1
|
Ramadan NE, Youssef FR, Alshishtawy AAK, Elshikh FM, Newir O, Abdelazeem SH, Ma'ruf NK, Shouman H, Ali SS, El-Sheekh MM. Marine algal polysaccharides for drug delivery applications: A review. Int J Biol Macromol 2025; 295:139551. [PMID: 39778838 DOI: 10.1016/j.ijbiomac.2025.139551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
In recent decades, there has been a growing interest in the use of polysaccharides that exhibit biological activity for a wide range of innovative applications. This is due to their nontoxicity, biodegradability, biocompatibility, and therapeutic properties. The diverse properties of polysaccharides derived from marine algae make them a promising strategy for the construction of drug delivery systems (DDSs). Marine algal polysaccharides can be utilized in regenerative medicine and gene delivery to facilitate the controlled release of therapeutic substances, which is a critical stage in the fight against severe diseases. Algal polysaccharide-based nanoparticles, microspheres, hydrogels, patches, and films are among the numerous controllable and sustained anti-inflammatory and anticancer DDSs that can be used due to the biological activities of these algal polymers. This review paper summarizes the advantages and applications of marine algal polysaccharides in DDSs (such as nanoparticles, microspheres, hydrogels, patches and films) as well as recent advances in drug delivery technologies, thereby providing valuable information for future research on drug delivery-based algal polysaccharides.
Collapse
Affiliation(s)
- Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Egypt
| | - Fatma R Youssef
- Department of Biotechnology, Faculty of Science, Tanta University, Egypt
| | - Amira A K Alshishtawy
- Department of Food Science, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Farah M Elshikh
- Department of Biotechnology, Faculty of Science, Tanta University, Egypt
| | - Omnia Newir
- Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shrouk H Abdelazeem
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada K Ma'ruf
- Department of Biotechnology, Faculty of Science, Tanta University, Egypt
| | - Hagar Shouman
- Department of Biotechnology, Faculty of Science, Tanta University, Egypt
| | - Sameh Samir Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Ghadimi T, Latifi N, Hivechi A, Hosseinpour Sarmadi V, Bayat Shahbazi S, Amini N, B Milan P, Abbaszadeh A, Larijani G, Fathalian H, Mortazavi S, Latifi F, Ghadimi F, Farokh Forghani S, Naderi Gharahgheshlagh S. Sargassum glaucescens Extract/Marine-Derived Collagen Blend Sponge and Their Properties for Wound Healing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:25. [PMID: 39751891 DOI: 10.1007/s10126-024-10402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S. glaucescens) extract (SGE) to promote burn wound healing was assessed in this work. Synthesized collagen (40 mg/ml)/SGE (1-3 mg/ml) samples were then characterized physiochemically and physiologically. The physicochemical examination validated the bioactive component of SGE, the type of collagen (type I, α1, and α2), the successful incorporation of SGE into collagen scaffolds (Col/SGE), the thermal stability, and excellent hydrophilicity and water absorption capacity of produced scaffolds. Moreover, biological experiments approved the excellent antioxidant and antibacterial activity of SGE, structural stability improvement against degradation, and cell proliferation enhancement without cell toxicity. The results showed the Col/SGE 3 mg/ml sample also had the highest level of cell activity, according to the antibacterial and cell viability assays. Additionally, using Col/SGE in vivo on burn wounds in rat models demonstrated a quicker rate of wound healing with stronger re-epithelialization and dermal remodeling, fewer inflammatory cells, more fibroblast cells, and great collagen buildup. Therefore, since the collagen/SGE scaffold is structurally stable and can potentially promote cell proliferation without causing cell toxicity, the acquired results suggested that it may significantly impact wound healing.
Collapse
Affiliation(s)
- Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noorahmad Latifi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hivechi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Abbaszadeh
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Fathalian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shokoufeh Mortazavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Latifi
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghadimi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
4
|
Vigani B, Ianev D, Adami M, Valentino C, Ruggeri M, Boselli C, Icaro Cornaglia A, Sandri G, Rossi S. Porous Functionally Graded Scaffold prepared by a single-step freeze-drying process. A bioinspired approach for wound care. Int J Pharm 2024; 656:124119. [PMID: 38621616 DOI: 10.1016/j.ijpharm.2024.124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daiana Ianev
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Moaness M, Kamel AM, Salama A, Kamel R, Beherei HH, Mabrouk M. Fast skin healing chitosan/PEO hydrogels: In vitro and in vivo studies. Int J Biol Macromol 2024; 265:130950. [PMID: 38513911 DOI: 10.1016/j.ijbiomac.2024.130950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Due to its outstanding qualities, particularly when it takes the shape of hydrogels, chitosan is a well-known biological macromolecule with many applications. When chitosan hydrogels are modified with other polymers, the desirable function as skin regeneration hydrogels is compromised; nevertheless, the mechanical properties can be improved, which is crucial for commercialization. In this study, for the first time, bimetallic zinc silver metal-organic frameworks (ZAg MOF) loaded with ascorbic acid were added to chitosan/polyethylene oxide (PEO) based interpenetrating polymer network (IPN) hydrogels that were crosslinked with biotin to improve their antimicrobial activity, mechanical characteristics, and sustainable treatment of wounds. Significant changes in the microstructure, hydrophilicity level, and mechanical properties were noticed. Ascorbic acid release patterns were upregulated in an acidic environment pH (5.5) that mimics the initial wound pH. Impressive cell viability (98 %), antimicrobial properties, and almost full skin healing in a short time were achieved for the non-replaceable chitosan/PEO developed hydrogels. Enhancing the wound healing of the treated animals using the prepared CS/PEO hydrogel dressing was found to be a result of the inhibition of dermal inflammation via decreasing IL-1β, suppressing ECM degradation (MMP9), stimulating proliferation through upregulation of TGF-β and increasing ECM synthesis as it elevates collagen 1 and α-SMA contents. The findings support the implementation of developed hydrogels as antimicrobial hydrogels dressing for fast skin regeneration.
