HZL has protective effect on pancreatic β-cell function and may be a beneficial nutritional supplementation for prevention and adjuvant therapy of T2DM.
Collapse
Affiliation(s)
- Yali Zhang
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiaomin Yu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mimi Wang
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yan Ding
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hui Guo
- Department of Endocrinology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Ying Cheng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|