1
|
Raghavan P, Perez CA, Sorrentino TA, Kading JC, Finbloom JA, Desai TA. Physicochemical Design of Nanoparticles to Interface with and Degrade Neutrophil Extracellular Traps. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39884672 DOI: 10.1021/acsami.4c17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Neutrophil extracellular traps (NETs) are networks of decondensed chromatin, histones, and antimicrobial proteins released by neutrophils in response to an infection. NET overproduction can cause an exacerbated hyperinflammatory response in a variety of diseases and can lead to host tissue damage without clearance of infection. Nanoparticle drug delivery is a promising avenue for creating materials that can both target NETs and deliver sustained amounts of NET-degrading drugs to alleviate hyperinflammation. Here, we study how particle physicochemical properties can influence NET interaction and leverage our findings to create NET-interfacing and NET-degrading particles. We fabricated a panel of particles of varying sizes (200 to 1000 nm) and charges (positive, neutral, negative) and found that positive charge is the main driver of NET-particle interaction, with smaller 200 nm positive particles having a 10-fold increase in binding compared to larger 1000 nm positive particles. Negative and neutral particles were mostly noninteracting, except for small negatively charged particles that exhibited very low levels of NET localization. Interaction strength of particles with NETs was quantified via shear flow assays and atomic force microscopy. This information was leveraged to create DNase-loaded particles that could adhere to NETs at varying degrees and therefore degrade NETs at different rates in vitro. Positively charged, 200 nm DNase-loaded particles showed the highest degree of interaction with NETs and therefore led to faster degradation compared with larger sizes, underscoring the importance of physicochemical design for NET-targeting drug delivery. Overall, this work provides fundamental knowledge of the drivers of particle-NET interaction and a basis for designing NET-targeting particles for various disease states.
Collapse
Affiliation(s)
- Preethi Raghavan
- University of California, Berkeley─University of California, San Francisco Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cynthia A Perez
- University of California, Berkeley─University of California, San Francisco Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Thomas A Sorrentino
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jacqueline C Kading
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joel A Finbloom
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tejal A Desai
- University of California, Berkeley─University of California, San Francisco Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- School of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Dwivedi S, Sikarwar MS. Diabetic Nephropathy: Pathogenesis, Mechanisms, and Therapeutic Strategies. Horm Metab Res 2025; 57:7-17. [PMID: 39572154 DOI: 10.1055/a-2435-8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Diabetic nephropathy represents a predominant etiology of end-stage renal disease (ESRD) on a global scale, significantly impacting the morbidity and mortality rates of individuals with diabetes. The primary objective of this analysis is to furnish a comprehensive examination of the etiology, fundamental mechanisms, and treatment modalities for DN. The development of DN stems from a multitude of factors, encompassing a intricate interplay involving metabolic irregularities induced by hyperglycemia, alterations in hemodynamics, inflammatory responses, oxidative stress, and genetic susceptibility. Principal mechanisms encompass the generation of advanced glycation end products (AGEs), activation of protein kinase C (PKC), and overexpression of the renin-angiotensin-aldosterone system (RAAS). These processes precipitate glomerular hyperfiltration, hypertrophy, and eventually, fibrosis and scarring of the renal parenchyma. Initially, hyperglycemia triggers mesangial proliferation and thickening of the glomerular basement membrane in the incipient stages of DN, subsequently leading to progressive glomerular sclerosis and tubulointerstitial fibrosis. Inflammatory cascades, notably involving cytokines like TGF-β and NF-κB, play pivotal roles in the advancement of DN by fostering the accumulation of extracellular matrix and renal fibrosis. Inflammation pathways, particularly those involving cytokines like TGF-β and NF-κB, play essential roles in diabetic nephropathy progression by stimulating extracellular matrix accumulation and renal fibrosis. The presence of oxidative stress, worsened by dysfunctional mitochondria, contributes further to renal injury via lipid peroxidation and DNA damage. Current therapeutic approaches for diabetic nephropathy concentrate on optimizing glycemic control, controlling hypertension, and suppressing the renin-angiotensin-aldosterone system. Among antihypertensive medications, ACE inhibitors and angiotensin II receptor blockers are crucial for decelerating disease advancement.
Collapse
Affiliation(s)
- Shivangi Dwivedi
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | |
Collapse
|
3
|
Becker RC, Tantry US, Khan M, Gurbel PA. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2025; 58:15-49. [PMID: 39179952 PMCID: PMC11762605 DOI: 10.1007/s11239-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A heightened risk for thrombosis is a hallmark of COVID-19. Expansive clinical experience and medical literature have characterized small (micro) and large (macro) vessel involvement of the venous and arterial circulatory systems. Most events occur in patients with serious or critical illness in the hyperacute (first 1-2 weeks) or acute phases (2-4 weeks) of SARS-CoV-2 infection. However, thrombosis involving the venous, arterial, and microcirculatory systems has been reported in the subacute (4-8 weeks), convalescent (> 8-12 weeks) and chronic phases (> 12 weeks) among patients with mild-to-moderate illness. The purpose of the current focused review is to highlight the distinguishing clinical features, pathological components, and potential mechanisms of venous, arterial, and microvascular thrombosis in patients with COVID-19. The overarching objective is to better understand the proclivity for thrombosis, laying a solid foundation for screening and surveillance modalities, preventive strategies, and optimal patient management.
Collapse
Affiliation(s)
- Richard C Becker
- Cardiovascular Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| | - Muhammad Khan
- Division of General Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| |
Collapse
|
4
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
6
|
Zhang H, Li L, Luo Y, Zheng F, Zhang Y, Xie R, Ou R, Chen Y, Lin Y, Wang Y, Jin Y, Xu J, Tao Y, Qu R, Zhou W, Bai Y, Cheng F, Jin X. Fragmentomics of plasma mitochondrial and nuclear DNA inform prognosis in COVID-19 patients with critical symptoms. BMC Med Genomics 2024; 17:243. [PMID: 39363185 PMCID: PMC11451003 DOI: 10.1186/s12920-024-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The mortality rate of COVID-19 patients with critical symptoms is reported to be 40.5%. Early identification of patients with poor progression in the critical cohort is essential to timely clinical intervention and reduction of mortality. Although older age, chronic diseases, have been recognized as risk factors for COVID-19 mortality, we still lack an accurate prediction method for every patient. This study aimed to delve into the cell-free DNA fragmentomics of critically ill patients, and develop new promising biomarkers for identifying the patients with high mortality risk. METHODS We utilized whole genome sequencing on the plasma cell-free DNA (cfDNA) from 33 COVID-19 patients with critical symptoms, whose outcomes were classified as survival (n = 16) and death (n = 17). Mitochondrial DNA (mtDNA) abundance and fragmentomic properties of cfDNA, including size profiles, ends motif and promoter coverages were interrogated and compared between survival and death groups. RESULTS Significantly decreased abundance (~ 76% reduction) and dramatically shorter fragment size of cell-free mtDNA were observed in deceased patients. Likewise, the deceased patients exhibited distinct end-motif patterns of cfDNA with an enhanced preference for "CC" started motifs, which are related to the activity of nuclease DNASE1L3. Several dysregulated genes involved in the COVID-19 progression-related pathways were further inferred from promoter coverages. These informative cfDNA features enabled a high PPV of 83.3% in predicting deceased patients in the critical cohort. CONCLUSION The dysregulated biological processes observed in COVID-19 patients with fatal outcomes may contribute to abnormal release and modifications of plasma cfDNA. Our findings provided the feasibility of plasma cfDNA as a promising biomarker in the prognosis prediction in critically ill COVID-19 patients in clinical practice.