Collapse
Affiliation(s)
- Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, National Research Centre, 33El Bohouth St., Dokki, PO Box12622, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
6
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
7
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
8
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
9
|
Kim S, Kim C, Lee K. Hydrogels as filler materials. HYDROGELS FOR TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2024:413-432. [DOI: 10.1016/b978-0-12-823948-3.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Kang MS, Jo HJ, Jang HJ, Kim B, Jung TG, Han DW. Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues. Mar Drugs 2023; 21:611. [PMID: 38132932 PMCID: PMC10744877 DOI: 10.3390/md21120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The inherent self-repair abilities of the body often fall short when it comes to addressing injuries in soft tissues like skin, nerves, and cartilage. Tissue engineering and regenerative medicine have concentrated their research efforts on creating natural biomaterials to overcome this intrinsic healing limitation. This comprehensive review delves into the advancement of such biomaterials using substances and components sourced from marine origins. These marine-derived materials offer a sustainable alternative to traditional mammal-derived sources, harnessing their advantageous biological traits including sustainability, scalability, reduced zoonotic disease risks, and fewer religious restrictions. The use of diverse engineering methodologies, ranging from nanoparticle engineering and decellularization to 3D bioprinting and electrospinning, has been employed to fabricate scaffolds based on marine biomaterials. Additionally, this review assesses the most promising aspects in this field while acknowledging existing constraints and outlining necessary future steps for advancement.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea;
| | - Tae Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheonju-si 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (H.J.J.); (H.J.J.)
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Singh D, Arora S, Arora V. A Short Appraisal of Biomimetic Hydrogels to Improve Penetration of Poorly Permeable Drugs. Assay Drug Dev Technol 2023; 21:374-384. [PMID: 38010949 DOI: 10.1089/adt.2023.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Effective drug delivery to target sites is critical for achieving desired therapeutic outcomes. However, the poor permeability of certain drugs poses significant challenges in achieving adequate drug concentrations at the desired locations. Biomimetic hydrogels have emerged as a promising approach to enhance the penetration of poorly permeable drugs. These hydrogels, designed to mimic natural biological systems, offer unique properties and functionalities that enable improved drug permeation. In this review, we provide a comprehensive appraisal of the role of biomimetic hydrogels in enhancing drug penetration. We discuss the design principles, properties, and mechanisms by which these hydrogels facilitate drug permeation. Specifically, we explore the applications and benefits of biomimetic hydrogels in controlled drug release, mimicking extracellular matrix microenvironments, promoting cell-mimetic interactions, and enabling targeted drug delivery. Through an examination of key studies and advancements, we highlight the potential of biomimetic hydrogels in enhancing drug penetration and their implications for therapeutic interventions. This review contributes to a deeper understanding of biomimetic hydrogels as a promising strategy for overcoming drug penetration challenges and advancing drug delivery systems, ultimately leading to improved therapeutic efficacy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Sahil Arora
- School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
12
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Neacșu IA, Chircov C, Vasile BȘ, Oprea OC, Andronescu E, Stan MS, Curuțiu C, Dițu LM, Holban AM. A Microfluidic Approach for Synthesis of Silver Nanoparticles as a Potential Antimicrobial Agent in Alginate-Hyaluronic Acid-Based Wound Dressings. Int J Mol Sci 2023; 24:11466. [PMID: 37511219 PMCID: PMC10380883 DOI: 10.3390/ijms241411466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles. Moreover, using microfluidics widens the synthesis options by creating and controlling parameters that are otherwise difficult to maintain in conventional batch procedures. This study used a microfluidic platform with a cross-shape design as an innovative method for synthesizing silver nanoparticles and varied the precursor concentration and the purging speed as experimental parameters. The compositional and microstructural characterization of the obtained samples was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Four formulations of alginate-based hydrogels with the addition of hyaluronic acid and silver nanoparticles were obtained to highlight the antimicrobial activity of silver nanoparticles and the efficiency of such a composite in wound treatment. The porous structure, swelling capacity, and biological properties were evaluated through physicochemical analysis (FT-IR and SEM) and through contact with prokaryotic and eukaryotic cells. The results of the physicochemical and biological investigations revealed desirable characteristics for performant wound dressings (i.e., biocompatibility, appropriate porous structure, swelling rate, and degradation rate, ability to inhibit biofilm formation, and cell growth stimulation capacity), and the obtained materials are thus recommended for treating chronic and infected wounds.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Miruna Silvia Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen Curuțiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Dițu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
13
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
14
|
