1
|
Jin L, Chen J, Wu L, Zhang M, Tang X, Shen C, Sun J, Du L, Wang X, Li Z. Central artery pulse pressure, not central arterial stiffness impact on all-cause mortality in patients with viral pneumonia infection. BMC Infect Dis 2024; 24:1183. [PMID: 39434023 PMCID: PMC11492499 DOI: 10.1186/s12879-024-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVES COVID-19 viral pneumonia can result in increased arterial stiffness, along with cardiac and systemic inflammatory responses. This study aimed to investigate the association between arterial stiffness, inflammation severity, and all-cause mortality in patients with COVID-19. METHODS In this study, anthropometric data, pneumonia infection severity, and blood tests were analyzed. Arterial stiffness was assessed using the non-invasive assessment indices, including arterial velocity pulse index (AVI) and central arterial pulse pressure (CAPP). Infection volumes and percentages for the whole lungs, most lobes, and most segments were extracted from CT images using artificial intelligence-based quantitative analysis software. The relationship between arterial stiffness, central hemodynamics, and all-cause mortality was investigated. RESULTS In multivariable Cox regression analysis, high CAPP was significantly associated with all-cause mortality (hazard ratio: 0.263, 95% CI, 0.073-0.945, p = 0.041). Whole lung infection percentages were independently associated with high CAPP, with an area under the curve (AUC) of 0.662 and a specificity of 89.09%. CONCLUSIONS High CAPP, but not high AVI, demonstrated independent prognostic value for all-cause mortality in patients due to COVID-19 pneumonia infection. Evaluating this parameter could help in risk assessment and improve diagnostic and therapeutic strategies in viral pneumonia infections.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Jianxiong Chen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Lingheng Wu
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Mengjiao Zhang
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Xiaobo Tang
- Department of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201803, China
| | - Cuiqin Shen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Jiali Sun
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xifu Wang
- Department of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201803, China
| | - Zhaojun Li
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China.
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Colleran R, Fitzgerald S, Rai H, McGovern L, Byrne RJ, Mansur A, Cradock A, Lavery R, Bisset J, McKeogh S, Cantwell G, O'Ciardha D, Wilson H, Begossi N, Blake N, Fitzgibbon M, McNulty J, Széplaki G, Heffernan E, Hannan M, O'Donnell JS, Byrne RA. Symptom burden, coagulopathy and heart disease after acute SARS-CoV-2 infection in primary practice. Sci Rep 2024; 14:21229. [PMID: 39261512 PMCID: PMC11390729 DOI: 10.1038/s41598-024-71535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
SETANTA (Study of HEarT DiseAse and ImmuNiTy After COVID-19 in Ireland) study aimed to investigate symptom burden and incidence of cardiac abnormalities after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 and to correlate these results with biomarkers of immunological response and coagulation. SETANTA was a prospective, single-arm observational cross-sectional study condcuted in a primary practice setting, and prospectively registered with ClinicalTrials.gov (identifier: NCT04823182). Patients with recent COVID-19 infection (≥ 6 weeks and ≤ 12 months) were prospectively enrolled. Primary outcomes of interest were markers of cardiac injury detected by cardiac magnetic resonance imaging (CMR), which included left ventricular ejection fraction, late gadolinium enhancement and pericardial abnormalities, as well as relevant biomarkers testing immunological response and coagulopathy. 100 patients (n = 129 approached) were included, amongst which 64% were female. Mean age of the total cohort was 45.2 years. The median (interquartile range) time interval between COVID-19 infection and enrolment was 189 [125, 246] days. 83% of participants had at least one persistent symptom, while 96% had positive serology for prior SARS-CoV-2 infection. Late gadolinium enhancement, pericardial effusion, was present in 2.2% and 8.3% respectively, while left ventricular ejection fraction was below the normal reference limit in 17.4% of patients. Von Willebrand factor antigen was elevated in 32.7% of patients and Fibrinogen and D-Dimer levels were found to be elevated in 10.2% and 11.1% of patients, respectively. In a cohort of primary practice patients recently recovered from SARS-CoV-2 infection, prevalence of persistent symptoms and markers of abnormal coagulation were high, despite a lower frequency of abnormalities on CMR compared with prior reports of patients assessed in a hospital setting.Trial Registration: Clinicaltrials.gov, NCT04823182 (prospectively registered on 30th March 2021).
Collapse
Affiliation(s)
- Roisin Colleran
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sean Fitzgerald
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Himanshu Rai
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laurna McGovern
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Andrea Cradock
- School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | - Gordon Cantwell
- Drs Cantwell and Spillane Practice, Family and General Medicine, Dublin, Ireland
| | - Darach O'Ciardha
- Institute of Population Health, Trinity College Dublin, Dublin, Ireland
| | - Hannah Wilson
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nicoletta Begossi
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nial Blake
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Gábor Széplaki
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Emma Heffernan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - Margaret Hannan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Robert A Byrne
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland.
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
3
|
Salajegheh F, Salajegheh S, Nakhaie M, Farsiu N, Khoshnazar SM, Sinaei R, Farrokhnia M, Torabiyan S. The relationship between COVID-19 and hyperglycemia: screening and monitoring hospitalized patients. Clin Diabetes Endocrinol 2024; 10:29. [PMID: 39215344 PMCID: PMC11365270 DOI: 10.1186/s40842-024-00184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Elevated blood glucose concentration, also known as hyperglycemia, has been identified as a significant factor influencing the prognosis of COVID-19, alongside the impact of the SARS-CoV-2 infection itself. METHODS This research is a cross-sectional investigation that examined the relationship between COVID-19 and hyperglycemia in patients admitted to Afzalipour Hospital in Kerman, Iran, from July to September 2021. A standardized data sheet was used to capture demographic data (age, gender) and laboratory information (blood sugar, arterial blood oxygen saturation, and C-reactive protein (CRP)) upon admission. RESULTS The present research evaluated a total of 300 individuals diagnosed with COVID-19, with an average age of 50.19 ± 15.55 years. Among these patients, the majority were male, accounting for 51.67% of the total. Hyperglycemia was seen in 21.67% of patients, but less than 20% had new-onset diabetes. Individuals exhibiting hyperglycemia were typical of advanced age (P < 0.001). Furthermore, there was a slight but statistically significant association between advanced age and elevated blood glucose concentration (R = 0.254, P < 0.001). Gender had no significant impact on the occurrence of hyperglycemia (P = 0.199). There was no significant association between CRP levels and blood glucose concentration (P = 0.524) or the incidence of hyperglycemia (P = 0.473). Although there was no significant disparity in blood oxygen saturation between individuals with or without hyperglycemia (P = 0.06), higher blood glucose concentration was correlated with lower blood oxygen saturation (R = -0.151, P < 0.001). CONCLUSION Considering the correlation between blood glucose concentration, advanced age, and disease severity, it is recommended to carefully screen and monitor all COVID-19 patients for hyperglycemia and new-onset diabetes. Effective management of these complications could enhance the control of patients' overall prognosis and subsequent complications.
Collapse
Affiliation(s)
- Faranak Salajegheh
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Salajegheh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Niloofar Farsiu
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Sinaei
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrdad Farrokhnia
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheila Torabiyan
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Wang CH, Porta L, Yang TK, Wang YH, Wu TH, Qian F, Han YY, Sheng WH, Chen SC, Lee CC, Chang SC. Optimal methods of vitamin D supplementation to prevent acute respiratory infections: a systematic review, dose-response and pairwise meta-analysis of randomized controlled trials. Nutr J 2024; 23:92. [PMID: 39143549 PMCID: PMC11323636 DOI: 10.1186/s12937-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Vitamin D supplementation may prevent acute respiratory infections (ARIs). This study aimed to identify the optimal methods of vitamin D supplementation. METHODS PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and the ClinicalTrials.gov registry were searched from database inception through July 13, 2023. Randomized-controlled trials (RCTs) were included. Data were pooled using random-effects model. The primary outcome was the proportion of participants with one or more ARIs. RESULTS The analysis included 43 RCTs with 49320 participants. Forty RCTs were considered to be at low risk for bias. The main pairwise meta-analysis indicated there were no significant preventive effects of vitamin D supplementation against ARIs (risk ratio [RR]: 0.99, 95% confidence interval [CI]: 0.97 to 1.01, I2 = 49.6%). The subgroup dose-response meta-analysis indicated that the optimal vitamin D supplementation doses ranged between 400-1200 IU/day for both summer-sparing and winter-dominant subgroups. The subgroup pairwise meta-analysis also revealed significant preventive effects of vitamin D supplementation in subgroups of daily dosing (RR: 0.92, 95% CI: 0.85 to 0.99, I2 = 55.7%, number needed to treat [NNT]: 36), trials duration < 4 months (RR: 0.81, 95% CI: 0.67 to 0.97, I2 = 48.8%, NNT: 16), summer-sparing seasons (RR: 0.85, 95% CI: 0.74 to 0.98, I2 = 55.8%, NNT: 26), and winter-dominant seasons (RR: 0.79, 95% CI: 0.71 to 0.89, I2 = 9.7%, NNT: 10). CONCLUSION Vitamin D supplementation may slightly prevent ARIs when taken daily at doses between 400 and 1200 IU/d during spring, autumn, or winter, which should be further examined in future clinical trials.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Emergency Medicine, Zhongzheng Dist, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City 100, Taiwan, ROC
| | - Lorenzo Porta
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, Department of Emergency Medicine, Università Degli Studi Di Milano Bicocca, Milan, Italy
| | - Ting-Kai Yang
- Department of Emergency Medicine, Zhongzheng Dist, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City 100, Taiwan, ROC
| | - Yu-Hsiang Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Hung Wu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Frank Qian
- Sections of Cardiovascular Medicine, Department of Medicine, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Yin-Yi Han
- Department of Trauma, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shyr-Chyr Chen
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Emergency Medicine, Zhongzheng Dist, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City 100, Taiwan, ROC
| | - Chien-Chang Lee
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Emergency Medicine, Zhongzheng Dist, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei City 100, Taiwan, ROC.
- Department of Information Management, Ministry of Health and Welfare, Taipei, Taiwan.