Collapse
Affiliation(s)
| | - Lingguo Li
- BGI Research, Shenzhen , Guangdong, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yuxue Luo
- BGI Research, Shenzhen , Guangdong, 518083, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Yan Zhang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Rong Xie
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rijing Ou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yilin Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yu Lin
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yeqin Wang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Jinjin Xu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ye Tao
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ruokai Qu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Wenwen Zhou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yong Bai
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Xin Jin
- BGI Research, Shenzhen , Guangdong, 518083, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, Guangdong, 518083, China.
| |
Collapse
|
7
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
8
|
Rajput S, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00112-3. [PMID: 39159826 DOI: 10.1016/j.pharma.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
9
|
Hromić-Jahjefendić A, Mahmutović L, Sezer A, Bećirević T, Rubio-Casillas A, Redwan EM, Uversky VN. The intersection of microbiome and autoimmunity in long COVID-19: Current insights and future directions. Cytokine Growth Factor Rev 2024:S1359-6101(24)00062-5. [PMID: 39179487 DOI: 10.1016/j.cytogfr.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Long COVID-19 affects a significant percentage of patients and is characterized by a wide range of symptoms, including weariness and mental fog as well as emotional symptoms like worry and sadness. COVID-19 is closely linked to the autoimmune disorders that are becoming more prevalent worldwide and are linked to immune system hyperactivation, neutrophil extracellular trap (NET) development, and molecular mimicry pathways. Long-term COVID-related autoimmune responses include a watchful immune system referring to the ability of immune system to constantly monitor the body for signs of infection, disease, or abnormal cells; altered innate and adaptive immune cells, autoantigens secreted by living or dead neutrophils, and high concentrations of autoantibodies directed against different proteins. The microbiome, which consists of billions of bacteria living in the human body, is essential for controlling immune responses and supporting overall health. The microbiome can affect the course of long COVID-associated autoimmunity, including the degree of illness, the rate of recovery, and the onset of autoimmune reactions. Although the precise role of the microbiome in long COVID autoimmunity is still being investigated, new studies indicate that probiotics, prebiotics, and dietary changes-interventions that target the microbiome-may be able to reduce autoimmune reactions and enhance long-term outcomes for COVID-19 survivors. More research is required to precisely understand how the microbiome affects COVID-19-related autoimmunity and to create tailored treatment plans.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Tea Bećirević
- Atrijum Polyclinic, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco 48900, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, USA.
| |
Collapse
|
10
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
11
|
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol 2024; 96:e29887. [PMID: 39189651 DOI: 10.1002/jmv.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institute of Research on Cancerology of Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| | | |
Collapse
|
12
|
Kudriavtsev A, Pastor B, Mirandola A, Pisareva E, Gricourt Y, Capdevila X, Thierry AR, Cuvillon P. Association of the immediate perioperative dynamics of circulating DNA levels and neutrophil extracellular traps formation in cancer patients. PRECISION CLINICAL MEDICINE 2024; 7:pbae008. [PMID: 38699382 PMCID: PMC11062027 DOI: 10.1093/pcmedi/pbae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients. Methods We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI). Results The synergistic analytical information provided by these markers revealed that: (i) NETs formation contributes to post-surgery conditions; (ii) post-surgery cir-nDNA levels were highly associated with NE and MPO in colon cancer [r = 0.60 (P < 0.001) and r = 0.53 (P < 0.01), respectively], but not in prostate and breast cancer; (iii) each tumor type shows a specific pattern of cir-nDNA and NETs marker dynamics, but overall the pre- and post-surgery median values of cir-nDNA, NE, and MPO were significantly higher in cancer patients than in HI. Conclusion Taken as a whole, our work reveals the association of NETs formation with the elevated cir-nDNA release during a cancer patient's perioperative period, depending on surgical procedure or cancer type. By contrast, cir-mtDNA is poorly associated with NETs formation in the studied perioperative period, which would appear to indicate a different mechanism of release or suggest mitochondrial dysfunction.
Collapse
Affiliation(s)
- Andrei Kudriavtsev
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Brice Pastor
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Alexia Mirandola
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Ekaterina Pisareva
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Yann Gricourt
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| | - Xavier Capdevila
- Division of Anaesthesia Intensive Care, Pain and Emergency Medicine, Montpellier University Hospital, Montpellier 34090, France
- Montpellier NeuroSciences Institute, INSERM U1298, University of Montpellier, Montpellier 34295, France
| | - Alain R Thierry
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Philippe Cuvillon
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| |
Collapse
|
13
|
Kapoor S, Mihalovičová L, Pisareva E, Pastor B, Mirandola A, Roch B, Bryant J, Princy AP, Chouaib S, Thierry AR. Association of vascular netosis with COVID-19 severity in asymptomatic and symptomatic patients. iScience 2024; 27:109573. [PMID: 38660409 PMCID: PMC11039348 DOI: 10.1016/j.isci.2024.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
We examined from a large exploratory study cohort of COVID-19 patients (N = 549) a validated panel of neutrophil extracellular traps (NETs) markers in different categories of disease severity. Neutrophil elastase (NE), myeloperoxidase (MPO), and circulating nuclear DNA (cir-nDNA) levels in plasma were seen to gradually and significantly (p < 0.0001) increase with the disease severity: mild (3.7, 48.9, and 15.8 ng/mL, respectively); moderate (9.8, 77.5, and 27.7 ng/mL, respectively); severe (11.7, 99.5, and 29.0 ng/mL, respectively); and critical (13.1, 110.2, and 46.0 ng/mL, respectively); and are also statistically different with healthy individuals (N = 140; p < 0.0001). All observations made in relation to the Delta variant-infected patients are in line with Omicron-infected patients. We unexpectedly observed significantly higher levels of NETs in asymptomatic individuals as compared to healthy subjects (p < 0.0001). Moreover, the balance of cir-nDNA and circulating mitochondrial DNA level was affected in COVID-19 infected patients attesting to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Suman Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Lucia Mihalovičová
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Ekaterina Pisareva
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Brice Pastor
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Alexia Mirandola
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Benoit Roch
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
| | - Joe Bryant
- Institute of Human Virology, Baltimore, MD, USA
| | | | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
- Institut Gustave Roussy, Villejuif, France
| | - Alain Roger Thierry
- IRCM, Institute of Research in Cancerology of Montpellier, INSERM U1194, Centre Hospitalier Universitaire, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| |
Collapse
|
14
|
Thierry AR. NETosis creates a link between diabetes and Long COVID. Physiol Rev 2024; 104:651-654. [PMID: 37855816 DOI: 10.1152/physrev.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Alain R Thierry
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Zafarani A, Razizadeh MH, Haghi A. Neutrophil extracellular traps in influenza infection. Heliyon 2023; 9:e23306. [PMID: 38144312 PMCID: PMC10746519 DOI: 10.1016/j.heliyon.2023.e23306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Despite recent progress in developing novel therapeutic approaches and vaccines, influenza is still considered a global health threat, with about half a million mortality worldwide. This disease is caused by Influenza viruses, which are known for their rapid evolution due to different genetical mechanisms that help them develop new strains with the ability to evade therapies and immunization. Neutrophils are one of the first immune effectors that act against pathogens. They use multiple mechanisms, including phagocytosis, releasing the reactive oxygen species, degranulation, and the production of neutrophil extracellular traps. Neutrophil extracellular traps are used to ensnare pathogens; however, their dysregulation is attributed to inflammatory and infectious diseases. Here, we discuss the effects of these extracellular traps in the clinical course of influenza infection and their ability to be a potential target in treating influenza infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Haghi
- Young Researchers & Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Liu Y, Xiang C, Que Z, Li C, Wang W, Yin L, Chu C, Zhou Y. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Front Immunol 2023; 14:1201651. [PMID: 38090596 PMCID: PMC10715311 DOI: 10.3389/fimmu.2023.1201651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Wen Wang
