1
|
Sarkar MM, Saha P, Karmakar B, Toppo P, Paul P, Dua TK, Mathur P, Roy S. Sugar-coating on the surface of silica nanoparticles attenuates the dose- and size-dependent toxicity of the nanoparticles for plant-based applications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109778. [PMID: 40112757 DOI: 10.1016/j.plaphy.2025.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Silica nanoparticles (SiNPs) are one of the most promising nanoparticles in stimulating plant growth and alleviating environmental stresses. Besides beneficial attributes, these nanoparticles may also possess serious toxicity issues. In this context, the present study aimed to evaluate the dose and size-dependent toxicity attributes of SiNPs using Allium cepa root tip assay. The dose-dependent study conducted using moderate-size SiNPs (∼50 nm) with different concentrations (1-500 g/L) depicted non-toxic effects up to the dose of 75 g/L. However, concentrations above 100 g/L imparted a gradual increase in toxicity with the increasing dosage of SiNPs, where mitotic index (MI) was reduced, and chromosomal aberration (CA), ROS accumulation, and membrane disruption increased significantly. Moreover, among the 3 different sizes of SiNPs viz. ∼30, ∼50, and ∼100 nm, ∼50 nm was relatively non-toxic. Further, a significant reduction in toxicity level at higher concentrations (≥200 g/L) was achieved when the SiNPs (∼50 nm) surface was functionalized with glucose (GSiNPs) and trehalose (TSiNPs) compared to bare SiNPs. In this context, the reduction in CA by GSiNPs was 1.6-2.9 folds and by TSiNPs 1.9-3.3 folds. Also, GSiNPs and TSiNPs improved the plant growth and soil microflora colonization, without imparting toxic effects.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Puja Saha
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| | - Piyush Mathur
- Department of Botany, Banaras Hindu University, Institute of Science, Ajagara, Varanasi, Uttar Pradesh, 221005, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| |
Collapse
|
2
|
Rodríguez CF, Guzmán-Sastoque P, Santacruz-Belalcazar A, Rodriguez C, Villamarin P, Reyes LH, Cruz JC. Magnetoliposomes for nanomedicine: synthesis, characterization, and applications in drug, gene, and peptide delivery. Expert Opin Drug Deliv 2025:1-30. [PMID: 40372113 DOI: 10.1080/17425247.2025.2506829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration. AREAS COVERED This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence. EXPERT OPINION While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Coryna Rodriguez
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Paula Villamarin
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| | - Juan C Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Shams S, Bindhu B, Murali A, Ramesh R, Al Souwaileh A, Han SS. Hydrothermal engineering of polyethylene glycol-assisted boron nitride/hematite nanohybrid composites for high-performance supercapacitors. RSC Adv 2025; 15:16035-16049. [PMID: 40370846 PMCID: PMC12076198 DOI: 10.1039/d5ra02227d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Developing high-performance energy storage materials is essential to meet the increasing global demand for sustainable energy solutions. In this study, a novel strategy is employed to synthesize polyethylene glycol-assisted boron nitride/hematite (PEG-BN/α-Fe2O3) hybrid composites through a hydrothermal process. Polyethylene glycol(PEG) serves as both a dispersant and a non-covalent linker that bridges hematite nanoparticles and BN sheets. With a combination of van der Waals interaction and hydrogen bonding with the component materials, PEG enables stable and homogeneous dispersion of hematite on the otherwise inert and agglomeration-prone BN surface. This dual interaction approach enables controlled interface engineering, solving one of the major challenges commonly faced in the synthesis of BN-based composites. It also acts as a functional modifier that modulates the interfacial interactions and regulates the nucleation and dispersion of α-Fe2O3 nanoparticles within the BN matrix. The incorporation of PEG enhanced the electrochemical and structural properties of the hybrid composite. Structural and morphological characterizations confirmed the uniform dispersion of α-Fe2O3 within the BN matrix, with PEG enhancing the interfacial interactions and overall material stability. TGA demonstrated that PEG incorporation significantly improved the thermal stability of the composites, delaying degradation and preserving structural integrity under high-temperature conditions. Electrochemical measurements, including CV and GCD analysis in a 6 M KOH electrolyte, revealed superior charge storage capabilities for PEG-BN/α-Fe2O3 compared to BN/α-Fe2O3. This hybrid composite exhibited a remarkable specific capacitance of 361.6 F g-1 at a current density of 3 A g-1, significantly outperforming the individual components. The GCD studies display an enhanced charge retention capability of the hybrid composite with a coulombic efficiency of 83%, indicating reduced internal resistance and improved kinetics. Additionally, electrochemical impedance spectroscopy indicated a lower charge transfer resistance and enhanced conductivity in PEG-modified composites. The composite also retained 85% of its initial capacitance after 5000 cycles, demonstrating excellent cyclic stability. The improved electrochemical performance of PEG-BN/α-Fe2O3 hybrid composites is attributed to the synergistic effects of BN and α-Fe2O3, facilitated by PEG, which acts as a thermal buffer, prevents agglomeration, and enhances electrolyte-electrode interactions. These findings underscore the potential of PEG-assisted BN/α-Fe2O3 composites as advanced electrode materials for next-generation supercapacitors and other electrochemical storage devices.