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Xie E, Shen X, Yeo YH, Xing Z, Ebinger JE, Duan Y, Zhang Y, Cheng S, Ji F, Deng J. Exploring the underlying molecular mechanisms of acute myocardial infarction after SARS-CoV-2 infection. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 44:100417. [PMID: 39045234 PMCID: PMC11263507 DOI: 10.1016/j.ahjo.2024.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
An increase in acute myocardial infarction (AMI)-related deaths has been reported during the COVID-19 pandemic. Despite evidence suggesting the association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and AMI, the underlying mechanisms remain unclear. Here, we integrated mRNA and microRNA expression profiles related to SARS-CoV-2 infection and AMI from public databases. We then performed transcriptomic analysis using bioinformatics and systems biology approaches to explore the potential molecular mechanisms of SARS-CoV-2 infection affects AMI. First, twenty-one common differentially expressed genes (DEGs) were identified from SARS-CoV-2 infection and AMI patients in endothelial cells datasets and then we performed functional analysis to predict the roles of these DEGs. The functional analysis emphasized that the endothelial cell response to cytokine stimulus due to excessive inflammation was essential in these two diseases. Importantly, the tumor necrosis factor and interleukin-17 signaling pathways appeared to be integral factors in this mechanism. Interestingly, most of these common genes were also upregulated in transcriptomic datasets of SARS-CoV-2-infected cardiomyocytes, suggesting that these genes may be shared in cardiac- and vascular-related injuries. We subsequently built a protein-protein interaction network and extracted hub genes and essential modules from this network. At the transcriptional and post-transcriptional levels, regulatory networks with common DEGs were also constructed, and some key regulator signatures were further identified and validated. In summary, our research revealed that a highly activated inflammatory response in patients with COVID-19 might be a crucial factor for susceptibility to AMI and we identified some candidate genes and regulators that could be used as biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Enrui Xie
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaotao Shen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
- Department of Genetics, Stanford University, California, USA
| | - Yee Hui Yeo
- Department of Genetics, Stanford University, California, USA
| | - Zixuan Xing
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Joseph E. Ebinger
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Yixuan Duan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The Eighth Hospital of Xi'an City, Xi'an Jiaotong University, Xi'an, China
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Fanpu Ji
- Department of Infectious Disease, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center of Infectious Diseases, Xi'an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis. Part I: Thoracic organs. J Transl Med 2024; 22:609. [PMID: 38956586 PMCID: PMC11218337 DOI: 10.1186/s12967-024-05244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/27/2024] [Indexed: 07/04/2024] Open
Abstract
Sustained injury from factors such as hypoxia, infection, or physical damage may provoke improper tissue repair and the anomalous deposition of connective tissue that causes fibrosis. This phenomenon may take place in any organ, ultimately leading to their dysfunction and eventual failure. Tissue fibrosis has also been found to be central in both the process of carcinogenesis and cancer progression. Thus, its prompt diagnosis and regular monitoring is necessary for implementing effective disease-modifying interventions aiming to reduce mortality and improve overall quality of life. While significant research has been conducted on these subjects, a comprehensive understanding of how their relationship manifests through modern imaging techniques remains to be established. This work intends to provide a comprehensive overview of imaging technologies relevant to the detection of fibrosis affecting thoracic organs as well as to explore potential future advancements in this field.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
7
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
8
|
Hayashi S, Nishimoto Y, Yanase Y, Okune Y, Matsuoka K, Nishimoto S, Hosoda K, Negishi M. Vertebral artery wall inflammation suspected as the cause of cryptogenic ischemic stroke developing during the recovery period of COVID-19. Neuroradiol J 2024; 37:366-371. [PMID: 37566615 PMCID: PMC11138334 DOI: 10.1177/19714009231193159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) can cause acute ischemic stroke (AIS) due to large vessel occlusion (LVO). Some cases of COVID-19-related LVO are known to be resistant to mechanical thrombectomy and have different characteristics from non-COVID-19-related LVO. Inflammation of the occluded arterial wall is suspected as one of the causes of such differences, but the exact mechanism is not fully understood. A 52-year-old man suffered from AIS due to left vertebral artery (VA) occlusion during the recovery period after mild COVID-19. Successful recanalization of the left VA was achieved with antithrombotic therapy, but a late and reversible edematous lesion appeared in part of the brainstem adjacent to the left VA, with abnormal enhancement in both the left VA wall and medulla oblongata on postcontrast magnetic resonance imaging. We suggest that the left VA wall inflammation, induced by COVID-19, caused the ischemic stroke and extended to the brainstem, and an incidental thrombosed unruptured aneurysm of the left VA accelerated these changes. This case provides the first evidence of LVO after COVID-19 in which the pathological conditions in the brainstem adjacent to the affected artery could be observed with neuroimaging and inflammation of the arterial wall was indirectly confirmed. Physicians should be aware that unconventional ischemic stroke may develop in some patients during the recovery period after COVID-19.
Collapse
Affiliation(s)
- Satoru Hayashi
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Yo Nishimoto
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Yongran Yanase
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Yukiya Okune
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Keita Matsuoka
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Shota Nishimoto
- Department of Neurosurgery, Chikamori Hospital, Kochi, Japan
| | - Koji Hosoda
- Department of Radiology, Chikamori Hospital, Kochi, Japan
| | - Masatoshi Negishi
- Department of Emergency and Critical Care Medicine, Chikamori Hospital, Kochi, Japan
| |
Collapse
|
9
|
Azami P, Vafa RG, Heydarzadeh R, Sadeghi M, Amiri F, Azadian A, Khademolhosseini A, Yousefi M, Montaseri M, Hosseini N, Hosseini SA, Kojuri J. Evaluation of blood pressure variation in recovered COVID-19 patients at one-year follow-up: a retrospective cohort study. BMC Cardiovasc Disord 2024; 24:240. [PMID: 38714940 PMCID: PMC11075195 DOI: 10.1186/s12872-024-03916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has various sequelae, one of which might be hypertension. We aimed to evaluate COVID-19's impact on blood pressure (BP) in non-hospitalized patients at one-year follow-up. METHOD A total of 7,950 consecutive COVID-19 patients regularly visiting our cardiology clinic were retrospectively screened. Patients' electronic medical records including demographics, comorbidities, vital signs, treatments, and outcomes, were reviewed by two physicians. Individuals with at least one BP measurement in the three months preceding COVID-19 and one measurement in 12 months or more following recovery were included. BP levels before and after COVID-19 were compared using the paired t-test. RESULTS 5,355 confirmed COVID-19 patients (mean age 55.51 ± 15.38 years) were included. Hypertension (56.9%) and diabetes mellitus (34%) were the predominant comorbidities, and 44.3% had prior major adverse cardiovascular events. Both systolic (126.90 ± 20.91 vs. 139.99 ± 23.94 mmHg, P < 0.001) and diastolic BP (80.54 ± 13.94 vs. 86.49 ± 14.40 mmHg, P < 0.001) were significantly higher post-COVID-19 vs. pre-COVID-19. Notably, 456 (14%) hypertensive patients experienced exacerbated hypertension, while 408 (17%) patients developed new-onset hypertension, overall 864 (16%) of patients had exacerbation or new hypertension. Linear regression analysis revealed that advanced age, smoking, previous cardiovascular events, hypertension, and diabetes mellitus predict increased BP following COVID-19 (P < 0.001). CONCLUSION COVID-19 raised systolic and diastolic BP in the long term in non-hospitalized patients, with over one-sixth developing new-onset or exacerbated hypertension. All patients should be evaluated regarding BP, following COVID-19 recovery, particularly those with the mentioned predictive factors. (clinicaltrial.gov: NCT05798208).
Collapse
Affiliation(s)
- Pouria Azami
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Golchin Vafa
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Reza Heydarzadeh
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Mehrdad Sadeghi
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Farhang Amiri
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Alireza Azadian
- Shiraz University of Medical Sciences, Shiraz, Iran
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Amin Khademolhosseini
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Mina Yousefi
- Shahid sadoughi University of Medical sciences, Yazd, Iran
| | - Mohammad Montaseri
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Nazanin Hosseini
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Seyed Ali Hosseini
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran
| | - Javad Kojuri
- Shiraz University of Medical Sciences, Shiraz, Iran.
- Professor Kojuri Cardiology Clinic, Niayesh St. Niayesh Medical Complex, Shiraz, Iran.
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Berns SA, Leontyeva MS, Tavlueva EV, Bashnyak VS, Drapkina OM. [Features of the Course of Arterial Hypertension in the Era of the COVID-19 Pandemic: Common Pathogenetic Links Between Hypertension and SARS-CoV-2]. KARDIOLOGIIA 2024; 64:72-78. [PMID: 38742518 DOI: 10.18087/cardio.2024.4.n2525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/23/2023] [Indexed: 05/16/2024]
Abstract
The aim of this review was to present the mechanism of infection with severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and its possible effect on the course of arterial hypertension. Another aim was to evaluate the relationship of the renin-angiotensin-aldosterone system with the pathogenetic stages of infection caused by SARS-CoV-2 virus.
Collapse
Affiliation(s)
- S A Berns
- National Medical Research Center of Therapy and Preventive Medicine
| | | | - E V Tavlueva
- National Medical Research Center of Therapy and Preventive Medicine; Inozemtsev Municipal Clinical Hospital
| | - V S Bashnyak
- National Medical Research Center of Therapy and Preventive Medicine
| | - O M Drapkina
- National Medical Research Center of Therapy and Preventive Medicine
| |
Collapse
|
11
|
Hezam AAM, Shaghdar HBM, Chen L. The connection between hypertension and diabetes and their role in heart and kidney disease development. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:22. [PMID: 38855561 PMCID: PMC11162087 DOI: 10.4103/jrms.jrms_470_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 06/11/2024]
Abstract
Hypertension and diabetes are two common metabolic disorders that often coexist in the same individual. Their concurrence increases the risk of cardiovascular disease, renal dysfunction, and other complications. Cardiovascular disease is the primary cause of morbidity and mortality in individuals with diabetes, and hypertension further aggravates this condition. Interestingly, hypertension and diabetes share several common pathophysiological mechanisms including insulin resistance, vascular inflammation, endothelial dysfunction, obesity, and oxidative stress suggesting a cross-talk between these two conditions that could potentially contribute to the development of other human diseases. Effective management of diabetes should include a multifaceted approach that addresses not only glycemic control but also blood pressure (BP) and lipid control. Treatment plans should be individualized to each patient's needs and should involve a combination of lifestyle modifications and medications to achieve optimal control. With the availability of newer antidiabetic medications such as SGLT inhibitors and GLP1 receptor agonists, it is crucial to consider their potential to reduce BP, enhance kidney function, and lower the risk of cardiovascular diseases when initiating treatment for glycemic control. A more profound comprehension of the shared underlying mechanisms between these conditions could pave the way for the development of innovative therapeutic approaches to tackle them. Our review offers an in-depth analysis of the literature, providing a holistic view of the mechanisms underlying diabetes-hypertension comorbidity and its implications on heart and kidney diseases. The present article concludes by discussing current approaches for managing hypertensive diabetic patients to create a set of comprehensive individualized recommendations.