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Lijuan Yin
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Chenyu Chu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Yin Zhou
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Cristol JP, Thierry AR, Bargnoux AS, Morena-Carrere M, Canaud B. What is the role of the neutrophil extracellular traps in the cardiovascular disease burden associated with hemodialysis bioincompatibility? Front Med (Lausanne) 2023; 10:1268748. [PMID: 38034546 PMCID: PMC10684960 DOI: 10.3389/fmed.2023.1268748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways. A few examples may serve to illustrate the case. Cytokine release during dialysis sessions may be underestimated due to their removal using high-flux dialysis or hemodiafiltration modalities. Complement activation is recognized as a key event of bioincompatibility. However, it appears as an early and transient event with anaphylatoxin level normalization at the end of the dialysis session. Complement activation is generally assumed to trigger leukocyte stimulation leading to proinflammatory mediators' secretion and oxidative burst. In addition to being part of the innate immune response involved in eliminating physically and enzymatically microbes, the formation of Neutrophil Extracellular Traps (NETs), known as NETosis, has been recently identified as a major harmful component in a wide range of pathologies associated with inflammatory processes. NETs result from the neutrophil degranulation induced by reactive oxygen species overproduction via NADPH oxidase and consist of modified chromatin decorated with serine proteases, elastase, bactericidal proteins, and myeloperoxidase (MPO) that produces hypochlorite anion. Currently, NETosis remains poorly investigated as a sensitive and integrated marker of bioincompatibility in dialysis. Only scarce data could be found in the literature. Oxidative burst and NADPH oxidase activation are well-known events in the bioincompatibility phenomenon. NET byproducts such as elastase, MPO, and circulating DNA have been reported to be increased in dialysis patients more specifically during dialysis sessions, and were identified as predictors of poor outcomes. As NETs and MPO could be taken up by endothelium, NETs could be considered as a vascular memory of intermittent bioincompatibility phenomenon. In this working hypothesis article, we summarized the puzzle pieces showing the involvement of NET formation during hemodialysis and postulated that NETosis may act as a disease modifier and may contribute to the comorbid burden associated with dialysis bioincompatibility.
Collapse
Affiliation(s)
- Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| | - Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM, IRCM, ICM, University of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
- MTX Consulting Int., Montpellier, France
| |
Collapse
|
18
|
Zhu W, Xu D, Mei J, Lu B, Wang Q, Zhu C, Zhang X, Zhang X. Metformin reverses impaired osteogenesis due to hyperglycemia-induced neutrophil extracellular traps formation. Bone 2023; 176:116889. [PMID: 37660937 DOI: 10.1016/j.bone.2023.116889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Diabetic patients suffer from delayed fracture healing and impaired osteogenic function, but the underlying pathophysiological mechanisms are not fully understood. Neutrophil extracellular traps (NETs) formed by neutrophils in high glucose microenvironments affect the healing of wounds and other tissues. Some evidence supports that NETs may inhibit osteogenic processes in the microenvironment through sustained inflammatory activation. In this study, we observed that high glucose-induced NETs led to sustained inflammatory activation of macrophages. Pro-inflammatory NETs inhibited the osteogenic function of osteoblasts in vitro. A bone defect healing model based on diabetic rat animal models confirmed that bone healing was impaired in a high glucose environment, but this process could be reversed by DNase I, a NETs clearance agent. More importantly, the classic hypoglycemic drug metformin had a similar antagonistic effect as DNase I and could reverse the inhibitory effect of NETs on osteogenesis in a high-glucose environment. In summary, we found that NETs formation induced by high glucose microenvironment is a potential cause of osteogenic dysfunction in diabetic patients, and metformin can reverse this osteogenic disadvantage.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Dongdong Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Baoliang Lu
- Bengbu Medical College, Bengbu, Anhui 233000, PR China
| | - Qiaojie Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, PR China.
| |
Collapse
|
19
|
Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, Torres K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci 2023; 24:12563. [PMID: 37628744 PMCID: PMC10454528 DOI: 10.3390/ijms241612563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The coagulation and immune systems, two vital systems in the human body, share intimate connections that fundamentally determine patient health. These systems work together through several common regulatory pathways, including the Tissue Factor (TF) Pathway. Immune cells expressing TF and producing pro-inflammatory cytokines can influence coagulation, while coagulation factors and processes reciprocally impact immune responses by activating immune cells and controlling their functions. These shared pathways contribute to maintaining health and are also involved in various pathological conditions. Dysregulated coagulation, triggered by infection, inflammation, or tissue damage, can result in conditions such as disseminated intravascular coagulation (DIC). Concurrently, immune dysregulation may lead to coagulation disorders and thrombotic complications. This review elucidates these intricate interactions, emphasizing their roles in the pathogenesis of autoimmune diseases and cancer. Understanding the complex interplay between these systems is critical for disease management and the development of effective treatments. By exploring these common regulatory mechanisms, we can uncover innovative therapeutic strategies targeting these intricate disorders. Thus, this paper presents a comprehensive overview of the mutual interaction between the coagulation and immune systems, highlighting its significance in health maintenance and disease pathology.
Collapse
Affiliation(s)
- Grzegorz Wilhelm
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Anna Przysucha
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Kamil Torres
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| |
Collapse
|
20
|
Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: recent insights and advances. Virol J 2023; 20:169. [PMID: 37533131 PMCID: PMC10398943 DOI: 10.1186/s12985-023-02116-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can lead to acute respiratory distress syndrome (ARDS), multi-organ failure and death, posing significant threat to human health. Studies have found that pathological mechanisms, such as cytokine storms caused by uncontrolled innate immune system activation, release of damage-associated molecular patterns during tissue injury and a high incidence of thrombotic events, are associated with the function and dysfunction of neutrophils. Specifically, the increased formation of low-density neutrophils (LDNs) and neutrophil extracellular traps (NETs) has been shown to be closely linked with the severity and poor prognosis in patients with COVID-19. Our work focuses on understanding the increased number, abnormal activation, lung tissue infiltration, and elevated neutrophil-to-lymphocyte ratio in the pathogenesis of COVID-19. We also explore the involvement of NETs and LDNs in disease progression and thrombosis formation, along with potential therapeutic strategies targeting neutrophil and NETs formation.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Kegong Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Ye Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Ziyang Gu
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Changxing Huang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
21
|
Herrera VLM, Bosch NA, Lok JJ, Nguyen MQ, Lenae KA, deKay JT, Ryzhov SV, Seder DB, Ruiz-Opazo N, Walkey AJ. Circulating neutrophil extracellular trap (NET)-forming 'rogue' neutrophil subset, immunotype [DEspR + CD11b +], mediate multi-organ failure in COVID-19- an observational study. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:12. [PMID: 37096233 PMCID: PMC10111078 DOI: 10.1186/s41231-023-00143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Background Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, there is no curative intent therapy able to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating NET-forming neutrophils [NET + Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods We conducted a prospective observational study of circulating levels of CD11b + [NET + N] immunotyped for dual endothelin-1/signal peptide receptor (DEspR ±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)-ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET + N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA (rho r S = 0.80) and ICUFD (r S = -0.76); circulating DEspR + [NET + Ns] with t1-SOFA (r S = 0.71), t2-SOFA (r S = 0.62), and ICUFD (r S = -0.63), and ANC with t1-SOFA (r S = 0.71), and t2-SOFA (r S = 0.61).Causal mediation analysis identified DEspR + [NET + Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR + [NET + Ns] were theoretically reduced to zero. Concordantly, DEspR + [NET + Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR + [NET + Ns] were reduced to zero. In patients with t1-SOFA > 1, the indirect effect of a hypothetical treatment eliminating DEspR + [NET + Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR + [NET + Ns], and no significant mediation of SOFA-score through ANC. Conclusions Despite equivalent correlations, DEspR + [NET + Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR + [NET + Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s41231-023-00143-x.