Shah S, Famta P, Shahrukh S, Jain N, Vambhurkar G, Srinivasarao DA, Raghuvanshi RS, Singh SB, Srivastava S. Multifaceted applications of ulvan polysaccharides: Insights on biopharmaceutical avenues. Int J Biol Macromol 2023; 234:123669. [PMID: 36796555 DOI: 10.1016/j.ijbiomac.2023.123669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Ulvans are water-soluble sulfated polysaccharides predominantly found in the cell wall of green algae. They hold unique characteristics that are attributed to their 3D conformation, functional groups along with the presence of saccharides and sulfate ions. Traditionally, ulvans are widely used as food supplements and probiotics owing to the high content of carbohydrates. Despite their widespread usage in food industry, an in-depth understanding is required for extrapolating their potential application as a nutraceutical and medicinal agent which could be beneficial in promoting human health and well-being. This review emphasizes novel therapeutic avenues where ulvan polysaccharides can be used beyond their nutritional applications. A collection of literature points towards multifarious applications of ulvan in various biomedical fields. Structural aspects along with extraction and purification methods have been discussed. The underlying molecular mechanisms associated with its biomedical potential in different therapeutic fields like oncology, infectious diseases, inflammation, neuroprotection and tissue engineering, etc. have been unravelled. Challenges associated with clinical translation and future perspectives have been deliberated.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
15
|
Agabo-García C, Romero-García LI, Álvarez-Gallego CJ, Blandino A. Valorisation of the invasive alga Rugulopteryx okamurae through the production of monomeric sugars. Appl Microbiol Biotechnol 2023; 107:1971-1982. [PMID: 36735067 PMCID: PMC10006063 DOI: 10.1007/s00253-023-12402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Rugulopteryx okamurae is an invasive brown alga causing severe environmental and economic problems on the western Mediterranean coasts. Thus, in addition to the difficulties caused to the fishing and tourism sectors, there is a need to manage its accumulation on the beaches. This work aims to valorise this waste by using it as raw material for producing monosaccharides through a two-stage sequential process. These sugars could be used for different fermentative processes to obtain high-value-added bioproducts. In this work, biological pretreatment of the previously conditioned seaweed with the fungus Aspergillus awamori in solid-state fermentation (SSF), followed by enzymatic hydrolysis with a commercial enzyme cocktail, was performed. The effect of the extension of the biological pretreatment (2, 5, 8 and 12 days) on the subsequent release of total reducing sugars (TRS) in the enzymatic hydrolysis stage was studied. To analyse this effect, experimental data of TRS produced along the hydrolysis were fitted to simple first-order kinetics. Also, the secretion of cellulase and alginate lyase by the fungus, along with the biological pretreatment, was determined. The results suggest that 5 days of biological pretreatment of the macroalgae with A. awamori followed by enzymatic saccharification for 24 h with Cellic CTec2® (112 FP units/g of dry biomass) are the best conditions tested, allowing the production of around 240 g of TRS per kg of dried biomass. The main sugars obtained were glucose (95.8 %) and mannitol (1.5 %), followed by galactose (1 %), arabinose (0.9 %) and fucose (0.5 %). KEY POINTS: • Five-day SSF by A. awamori was the best condition to pretreat R. okamurae. • Five-day SSF was optimal for alginate lyase production (1.63 ±0.011 IU/g biomass). • A maximum yield of 239 mg TRS/g biomass was obtained (with 95.8 % glucose).
Collapse
Affiliation(s)
- Cristina Agabo-García
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Luis I. Romero-García
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Carlos J. Álvarez-Gallego
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Ana Blandino
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
16
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
17
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
18
|
Evaluating the Skin Interactions and Permeation of Alginate/Fucoidan Hydrogels Per Se and Associated with Different Essential Oils. Pharmaceutics 2023; 15:pharmaceutics15010190. [PMID: 36678818 PMCID: PMC9861241 DOI: 10.3390/pharmaceutics15010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Marine polysaccharides are recognized for their biological properties and their application in the drug delivery field, favoring hydrogel-forming capacities for cutaneous application towards several dermatological conditions. Essential oils have been widely used in skin, not only for their remarkable biological properties, but also for their capacity to enhance permeation through the skin layers and to confer a pleasant scent to the formulation. In this study, menthol, L-linalool, bergamot oil, and β-pinene were incorporated in alginate/fucoidan hydrogels to evaluate their skin permeation enhancement profile and assess their influence on the skin organization. The combinations of different essential oils with the marine-based fucoidan/alginate hydrogel matrix were characterized, resulting in formulations with pseudoplastic rheological properties favorable for a uniform application in the skin. The ex vivo Franz diffusion permeation assays revealed that calcein loaded in bergamot-alginate/fucoidan hydrogel permeated more than 15 mg out of the initial 75 mg than when in linalool-alginate/fucoidan, alginate/fucoidan or hydrogel without any incorporated oil. Skin calcein retention for menthol- and pinene-alginate/fucoidan hydrogels was 15% higher than in the other conditions. Infrared micro-spectroscopic analysis through synchrotron-based Fourier Transform Infrared Microspectroscopy evidenced a symmetric shift in CH3 groups towards higher wavenumber, indicating lipids' fluidization and less lateral packing, characterized by a band at 1468 cm-1, with the bergamot-alginate/fucoidan, which contributes to enhancing skin permeation. The study highlights the effect of the composition in the design of formulations for topical or transdermal delivery systems.