Collapse
Affiliation(s)
- Ali Ahmed Mohammed Hezam
- Department of General Practice, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Liying Chen
- School of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Hou Q, Jiang J, Na K, Zhang X, Liu D, Jing Q, Yan C, Han Y. Potential therapeutic targets for COVID-19 complicated with pulmonary hypertension: a bioinformatics and early validation study. Sci Rep 2024; 14:9294. [PMID: 38653779 DOI: 10.1038/s41598-024-60113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.
Collapse
Affiliation(s)
- Qingbin Hou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinping Jiang
- Department of Cardiology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
13
|
Mone P, Jankauskas SS, Manzi MV, Gambardella J, Coppola A, Kansakar U, Izzo R, Fiorentino G, Lombardi A, Varzideh F, Sorriento D, Trimarco B, Santulli G. Endothelial Extracellular Vesicles Enriched in microRNA-34a Predict New-Onset Diabetes in Coronavirus Disease 2019 (COVID-19) Patients: Novel Insights for Long COVID Metabolic Sequelae. J Pharmacol Exp Ther 2024; 389:34-39. [PMID: 38336381 PMCID: PMC10949163 DOI: 10.1124/jpet.122.001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Emerging evidence indicates that the relationship between coronavirus disease 2019 (COVID-19) and diabetes is 2-fold: 1) it is known that the presence of diabetes and other metabolic alterations poses a considerably high risk to develop a severe COVID-19; 2) patients who survived a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have an increased risk of developing new-onset diabetes. However, the mechanisms underlying this association are mostly unknown, and there are no reliable biomarkers to predict the development of new-onset diabetes. In the present study, we demonstrate that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells reliably predicts the risk of developing new-onset diabetes in COVID-19. This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. SIGNIFICANCE STATEMENT: We demonstrate for the first time that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells is able to reliably predict the risk of developing diabetes after having contracted coronavirus disease 2019 (COVID-19). This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. Our findings are also relevant when considering the emerging importance of post-acute sequelae of COVID-19, with systemic manifestations observed even months after viral negativization (long COVID).
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Maria Virginia Manzi
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Jessica Gambardella
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Antonietta Coppola
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Urna Kansakar
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Raffaele Izzo
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Giuseppe Fiorentino
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Angela Lombardi
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Daniela Sorriento
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Bruno Trimarco
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| | - Gaetano Santulli
- Department of Medicine, Einstein-Sinai Diabetes Research Center, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research (P.M., S.S.J., J.G., U.K., A.L., F.V., G.S.) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation (G.S.), Albert Einstein College of Medicine, New York, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education, "Federico II" University, Naples, Italy (M.V.M., J.G., R.I., D.S., B.T., G.S.); Clinica Montevergine, Mercogliano, Avellino (P.M.); and COVID-19 Division, A.O.R.N. Ospedali dei Colli, Naples, Italy (A.C., G.F.)
| |
Collapse
|
14
|
Su S, Hu W, Chen X, Ren Y, Lu Y, Shi J, Zhang T, Zhang H, Wang M, Wang Y, Zhao F, Jin R, Liu Y, Zhang H, Liu G. Cardiac injury progression in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection: a review. Front Pediatr 2024; 12:1348016. [PMID: 38510081 PMCID: PMC10950994 DOI: 10.3389/fped.2024.1348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
The symptoms and signs of infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are milder in children than in adults. However, in April 2020, British pediatricians first reported that coronavirus disease 2019 (COVID-19) may present as multisystem inflammatory syndrome in children and adolescents (MIS-C), similar to that observed in Kawasaki disease. MIS-C can be associated with multiple systemic injuries and even death in children. In addition to digestive system involvement, cardiac injury is prominent. This article reviews the pathogenesis, clinical manifestations, and treatment of cardiac injury caused by MIS-C, which may help clinicians in early diagnosis and timely commencement of treatment.
Collapse
Affiliation(s)
- Song Su
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Xiao Chen
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ying Ren
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yi Lu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Tong Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Meng Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yaping Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Fen Zhao
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ruifeng Jin
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Guohua Liu
- Department of Ophthalmology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Ophthalmology, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
15
|
Sehrawat S, Ojha MM, Gamanagatti S, Nag HL, Kumar V. Is COVID-19 an independent risk factor for the development of avascular necrosis of the hip? A retrospective study to evaluate the factors associated with avascular necrosis of the hip in patients who had COVID-19 infection. INTERNATIONAL ORTHOPAEDICS 2024; 48:745-752. [PMID: 37923881 DOI: 10.1007/s00264-023-06028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE The cumulative effect of hyper-coagulative COVID-19 disease and using steroids leads to increased avascular necrosis (AVN) hip incidence. This study aims to correlate the various factors of COVID-19 infection with the occurrence of AVN hip. METHODS It is a retrospective cross-sectional study of non-traumatic AVN hip patients with a history of COVID-19 infection. A total number of 50 patients satisfied the inclusion criteria. The following details were obtained: (a) patient's demographics, (b) COVID-19: interval of infection and groin pain, duration of symptoms, severity, steroid intake, (c) AVN hip: involved side, Ficat-Arlet staging. RESULTS The mean age was 36.3 years (range: 20-60), and body mass index (BMI) was 25.13 kg/m2 (range: 18.50-31.50). There were 45 males and five females. Sixty percent (30) of patients managed at home, 24% (12) required admission into the ward, 2% (1) were in ICU only, and 14% (7) admitted to both ICU and ward. The mean interval of COVID-19 infection and onset of hip pain was 359.02 days (range: 10-822 days). Thirty-eight percent (19) patients required steroids (injection and oral), 46% (23) took steroids (oral only), whereas 16% (8) recovered without steroids. The stage of AVN correlated with the severity of COVID-19 infection (p-value -0.038) and significant improvement in VAS and HHS after treatment in each stage. The mean follow-up was 9.79 months (6-19 months). CONCLUSION A low-dose steroid intake with moderate to severe COVID-19 infection produces an additive effect on the development of AVN hip. Most affected individuals were adult males, and stage II AVN was the most common, managed with bisphosphonates and core decompression for short intervals.
Collapse
Affiliation(s)
| | | | | | - Hira Lal Nag
- Department of Orthopaedics, AIIMS, New Delhi, India
| | - Vijay Kumar
- Department of Orthopaedics, AIIMS, New Delhi, India
| |
Collapse
|
16
|
Jiang RM, Xie ZD, Jiang Y, Lu XX, Jin RM, Zheng YJ, Shang YX, Xu BP, Liu ZS, Lu G, Deng JK, Liu GH, Wang XC, Wang JS, Feng LZ, Liu W, Zheng Y, Shu SN, Lu M, Luo WJ, Liu M, Cui YX, Ye LP, Shen AD, Liu G, Gao LW, Xiong LJ, Bai Y, Lin LK, Wei Z, Xue FX, Wang TY, Zhao DC, Shao JB, Ng DKK, Wong GWK, Zhao ZY, Li XW, Yang YH, Shen KL. Diagnosis, treatment and prevention of severe acute respiratory syndrome coronavirus 2 infection in children: experts' consensus statement updated for the Omicron variant. World J Pediatr 2024; 20:272-286. [PMID: 37676610 DOI: 10.1007/s12519-023-00745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Rong-Meng Jiang
- Diagnosis and Treatment Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Zheng-De Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yi Jiang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Xia Lu
- Department of Respiratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Run-Ming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue-Jie Zheng
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Yun-Xiao Shang
- Department of Pediatric Respiratory, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, China
| | - Bao-Ping Xu
- Department of Respiratory, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Zhi-Sheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Gen Lu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Ji-Kui Deng
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Guang-Hua Liu
- Department of Pediatrics, Fujian Branch of Shanghai Children's Medical Center, Fujian Children's Hospital, Fuzhou, 350005, China
| | - Xiao-Chuan Wang
- Department of Clinical Immunology and Allergy, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Jian-She Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China
| | - Lu-Zhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Wei Liu
- Children's Hospital of Tianjin University, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yi Zheng
- Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Research Center for Mental and Psychological Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Sai-Nan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Lu
- Department of Respiratory, Shanghai Children's Hospital, Shanghai, 200062, China
| | - Wan-Jun Luo
- Office of Infection Management, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Miao Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Xia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Le-Ping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - A-Dong Shen
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Gang Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li-Wei Gao
- Department of Respiratory, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Li-Juan Xiong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Bai
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Kai Lin
- Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuang Wei
- Children's Health Care Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Feng-Xia Xue
- Department of Respiratory, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Tian-You Wang
- Hematology and Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong-Chi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jian-Bo Shao
- Department of Radiology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Daniel Kwok-Keung Ng
- Department of Pediatrics, Hong Kong Sanatorium & Hospital, Hong Kong, 999077, China
| | - Gary Wing-Kin Wong
- Department of Pediatrics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zheng-Yan Zhao
- Department of Developmental Behavior, Children's Hospital, Zhejiang University College of Medicine, Hangzhou, 310051, China.
| | - Xing-Wang Li
- Diagnosis and Treatment Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Yong-Hong Yang
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, China.
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China.
| | - Kun-Ling Shen
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, China.