Collapse
Affiliation(s)
- Victoria L. M. Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| | - Nicholas A. Bosch
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| | - Judith J. Lok
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts USA
| | - Mai Q. Nguyen
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| | - Kaitriona A. Lenae
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| | | | | | - David B. Seder
- Maine Health Institute for Research, Scarborough, Maine USA
- Department of Critical Care Services, Maine Medical Center, Portland, Maine USA
| | - Nelson Ruiz-Opazo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| | - Allan J. Walkey
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts USA
| |
Collapse
|
22
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
23
|
Jin X, Wang Y, Xu J, Li Y, Cheng F, Luo Y, Zhou H, Lin S, Xiao F, Zhang L, Lin Y, Zhang Z, Jin Y, Zheng F, Chen W, Zhu A, Tao Y, Zhao J, Kuo T, Li Y, Li L, Wen L, Ou R, Li F, Lin L, Zhang Y, Sun J, Yuan H, Zhuang Z, Sun H, Chen Z, Li J, Zhuo J, Chen D, Zhang S, Sun Y, Wei P, Yuan J, Xu T, Yang H, Wang J, Xu X, Zhong N, Xu Y, Sun K, Zhao J. Plasma cell-free DNA promise monitoring and tissue injury assessment of COVID-19. Mol Genet Genomics 2023; 298:823-836. [PMID: 37059908 PMCID: PMC10104435 DOI: 10.1007/s00438-023-02014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.
Collapse
Affiliation(s)
- Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China
| | - Shanwen Lin
- Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Fei Xiao
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lu Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tingyou Kuo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yuming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Long Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hao Yuan
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haixi Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | | | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuzhe Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tian Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
24
|
Akácsos-Szász OZ, Pál S, Nyulas KI, Nemes-Nagy E, Fárr AM, Dénes L, Szilveszter M, Bán EG, Tilinca MC, Simon-Szabó Z. Pathways of Coagulopathy and Inflammatory Response in SARS-CoV-2 Infection among Type 2 Diabetic Patients. Int J Mol Sci 2023; 24:4319. [PMID: 36901751 PMCID: PMC10001503 DOI: 10.3390/ijms24054319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic inflammation and endothelium dysfunction are present in diabetic patients. COVID-19 has a high mortality rate in association with diabetes, partially due to the development of thromboembolic events in the context of coronavirus infection. The purpose of this review is to present the most important underlying pathomechanisms in the development of COVID-19-related coagulopathy in diabetic patients. The methodology consisted of data collection and synthesis from the recent scientific literature by accessing different databases (Cochrane, PubMed, Embase). The main results are the comprehensive and detailed presentation of the very complex interrelations between different factors and pathways involved in the development of arteriopathy and thrombosis in COVID-19-infected diabetic patients. Several genetic and metabolic factors influence the course of COVID-19 within the background of diabetes mellitus. Extensive knowledge of the underlying pathomechanisms of SARS-CoV-2-related vasculopathy and coagulopathy in diabetic subjects contributes to a better understanding of the manifestations in this highly vulnerable group of patients; thus, they can benefit from a modern, more efficient approach regarding diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Orsolya-Zsuzsa Akácsos-Szász
- Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Sándor Pál
- Department of Transfusion Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kinga-Ilona Nyulas
- Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Ana-Maria Fárr
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Mónika Szilveszter
- Clinic of Plastic Surgery, Mureș County Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Erika-Gyöngyi Bán
- Department of Pharmacology, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Mariana Cornelia Tilinca
- Department of Internal Medicine I, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| |
Collapse
|
25
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
26
|
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J Control Release 2023; 354:109-119. [PMID: 36596341 DOI: 10.1016/j.jconrel.2022.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Gaurav Rajan Saawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Herrera VL, Bosch NA, Lok JJ, Nguyen MQ, Lenae KA, deKay JT, Ryzhov SV, Seder DB, Ruiz-Opazo N, Walkey AJ. Circulating neutrophil extracellular trap (NET)-forming 'rogue' neutrophil subset, immunotype [DEspR+CD11b+], mediate multi-organ failure in COVID-19 - an observational study. RESEARCH SQUARE 2023:rs.3.rs-2479844. [PMID: 36778407 PMCID: PMC9915800 DOI: 10.21203/rs.3.rs-2479844/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, no curative intent therapy has been identified to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating neutrophil-extracellular trap (NET)-forming neutrophils [NET+Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b+[NET+N] immunotyped for dual endothelin-1/signal peptide receptor, (DEspR±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET+N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA ( rho r S =0.80) and ICUFD ( r S =-0.76); circulating DEspR+[NET+Ns] with t1-SOFA ( r S = 0.71), t2-SOFA ( r S =0.62), and ICUFD ( r S =-0.63), and ANC with t1-SOFA ( r S =0.71), and t2-SOFA ( r S =0.61). Causal mediation analysis identified DEspR+[NET+Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR+[NET+Ns] were theoretically reduced to zero. Concordantly, DEspR+[NET+Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR+[NET+Ns] were reduced to zero. In patients with t1-SOFA >1, the indirect effect of a hypothetical treatment eliminating DEspR+[NET+Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR+[NET+Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR+[NET+Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR+[NET+Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19.
Collapse
Affiliation(s)
- Victoria L.M. Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine,Corresponding author:
| | - Nicholas A. Bosch
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine
| | - Judith J. Lok
- Department of Mathematics and Statistics, Boston University
| | - Mai Q. Nguyen
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine
| | - Kaitriona A. Lenae
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine
| | | | | | - David B. Seder
- Maine Health Institute for Research,Department of Critical Care Services, Maine Medical Center
| | - Nelson Ruiz-Opazo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine
| | - Allan J. Walkey
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
28
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
29
|
Wismans LV, Lopuhaä B, de Koning W, Moeniralam H, van Oosterhout M, Ambarus C, Hofman FN, Kuiken T, Endeman H, Mustafa DAM, von der Thüsen JH. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology 2023; 82:407-419. [PMID: 36366933 PMCID: PMC9877713 DOI: 10.1111/his.14838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
AIMS Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Leonoor V Wismans
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Boaz Lopuhaä
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Willem de Koning
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Clinical Bioinformatics Unit, Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Hazra Moeniralam
- Department of Internal Medicine and Intensive CareSt. Antonius HospitalNieuwegeinthe Netherlands
| | | | - Carmen Ambarus
- Department of Pathology DNASt. Antonius HospitalNieuwegeinthe Netherlands
| | - Frederik N Hofman
- Department of Cardiothoracic SurgerySt. Antonius HospitalNieuwegeinthe Netherlands
| | - Thijs Kuiken
- Department of ViroscienceErasmus Medical CenterRotterdamthe Netherlands
| | - Henrik Endeman
- Department of Adult Intensive CareErasmus Medical CenterRotterdamthe Netherlands
| | - Dana A M Mustafa
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Jan H von der Thüsen
- Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
30
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Wadowski PP, Panzer B, Józkowicz A, Kopp CW, Gremmel T, Panzer S, Koppensteiner R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci 2023; 24:2492. [PMID: 36768817 PMCID: PMC9916726 DOI: 10.3390/ijms24032492] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Platelet-endothelial interactions have a critical role in microcirculatory function, which maintains tissue homeostasis. The subtle equilibrium between platelets and the vessel wall is disturbed by the coronavirus disease 2019 (COVID-19), which affects all three components of Virchow's triad (endothelial injury, stasis and a hypercoagulable state). Endotheliitis, vasculitis, glycocalyx degradation, alterations in blood flow and viscosity, neutrophil extracellular trap formation and microparticle shedding are only few pathomechanisms contributing to endothelial damage and microthrombosis resulting in capillary plugging and tissue ischemia. In the following opinion paper, we discuss major pathological processes leading to microvascular endothelial activation and thrombosis formation as a possible major adverse factor driving the deterioration of patient disease course in severe COVID-19.