Collapse
Affiliation(s)
- Shamsiya Shams
- Department of Physics, Noorul Islam Centre for Higher Education Kumaracoil Thuckalay 629180 Tamilnadu India
| | - B Bindhu
- Department of Physics, Noorul Islam Centre for Higher Education Kumaracoil Thuckalay 629180 Tamilnadu India
| | - Adhigan Murali
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Material Engineering, Adama Science and Technology University Adama, P.O. Box-1888 Adama Ethiopia
| | - Abdullah Al Souwaileh
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
| |
Collapse
|
4
|
Pawar P, Prabhu A. Smart SPIONs for Multimodal Cancer Theranostics: A Review. Mol Pharm 2025; 22:2372-2391. [PMID: 40223773 DOI: 10.1021/acs.molpharmaceut.5c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.
Collapse
Affiliation(s)
- Pradip Pawar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| |
Collapse
|
5
|
Mobarak MB, Sikder MF, Muntaha KS, Islam S, Rabbi SMF, Chowdhury F. Plant extract-mediated green-synthesized CuO nanoparticles for environmental and microbial remediation: a review covering basic understandings to mechanistic study. NANOSCALE ADVANCES 2025; 7:2418-2445. [PMID: 40207087 PMCID: PMC11976663 DOI: 10.1039/d5na00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
This review provides a comprehensive overview of nanoparticles, with a particular focus on plant extract-mediated green-synthesized copper oxide nanoparticles (CuO NPs). This article is one of the simplest to read as it aims at beginner researchers, who may not have advanced knowledge on topics like nanoparticles, including metal and metal oxide nanoparticles, their classification, and techniques to prepare them. Various synthesis procedures are discussed, emphasizing green synthesis methods that utilize plant extracts as reducing and stabilizing agents. Subsequently, the mechanisms involved in the formation of CuO NPs are highlighted. Their significant applications with a mechanistic overview on environmental remediation, especially in the eradication of textile dyes and pharmaceutical wastes, and their antimicrobial properties are elucidated. By carefully scrutinizing the information available in the literature, this article aims to equip novice researchers with a foundational understanding of nanoparticles, their synthesis, and their practical applications, fostering further exploration in the field of nanotechnology.
Collapse
Affiliation(s)
- Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Md Foysal Sikder
- Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Khandakar Sidratul Muntaha
- Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Shariful Islam
- Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - S M Fazle Rabbi
- Department of Applied Chemistry and Chemical Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
6
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025; 7:2446-2473. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
7
|
Kong X, Xie X, Wu J, Wang X, Zhang W, Wang S, Abbasova DV, Fang Y, Jiang H, Gao J, Wang J. Combating cancer immunotherapy resistance: a nano-medicine perspective. Cancer Commun (Lond) 2025. [PMID: 40207650 DOI: 10.1002/cac2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer immunotherapy offers renewed hope for treating this disease. However, cancer cells possess inherent mechanisms that enable them to circumvent each stage of the immune cycle, thereby evading anti-cancer immunity and leading to resistance. Various functionalized nanoparticles (NPs), modified with cationic lipids, pH-sensitive compounds, or photosensitizers, exhibit unique physicochemical properties that facilitate the targeted delivery of therapeutic agents to cancer cells or the tumor microenvironment (TME). These NPs are engineered to modify immune activity. The crucial signal transduction pathways and mechanisms by which functionalized NPs counteract immunotherapy resistance are outlined, including enhancing antigen presentation, boosting the activation and infiltration of tumor-specific immune cells, inducing immunogenic cell death, and counteracting immunosuppressive conditions in the TME. Additionally, this review summarizes current clinical trials involving NP-based immunotherapy. Ultimately, it highlights the potential of nanotechnology to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, P. R. China
| | - Xintong Xie
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, P. R. China
| | - Juan Wu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Wenxiang Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shuowen Wang
- Department of Skin and Breast Tumor, University Clinical Hospital No. 4 affiliated with the First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia Federation
| | - Daria Valerievna Abbasova
- Department of Skin and Breast Tumor, University Clinical Hospital No. 4 affiliated with the First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia Federation
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hongnan Jiang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, P. R. China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, P. R. China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
8
|