- Department of Respiratory, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
17
|
Li H, Cheng ZJ, Fu X, Liu M, Liu P, Cao W, Liang Z, Wang F, Sun B. Decoding acute myocarditis in patients with COVID-19: Early detection through machine learning and hematological indices. iScience 2024; 27:108524. [PMID: 38303719 PMCID: PMC10831249 DOI: 10.1016/j.isci.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
During the persistent COVID-19 pandemic, the swift progression of acute myocarditis has emerged as a profound concern due to its augmented mortality, underscoring the urgency of prompt diagnosis. This study analyzed blood samples from 5,230 COVID-19 individuals, identifying key blood and myocardial markers that illuminate the relationship between COVID-19 severity and myocarditis. A predictive model, applying Bayesian and random forest methodologies, was constructed for myocarditis' early identification, unveiling a balanced gender distribution in myocarditis cases contrary to a male predominance in COVID-19 occurrences. Particularly, older men exhibited heightened vulnerability to severe COVID-19 strains. The analysis revealed myocarditis was notably prevalent in younger demographics, and two subvariants COVID-19 progression paths were identified, characterized by symptom intensity and specific blood indicators. The enhanced myocardial marker model displayed remarkable diagnostic accuracy, advocating its valuable application in future myocarditis detection and treatment strategies amidst the COVID-19 crisis.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xing Fu
- Group of Theoretical Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingtao Liu
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Peng Liu
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou 635000, China
| | - Wenhan Cao
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Fei Wang
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou 635000, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
18
|
Badawi AH, Mohamad NA, Stanslas J, Kirby BP, Neela VK, Ramasamy R, Basri H. In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review. Curr Neuropharmacol 2024; 22:1344-1373. [PMID: 38073104 PMCID: PMC11092920 DOI: 10.2174/1570159x22666231207114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 05/16/2024] Open
Abstract
The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.
Collapse
Affiliation(s)
- Ahmad Hussein Badawi
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Centre for Foundation Studies, Lincoln University College, 47301, Petaling Jaya, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Brian Patrick Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Imène K, Mohamed K, Amal G, Mohamed A, Asma C, Asma A, Wael K, Kalboussi H, Olfa EM, Walid N, Maher M, Nejib M. Olfactory Dysfunction in Healthcare Workers with COVID-19: Prevalence and Associated Factors. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:67-77. [PMID: 37867280 DOI: 10.2174/0127722708249126231006061438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The COVID-19 pandemic is a real global health crisis. Its clinical presentation has evolved over time with an increasing number of symptoms. Olfactory dysfunction (OD) has recently been recognized as a frequent symptom relevant to screening for COVID-19, especially in pauci-asymptomatic forms. However, the underlying mechanisms of OD are not yet fully understood. AIM To determine the prevalence of OD in healthcare workers with SARS-CoV-2 and to identify its associated factors. METHODS This is a cross-sectional, analytical study, carried out during a period of six months and including all healthcare workers at Farhat Hached Academic Hospital (Tunisia) who were diagnosed with SARS-CoV-2 by PCR, RAT, or chest CT scan. RESULTS A total of 474 healthcare workers were included, representing a participation rate of 85.4%. The mean age was 41.02±10.67 years with a sex ratio of 0.2. The distribution of this population by department noted that it was mainly maternity (13.9%). The most presented workstation was nursing (31.4%). OD represented 39.2% of the reasons for consultation. Hospitalization was indicated in 16 patients (3.4%). The average duration of hospitalization was 8.87 ± 7.8 days. The average time off work was 17.04 ± 11.6 days. OD persisted for more than 90 days in 35 patients (7.4%). After multiple binary logistic regression, OD was statistically associated with female gender (p =0.001; OR 95% CI: 2.46 [1.4-4.2]) and blue-collar occupational category (p =0.002; OR IC95%:3.1 [1.5-6.5]). A significant association was also noted between OD and professional seniority and absence from work duration (p =0.019; OR 95% CI: 0.97 [0.95-0.99] and p =0.03; OR 95% CI: 0.97 [0.95-0.99]) respectively. CONCLUSION OD is common in COVID-19 patients. The identification of its associated factors may contribute to enhancing the understanding of its mechanism and drive therapeutic options.
Collapse
Affiliation(s)
- Kacem Imène
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Kahloul Mohamed
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Anesthesia and Intensive Care, University Hospital Sahloul, Sousse, Tunisia
| | - Ghenim Amal
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ajmi Mohamed
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Anesthesia and Intensive Care, University Hospital Sahloul, Sousse, Tunisia
| | - Chouchane Asma
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Aloui Asma
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Khalefa Wael
- Family and Community Medicine Department, Faculty of Medicine of Sousse, Sousse, Tunisia
| | - H Kalboussi
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - El Maalel Olfa
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Naija Walid
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Anesthesia and Intensive Care, University Hospital Sahloul, Sousse, Tunisia
| | - Maoua Maher
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Mrizak Nejib
- Faculty of Medicine of Sousse, University of Sousse, 4000 Sousse, Tunisia
- Department of Occupational Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| |
Collapse
|
20
|
Izzo R, Pacella D, Trimarco V, Manzi MV, Lombardi A, Piccinocchi R, Gallo P, Esposito G, Lembo M, Piccinocchi G, Morisco C, Santulli G, Trimarco B. Incidence of type 2 diabetes before and during the COVID-19 pandemic in Naples, Italy: a longitudinal cohort study. EClinicalMedicine 2023; 66:102345. [PMID: 38143804 PMCID: PMC10746394 DOI: 10.1016/j.eclinm.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Background The association of COVID-19 with the development of new-onset diabetes has been recently investigated by several groups, yielding controversial results. Population studies currently available in the literature are mostly focused on type 1 diabetes (T1D), comparing patients with a SARS-CoV-2 positive test to individuals without COVID-19, especially in paediatric populations. In this study, we sought to determine the incidence of type 2 diabetes (T2D) before and during the COVID-19 pandemic. Methods In this longitudinal cohort study, we analysed a cohort followed up over a 6-year period using an Interrupted Time Series approach, i.e. 3-years before and 3-years during the COVID-19 pandemic. We analysed data obtained from >200,000 adults in Naples (Italy) from January 1st 2017 to December 31st 2022. In this manner, we had the opportunity to compare the incidence of newly diagnosed T2D before (2017-2019) and during (2020-2022) the COVID-19 pandemic. The key inclusion criteria were age >18-year-old and data availability for the period of observation; patients with a diagnosis of diabetes obtained before 2017 were excluded. The main outcome of the study was the new diagnosis of T2D, as defined by the International Classification of Diseases 10 (ICD-X), including prescription of antidiabetic therapies for more than 30 days. Findings A total of 234,956 subjects were followed-up for at least 3-years before or 3-years during the COVID-19 pandemic and were included in the study; among these, 216,498 were analysed in the pre-pandemic years and 216,422 in the pandemic years. The incidence rate of T2D was 4.85 (95% CI, 4.68-5.02) per 1000 person-years in the period 2017-2019, vs 12.21 (95% CI, 11.94-12.48) per 1000 person-years in 2020-2022, with an increase of about twice and a half. Moreover, the doubling time of the number of new diagnoses of T2D estimated by unadjusted Poisson model was 97.12 (95% CI, 40.51-153.75) months in the prepandemic period vs 23.13 (95% CI, 16.02-41.59) months during the COVID-19 pandemic. Interestingly, these findings were also confirmed when examining patients with prediabetes. Interpretation Our data from this 6-year study on more than 200,000 adult participants indicate that the incidence of T2D was significantly higher during the pandemic compared to the pre-COVID-19 phase. As a consequence, the epidemiology of the disease may change in terms of rates of outcomes as well as public health costs. COVID-19 survivors, especially patients with prediabetes, may require specific clinical programs to prevent T2D. Funding The US National Institutes of Health (NIH: NIDDK, NHLBI, NCATS), Diabetes Action Research and Education Foundation, Weill-Caulier and Hirschl Trusts.
Collapse
Affiliation(s)
- Raffaele Izzo
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Daniela Pacella
- Department of Public Health, “Federico II” University, Naples, Italy
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences, and Dentistry, “Federico II” University, Naples, Italy
| | - Maria Virginia Manzi
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Angela Lombardi
- Department of Microbiology and Immunology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA
| | | | - Paola Gallo
- Department of Public Health, “Federico II” University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Maria Lembo
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
| | - Gaetano Piccinocchi
- COMEGEN Primary Care Physicians Cooperative, Italian Society of General Medicine (SIMG), Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy
- Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, NY, USA
- Department of Molecular Pharmacology, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York City, NY, USA
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy
- Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| |
Collapse
|
21
|
Zipperle J, Oesterreicher J, Hackl M, Krammer TL, Thumfart H, Bobbili MR, Wiegele M, Grillari J, Osuchowski MF, Schöchl H, Holnthoner W, Schlimp CJ, Schiefer J, Pesce MV, Ulbing S, Gratz J. Circulating endothelial extracellular vesicle signatures correspond with ICU requirement: an exploratory study in COVID-19 patients. Intensive Care Med Exp 2023; 11:85. [PMID: 38032394 PMCID: PMC10689640 DOI: 10.1186/s40635-023-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Extracellular vesicles (EVs) represent nanometer-sized, subcellular spheres, that are released from almost any cell type and carry a wide variety of biologically relevant cargo. In severe cases of coronavirus disease 2019 (COVID-19) and other states of systemic pro-inflammatory activation, EVs, and their cargo can serve as conveyors and indicators for disease severity and progression. This information may help distinguish individuals with a less severe manifestation of the disease from patients who exhibit severe acute respiratory distress syndrome (ARDS) and require intensive care measures. Here, we investigated the potential of EVs and associated miRNAs to distinguish normal ward patients from intensive care unit (ICU) patients (N = 10/group), with 10 healthy donors serving as the control group. Blood samples from which plasma and subsequently EVs were harvested by differential ultracentrifugation (UC) were obtained at several points in time throughout treatment. EV-enriched fractions were characterized by flow cytometry (FC), nanoparticle tracking analysis (NTA), and qPCR to determine the presence of selected miRNAs. Circulating EVs showed specific protein signatures associated with endothelial and platelet origin over the course of the treatment. Additionally, significantly higher overall EV quantities corresponded with increased COVID-19 severity. MiR-223-3p, miR-191-5p, and miR-126-3p exhibited higher relative expression in the ICU group. Furthermore, EVs presenting endothelial-like protein signatures and the associated miR-126-3p showed the highest area under the curve in terms of receiver operating characteristics regarding the requirement for ICU treatment. In this exploratory investigation, we report that specific circulating EVs and miRNAs appear at higher levels in COVID-19 patients, especially when critical care measures are indicated. Our data suggest that endothelial-like EVs and associated miRNAs likely represent targets for future laboratory assays and may aid in clinical decision-making in COVID-19.
Collapse
Affiliation(s)
- Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria.