Collapse
Affiliation(s)
- Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1160 Vienna, Austria
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Antithrombotic Therapy in Cardiovascular Disease, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
32
|
Abstract
The high fragmentation of nuclear circulating DNA (cirDNA) relies on chromatin organization and protection or packaging within mononucleosomes, the smallest and the most stabilized structure in the bloodstream. The detection of differing size patterns, termed fragmentomics, exploits information about the nucleosomal packing of DNA. Fragmentomics not only implies size pattern characterization but also considers the positioning and occupancy of nucleosomes, which result in cirDNA fragments being protected and persisting in the circulation. Fragmentomics can determine tissue of origin and distinguish cancer-derived cirDNA. The screening power of fragmentomics has been considerably strengthened in the omics era, as shown in the ongoing development of sophisticated technologies assisted by machine learning. Fragmentomics can thus be regarded as a strategy for characterizing cancer within individuals and offers an alternative or a synergistic supplement to mutation searches, methylation, or nucleosome positioning. As such, it offers potential for improving diagnostics and cancer screening.
Collapse
Affiliation(s)
- A.R. Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, and ICM, Institut régional du Cancer de Montpellier, Montpellier 34298, France,Corresponding author
| |
Collapse
|
33
|
Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, Berger M, Roubille C, Fesler P, Klouche K, Cristol J, Thierry AR. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol 2023; 95:e28209. [PMID: 36226380 PMCID: PMC9874393 DOI: 10.1002/jmv.28209] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 01/27/2023]
Abstract
In the early phase of the pandemic, we were among the first to postulate that neutrophil extracellular traps (NETs) play a key role in COVID-19 pathogenesis. This exploratory prospective study based on 279 individuals showed that plasma levels of neutrophil elastase, myeloperoxidase and circulating DNA of nuclear and mitochondrial origins in nonsevere (NS), severe (S) and postacute phase (PAP) COVID-19 patients were statistically different as compared to the levels in healthy individuals, and revealed the high diagnostic power of these NETs markers in respect to the disease severity. The diagnostic power of NE, MPO, and cir-nDNA as determined by the Area Under Receiver Operating Curves (AUROC) was 0.95, 097, and 0.64; 0.99, 1.0, and 0.82; and 0.94, 1.0, and 0.93, in NS, S, and PAP patient subgroups, respectively. In addition, a significant fraction of NS, S as well as of PAP patients exhibited aCL IgM/IgG and anti-B2GP IgM/IgG positivity. We first demonstrate persistence of these NETs markers in PAP patients and consequently of sustained innate immune response imbalance, and a prolonged low-level pro-thrombotic potential activity highlighting the need to monitor these markers in all COVID-19 PAP individuals, to investigate postacute COVID-19 pathogenesis following intensive care, and to better identify which medical resources will ensure complete patient recovery.
Collapse
Affiliation(s)
- Ekaterina Pisareva
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
| | - Stephanie Badiou
- Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of MontpellierUniversity of Montpellier, PhyMedExpMontpellierFrance
| | - Lucia Mihalovičová
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
- Faculty of Medicine, Institute of Molecular BiomedicineComenius UniversityBratislavaSlovakia
| | - Alexia Mirandola
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
| | - Andrei Kudriavtsev
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
| | - Marie Berger
- Department of Internal Medicine, INSERM U1046, CNRS, Montpellier University Hospital, Montpellier, PhyMedExpUniversity of MontpellierMontpellierFrance
| | - Camille Roubille
- Department of Internal Medicine, INSERM U1046, CNRS, Montpellier University Hospital, Montpellier, PhyMedExpUniversity of MontpellierMontpellierFrance
| | - Pierre Fesler
- Department of Internal Medicine, INSERM U1046, CNRS, Montpellier University Hospital, Montpellier, PhyMedExpUniversity of MontpellierMontpellierFrance
| | - Kada Klouche
- Intensive Care Medicine Department, INSERM, CNRS, Lapeyronie HospitalUniversity Hospital of Montpellier, France, and PhyMedExp, University of MontpellierMontpellierFrance
| | - Jean‐Paul Cristol
- Department of Biochemistry and Hormonology, INSERM, CNRS, University Hospital Center of MontpellierUniversity of Montpellier, PhyMedExpMontpellierFrance
| | - Alain R. Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut Régional du Cancer de MontpellierUniversité de MontpellierMontpellierFrance
- Montpellier Cancer Institute (ICM)MontpellierFrance
| |
Collapse
|
34
|
Sun L, Zhang M, Jiang J, Liu W, Zhao W, Li F. Neutrophil extracellular traps promote bronchopulmonary dysplasia-like injury in neonatal mice via the WNT/β-catenin pathway. Front Cell Infect Microbiol 2023; 13:1126516. [PMID: 37180448 PMCID: PMC10174450 DOI: 10.3389/fcimb.2023.1126516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is one of the most common and severe chronic diseases in preterm infants. Premature infants are susceptible to BPD due to immature lungs and adverse perinatal episodes of infection, hyperoxia, and mechanical ventilation. Methods Neutrophils are the first line of host defence, and the release of neutrophil extracellular traps (NETs) is an important strategy to immobilize and kill invading microorganisms. This study examined whether NETs were associated with BPD in preterm infants and contributed to hyperoxia-induced lung injury in neonatal mice via the WNT/β-catenin pathway. Results In this study, we found that preterm infants with BPD had higher levels of NETs in their tracheal aspirates than those without BPD. Neonatal mice treated with NETs after birth exhibited BPD-like changes in their lungs. Furthermore, the levels of Aquaporin 5 (AQP5) and surfactant-associated protein C (SPC), which represent alveolar differentiation and development, were significantly lower than those in the controls. The WNT/β-catenin pathway is one of the most well-known signalling pathways involved in lung growth. We found that the expression of the target genes c-MYC, cyclin D, and vascular endothelial growth factor (VEGF) and the important proteins WNT3a and β-catenin significantly decreased. Moreover, heparin, which is a NET inhibitor, attenuated changes in gene and protein expression, thereby attenuating BPD-like changes. Discussion This finding indicates that NETs are associated with BPD and can induce BPD-like changes in neonatal mice via the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Liujuan Sun
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Meiyu Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Jin Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Wanjiao Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Wenhao Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
| | - Fang Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatal Diagnosis and Treatment Centre Children’s Hospital of Chongqing Medical University, ChongQing, China
- National Clinical Research Center for Child Health and Disorders, ChongQing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, ChongQing, China
- Chongqing Key Laboratory of Pediatrics, ChongQing, China
- *Correspondence: Fang Li,
| |
Collapse
|
35
|