Udupi A, Shetty S, Aranjani JM, Kumar R, Bharati S. Anticancer therapeutic potential of multimodal targeting agent- "phosphorylated galactosylated chitosan coated magnetic nanoparticles" against N-nitrosodiethylamine-induced hepatocellular carcinoma. Drug Deliv Transl Res 2025; 15:1023-1042. [PMID: 38990437 PMCID: PMC11782354 DOI: 10.1007/s13346-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as carriers in targeted drug delivery and has several advantages in the field of magnetic hyperthermia, chemodynamic therapy and magnet assisted radionuclide therapy. The characteristics of SPIONs can be tailored to deliver drugs into tumor via "passive targeting" and they can also be coated with tissue-specific agents to enhance tumor uptake via "active targeting". In our earlier studies, we developed HCC specific targeting agent- "phosphorylated galactosylated chitosan"(PGC) for targeting asialoglycoprotein receptors. Considering their encouraging results, in this study we developed a multifunctional targeting system- "phosphorylated galactosylated chitosan-coated magnetic nanoparticles"(PGCMNPs) for targeting HCC. PGCMNPs were synthesized by co-precipitation method and characterized by DLS, XRD, TEM, VSM, elemental analysis and FT-IR spectroscopy. PGCMNPs were evaluated for in vitro antioxidant properties, uptake in HepG2 cells, biodistribution, in vivo toxicity and were also evaluated for anticancer therapeutic potential against NDEA-induced HCC in mice model in terms of tumor status, electrical properties, antioxidant defense status and apoptosis. The characterization studies confirmed successful formation of PGCMNPs with superparamagnetic properties. The internalization studies demonstrated (99-100)% uptake of PGCMNPs in HepG2 cells. These results were also supported by biodistribution studies in which increased iron content (296%) was noted inside the hepatocytes. Further, PGCMNPs exhibited no in vivo toxicity. The anticancer therapeutic potential was evident from observation that PGCMNPs treatment decreased tumor bearing animals (41.6%) and significantly (p ≤ 0.05) lowered tumor multiplicity. Overall, this study indicated that PGCMNPs with improved properties are efficiently taken-up by hepatoma cells and has therapeutic potential against HCC. Further, this agent can be tagged with 32P and hence can offer multimodal cancer treatment options via radiation ablation as well as magnetic hyperthermia.
Collapse
Affiliation(s)
- Anushree Udupi
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, 342005, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Zhang H, Li L, Wang C, Liu Q, Chen WT, Gao S, Hu G. Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection. NANOSCALE 2025; 17:2386-2407. [PMID: 39844644 DOI: 10.1039/d4nr04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials. Advanced materials enhance the sensitivity and selectivity of ECS, allowing it to efficiently and rapidly identify metallic contaminants in food and the environment. Finally, the future development of ECS and challenges encountered in the development process are discussed, and testing materials for the detection of heavy-metal ions for human health and environmental safety are comprehensively considered. This study is likely to attract the interest of environmentalists and those who prioritise human health.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Sanshuang Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
10
|
Aljboory ZHA, Ghani M, Raoof JB. Magnetic polyoxometalate composite stabilized on the woven cotton yarn as a sorbent for thin film microextraction of some selected nonsteroidal anti-inflammatory drugs followed by high-performance liquid chromatography-ultraviolet detection. J Chromatogr A 2025; 1741:465615. [PMID: 39709898 DOI: 10.1016/j.chroma.2024.465615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
A new thin film was fabricated using Fe3O4@SiO2-polyoxometalate (POM) as the coating and it was coupled with a HPLC-UV to develop a method for the selective determination of ibuprofen, paracetamol and diclofenac (as the model analytes) from human plasma and urine samples. The prepared magnetic POM was coated on the pores and surface of cotton yarn to prepare the extracting device. The prepared sorbent was characterized by several techniques including: FT-IR, XRD, BET, SEM, and VSM analysis. Using a multivariate optimization strategy (Plackett-Berman design (PBD) and Box-Behnken Design (BBD)), extraction factors were optimized. The optimal condition is: pH=4, extraction time=23 min, desorption time=3 min, desorption volume=400 µL, and Na2SO4 concentration=0.8 %. In the optimal condition, the linearity of the method was in the range of 0.5-200 µg l-1. LODs, LOQs, and intra-day as well as inter-day RSDs were <0.24 µg L-1, 0.81 µg L-1, and 4.1 %, respectively. The enrichment factor (EF) values for the tested substances varied from 16 to 21. The absolute recoveries (ARs%) were also between 64 and 84 %. The sorbent extracted the analytes up to 32 times with little changes in the ER (95 ± 1.5). This method was successfully applied to detect target analytes in biological fluids, achieving high recovery. This novel approach combines efficiency with practicality, making it well-suited for field applications. In addition, the greenness and whiteness of the method (sustainability assessment) were evaluated using the qualitative green assessment tools including AGREE, BAGI and the white analytical chemistry assessment tool (RGB12). The high BAGI (72.5) and RGB 12 (94.7) scores confirmed the method's strong applicability, cost-effectiveness, and sustainability.