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | | | - Helena Thumfart
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Madhusudhan Reddy Bobbili
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute for Molecular Biotechnology, Department for Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marion Wiegele
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute for Molecular Biotechnology, Department for Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Herbert Schöchl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- AUVA Trauma Center Salzburg, Department of Anaesthesiology and Intensive Care Medicine, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph J Schlimp
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Center Linz, Linz, Austria
| | - Judith Schiefer
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Marco Valerio Pesce
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Ulbing
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Vienna, Austria
| | - Johannes Gratz
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Voloshyna L, Smiyan S, Voloshyn O, Buzdugan I, Bukach O, Voloshynovych N, Doholich O. Peculiarities of clinical signs, course and treatment of musculoskeletal system lesions in post-COVID syndrome. Reumatologia 2023; 61:339-344. [PMID: 37970119 PMCID: PMC10634412 DOI: 10.5114/reum/172575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction Post-COVID syndrome (PCS) is a frequent phenomenon of patients who have suffered from an acute attack of COVID-19 infection, and it is characterized by a wide range of symptoms from different organs and systems including the musculoskeletal system (MSS). However, peculiarities of MSS lesions have not been sufficiently studied to date, in particular, in the aspect of the therapeutic process. We aimed to investigate peculiarities of MSS lesions in patients with PCS. Material and methods Observations were carried out in 142 patients with PCS and MSS lesions. The age of patients was 36-67 years. Up-to-date methods of disease verification were used. An acute period of COVID-19 in all the patients was of moderate severity without oxygen support. Results Musculoskeletal system lesions in patients with PCS were found to appear 1-4 weeks after the experienced acute period of COVID-19 infection. Against the background of significant arthralgia (100%) in 93 (65.5%) patients manifestations of acute arthritis were detected, the frequency of which increased with age. Musculoskeletal system lesions were found against the background of dominating PCS manifestations from the cardiovascular and digestive systems. Deterioration of the course and results of treatment of diseases caused by an age-related polymorbid background was determined. Certain difficulties in the treatment of MSS lesions by means of non-steroidal anti-inflammatory drugs and limitation in the use of glucocorticosteroids are caused by severe gastroduodenopathy and arterial hypertension. Long-term, up to 6 months, administration of L-arginine, L-carnitine and quercetin in the rehabilitation complex improved the overall results of treatment of PCS manifestations including arthropathy. Conclusions Musculoskeletal system lesions in patients with PCS are not the main constituent of this syndrome. Difficulties in the treatment of arthropathy are due to the signs of gastroduodenopathy and arterial hypertension. Additional administration of L-arginine, L-carnitine and quercetin is reasonable.
Collapse
Affiliation(s)
- Larysa Voloshyna
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Svitlana Smiyan
- Danylo Halytsky Lviv National Medical University, I. Horbachevsky Ternopil National Medical University, National Scientific Center “MD Strazhesko Institute of Cardiology”, Ukraine
| | - Oleksandr Voloshyn
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Inna Buzdugan
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Olga Bukach
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | | | - Oleksandra Doholich
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| |
Collapse
|
23
|
Oba S, Hosoya T, Kaneshige R, Kawata D, Yamaguchi T, Mitsumura T, Shimada S, Shibata S, Tateishi T, Koike R, Tohda S, Hirakawa A, Yoko N, Otomo Y, Nojima J, Miyazaki Y, Yasuda S. Thrombosis and antiphospholipid antibodies in Japanese COVID-19: based on propensity score matching. Front Immunol 2023; 14:1227547. [PMID: 37908357 PMCID: PMC10614020 DOI: 10.3389/fimmu.2023.1227547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Background Thrombosis is a unique complication of coronavirus disease 2019 (COVID-19). Although antiphospholipid antibodies (aPL) are detected in COVID-19 patients, their clinical significance remains elusive. We evaluated the prevalence of aPL and serum concentrations of beta-2 glycoprotein I (β2GPI), a major self-antigen for aPL, in Japanese COVID-19 patients with and without thrombosis. Methods This retrospective single-center nested case-control study included 594 hospitalized patients with COVID-19 between January 2020 and August 2021. Thrombotic complications were collected from medical records. Propensity score-matching method (PSM) (1:2 matching including age, sex, severity on admission, and prior history of thrombosis) was performed to compare the prevalence and titer of aPL (anti-cardiolipin (aCL) IgG/IgM, anti-β2GPI IgG/IgM/IgA, and anti-phosphatidylserine/prothrombin antibody (aPS/PT) IgG/IgM) and serum β2GPI concentration. In addition, PSM (1:1 matching including age and sex) was performed to compare the serum β2GPI concentration between COVID-19 patients and healthy donors. Results Among the patients, 31 patients with thrombosis and 62 patients without were compared. The prevalence of any aPLs was indifferent regardless of the thrombosis (41.9% in those with thrombosis vs. 38.7% in those without, p =0.82). The positive rates of individual aPL were as follows: anti-CL IgG (9.7% vs. 1.6%, p =0.11)/IgM (0% vs. 3.2%, p =0.55), anti-β2GP1 IgG (22.6% vs. 9.7%, p =0.12)/IgA (9.7% vs. 9.7%, p =1.0)/IgM (0% vs. 0%, p =1.0), and anti-PS/PT IgG (0% vs. 1.6%, p =1.0)/IgM (12.9% vs. 21.0%, p =0.41), respectively. The aPL titers were also similar regardless of thrombosis. The levels of β2GPI in COVID-19 patients were lower than those in the healthy donors. Conclusion Although aPLs were frequently detected in Japanese COVID-19 patients, their prevalence and titer were irrelevant to thrombotic complications. While COVID-19 patients have lower levels of serum β2GPI than healthy blood donors, β2GPI levels were indifferent regardless of thrombosis. Although most of the titers were below cut-offs, positive correlations were observed among aPLs, suggesting that the immune reactions against aPL antigens were induced by COVID-19. We should focus on the long-term thromboembolic risk and the development of APS in the aPL-positive patients with high titer or multiple aPLs.
Collapse
Affiliation(s)
- Seiya Oba
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risa Kaneshige
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Daisuke Kawata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Taiki Yamaguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Mitsumura
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Sho Shimada
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sho Shibata
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoya Tateishi
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuji Koike
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuji Tohda
- Clinical Laboratory, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nukui Yoko
- Department of Infectious Diseases, Division of Comprehensive Patient Care, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Medical Center, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junzo Nojima
- Department of Laboratory Science, Faculty of Health Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
24
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
25
|
Songtanin B, Attaya E, Nugent K. Extensive thrombosis of the inferior vena cava and bilateral renal veins in a COVID-19 patient. Am J Med Sci 2023; 366:e66-e67. [PMID: 37295559 PMCID: PMC10247294 DOI: 10.1016/j.amjms.2023.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/12/2022] [Accepted: 04/17/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Eman Attaya
- Department of Radiology, University Medical Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
26
|
Li M, Wu X, Shi J, Niu Y. Endothelium dysfunction and thrombosis in COVID-19 with type 2 diabetes. Endocrine 2023; 82:15-27. [PMID: 37392341 DOI: 10.1007/s12020-023-03439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
SARS-CoV-2 can directly or indirectly damage endothelial cells. Endothelial injury, especially phosphatidylserine (PS) exposure on the outer membrane of cells, can more easily promote thrombosis. Type 2 diabetes(T2D) patients were more susceptible to COVID-19, they had more severe symptoms, higher risk of thrombotic complications, and longer duration of post-COVID-19 sequelae. This review provided a detailed overview of the mechanisms underlying endothelial dysfunction in T2D patients with COVID-19 (including long COVID), which may be influenced by hyperglycemia, hypoxia, and pro-inflammatory environments. The mechanisms of thrombosis in T2D patients with COVID-19 are also explored, particularly the effects of increased numbers of PS-exposing particles, blood cells, and endothelial cells on hypercoagulability. Given the high risk of thrombosis in T2D patients with COVID-19, early antithrombotic therapy can both minimize the impact of the disease on patients and maximize the chances of improvement, thereby alleviating patient suffering. We provided detailed guidance on antithrombotic drugs and dosages for mild, moderate, and severe patients, emphasizing that the optimal timing of thromboprophylaxis is a critical factor in influencing prognosis. Considering the potential interactions between antidiabetic, anticoagulant, and antiviral drugs, we proposed practical and comprehensive management recommendations to supplement the incomplete efficacy of vaccines in the diabetic population, reduce the incidence of post-COVID-19 sequelae, and improve patient quality of life.
Collapse
Affiliation(s)
- Mengdi Li
- Department of Endodontics, The First Hospital, Harbin Medical University, Harbin, China
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yumei Niu
- Department of Endodontics, The First Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
Liu WY, Jiesisibieke ZL, Chien CW, Tung TH. Association between COVID-19 and sexual health: an umbrella review. Ann Med 2023; 55:2258902. [PMID: 37733015 PMCID: PMC10515670 DOI: 10.1080/07853890.2023.2258902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
PURPOSE We conducted this umbrella review to review the current evidence on the relationship between COVID-19 and sexual health in both men and women. METHODS We conducted searches in Pubmed, Embase, and the Cochrane dataset for meta-analyses that met our pre-set inclusion criteria. We included studies with detailed information investigating the link between COVID-19 and sexual health in men/women. We did not limit the language. RESULTS The results of the included studies frequently relied on the Female Sexual Function Index to assess sexual health in women. For men, the International Index of Male Function and hospital diagnoses were commonly used to assess sexual health. Currently, there is conflicting evidence regarding the impact of COVID-19 on sexual health. However, since most studies were observational in nature, additional study designs are necessary to draw definitive conclusions across different contexts. CONCLUSION Our findings highlight the importance of sexual health among COVID-19 patients and people affected due to COVID-19. Further critical studies should investigate the mechanism underlying the association between COVID-19 and sexual health.