Cardelli M, Pierpaoli E, Marchegiani F, Marcheselli F, Piacenza F, Giacconi R, Recchioni R, Casoli T, Stripoli P, Provinciali M, Matacchione G, Giuliani A, Ramini D, Sabbatinelli J, Bonafè M, Di Rosa M, Cherubini A, Di Pentima C, Spannella F, Antonicelli R, Bonfigli AR, Olivieri F, Lattanzio F. Biomarkers of cell damage, neutrophil and macrophage activation associated with in-hospital mortality in geriatric COVID-19 patients. Immun Ageing 2022; 19:65. [PMID: 36522763 PMCID: PMC9751505 DOI: 10.1186/s12979-022-00315-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The risk for symptomatic COVID-19 requiring hospitalization is higher in the older population. The course of the disease in hospitalised older patients may show significant variation, from mild to severe illness, ultimately leading to death in the most critical cases. The analysis of circulating biomolecules involved in mechanisms of inflammation, cell damage and innate immunity could lead to identify new biomarkers of COVID-19 severity, aimed to improve the clinical management of subjects at higher risk of severe outcomes. In a cohort of COVID-19 geriatric patients (n= 156) who required hospitalization we analysed, on-admission, a series of circulating biomarkers related to neutrophil activation (neutrophil elastase, LL-37), macrophage activation (sCD163) and cell damage (nuclear cfDNA, mithocondrial cfDNA and nuclear cfDNA integrity). The above reported biomarkers were tested for their association with in-hospital mortality and with clinical, inflammatory and routine hematological parameters. Aim of the study was to unravel prognostic parameters for risk stratification of COVID-19 patients. RESULTS Lower n-cfDNA integrity, higher neutrophil elastase and higher sCD163 levels were significantly associated with an increased risk of in-hospital decease. Median (IQR) values observed in discharged vs. deceased patients were: 0.50 (0.30-0.72) vs. 0.33 (0.22-0.62) for n-cfDNA integrity; 94.0 (47.7-154.0) ng/ml vs. 115.7 (84.2-212.7) ng/ml for neutrophil elastase; 614.0 (370.0-821.0) ng/ml vs. 787.0 (560.0-1304.0) ng/ml for sCD163. The analysis of survival curves in patients stratified for tertiles of each biomarker showed that patients with n-cfDNA integrity < 0.32 or sCD163 in the range 492-811 ng/ml had higher risk of in-hospital decease than, respectively, patients with higher n-cfDNA integrity or lower sCD163. These associations were further confirmed in multivariate models adjusted for age, sex and outcome-related clinical variables. In these models also high levels of neutrophil elastase (>150 ng/ml) appeared to be independent predictor of in-hospital death. An additional analysis of neutrophil elastase in patients stratified for n-cfDNA integrity levels was conducted to better describe the association of the studied parameters with the outcome. CONCLUSIONS On the whole, biomarkers of cell-free DNA integrity, neutrophil and macrophage activation might provide a valuable contribution to identify geriatric patients with high risk of COVID-19 in-hospital mortality.
Collapse
Affiliation(s)
- M. Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - E. Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - F. Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Marcheselli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - T. Casoli
- Center for Neurobiology of Aging, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - P. Stripoli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - M. Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - G. Matacchione
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - A. Giuliani
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - D. Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - J. Sabbatinelli
- grid.411490.90000 0004 1759 6306SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - M. Bonafè
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M. Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy
| | - A. Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca per l’invecchiamento, IRCCS INRCA, Ancona, Italy
| | - C. Di Pentima
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | - F. Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | | | - A. R. Bonfigli
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| | - F. Olivieri
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - F. Lattanzio
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
36
|
Pisareva E, Mihalovičová L, Pastor B, Kudriavtsev A, Mirandola A, Mazard T, Badiou S, Maus U, Ostermann L, Weinmann-Menke J, Neuberger EWI, Simon P, Thierry AR. Neutrophil extracellular traps have auto-catabolic activity and produce mononucleosome-associated circulating DNA. Genome Med 2022; 14:135. [PMID: 36443816 PMCID: PMC9702877 DOI: 10.1186/s13073-022-01125-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As circulating DNA (cirDNA) is mainly detected as mononucleosome-associated circulating DNA (mono-N cirDNA) in blood, apoptosis has until now been considered as the main source of cirDNA. The mechanism of cirDNA release into the circulation, however, is still not fully understood. This work addresses that knowledge gap, working from the postulate that neutrophil extracellular traps (NET) may be a source of cirDNA, and by investigating whether NET may directly produce mono-N cirDNA. METHODS We studied (1) the in vitro kinetics of cell derived genomic high molecular weight (gHMW) DNA degradation in serum; (2) the production of extracellular DNA and NET markers such as neutrophil elastase (NE) and myeloperoxidase (MPO) by ex vivo activated neutrophils; and (3) the in vitro NET degradation in serum; for this, we exploited the synergistic analytical information provided by specifically quantifying DNA by qPCR, and used shallow WGS and capillary electrophoresis to perform fragment size analysis. We also performed an in vivo study in knockout mice, and an in vitro study of gHMW DNA degradation, to elucidate the role of NE and MPO in effecting DNA degradation and fragmentation. We then compared the NET-associated markers and fragmentation size profiles of cirDNA in plasma obtained from patients with inflammatory diseases found to be associated with NET formation and high levels of cirDNA (COVID-19, N = 28; systemic lupus erythematosus, N = 10; metastatic colorectal cancer, N = 10; and from healthy individuals, N = 114). RESULTS Our studies reveal that gHMW DNA degradation in serum results in the accumulation of mono-N DNA (81.3% of the remaining DNA following 24 h incubation in serum corresponded to mono-N DNA); "ex vivo" NET formation, as demonstrated by a concurrent 5-, 5-, and 35-fold increase of NE, MPO, and cell-free DNA (cfDNA) concentration in PMA-activated neutrophil culture supernatant, leads to the release of high molecular weight DNA that degrades down to mono-N in serum; NET mainly in the form of gHMW DNA generate mono-N cirDNA (2 and 41% of the remaining DNA after 2 h in serum corresponded to 1-10 kbp fragments and mono-N, respectively) independent of any cellular process when degraded in serum; NE and MPO may contribute synergistically to NET autocatabolism, resulting in a 25-fold decrease in total DNA concentration and a DNA fragment size profile similar to that observed from cirDNA following 8 h incubation with both NE and MPO; the cirDNA size profile of NE KO mice significantly differed from that of the WT, suggesting NE involvement in DNA degradation; and a significant increase in the levels of NE, MPO, and cirDNA was detected in plasma samples from lupus, COVID-19, and mCRC, showing a high correlation with these inflammatory diseases, while no correlation of NE and MPO with cirDNA was found in HI. CONCLUSIONS Our work describes the mechanisms by which NET and cirDNA are linked. In doing so, we demonstrate that NET are a major source of mono-N cirDNA independent of apoptosis and establish a new paradigm of the mechanisms of cirDNA release in normal and pathological conditions. We also demonstrate a link between immune response and cirDNA.
Collapse
Affiliation(s)
- Ekaterina Pisareva
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Lucia Mihalovičová
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Andrei Kudriavtsev
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Alexia Mirandola
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Thibault Mazard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France
| | - Stephanie Badiou
- Laboratoire de Biochimie Et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, France
| | - Ulrich Maus
- Division of Experimental Pneumology, Hannover Medical School, and German Center for Lung Research, Partner Site BREATH (Biomedical Research in Endstage and Obstructive Lung Disease), 30625, Hannover, Germany
| | - Lena Ostermann
- Division of Experimental Pneumology, Hannover Medical School, and German Center for Lung Research, Partner Site BREATH (Biomedical Research in Endstage and Obstructive Lung Disease), 30625, Hannover, Germany
| | - Julia Weinmann-Menke
- Department of Rheumatology and Nephrology, University Medical Center Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Elmo W I Neuberger
- Department of Sports Medicine, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Alain R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France.