Collapse
Affiliation(s)
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
11
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
12
|
Prozorova G, Emel'yanov A, Ivanova A, Semenova T, Fadeeva T, Nevezhina A, Korzhova S, Pozdnyakov A. A novel water-soluble polymer nanocomposite containing ultra-small Fe 3O 4 nanoparticles with strong antibacterial and antibiofilm activity. NANOSCALE 2025; 17:1458-1472. [PMID: 39620706 DOI: 10.1039/d4nr03276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A novel water-soluble polymer nanocomposite containing ultra-small iron oxide nanoparticles, intercalated into a biocompatible matrix of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone copolymer has been synthesized for the first time. The use of an original polymer matrix ensured effective stabilization of the crystalline phase of iron oxides at an early stage of its formation in an ultra-small (2-8 nm, average diameter is 4.8 nm) nanosized state due to its effective interaction with the functional groups of copolymer macromolecules. At the same time, the copolymer ensures the long-term stability of iron oxide nanoparticles in a nanosized dispersion. The structure and physicochemical properties of the copolymer and nanocomposite were studied by elemental analysis, 1H and 13C NMR spectroscopy, gel permeation chromatography, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy, dynamic light scattering, thermogravimetric analysis and differential scanning calorimetry. The nanocomposite exhibits high antibacterial and antibiofilm activity against both Gram-negative and Gram-positive bacteria. The nanocomposite at a concentration of 500 and 1000 μg mL-1 leads to complete death of Escherichia coli cells after 24 and 3 hours of incubation, respectively. The nanocomposite at a concentration of 100 μg mL-1 leads to complete death of Staphylococcus aureus cells after 24 hours of incubation. Which indicates the potential of using the nanocomposite for the treatment of superficial wounds and purulent-inflammatory complications.
Collapse
Affiliation(s)
- Galina Prozorova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Artem Emel'yanov
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Tatyana Semenova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Tat'yana Fadeeva
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia
| | - Anna Nevezhina
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Street, 664003 Irkutsk, Russia
| | - Svetlana Korzhova
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia.
| |
Collapse
|
13
|
Ahmad S, Ni H, Al-Mubaddel FS, Rizk MA, Ammar MB, Khan AU, Almarhoon ZM, Alanazi AA, Zaki MEA. Magnetic properties of different phases iron oxide nanoparticles prepared by micro emulsion-hydrothermal method. Sci Rep 2025; 15:878. [PMID: 39762431 PMCID: PMC11704275 DOI: 10.1038/s41598-025-85145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process. Using iron nitrate hexahydrate as the salt precursor allowed for the formation of FeONPs with varied sizes, shapes and phases. The synthesized materials were extensively characterized using XRD, SEM, TEM, EDS, FTIR, and XPS techniques. However, the structural analysis revealed rhombohedral (hematite), and (magnetite) crystal structures in the materials synthesized at different temperature and durations, with particles ranged in size from 12 to 97 nm. More importantly, the magnetic characterization, performed with a vibrating sample magnetometer and SQUID magnetometer, indicated that the NPs showed not clear superparamagnetic behavior. In conclusion, this work demonstrates the synthesis of FeONPs with controlled size, shape and phase using microemulsion hydrothermal technique, with detailed characterization offering valuable insights into their magnetic and structural properties.