Collapse
|
19
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
20
|
Nicaraven-loaded electrospun wound dressings promote diabetic wound healing via proangiogenic and immunomodulatory functions: a preclinical investigation. Drug Deliv Transl Res 2023; 13:222-236. [PMID: 35648292 DOI: 10.1007/s13346-022-01176-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
The current study developed a biopolymer-based wound dressing by electrospinning of Nicaraven-loaded collagen solution. Firstly, collagen was dissolved in acetic acid, and then Nicaraven was added to the polymeric solution at three different concentrations of 2 w/w%, 4 w/w%, and 6 w/w%. The resulting solution was then electrospun. Various experiments were performed to characterize the produced wound dressings. In vitro studies showed that Nicaraven-loaded scaffolds were not toxic against L929 fibroblast cells and protected them against oxidative stress. Wound healing potential of different formulations of Nicaraven-loaded collagen wound dressings was studied in a rat model of the excisional diabetic wound. The study showed that the collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings exhibited a significantly higher percentage of wound closure, the thickness of the epithelium, and collagen deposition compared with collagen/2% Nicaraven, collagen-only, and sterile gauze groups. Gene expression study showed that the developed wound dressings reduced the tissue expression levels of glutathione peroxidase, NFKβ, and matrix metalloproteinase 9 (MMP9) genes. In addition, in the wounds treated with collagen/4% Nicaraven and collagen/6% Nicaraven scaffolds, wound healing was associated with a higher tissue expression level of b-FGF, VEGF, and collagen type I genes. Overall, wound healing activity of collagen/4% Nicaraven and collagen/6% Nicaraven wound dressings was not significantly different. This study implies that collagen wound dressings incorporated with 4% and 6% Nicaraven can be considered a potential candidate to treat diabetic wounds in the clinic.
Collapse
|
21
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
22
|
Kim SC, Kim HJ, Park GE, Lee CW, Synytsya A, Capek P, Park YI. Sulfated Glucuronorhamnoxylan from Capsosiphon fulvescens Ameliorates Osteoporotic Bone Resorption via Inhibition of Osteoclastic Cell Differentiation and Function In Vitro and In Vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:690-705. [PMID: 35796894 DOI: 10.1007/s10126-022-10136-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Excessive osteoclast differentiation and/or bone resorptive function causes a gradual loss of bone, leading to the pathogenesis of bone diseases such as osteoporosis (OP). In this study, a sulfated glucuronorhamnoxylan polysaccharide (designated SPS-CF) of the green alga Capsosiphon fulvescens was evaluated for anti-osteoporotic activity using osteoclastic cells differentiated from RAW264.7 macrophages by receptor activator of NF-κB ligand (RANKL) treatment and ovariectomized (OVX) female mice as a postmenopausal OP model. With negligible cytotoxicity, SPS-CF (50 μg/mL) significantly suppressed tartrate-resistant acid phosphatase (TRAP) activity, actin ring formation, and expression of matrix metalloproteinase 9 (MMP-9), cathepsin K, TRAF6, p-Pyk2, c-Cbl, c-Src, gelsolin, carbonic anhydrase II (CA II), and integrin β3, indicating that SPS-CF inhibits the differentiation and bone resorptive function of osteoclasts. Removal of sulfate groups from SPS-CF abolished its anti-osteoclastogenic activities, demonstrating that sulfate groups are critical for its activity. Oral administration of SPS-CF (400 mg/kg/day) to OVX mice significantly augmented the bone mineral density (BMD) and serum osteoprotegerin (OPG)/RANKL ratio. These results demonstrated that SPS-CF exerts significant anti-osteoporotic activity by dampening osteoclastogenesis and bone resorption via downregulation of TRAF6-c-Src-Pyk2-c-Cbl-gelsolin signaling and augmentation of serum OPG/RANKL ratios in OVX mice, suggesting that SPS-CF can be a novel anti-osteoporotic compound for treating postmenopausal OP.
Collapse
Affiliation(s)
- Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Gi Eun Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague, 6, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
23
|
Shokrani H, Shokrani A, Jouyandeh M, Seidi F, Gholami F, Kar S, Munir MT, Kowalkowska-Zedler D, Zarrintaj P, Rabiee N, Saeb MR. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:2107-2121. [PMID: 35504039 DOI: 10.1021/acsabm.2c00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin tissue engineering), enabling one to achieve the required level of skin regeneration and wound healing. In this review, we have collected, summarized, screened, analyzed, and interpreted the properties of green nanocomposites used in skin tissue engineering and wound dressing. We particularly emphasize the mechanical and biological properties that skin cells need to meet when seeded on the scaffold. In this regard, the latest state of the art studies directed at fabrication of skin tissue and bionanocomposites as well as their mechanistic features are discussed, whereas some unspoken complexities and challenges for future developments are highlighted.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 11155-4563 Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Veleslavínova 42, 301 00 Plzeň, Czech Republic
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran 145888-9694, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
24
|
Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydr Polym 2022; 281:119045. [DOI: 10.1016/j.carbpol.2021.119045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
25
|
Singh P, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Preparation of thyme oil loaded κ-carrageenan-polyethylene glycol hydrogel membranes as wound care system. Int J Pharm 2022; 618:121661. [PMID: 35292394 DOI: 10.1016/j.ijpharm.2022.121661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
The present study is aimed at fabricating thyme oil loaded hydrogel membranes composed of κ-carrageenan (CG) and polyethylene glycol (PEG), which can provide moist environment and prevent infections for rapid wound healing. Membranes were prepared with different amounts of PEG via solvent casting technique under ambient conditions. Physicochemical properties of CG-PEG membranes as a function of the PEG content were investigated. The surface morphology of membranes displayed smoother surfaces with increasing PEG content up to 40%. In addition, the interaction of PEG with CG polymer chains was evaluated in terms of Free and bound PEG fraction within the membrane matrix. Furthermore, thyme oil (TO) was added to enhance the antibacterial properties of CG-PEG membranes. These membranes showed >95% antimicrobial activity against both gram-positive and gram-negative bacteria depending on the TO content. Suggesting the great potential of these membranes as a strong candidate for providing an effective antimicrobial nature in human healthcare.