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France.
- Montpellier Cancer Institute (ICM), Montpellier, France.
| |
Collapse
|
37
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:271-291. [PMID: 36407837 PMCID: PMC9668222 DOI: 10.1134/s1990750822040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic had stimulated the emergence of numerous publications on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), especially when it was found that the regions of high mortality corresponded to the regions with deficient α1-PI alleles. By analogy with the data obtained in the last century, when the first cause of the genetic deficiency of α1-antitrypsin leading to elastase activation in pulmonary emphysema was proven, it can be supposed that proteolysis hyperactivation in COVID-19 may be associated with the impaired functions of α1-PI. The purpose of this review was to systematize the scientific data and critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a therapeutic target. This review describes the proteinase-dependent stages of viral infection: the reception and penetration of the virus into a cell and the imbalance of the plasma aldosterone-angiotensin-renin, kinin, and blood clotting systems. The role of ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases in the virus tropism, the activation of proteolytic cascades in blood, and the COVID-19-dependent complications is considered. The scientific reports on α1-PI involvement in the SARS-CoV-2-induced inflammation, the relationship with the severity of infection and comorbidities were analyzed. Particular attention is paid to the acquired α1-PI deficiency in assessing the state of patients with proteolysis overactivation and chronic non-inflammatory diseases, which are accompanied by the risk factors for comorbidity progression and the long-term consequences of COVID-19. Essential data on the search and application of protease inhibitor drugs in the therapy for bronchopulmonary and cardiovascular pathologies were analyzed. The evidence of antiviral, anti-inflammatory, anticoagulant, and anti-apoptotic effects of α1-PI, as well as the prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders, are presented.
Collapse
Affiliation(s)
| | - L. V. Spirina
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - D. A. Dyakov
- Siberian State Medical University, 634050 Tomsk, Russia
| | | |
Collapse
|
38
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
39
|
Musiał K. Update on Innate Immunity in Acute Kidney Injury—Lessons Taken from COVID-19. Int J Mol Sci 2022; 23:ijms232012514. [PMID: 36293370 PMCID: PMC9604105 DOI: 10.3390/ijms232012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
40
|
Nappi F, Nappi P, Gambardella I, Avtaar Singh SS. Thromboembolic Disease and Cardiac Thrombotic Complication in COVID-19: A Systematic Review. Metabolites 2022; 12:889. [PMID: 36295791 PMCID: PMC9611930 DOI: 10.3390/metabo12100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenicity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial damage for direct virus infection, associated excessive formation of neutrophil extracellular traps (NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were evaluated for the processing of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period and case reports were excluded. A total of 58 studies were included in this analysis. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining thromboembolic disease and cardiac thrombotic complication in COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomarkers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, thromboembolic complications in COVID-19 remain an entity that substantially impacts the health care system, with long-term effects that remain uncertain. Continuous monitoring and research are required.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ivancarmine Gambardella
- Department of Cardiothoracic Surgery, Weill Cornell Medicine–New York Presbyterian Medical Center, New York, NY 10065, USA
| | | |
Collapse
|
41
|
Daamen AR, Bachali P, Bonham CA, Somerville L, Sturek JM, Grammer AC, Kadl A, Lipsky PE. COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Front Immunol 2022; 13:989556. [PMID: 36189236 PMCID: PMC9522616 DOI: 10.3389/fimmu.2022.989556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 manifests a spectrum of respiratory symptoms, with the more severe often requiring hospitalization. To identify markers for disease progression, we analyzed longitudinal gene expression data from patients with confirmed SARS-CoV-2 infection admitted to the intensive care unit (ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU patients with or without AHRF and correlated results of gene set enrichment analysis with clinical features. The results were then compared with a second dataset of COVID-19 patients separated by disease stage and severity. Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was characteristic of all COVID-19 patients whereas enrichment of interferon (IFN) and neutrophil gene signatures was specific to patients requiring hospitalization. Furthermore, gene expression results were used to divide AHRF COVID-19 patients into 2 groups with differences in immune profiles and clinical features indicative of severe disease. Thus, transcriptomic analysis reveals gene signatures unique to COVID-19 patients and provides opportunities for identification of the most at-risk individuals.
Collapse
Affiliation(s)
| | | | - Catherine A. Bonham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | - Lindsay Somerville
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Sturek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | | | - Alexandra Kadl
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
42
|
Ma L, Willey J. The interplay between inflammation and thrombosis in COVID-19: Mechanisms, therapeutic strategies, and challenges. THROMBOSIS UPDATE 2022; 8:100117. [PMID: 38620713 PMCID: PMC9270234 DOI: 10.1016/j.tru.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can cause life-threatening pathology characterized by a dysregulated immune response and coagulopathy. While respiratory failure induced by inflammation is the most common cause of death, micro-and macrovascular thrombosis leading to multiple organ failure are also causes of mortality. Dysregulation of systemic inflammation observed in severe COVID-19 patients is manifested by cytokine release syndrome (CRS) - the aberrant release of high levels of proinflammatory cytokines, such as IL-6, IL-1, TNFα, MP-1, as well as complement. CRS is often accompanied by activation of endothelial cells and platelets, coupled with perturbation of the balance between the pro-and antithrombotic mechanisms, resulting in thrombosis. Inflammation and thrombosis form a vicious circle, contributing to morbidity and mortality. Treatment of hyperinflammation has been shown to decrease thrombosis, while anti-thrombotic treatment also downregulates cytokine release. This review highlights the relationship between COVID-19-mediated systemic inflammation and thrombosis, the molecular pathways involved, the therapies targeting these processes, and the challenges currently encountered.