Collapse
Affiliation(s)
- Wen-Yi Liu
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Shanghai Bluecross Medical Science Institute, Shanghai, China
- Shanghai International Medical Center, Shanghai, China
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Zhu Liduzi Jiesisibieke
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, Hong Kong
| | - Ching-Wen Chien
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), Affilitated to Hangzhou Medical College, Taizhou, China
- Key Laboratory of Evidence-Based Radiology of Taizhou, Linhai, China
| |
Collapse
|
28
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
29
|
Tiwari AV, Dangore-Khasbage S. Vitamin D and COVID-19: An Update on Evidence and Potential Therapeutic Implications. Cureus 2023; 15:e46121. [PMID: 37900412 PMCID: PMC10612384 DOI: 10.7759/cureus.46121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
The COVID-19 pandemic created havoc in the whole world since 2019. It is an explosively spreading infectious disease in which the infectious agent enters the body through sneezing coughing touching etc. The primary site of infection is the respiratory system, and the various common symptoms are dry cough, fever, dyspnea, sore throat, nasal congestion, and loss of taste sensation. A majority of the patients experience diarrhea, vomiting, severe headache, and muscle pain. Many research have been undertaken to study the therapeutic implications of different elements in coronavirus infection. One such element of interest is vitamin D. There is evidence in the literature regarding the usefulness of vitamin D in severe acute respiratory distress syndrome (ARDS) and several respiratory diseases. As the site of infection in coronavirus infection is primarily the respiratory system, reviewing in detail the correlation of this vitamin with SARS-CoV-2 infection, is an area of keen interest. Thus, the aim of this article is to explore and describe in detail the relation between the two, with reference to levels of this vitamin in diagnosed subjects and a need for its supplementation in the management of coronavirus infection and also in the prevention of post-COVID-19 complications. The review concluded that Vitamin D has an immunomodulating function. Its deficiency may lead to severe respiratory illnesses including ARDS. Vitamin D levels affect the disease course in COVID-19 infection and proper blood concentration can reduce the severity of the symptoms as well as post-COVID-19 complications.
Collapse
Affiliation(s)
- Aakanksha V Tiwari
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suwarna Dangore-Khasbage
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
30
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
31
|
Lázaro A, Zaranza M, Meneses G, Aragão N, Freire M, Guimarães Á, Beliero A, Dantas M, Forte L, Martins A, Daher E, Albuquerque P, da Silva G. Predictors of mortality in critically ill patients with COVID-19 and diabetes. Braz J Med Biol Res 2023; 56:e12728. [PMID: 37585916 PMCID: PMC10427161 DOI: 10.1590/1414-431x2023e12728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
The COVID-19 pandemic has challenged the entire world, and patients with diabetes mellitus (DM) have been particularly affected. We aimed to evaluate predictors of mortality during the first 30 days of hospitalization in critically ill patients with COVID-19 and comorbid DM. This prospective study included 110 critically ill patients admitted with COVID-19 infection. Thirty-two (29%) patients had a previous diagnosis of DM. Clinical variables, laboratory tests, and vascular biomarkers, such as VCAM-1, syndecan-1, ICAM-1, angiopoietin-1, and angiopoeitin-2, were evaluated after intensive care unit (ICU) admission. A comparison was made between patients with and without DM. No difference in mortality was observed between the groups (48.7 vs 46.9%, P=0.861). In the multivariate Cox regression analysis, VCAM-1 levels at ICU admission (HR: 1 [1-1.001], P<0.006) were associated with death in patients with DM. Among patients with DM, advanced age (HR 1.063 [1.031-1.096], P<0.001), increased Ang-2/Ang-1 ratio (HR: 4.515 [1.803-11.308] P=0.001), and need for dialysis (HR: 3.489 [1.409-8.642], P=0.007) were independent predictors of death. Higher levels of VCAM-1 in patients with DM was better at predicting death of patients with severe COVID-19 and comorbid DM, and their cut-off values were useful for stratifying patients with a worse prognosis. Vascular biomarkers VCAM-1 and Ang-2/Ang-1 ratio were predictors of death in patients with severe COVID-19 and comorbid DM and those without DM. Additionally, kidney injury was associated with an increased risk of death.
Collapse
Affiliation(s)
- A.P.P. Lázaro
- Programa de Pós-Graduação em Saúde Coletiva, Curso de Medicina, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, Brasil
- Centro de Ciências da Saúde, Curso de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - M.S. Zaranza
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Instituto José Frota (IJF) Hospital, Fortaleza, CE, Brasil
| | - G.C. Meneses
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - N.L. Aragão
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Instituto José Frota (IJF) Hospital, Fortaleza, CE, Brasil
| | - M.V.P. Freire
- Centro de Ciências da Saúde, Curso de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - Á.R. Guimarães
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.M. Beliero
- Instituto José Frota (IJF) Hospital, Fortaleza, CE, Brasil
| | - M.M.P. Dantas
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Instituto José Frota (IJF) Hospital, Fortaleza, CE, Brasil
| | - L.C. Forte
- Centro de Ciências da Saúde, Curso de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - A.M.C. Martins
- Departamento de Análises Clínicas e Toxicológicas, Curso de Farmácia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - E.F. Daher
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Curso de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P.L.M.M. Albuquerque
- Centro de Ciências da Saúde, Curso de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
- Instituto José Frota (IJF) Hospital, Fortaleza, CE, Brasil
| | - G.B. da Silva
- Programa de Pós-Graduação em Saúde Coletiva, Curso de Medicina, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, Brasil
- Centro de Ciências da Saúde, Curso de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
| |
Collapse
|
32
|
Castanheira FVS, Nguyen R, Willson M, Davoli-Ferreira M, David BA, Kelly MM, Lee WY, Kratofil RM, Zhang WX, Bui-Marinos M, Corcoran JA, Kubes P. Intravital imaging of three different microvascular beds in SARS-CoV-2-infected mice. Blood Adv 2023; 7:4170-4181. [PMID: 37307197 PMCID: PMC10284260 DOI: 10.1182/bloodadvances.2022009430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the respiratory tract, where it infects the alveoli epithelial lining. However, patients have sequelae that extend well beyond the alveoli into the pulmonary vasculature and, perhaps, beyond to the brain and other organs. Because of the dynamic events within blood vessels, histology does not report platelet and neutrophil behavior. Because of the rapid nontranscriptional response of these cells, neither single-cell RNA sequencing nor proteomics report robustly on their critical behaviors. We used intravital microscopy in level-3 containment to examine the pathogenesis of SARS-CoV-2 within 3 organs in mice expressing human angiotensin converting enzyme 2 (ACE-2) ubiquitously (CAG-AC-70) or on epithelium (K18-promoter). Using a neon-green SARS-CoV-2, we observed both the epithelium and endothelium infected in AC70 mice but only the epithelium in K18 mice. There were increased neutrophils in the microcirculation but not in the alveoli of the lungs of AC70 mice. Platelets formed large aggregates in the pulmonary capillaries. Despite only neurons being infected within the brain, profound neutrophil adhesion forming the nidus of large platelet aggregates were observed in the cerebral microcirculation, with many nonperfused microvessels. Neutrophils breached the brain endothelial layer associated with a significant disruption of the blood-brain-barrier. Despite ubiquitous ACE-2 expression, CAG-AC-70 mice had very small increases in blood cytokine, no increase in thrombin, no infected circulating cells, and no liver involvement suggesting limited systemic effects. In summary, our imaging of SARS-CoV-2-infected mice gave direct evidence that there is a significant perturbation locally in the lung and brain microcirculation induced by local viral infection leading to increased local inflammation and thrombosis in these organs.
Collapse
Affiliation(s)
- Fernanda V. S. Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Rita Nguyen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Michelle Willson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Bruna A. David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Margaret M. Kelly
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Pathology and Laboratory Medicine, University of Calgary, Calgary, AB
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB
| | - Woo-Yong Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Rachel M. Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Wen X. Zhang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Maxwell Bui-Marinos
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB
| | - Jennifer A. Corcoran
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| |
Collapse
|
33
|
Owens CD, Pinto CB, Detwiler S, Mukli P, Peterfi A, Szarvas Z, Hoffmeister JR, Galindo J, Noori J, Kirkpatrick AC, Dasari TW, James J, Tarantini S, Csiszar A, Ungvari Z, Prodan CI, Yabluchanskiy A. Cerebral small vessel disease pathology in COVID-19 patients: A systematic review. Ageing Res Rev 2023; 88:101962. [PMID: 37224885 PMCID: PMC10202464 DOI: 10.1016/j.arr.2023.101962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cerebral small vessel disease (CSVD) is the leading cause of vascular cognitive impairment and is associated with COVID-19. However, contributing factors that often accompany CSVD pathology in COVID-19 patients may influence the incidence of cerebrovascular complications. Thus, a mechanism linking COVID-19 and CSVD has yet to be uncovered and differentiated from age-related comorbidities (i.e., hypertension), and medical interventions during acute infection. We aimed to evaluate CSVD in acute and recovered COVID-19 patients and to differentiate COVID-19-related cerebrovascular pathology from the above-mentioned contributing factors by assessing the localization of microbleeds and ischemic lesions/infarctions in the cerebrum, cerebellum, and brainstem. A systematic search was performed in December 2022 on PubMed, Web of Science, and Embase using a pre-established search criterion related to history of, or active COVID-19 with CSVD pathology in adults. From a pool of 161 studies, 59 met eligibility criteria and were included. Microbleeds and ischemic lesions had a strong predilection for the corpus callosum and subcortical/deep white matter in COVID-19 patients, suggesting a distinct CSVD pathology. These findings have important implications for clinical practice and biomedical research as COVID-19 may independently, and through exacerbation of age-related mechanisms, contribute to increased incidence of CSVD.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Jordan R Hoffmeister
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Juliette Galindo
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jila Noori
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Angelia C Kirkpatrick
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
34
|
Mehboob R, von Kries JP, Ehsan K, Almansouri M, Bamaga AK. Role of endothelial cells and angiotensin converting enzyme-II in COVID-19 and brain damages post-infection. Front Neurol 2023; 14:1210194. [PMID: 37456637 PMCID: PMC10348744 DOI: 10.3389/fneur.2023.1210194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) causes coronavirus disease 2019 (COVID-19), which became a pandemic in late 2019 and early 2020. Apart from many other symptoms of this infection, such as loss of smell and taste, rashes, body aches, fatigue, and psychological and cardiac symptoms, it also causes vasodilation in response to inflammation via nitric oxide release. SARS CoV-2 affects microcirculation, resulting in the swelling and damage of endothelial cells, micro thrombosis, constriction of capillaries, and damage to pericytes that are vital for the integrity of capillaries, angiogenesis, and the healing process. Cytokine storming has been associated with COVID-19 illness. Capillary damage and congestion may cause limited diffusion exchange of oxygen in the lungs and hence hypoxemia and tissue hypoxia occur. This perspective study will explore the involvement of capillary damage and inflammation by their interference with blood and tissue oxygenation as well as brain function in the persistent symptoms and severity of COVID-19. The overall effects of capillary damage due to COVID-19, microvascular damage, and hypoxia in vital organs are also discussed in this perspective. Once initiated, this vicious cycle causes inflammation due to hypoxia, resulting in limited capillary function, which in turn causes inflammation and tissue damage. Low oxygen levels and high cytokines in brain tissue may lead to brain damage. The after-effects may be in the form of psychological symptoms such as mood changes, anxiety, depression, and many others that need to be investigated.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore, Pakistan
| | - Jens Peter von Kries
- Screening Unit, Leibniz-Research Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Kashifa Ehsan
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore, Pakistan
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed K. Bamaga
- Neurology Division, Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Edimiris P, Doehmen C, Müller L, Andrée M, Baston-Buest DM, Buest S, Adams O, Krüssel JS, Bielfeld AP. Mild COVID-19 has no detrimental effect on semen quality. Basic Clin Androl 2023; 33:15. [PMID: 37316770 DOI: 10.1186/s12610-023-00190-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND As of today, the effect of coronavirus disease 2019 (COVID-19) on male fertility remains unclear. Studies published so far have partly contradictory results, likely due to very small sample sizes and heterogeneous populations. To gain a deeper understanding of the impact of COVID-19 on male fertility, we performed a prospective case-control study, in which we examined the ejaculate of 37 subjects, including 25 subjects in the acute phase of mild COVID-19 and 12 subjects who did not suffer from COVID-19. Determination of semen parameters, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) qPCR, and infectivity analysis were performed in the acute phase of the disease and in series. RESULTS Semen parameter values did not differ significantly between subjects with mild COVID-19 and the control group. The serial examination of semen parameters revealed no significant changes between 4, 18, and 82 days after the onset of symptoms. SARS-CoV-2 RNA or infectious particles could not be detected in any ejaculate. CONCLUSION Mild COVID-19 seems to have no detrimental effect on semen parameter values.