Collapse
Affiliation(s)
- Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
26
|
Cui R, Zhang L, Ou R, Xu Y, Xu L, Zhan XY, Li D. Polysaccharide-Based Hydrogels for Wound Dressing: Design Considerations and Clinical Applications. Front Bioeng Biotechnol 2022; 10:845735. [PMID: 35321022 PMCID: PMC8937030 DOI: 10.3389/fbioe.2022.845735] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Wound management remains a worldwide challenge. It is undeniable that patients with problems such as difficulties in wound healing, metabolic disorder of the wound microenvironment and even severely infected wounds etc. always suffer great pain that affected their quality of lives. The selection of appropriate wound dressings is vital for the healing process. With the advances of technology, hydrogels dressings have been showing great potentials for the treatment of both acute wounds (e.g., burn injuries, hemorrhage, rupturing of internal organs/aorta) and chronic wounds such as diabetic foot and pressure ulcer. Particularly, in the past decade, polysaccharide-based hydrogels which are made up with abundant and reproducible natural materials that are biocompatible and biodegradable present unique features and huge flexibilities for modifications as wound dressings and are widely applicable in clinical practices. They share not only common characteristics of hydrogels such as excellent tissue adhesion, swelling, water absorption, etc., but also other properties (e.g., anti-inflammatory, bactericidal and immune regulation), to accelerate wound re-epithelialization, mimic skin structure and induce skin regeneration. Herein, in this review, we highlighted the importance of tailoring the physicochemical performance and biological functions of polysaccharide-based hydrogel wound dressings. We also summarized and discussed their clinical states of, aiming to provide valuable hints and references for the future development of more intelligent and multifunctional wound dressings of polysaccharide hydrogels.
Collapse
Affiliation(s)
- Rongwei Cui
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Luhan Zhang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lizhou Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- Department of Materials, Imperial College London, London, United Kingdom
| | - Xiao-Yong Zhan
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol 2022; 208:400-408. [PMID: 35248609 DOI: 10.1016/j.ijbiomac.2022.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Human understanding of skin is constantly ongoing. Great progress has been made in skin repair, wound dressing regeneration biomaterials research in recent years. This review introduced the clinical research and guiding principles of skin repair, wound dressing biomaterials at home and abroad, introduced the classification of various skin repair and wound dressing, listed the composition and performance of different dressing biomaterials, including traditional, natural, synthetic, tissue-engineered dressing materials were extensively reviewed. The biological molecular structures and biological function characteristics of different dressing biomaterials are comprehensively reviewed. Collagen, chitosan, alginate hydrogels et al. as the most popular biological macromolecules in skin repair and wound dressing applications were reviewed. The future development direction is also prospected. This paper reviews the research progress of advanced functional skin repair and wound dressing, which provides a reference for the modifications and applications of wound dressings.
Collapse
|
28
|
Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers (Basel) 2022; 14:polym14030460. [PMID: 35160450 PMCID: PMC8839484 DOI: 10.3390/polym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoalbuminemia can lead to poor and delayed wound healing, while it is also associated with acute myocardial infarction, heart failure, malignancies, and COVID-19. In elective surgery, patients with low albumin have high risks of postoperative wound complications. Here, we propose a novel cost-effective wound dressing material based on low-methoxy pectin and NaA-zeolite particles with controlled albumin release properties. We focused on both albumin adsorption and release phenomena for wounds with excess exudate. Firstly, we investigated albumin dynamics and calculated electrostatic surfaces at experimental pH values in water by using molecular dynamics methods. Then, we studied in detail pectin–zeolite hydrogels with both adsorption and diffusion into membrane methods using different pH values and albumin concentrations. To understand if uploaded albumin molecules preserved their secondary conformation in different formulations, we monitored the effect of pH and albumin concentration on the conformational changes in albumin after it was released from the hydrogels by using CD-UV spectroscopy analyses. Our results indicate that at pH 6.4, BSA-containing films preserved the protein’s folded structure while the protein was being released to the external buffer solutions. In vitro wound healing assay indicated that albumin-loaded hydrogels showed no toxic effects on the fibroblast cells.
Collapse
|
29
|
Polysaccharide Stalks in Didymosphenia geminata Diatom: Real World Applications and Strategies to Combat Its Spread. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Didymosphenia geminata is a species of freshwater diatom that is known as invasive and is propagating quickly around the world. While invasive species are generally considered a nuisance, this paper attempts to find useful applications for D. geminata in the biomedical field and wastewater remediation. Here, we highlight the polysaccharide-based stalks of D. geminata that enable versatile potential applications and uses as a biopolymer, in drug delivery and wound healing, and as biocompatible scaffolding in cell adhesion and proliferation. Furthermore, this review focuses on how the polysaccharide nature of stalks and their metal-adsorption capacity allows them to have excellent wastewater remediation potential. This work also aims to assess the economic impact of D. geminata, as an invasive species, on its immediate environment. Potential government measures and legislation are recommended to prevent the spread of D. geminata, emphasizing the importance of education and collaboration between stakeholders.