Collapse
Affiliation(s)
- Li Ma
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Joanne Willey
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
43
|
Chowdary P. COVID-19 coagulopathy - what should we treat? Exp Physiol 2022; 107:749-758. [PMID: 35733235 PMCID: PMC9328279 DOI: 10.1113/ep089404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the topic of this review? Overview of the coagulation abnormalities, including elevated D-dimers widely reported with COVID-19, often labelled as COVID coagulopathy. What advances does it highlight? The review highlights the changes in bronchoalveolar haemostasis due to apoptosis of alveolar cells, which contributes to acute lung injury and acute respiratory distress syndrome; the pathophysiological mechanisms, including endothelial dysfunction and damage responsible for thrombosis of pulmonary microcirculation and potential contribution to the hypoxaemia of COVID-19 acute lung injury; and changes in coagulation proteins responsible for the hypercoagulability and increased risk of thrombosis in other venous and arterial beds. The rationale for anticoagulation and fibrinolytic therapies is detailed, and potential confounders that might have led to less than expected improvement in the various randomised controlled trials are considered. ABSTRACT Coronavirus disease 19 (COVID-19) causes acute lung injury with diffuse alveolar damage, alveolar-capillary barrier disruption, thrombin generation and alveolar fibrin deposition. Clinically, hypoxaemia is associated with preserved lung compliance early in the disease, suggesting the lack of excessive fluid accumulation typical of other lung injuries. Notably, autopsy studies demonstrate infection of the endothelium with extensive capillary thrombosis distinct from the embolic thrombi in pulmonary arteries. The inflammatory thrombosis in pulmonary vasculature secondary to endothelial infection and dysfunction appears to contribute to hypoxaemia. This is associated with elevated D-dimers and acquired hypercoagulability with an increased risk of deep vein thrombosis. Hypercoagulability is secondary to elevated plasma tissue factor levels, von Willebrand factor, fibrinogen, reduced ADAMTS-13 with platelet activation and inhibition of fibrinolysis. Multi-platform randomised controlled studies of systemic therapeutic anticoagulation with unfractionated and low molecular mass heparins demonstrated a survival benefit over standard care with full-dose anticoagulation in patients with non-severe disease who require supplemental oxygen, but not in severe disease requiring ventilatory support. Late intervention and the heterogeneous nature of enrolled patients can potentially explain the apparent lack of benefit in severe disease. Improvement in oxygenation has been demonstrated with intravenous fibrinolytics in small studies. Inhaled anticoagulants, thrombolytic agents and non-specific proteolytic drugs in clinical trials for decreasing alveolar fibrin deposition might benefit early disease. Essentially, COVID-19 is a multi-system disorder with pulmonary vascular inflammatory thrombosis that requires an interdisciplinary approach to combination therapies addressing both inflammation and intravascular thrombosis or alveolar fibrin deposits to improve outcomes.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK.,Cancer Institute, University College London, London, UK
| |
Collapse
|
44
|
Ouyang K, Oparaugo N, Nelson AM, Agak GW. T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Front Immunol 2022; 13:900634. [PMID: 35795664 PMCID: PMC9250990 DOI: 10.3389/fimmu.2022.900634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular traps (ETs) in the innate immune response against pathogens is well established. ETs were first identified in neutrophils and have since been identified in several other immune cells. Although the mechanistic details are not yet fully understood, recent reports have described antigen-specific T cells producing T cell extracellular traps (TETs). Depending on their location within the cutaneous environment, TETs may be beneficial to the host by their ability to limit the spread of pathogens and provide protection against damage to body tissues, and promote early wound healing and degradation of inflammatory mediators, leading to the resolution of inflammatory responses within the skin. However, ETs have also been associated with worse disease outcomes. Here, we consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a commensal skin bacterium that contributes to skin health, but is also associated with acne vulgaris and surgical infections following joint-replacement procedures. Insights on the role of the skin microbes in regulating T cell ET formation have broad implications not only in novel probiotic design for acne treatment, but also in the treatment for other chronic inflammatory skin disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Nicole Oparaugo
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, United States
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: George W. Agak,
| |
Collapse
|
45
|
Zhang Y, Wang Q, Mackay CR, Ng LG, Kwok I. Neutrophil subsets and their differential roles in viral respiratory diseases. J Leukoc Biol 2022; 111:1159-1173. [PMID: 35040189 PMCID: PMC9015493 DOI: 10.1002/jlb.1mr1221-345r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Neutrophils play significant roles in immune homeostasis and as neutralizers of microbial infections. Recent evidence further suggests heterogeneity of neutrophil developmental and activation states that exert specialized effector functions during inflammatory disease conditions. Neutrophils can play multiple roles during viral infections, secreting inflammatory mediators and cytokines that contribute significantly to host defense and pathogenicity. However, their roles in viral immunity are not well understood. In this review, we present an overview of neutrophil heterogeneity and its impact on the course and severity of viral respiratory infectious diseases. We focus on the evidence demonstrating the crucial roles neutrophils play in the immune response toward respiratory infections, using influenza as a model. We further extend the understanding of neutrophil function with the studies pertaining to COVID-19 disease and its neutrophil-associated pathologies. Finally, we discuss the relevance of these results for future therapeutic options through targeting and regulating neutrophil-specific responses.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of ResearchNational Skin CentreSingaporeSingapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Microbiology, Infection and Immunity ProgramBiomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
- State Key Laboratory of Experimental HematologyInstitute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and ImmunologyImmunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of SingaporeSingaporeSingapore
- National Cancer Centre SingaporeSingaporeSingapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN)A*STAR (Agency for Science, Technology and Research)BiopolisSingapore
| |
Collapse
|
46
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. [Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:157-176. [PMID: 35717581 DOI: 10.18097/pbmc20226803157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Collapse
Affiliation(s)
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D A Dyakov
- Siberian State Medical University, Tomsk, Russia
| | - N V Masunova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
47
|
Liana P, Liberty IA, Murti K, Hafy Z, Salim EM, Zulkarnain M, Umar TP. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol Res 2022; 70:449-460. [PMID: 35604493 PMCID: PMC9125547 DOI: 10.1007/s12026-022-09293-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) are extracellular webs composed of neutrophil granular and nuclear elements. Because of the potentially dangerous amplification circuit between inflammation and tissue damage, NETs are becoming one of the investigated components in the current Coronavirus Disease 2019 (COVID-19) pandemic. The purpose of this systematic review is to summarize studies on the role of NETs in determining the prognosis of COVID-19 patients. The study used six databases: PubMed, Science Direct, EBSCOHost, Europe PMC, ProQuest, and Scopus. This literature search was implemented until October 31, 2021. The search terms were determined specifically for each databases, generally included the Neutrophil Extracellular Traps, COVID-19, and prognosis. The Newcastle Ottawa Scale (NOS) was then used to assess the risk of bias. Ten studies with a total of 810 participants were chosen based on the attainment of the prerequisite. Two were of high quality, seven were of moderate quality, and the rest were of low quality. The majority of studies compared COVID-19 to healthy control. Thrombosis was observed in three studies, while four studies recorded the need for mechanical ventilation. In COVID-19 patients, the early NETs concentration or the evolving NETs degradations can predict patient mortality. Based on their interactions with inflammatory and organ dysfunction markers, it is concluded that NETs play a significant role in navigating the severity of COVID-19 patients and thus impacting their prognosis.
Collapse
Affiliation(s)
- Phey Liana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya/Dr Mohammad Hoesin General Hospital, Palembang, Indonesia
- Biomedicine Doctoral Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Krisna Murti
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh. Ali Street RSMH complex, Palembang, South Sumatera Indonesia
| | - Zen Hafy
- Biomedical Department, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Eddy Mart Salim
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya/Dr, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Mohammad Zulkarnain
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Tungki Pratama Umar
- Medical Profession Program, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| |
Collapse
|
48
|
Wang Y, Wu M, Li Y, Yuen HH, He ML. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. J Biomed Sci 2022; 29:27. [PMID: 35505345 PMCID: PMC9063252 DOI: 10.1186/s12929-022-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
The global pandemic of COVID-19 has caused huge causality and unquantifiable loss of social wealth. The innate immune response is the first line of defense against SARS-CoV-2 infection. However, strong inflammatory response associated with dysregulation of innate immunity causes severe acute respiratory syndrome (SARS) and death. In this review, we update the current knowledge on how SARS-CoV-2 modulates the host innate immune response for its evasion from host defense and its corresponding pathogenesis caused by cytokine storm. We emphasize Type I interferon response and the strategies of evading innate immune defense used by SARS-CoV-2. We also extensively discuss the cells and their function involved in the innate immune response and inflammatory response, as well as the promises and challenges of drugs targeting excessive inflammation for antiviral treatment. This review would help us to figure out the current challenge questions of SARS-CoV-2 infection on innate immunity and directions for future studies.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Him Yuen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China. .,CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
49
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
50
|
Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. J Clin Med 2022; 11:jcm11092460. [PMID: 35566589 PMCID: PMC9104617 DOI: 10.3390/jcm11092460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has resulted in significant mortality and burdening of healthcare resources. While initially noted as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic review aims to investigate the role of inflammatory pathways, highlighting several culprits including neutrophil extracellular traps (NETs) which have since been extensively investigated. Method: A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were considered for the processing of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without the SARS-CoV-2 Infection period and case reports were excluded. Results: A total of 47 studies were included in this study. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of the mechanisms of activation of these pathways have been highlighted in previous studies and are highlighted. Conclusion: NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity that has not been fully understood with long-term effects remaining uncertain and requiring ongoing monitoring and research.
Collapse
|