Collapse
Affiliation(s)
- Philippos Edimiris
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Cornelius Doehmen
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Kinderwunschzentrum Niederrhein, Madrider Str. 6, 41069, Moenchengladbach, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marcel Andrée
- Institute of Virology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Dunja Maria Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Sebastian Buest
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jan-Steffen Krüssel
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Alexandra Petra Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Center, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
36
|
Bagheri-Hosseinabadi Z, Moadab F, Amiri A, Abbasifard M. The prevalence and contributing risk factors of coronavirus disease 2019 infection in patients with metabolic syndrome. BMC Endocr Disord 2023; 23:100. [PMID: 37142990 PMCID: PMC10157563 DOI: 10.1186/s12902-023-01351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Components of metabolic syndrome (MetS) was reported to contribute to severe and worse outcomes of coronavirus disease 2019 (COVID-19). Hereby, we evaluated the association of MetS and its components with susceptibility to COVID-19. METHODS Here, 1000 subjects with MetS were recruited that were diagnosed via the International Diabetes Federation (IDF) criterion. Real-time PCR was exerted to detect SARS-CoV-2 in the nasopharyngeal swabs. RESULTS Among the MetS patients, 206 (20.6%) cases were detected to have COVID-19. Smoking (OR = 5.04, 95%CI = 3.53-7.21, P < 0.0001) and CVD (OR = 1.62, 95%CI = 1.09-2.40, P = 0.015) were associated with increased chance of COVID-19 infection in the MetS patients. BMI was significantly higher (P = 0.0001) in MetS cases with COVID-19 than those without COVID-19. Obesity was associated with increased susceptibility to COVID-19 in MetS patients (OR = 2.00, 95%CI = 1.47-2.74, P < 0.0001). Total cholesterol, TG, LDL were significantly higher in the MetS cases with COVID-19 than those without COVID-19. Dyslipidemia was associated with increased chance of COVID-19 (OR = 1.50, 95%CI = 1.10-2.05, P = 0.0104). FBS level was significantly higher in the MetS cases with COVID-19. T2DM was associated with increased risk of COVID-19 in MetS patients (OR = 1.43, 95%CI = 1.01-2.00, P = 0.0384). Hypertension was associated with increased chance of COVID-19 in the MetS patients (OR = 1.44, 95%CI = 1.05-1.98, P = 0.0234). CONCLUSIONS MetS and its components, like obesity, diabetes, dyslipidemia, cardiovascular complications were associated with increased chance of COVID-19 infection development and probably with aggravated symptoms in such patients.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Moadab
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Amiri
- Department of Orthodontics, College of Stomatology, The First Affiliated Stomatological Hospital, Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
37
|
Aziz AA, Aziz MA, Omar N, Saleem M, Pahuja KH, Haseeb Ul Rasool M, Shah R. A Meta-analysis of the Severity of Acute Pancreatitis (AP) in COVID-19 Infection. Cureus 2023; 15:e38764. [PMID: 37303375 PMCID: PMC10249516 DOI: 10.7759/cureus.38764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Many studies have reported severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affecting the gastrointestinal tract and causing gastritis, colitis, duodenitis and acute pancreatitis (AP). We conducted a meta-analysis to evaluate if SARS-CoV-2 infection (COVID-19 infection) affects the outcomes and severity of AP. We searched for articles in PubMed (MEDLINE), Cochrane Library, and clinicaltrials.gov databases and included studies comparing the outcomes of AP in patients with and without COVID-19. Our outcomes were the mean age of occurrence of AP, Charlson Comorbidity Index, incidence of idiopathic etiology of AP, severity of AP, incidence of necrotizing pancreatitis, need for intensive care unit (ICU) admission, and mortality between the two cohorts. We included five observational studies with a total population of 2,446 patients. Our results showed that in COVID-19 patients; AP had higher odds of having an idiopathic etiology (odds ratio, OR 3.14, 95% confidence interval, CI 1.36-7.27), be more severe (OR 3.26, 95% CI 1.47-7.49), had higher risk for pancreatic necrosis (OR 2.40, 95% CI 1.62-3.55), require ICU admission (OR 4.28, 95% CI 2.88-6.37) and had higher mortality (OR 5.75, 95% CI 3.62-9.14) than in patients without COVID-19 infection. Our study concluded that SARS-CoV-2 infection does increase the morbidity and mortality associated with AP and further large-scale multi-center studies are needed to confirm these results.
Collapse
Affiliation(s)
- Ahmed Ali Aziz
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | | | - Nosheen Omar
- Anatomy, University of Health Sciences, Lahore, PAK
| | - Maleeha Saleem
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | - Karan H Pahuja
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | | | - Rehan Shah
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| |
Collapse
|
38
|
Mohammadi NG, Namaki S, Hashemi SM, Salehi M, Ghaffarpour S, Ghazanfari T. Impact of the MCP-1-2518A>G polymorphism on COVID-19 severity in the Iranian population: A case-control study. Int Immunopharmacol 2023; 119:110217. [PMID: 37148770 PMCID: PMC10123354 DOI: 10.1016/j.intimp.2023.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
As a result of SARS-CoV-2 infection, the host's immune system is disrupted, and chemokines and cytokines are intensified to eliminate the virus, resulting in cytokine storm syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19 have been observed to have elevated levels of MCP-1, a chemokine associated with the severity of the disease. In some diseases, polymorphisms in the regulatory region of the MCP-1 gene correspond to serum levels and disease severity. An attempt was made in this study to assess the relationship between MCP-1 G-2518A and serum MCP-1 levels in Iranian COVID-19 patients and the severity of the disease. In this study, patients were randomly sampled from outpatients on the first day of diagnosis and from inpatients on the first day of their hospitalization. Patients were classified into the outpatient (without symptoms or with mild symptoms) and inpatient (with moderate, severe, and critical symptoms) groups. The serum level of MCP-1 was measured by ELISA and the frequency of MCP-1 G-2518A gene polymorphism genotypes in COVID-19 patients was checked by the RFLP-PCR method. Participants with COVID-19 infection had a higher rate of underlying diseases, such as diabetes, high blood pressure, kidney disease, and cardiovascular disease than the control group (P-value < 0.001). Also, the frequency of these factors in inpatients was significantly higher compared to outpatients (P-value < 0.001). Additionally, the level of MCP-1 in serum was significantly different with an average of 11.90 in comparison to 2.98 in the control group (P-value, 0.05), which is attributed to elevated serum levels among patients in hospitals with an average of 11.72 in comparison to 2.98 in the control group. Compared with outpatients, inpatients had a higher frequency of the G allele of the MCP-1-2518 polymorphism (P-value < 0.05), while a notable difference was observed in the serum level of MCP-1 in COVID-19 patients with the MCP-1-2518 AA genotype in the whole group in comparison to the control group (P-value: 0.024). Totally, the results showed that a high frequency of the G allele is related to hospitalization and poor outcome in COVID-19 cases.
Collapse
Affiliation(s)
- Niki Ghambari Mohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Namaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infection Disease and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghaffarpour
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
39
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
40
|
Horozoglu F, Sener H, Evereklioglu C, Polat OA. Macular optical coherence tomography angiography analysis in diabetes mellitus patients with a history of Covid-19. Photodiagnosis Photodyn Ther 2023; 42:103513. [PMID: 36918077 PMCID: PMC10008179 DOI: 10.1016/j.pdpdt.2023.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE There is evidence of decreased vessel density in optical coherence tomography angiography (OCTA) after Covid-19. We aimed to investigate whether the outcome of retinal vasculopathy would be worse if patients with diabetes mellitus (DM) were infected with coronavirus using OCTA to assess retinal vessels. METHODS One eye of each subject was included in the study. Diabetic patients without retinopathy and non-diabetic controls were divided into four groups according to their Covid-19 history: group 1=DM(-)Covid-19(-); group 2=DM(+)Covid-19(-); group 3=DM(-)Covid-19(+); and group 4=DM(+)Covid-19(+). All Covid-19 patients were not hospitalised. Macular OCTA scans were performed in a 6 × 6 mm area. RESULTS Diabetes had no effect on the area of the foveal avascular zone (FAZ), but Covid-19 caused an increase in FAZ area. Diabetes and Covid-19 had an effect on both the superficial capillary plexus (SCP) and the deep capillary plexus (DCP) in the fovea. Eta squared (ƞ2) is a measure of effect size. The effect size of Covid-19 (ƞ2=0.180) was found to be greater than that of diabetes (ƞ2=0.158) on the SCP, whereas the effect size of diabetes (ƞ2=0.159) was found to be greater than that of Covid-19 (ƞ2=0.091) on the DCP. CONCLUSIONS The percentage of vessel density was lower in the fovea and the FAZ area was enlarged in the diabetic patients who recovered from Covid-19. In diabetic patients Covid-19 may lead to deterioration of vascular metrics.