Collapse
|
30
|
Kudzin MH, Giełdowska M, Mrozińska Z, Boguń M. Poly(lactic acid)/Zinc/Alginate Complex Material: Preparation and Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1327. [PMID: 34827265 PMCID: PMC8614701 DOI: 10.3390/antibiotics10111327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate an antimicrobial and degradable composite material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This paper describes the method of preparation and the characterization of the physicochemical and antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The characterization and analysis of new material included scanning electron microscopy (SEM), specific surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the development and potential application of new composite as an antibacterial/antifungal material in biomedical areas.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (M.G.); (Z.M.); (M.B.)
| | | | | | | |
Collapse
|
31
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
32
|
Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels 2021; 7:gels7030083. [PMID: 34287300 PMCID: PMC8293255 DOI: 10.3390/gels7030083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air-sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.
Collapse
|
33
|
The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021; 12:100826. [PMID: 34222718 PMCID: PMC8240443 DOI: 10.1016/j.cegh.2021.100826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective There is no specific antiviral treatment available for coronavirus disease 2019 (COVID-19). Among the possible natural constituents is carrageenan, a polymer derived from marine algae that possesses a variety of antiviral properties. The purpose of this review was to summarize the evidence supporting carrageenan subtypes' antiviral activity against the emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. Methods PubMed/MEDLINE and Google Scholar searches were conducted for publications using the terms 'carrageenan', 'iota carrageenan', 'kappa carrageenan', lambda-carrageenan', 'coronavirus', 'common cold', 'rhinovirus', and 'SARS-CoV-2' search was also done in grey literature to increase our understanding. A search for the word "carrageenan" was also carried out. Most of the publications were discussed in narrative. Results Carrageenan has been shown to have potent antiviral activity against both coronaviruses (coronavirus NL63, SARS-CoV-2) and non-coronaviruses such as dengue virus, herpes simplex virus, cytomegalovirus, vaccinia virus, vesicular stomatitis virus, sindbis virus, human immunodeficiency virus, influenza virus, human papillomavirus, rabies virus, junin virus, tacaribe virus, African swine fever, bovine herpes virus, suid herpes virus, and rhinovirus. No in vivo study has been conducted using carrageenan as an anti-SARS-CoV-2 agent. The majority of the in vivo research was done on influenza, a respiratory virus that causes common cold together with coronavirus. Thus, various clinical trials were conducted to determine the transferability of these in vitro data to clinical effectiveness against SARS-CoV-2. When combined with oral ivermectin, nasally administered iota-carrageenan improved outcome in COVID-19 patients. It is still being tested in clinics for single-dose administration. Conclusion Though the carrageenan exhibited potent antiviral activity against SARS-CoV-2 and was used to treat COVID-19 under emergency protocol in conjunction with oral medications such as ivermectin, there is no solid evidence from clinical trials to support its efficacy. Thus, clinical trials are required to assess its efficacy for COVID-19 treatment prior to broad application.
Collapse
|
34
|
Claudio-Rizo JA, Escobedo-Estrada N, Carrillo-Cortes SL, Cabrera-Munguía DA, Flores-Guía TE, Becerra-Rodriguez JJ. Highly absorbent hydrogels comprised from interpenetrated networks of alginate-polyurethane for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:70. [PMID: 34117933 PMCID: PMC8197714 DOI: 10.1007/s10856-021-06544-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Developing new approaches to improve the swelling, degradation rate, and mechanical properties of alginate hydrogels without compromising their biocompatibility for biomedical applications represents a potential area of research. In this work, the generation of interpenetrated networks (IPN) comprised from alginate-polyurethane in an aqueous medium is proposed to design hydrogels with tailored properties for biomedical applications. Aqueous polyurethane (PU) dispersions can crosslink and interpenetrate alginate chains, forming amide bonds that allow the structure and water absorption capacity of these novel hydrogels to be regulated. In this sense, this work focuses on studying the relation of the PU concentration on the properties of these hydrogels. The results indicate that the crosslinking of the alginate with PU generates IPN hydrogels with a crystalline structure characterized by a homogeneous smooth surface with high capacity to absorb water, tailoring the degradation rate, thermal decomposition, and storage module, not altering the native biocompatibility of alginate, providing character to inhibit the growth of E. coli and increasing also its hemocompatibility. The IPN hydrogels that include 20 wt.% of PU exhibit a reticulation index of 46 ± 4%, swelling capacity of 545 ± 13% at 7 days of incubation at physiological pH, resistance to both acidic and neutral hydrolytic degradation, mechanical improvement of 91 ± 1%, and no cytotoxicity for monocytes and fibroblasts growing for up to 72 h of incubation. These results indicate that these novel hydrogels can be used for successful biomedical applications in the design of wound healing dressings.
Collapse
Affiliation(s)
- Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coahuila, México.
| | - Nallely Escobedo-Estrada
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coahuila, México
| | - Sara L Carrillo-Cortes
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coahuila, México
| | - Denis A Cabrera-Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coahuila, México
| | - Tirso E Flores-Guía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coahuila, México
| | - Juan J Becerra-Rodriguez
- Universidad Politécnica de Pénjamo, Carretera Irapuato - La Piedad Km 44, Pénjamo, 36921, Guanajuato, México
| |
Collapse
|
35
|
Farno M, Lamarche C, Tenailleau C, Cavalié S, Duployer B, Cussac D, Parini A, Sallerin B, Girod Fullana S. Low-energy electron beam sterilization of solid alginate and chitosan, and their polyelectrolyte complexes. Carbohydr Polym 2021; 261:117578. [PMID: 33766327 DOI: 10.1016/j.carbpol.2020.117578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 01/24/2023]
Abstract
Polysaccharidic scaffolds hold great hope in regenerative medicine, however their sterilization still remains challenging since conventional methods are deleterious. Recently, electron beams (EB) have raised interest as emerging sterilization techniques. In this context, the aim of this work was to study the impact of EB irradiations on polysaccharidic macroporous scaffolds. The effects of continuous and pulsed low energy EB were examined on polysaccharidic or on polyelectrolyte complexes (PEC) scaffolds by SEC-MALLS, FTIR and EPR. Then the scaffolds' physicochemical properties: swelling, architecture and compressive modulus were investigated. Finally, sterility and in vitro biocompatibility of irradiated scaffolds were evaluated to validate the effectiveness of our approach. Continuous beam irradiations appear less deleterious on alginate and chitosan chains, but the use of a pulsed beam limits the time of irradiation and better preserve the architecture of PEC scaffolds. This work paves the way for low energy EB tailor-made sterilization of sensitive porous scaffolds.
Collapse
Affiliation(s)
- Maylis Farno
- Université Paul Sabatier, CIRIMAT Institut Carnot Chimie Balard CIRIMAT, Faculté de Pharmacie, Toulouse, France; Université Paul Sabatier, I2MC, Toulouse, France
| | | | - Christophe Tenailleau
- Université Paul Sabatier, CIRIMAT Institut Carnot Chimie Balard CIRIMAT, UPS, Toulouse, France
| | - Sandrine Cavalié
- Université Paul Sabatier, CIRIMAT Institut Carnot Chimie Balard CIRIMAT, Faculté de Pharmacie, Toulouse, France
| | - Benjamin Duployer
- Université Paul Sabatier, CIRIMAT Institut Carnot Chimie Balard CIRIMAT, UPS, Toulouse, France
| | | | | | | | - Sophie Girod Fullana
- Université Paul Sabatier, CIRIMAT Institut Carnot Chimie Balard CIRIMAT, Faculté de Pharmacie, Toulouse, France.
| |
Collapse
|
36
|
Mokhtari H, Tavakoli S, Safarpour F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering. Polymers (Basel) 2021; 13:1744. [PMID: 34073518 PMCID: PMC8198092 DOI: 10.3390/polym13111744] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, many studies have focused on carrageenan-based hydrogels for biomedical applications thanks to their intrinsic properties, including biodegradability, biocompatibility, resembling native glycosaminoglycans, antioxidants, antitumor, immunomodulatory, and anticoagulant properties. They can easily change to three-dimensional hydrogels using a simple ionic crosslinking process. However, there are some limitations, including the uncontrollable exchange of ions and the formation of a brittle hydrogel, which can be overcome via simple chemical modifications of polymer networks to form chemically crosslinked hydrogels with significant mechanical properties and a controlled degradation rate. Additionally, the incorporation of various types of nanoparticles and polymer networks into carrageenan hydrogels has resulted in the formation of hybrid platforms with significant mechanical, chemical and biological properties, making them suitable biomaterials for drug delivery (DD), tissue engineering (TE), and wound healing applications. Herein, we aim to overview the recent advances in various chemical modification approaches and hybrid carrageenan-based platforms for tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Hamidreza Mokhtari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Shima Tavakoli
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, SE75121 Uppsala, Sweden;
| | - Fereshteh Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
37
|
Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The great variety of wounds and the lack of an effective universal treatment method has resulted in high demand for modern treatment strategies. Traditional approaches are often ineffective on a variety of chronic wounds, such as venous ulcers or the diabetic foot ulcer. There is strong evidence that naturally derived bioactive compounds have pro-healing properties, raising a great interest in their potential use for wound healing. Plant-derived compounds, such as curcumin and essential oils, are widely used to modify materials applied as wound dressings. Moreover, dressing materials are more often enriched with vitamins (e.g., L-ascorbic acid, tocopherol) and drugs (e.g., antibiotics, inhibitors of proteases) to improve the skin healing rate. Biomaterials loaded with the above-mentioned molecules show better biocompatibility and are basically characterized by better biological properties, ensuring faster tissue repair process. The main emphasis of the presented review is put on the novel findings concerning modern pro-healing wound dressings that have contributed to the development of regenerative medicine. The article briefly describes the synthesis and modifications of biomaterials with bioactive compounds (including curcumin, essential oils, vitamins) to improve their pro-healing properties. The paper also summarizes biological effects of the novel wound dressings on the enhancement of skin regeneration. The current review was prepared based on the scientific contributions in the PubMed database (supported with Google Scholar searching) over the past 5 years using relevant keywords. Scientific reports on the modification of biomaterials using curcumin, vitamins, and essential oils were mainly considered.
Collapse
|
38
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
39
|
Madub K, Goonoo N, Gimié F, Ait Arsa I, Schönherr H, Bhaw-Luximon A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 2021; 251:117025. [DOI: 10.1016/j.carbpol.2020.117025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/23/2023]
|
40
|
Kudzin MH, Boguń M, Mrozińska Z, Kaczmarek A. Physical Properties, Chemical Analysis, and Evaluation of Antimicrobial Response of New Polylactide/Alginate/Copper Composite Materials. Mar Drugs 2020; 18:660. [PMID: 33371380 PMCID: PMC7767405 DOI: 10.3390/md18120660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, due to an expansion of antibiotic-resistant microorganisms, there has been growing interest in biodegradable and antibacterial polymers that can be used in selected biomedical applications. The present work describes the synthesis of antimicrobial polylactide-copper alginate (PLA-ALG-Cu2+) composite fibers and their characterization. The composites were prepared by immersing PLA fibers in aqueous solution of sodium alginate, followed by ionic cross-linking of alginate chains within the polylactide fibers with Cu(II) ions to yield PLA-ALG-Cu2+ composite fibers. The composites, so prepared, were characterized by scanning electron microscopy (SEM), UV/VIS transmittance and attenuated total reflection Fourier-transform infrared spectroscopy ATR-FTIR, and by determination of their specific surface area (SSA), total/average pore volumes (through application of the 5-point Brunauer-Emmett-Teller method (BET)), and ability to block UV radiation (determination of the ultraviolet protection factor (UPF) of samples). The composites were also subjected to in vitro antimicrobial activity evaluation tests against colonies of Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria and antifungal susceptibility tests against Aspergillus niger and Chaetomium globosum fungal mold species. All the results obtained in this work showed that the obtained composites were promising materials to be used as an antimicrobial wound dressing.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (M.B.); (Z.M.); (A.K.)