Collapse
Affiliation(s)
- Fatih Horozoglu
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Hidayet Sener
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey.
| | - Cem Evereklioglu
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Osman Ahmet Polat
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
41
|
Beneficial Effects of L-Arginine in Patients Hospitalized for COVID-19: New Insights from a Randomized Clinical Trial. Pharmacol Res 2023; 191:106702. [PMID: 36804278 PMCID: PMC9928676 DOI: 10.1016/j.phrs.2023.106702] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
We have recently demonstrated in a double-blind randomized trial the beneficial effects of L-Arginine in patients hospitalized for COVID-19. We hypothesize that one of the mechanisms underlying the favorable effects of L-Arginine is its action on inflammatory cytokines. To verify our hypothesis, we measured longitudinal plasma levels of pro-inflammatory and anti-inflammatory cytokines implied in the pathophysiology of COVID-19 in patients randomized to receive oral L-Arginine or placebo. The study was successfully completed by 169 patients. Patients in the L-Arginine arm had a reduced respiratory support evaluated at 10 and 20 days; moreover, the time to hospital discharge was significantly shorter in the L-Arginine group. The assessment of circulating cytokines revealed that L-Arginine significantly reduced the circulating levels of pro-inflammatory IL-2, IL-6, and IFN-γ and increased the levels of the anti-inflammatory IL-10. Taken together, these findings indicate that adding L-Arginine to standard therapy in COVID-19 patients markedly reduces the need of respiratory support and the duration of in-hospital stay; moreover, L-Arginine significantly regulates circulating levels of pro-inflammatory and anti-inflammatory cytokines.
Collapse
|
42
|
Xing X, Hu X. Risk factors of cytokine release syndrome: stress, catecholamines, and beyond. Trends Immunol 2023; 44:93-100. [PMID: 36586780 DOI: 10.1016/j.it.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Cytokine release syndrome (CRS) is a severe clinical syndrome marked by drastic elevation of inflammatory cytokines such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF). Despite the current empirical therapeutic strategies, prediction of CRS onset and identification of high-risk individuals are not satisfactory due to poor understanding of the mechanisms underlying CRS-related immune dysfunction and risk factors for CRS. Recent studies have suggested that conditions such as stress, obesity, diabetes, and hypertension may contribute to the development of CRS. Here, we discuss potential connections between these conditions and CRS pathogenesis, with a focus on stress hormone catecholamine-mediated effects, hoping that the design of CRS therapeutic approaches ensues from a renewed perspective.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
43
|
Teng L, Chang W. The Investigation of Kidney Involvement in 430 Hospitalized Patients with Omicron COVID-19 in Tianjin, China. Blood Purif 2023; 52:437-445. [PMID: 36657422 PMCID: PMC9893007 DOI: 10.1159/000528734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
INTRODUCTION This study evaluated the incidence, clinical characteristics, and risk factors of kidney involvement in patients with the Omicron variant infection in the post-acute treatment phase in Tianjin, China. METHODS Data were collected from 430 patients with Omicron variant infection in Tianjin, China. Demographics, comorbidities, laboratory blood tests, urinalysis, vaccination status, and COVID-19 clinical classification were assessed. Patients were grouped based on kidney involvement, and associated risk factors of kidney involvement were also investigated. RESULTS Asymptomatic, mild, ordinary, and severe patients with Omicron COVID-19 variant comprised 1.5%, 49.1%, 48.9%, and 0.5% of the sample population, respectively, without critical illness or death. The incidences of hematuria, proteinuria, and concurrent hematuria and proteinuria were 14.7%, 14.2%, and 5.1%, respectively. Patients with and without kidney involvement differed in age, body mass index (BMI), comorbidity, creatinine levels, estimated glomerular filtration rate, and C-reactive protein (CRP) levels. Age, hypertension, higher CRP levels, and higher BMI were linked with kidney involvement. CONCLUSION The majority of the patients suffered from mild or ordinary symptoms of Omicron COVID-19 infection. The primary kidney involvement was hematuria and proteinuria. Proteinuria was significantly associated with Omicron variant infection, and patients with hypertensive comorbidity, higher CRP, and higher creatinine levels were at increased risk of proteinuria after Omicron variant infection.
Collapse
Affiliation(s)
- Lanbo Teng
- Department of Nephrology, Tianjin First Central Hospital, Tianjin, China
- Key Laboratory of Critical Care Emergency Medicine of National Health Commission, Tianjin, China
| | - Wenxiu Chang
- Department of Nephrology, Tianjin First Central Hospital, Tianjin, China
- Key Laboratory of Critical Care Emergency Medicine of National Health Commission, Tianjin, China
| |
Collapse
|
44
|
Gambardella J, Kansakar U, Sardu C, Messina V, Jankauskas SS, Marfella R, Maggi P, Wang X, Mone P, Paolisso G, Sorriento D, Santulli G. Exosomal miR-145 and miR-885 Regulate Thrombosis in COVID-19. J Pharmacol Exp Ther 2023; 384:109-115. [PMID: 35772782 PMCID: PMC9827505 DOI: 10.1124/jpet.122.001209] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT: This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Urna Kansakar
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Celestino Sardu
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Vincenzo Messina
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Stanislovas S Jankauskas
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Raffaele Marfella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Paolo Maggi
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Xujun Wang
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Giuseppe Paolisso
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Daniela Sorriento
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| |
Collapse
|
45
|
Izzo C, Visco V, Gambardella J, Ferruzzi GJ, Rispoli A, Rusciano MR, Toni AL, Virtuoso N, Carrizzo A, Di Pietro P, Iaccarino G, Vecchione C, Ciccarelli M. Cardiovascular Implications of microRNAs in Coronavirus Disease 2019. J Pharmacol Exp Ther 2023; 384:102-108. [PMID: 35779946 DOI: 10.1124/jpet.122.001210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Jessica Gambardella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Germano Junior Ferruzzi
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| |
Collapse
|
46
|
Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2023; 60:25-40. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Morley Hollenberg
- Department of Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | - Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
47
|
The role of arginine and endothelial nitric oxide synthase in the pathogenesis of Covid-19 complicated by metabolic syndrome. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This literature review presents the role of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO), as well as arginine, the enzyme substrate, in the disease of metabolic syndrome and COVID-19 (SARS-CoV-2 virus). Metabolic syndrome is a combination of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. It has been shown that in elderly people, patients with obesity, metabolic syndrome, type 2 diabetes mellitus (DM2), and patients with COVID-19, endothelial dysfunction (ED) and vascular endothelial activation are detected. ED is the main cause of a number of pathological conditions during the development of COVID-19 and earlier in patients with metabolic syndrome, while a sharp drop in the level of nitric oxide (NO) is detected due to a decrease in the expression and activity of eNO synthase and enzyme depletion, which leads to a violation of the integrity of bloodvessels, that is, to vasoconstrictive, inflammatory and thrombotic conditions, followed by ischemia of organs and edema of tissues. It should be noted that metabolic syndrome, DM2, hypertension and obesity, in particular, are age-related diseases, and it is known that blood glucose levels increase with age, which reduces the bioavailability of NO in endothelial cells. Defects in the metabolism of NO cause dysfunction in the pulmonary blood vessels, the level of NO decreases, which leads to impaired lung function and coagulopathy. The review presents possible mechanisms of these disorders associated with ED, the release of eNO synthase, changes in phosphorylation and regulation of enzyme activity, as well as insulin resistance. A modern view of the role of the polymorphism of the eNO synthase gene in the development of these pathologies is presented. To increase the level of endothelial NO, drugs are offered that regulate the bioavailability of NO. These include arginine, agonist NO – minoxidil, steroid hormones, statins, metformin. However, further research and clinical trials are needed to develop treatment strategies that increase NO levels in the endothelium.
Collapse
|
48
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
49
|
Chavda VP, Patel AB, Vora LK, Singla RK, Shah P, Uversky VN, Apostolopoulos V. Nitric Oxide and its Derivatives Containing Nasal Spray and Inhalation Therapy for the Treatment of COVID-19. Curr Pharm Des 2022; 28:3658-3670. [PMID: 36284382 DOI: 10.2174/1381612829666221024124848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and has evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants change the severity of the diesease and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via the intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, U.K
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Priyal Shah
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia
| |
Collapse
|
50
|
Miceli G, Basso MG, Rizzo G, Pintus C, Tuttolomondo A. The Role of the Coagulation System in Peripheral Arterial Disease: Interactions with the Arterial Wall and Its Vascular Microenvironment and Implications for Rational Therapies. Int J Mol Sci 2022; 23:14914. [PMID: 36499242 PMCID: PMC9739112 DOI: 10.3390/ijms232314914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Peripheral artery disease (PAD) is a clinical manifestation of atherosclerotic disease with a large-scale impact on the economy and global health. Despite the role played by platelets in the process of atherogenesis being well recognized, evidence has been increasing on the contribution of the coagulation system to the atherosclerosis formation and PAD development, with important repercussions for the therapeutic approach. Histopathological analysis and some clinical studies conducted on atherosclerotic plaques testify to the existence of different types of plaques. Likely, the role of coagulation in each specific type of plaque can be an important determinant in the histopathological composition of atherosclerosis and in its future stability. In this review, we analyze the molecular contribution of inflammation and the coagulation system on PAD pathogenesis, focusing on molecular similarities and differences between atherogenesis in PAD and coronary artery disease (CAD) and discussing the possible implications for current therapeutic strategies and future perspectives accounting for molecular inflammatory and coagulation targets. Understanding the role of cross-talking between coagulation and inflammation in atherosclerosis genesis and progression could help in choosing the right patients for future dual pathway inhibition strategies, where an antiplatelet agent is combined with an anticoagulant, whose role, despite pathophysiological premises and trials' results, is still under debate.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| |
Collapse
|