| | | | | | | |
Collapse
|
41
|
Edirisinghe SL, Rajapaksha DC, Nikapitiya C, Oh C, Lee KA, Kang DH, De Zoysa M. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 107:414-425. [PMID: 33038507 DOI: 10.1016/j.fsi.2020.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Purified bioactive components of marine algae have shown great pharmaceutical and biomedical potential, including wound healing activity. However, the activity of Spirulina maxima is the least documented with regard to wound healing potential. In the present study, we investigated the regenerative and wound healing activities of a Spirulina (Arthrospira) maxima based pectin (SmP) using in vitro human dermal fibroblasts (HDFs) and in vivo zebrafish model. SmP treated (12.5-50 μg/mL) HDFs showed increased cell proliferation by 20-40% compared to the untreated HDFs. Moreover, in vitro wound healing results in HDFs demonstrated that SmP decreased the open wound area % in concentration-dependent manner at 12.5 (32%) and 25 μg/mL (12%) compared to the control (44%). Further, zebrafish larvae displayed a greater fin regenerated area in the SmP exposed group at 25 (0.48 mm2) and 50 μg/mL (0.51 mm2), whereas the untreated group had the lowest regenerated area (0.40 mm2) at 3 days post amputation. However, fin regeneration was significantly (P < 0.001) higher only in the SmP treated group at 50 μg/mL. Furthermore, the open skin wound healing % in adult zebrafish was significantly higher (P < 0.05) after topical application (600 μg/fish) of SmP (46%) compared to the control (38%). Upregulation of genes such as tgfβ1, timp2b, mmp9, tnf-α, and il-1β, and chemokines such as cxcl18b, ccl34a.4, and ccl34b.4, in the muscle and kidney tissues of SmP treated fish compared to the respective control group was demonstrated using qRT-PCR. Histological analysis results further supported the rapid epidermal growth and tissue remodeling in SmP treated fish, suggesting that SmP exerts positive effects associated with wound healing. Therefore, SmP can be considered a potential regenerative and wound healing agent.
Collapse
Affiliation(s)
- S L Edirisinghe
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - D C Rajapaksha
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea
| | - Kyoung-Ah Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea
| | - Do-Hyung Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju Special Self-Governing Province 63349, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Jeju Special Self-Governing Province 63349, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
42
|
Ribeiro LNM, Rodrigues da Silva GH, Couto VM, Castro SR, Breitkreitz MC, Martinez CS, Igartúa DE, Prieto MJ, de Paula E. Functional Hybrid Nanoemulsions for Sumatriptan Intranasal Delivery. Front Chem 2020; 8:589503. [PMID: 33282832 PMCID: PMC7689160 DOI: 10.3389/fchem.2020.589503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
In recent years, advanced nanohybrid materials processed as pharmaceuticals have proved to be very advantageous. Triptans, such as the commercially available intranasal sumatriptan (SMT), are drugs employed in the treatment of painful migraine symptoms. However, SMT effectiveness by the intranasal route is limited by its high hydrophilicity and poor mucoadhesion. Therefore, we designed hybrid nanoemulsions (NE) composed of copaiba oil as the organic component plus biopolymers (xanthan, pectin, alginate) solubilized in the continuous aqueous phase, aiming at the intranasal release of SMT (2% w/v). Firstly, drug-biopolymer complexes were optimized in order to decrease the hydrophilicity of SMT. The resultant complexes were further encapsulated in copaiba oil-based nanoparticles, forming NE formulations. Characterization by FTIR-ATR, DSC, and TEM techniques exposed details of the molecular arrangement of the hybrid systems. Long-term stability of the hybrid NE at 25°C was confirmed over a year, regarding size (~ 120 nm), polydispersity (~ 0.2), zeta potential (~ −25 mV), and nanoparticle concentration (~ 2.1014 particles/mL). SMT encapsulation efficiency in the formulations ranged between 41–69%, extending the in vitro release time of SMT from 5 h (free drug) to more than 24 h. The alginate-based NE was selected as the most desirable system and its in vivo nanotoxicity was evaluated in a zebrafish model. Hybrid NE treatment did not affect spontaneous movement or induce morphological changes in zebrafish larvae, and there was no evidence of mortality or cardiotoxicity after 48 h of treatment. With these results, we propose alginate-based nanoemulsions as a potential treatment for migraine pain.
Collapse
Affiliation(s)
- Lígia N. M. Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo H. Rodrigues da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Verônica M. Couto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone R. Castro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Márcia C. Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Carolina S. Martinez
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Daniela E. Igartúa
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Maria J. Prieto
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Eneida de Paula
| |
Collapse
|
43
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|