Collapse
Affiliation(s)
- Shakeel Ahmad
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Henmei Ni
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Moustafa A Rizk
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Chemistry Department, Faculty of Science and Arts (sharourah), Najran University, Najran, Saudi Arabia
| | - Mohamed Ben Ammar
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zainab M Almarhoon
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
14
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RV. Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:10-31. [PMID: 39811780 PMCID: PMC11731503 DOI: 10.1016/j.biotno.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Nanotechnology is a rapidly expanding field with diverse healthcare, agriculture, and industry applications. Central to this discipline is manipulating materials at the nanoscale, particularly nanoparticles (NPs) ranging from 1 to 100 nm. These NPs can be synthesized through various methods, including chemical, physical, and biological processes. Among these, biological synthesis has gained significant attention due to its eco-friendly nature, utilizing natural resources such as microbes and plants as reducing and capping agents. However, information is scarce regarding the production of iron nanoparticles (FeNPs) using biological approaches, and even less is available on the synthesis of FeNPs employing microbial bioflocculants. This review aims to provide a comprehensive examination of the synthesis of FeNPs using microbial bioflocculants, highlighting the methodologies involved and their implications for environmental applications. Recent findings indicate that microbial bioflocculants enhance the stability and efficiency of FeNP synthesis while promoting environmentally friendly production methods. The synthesized FeNPs demonstrated effective removal of contaminants from wastewater, achieving removal rates of up to 93 % for specific dyes and significant reductions in chemical oxygen demand (COD) and biological oxygen demand (BOD). Additionally, these FeNPs exhibited notable antimicrobial properties against both Gram-positive and Gram-negative bacteria. This review encompasses studies conducted between January 2015 and December 2023, providing detailed characterization of the synthesized FeNPs and underscoring their potential applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Rajasekhar V.S.R. Pullabhotla
- Department of Chemistry, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
15
|
Kołodziej A, Świętek M, Hlukhaniuk A, Horák D, Wesełucha-Birczyńska A. Raman spectroscopic investigation of polymer based magnetic multicomponent scaffolds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124800. [PMID: 39024784 DOI: 10.1016/j.saa.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anna Hlukhaniuk
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | | |
Collapse
|
16
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024; 28:4515-4552. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
17
|
Said R, Ghazzy A, Shakya AK, hunaiti AA. Iron oxide nanozymes as versatile analytical tools: an overview of their application as detection technique. Bioanalysis 2024; 16:1261-1278. [PMID: 39589819 PMCID: PMC11727870 DOI: 10.1080/17576180.2024.2415779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanozymes (IONzymes) have become fundamental components in various analyte detection methodologies such as colorimetric, electrochemistry, fluorescence and luminescence. Their tunability, stability and the possibility of modification, alongside their ability to mimic the catalytic properties of natural enzymes like peroxidase, render them invaluable in analytical chemistry. This review explores the diverse applications of IONzymes across analytical chemistry, with a particular highlighting on their roles in different detection techniques and their potential in biomedical and diagnostic applications. This information would be valuable for researchers and practitioners in the fields of analytical chemistry, biochemistry, biotechnology and materials science who are interested in applying IONzymes in their work. In essence, this review article on iron oxide nanozymes in analytical chemistry would serve as a valuable resource for researchers, educators and industry professionals, offering insights, guidance and inspiration for further study and application of this promising class of nanomaterials.
Collapse
Affiliation(s)
- Rana Said
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Asma Ghazzy
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 11191, Jordan
| | - Afnan Al hunaiti
- Department of Chemistry, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
18
|
Montali A, Berini F, Gamberoni F, Armenia I, Saviane A, Cappellozza S, Gornati R, Bernardini G, Marinelli F, Tettamanti G. In Vivo Efficacy of a Nanoconjugated Glycopeptide Antibiotic in Silkworm Larvae Infected by Staphylococcus aureus. INSECTS 2024; 15:886. [PMID: 39590485 PMCID: PMC11595181 DOI: 10.3390/insects15110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against Staphylococcus aureus infection. B. mori larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
19
|
Aswini R, Hartati S, Jothimani K, Pothu R, Shanmugam P, Lee YY, Masimukku S, Boddula R, Selvaraj M, Al-Qahtani N. Revolutionizing microorganism inactivation: Magnetic nanomaterials in sustainable photocatalytic disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122738. [PMID: 39405884 DOI: 10.1016/j.jenvman.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
The rapid emergence of antibiotic-resistant microorganisms and the demand for sustainable water purification methods have spurred research into advanced disinfection, with photocatalysis as a promising approach. This study explores magnetic nanomaterials as catalysts in photocatalytic processes for microorganism inactivation. Magnetic nanoparticles and composites, due to their unique properties, are promising for enhancing photocatalytic disinfection. Their inherent magnetic traits enable easy separation and recyclability, reducing operational costs and environmental impact. These materials also act as efficient electron transfer mediators, enhancing overall photocatalytic efficiency. The review covers the synthesis and characterization of magnetic nanomaterials for photocatalytic applications, focusing on their structural, magnetic, and surface properties. Photocatalytic mechanisms, including reactive oxygen species (ROS) generation vital for microorganism inactivation, are discussed. The study examines combining common photocatalysts like TiO2, ZnO, and semiconductors with magnetic nanomaterials, highlighting synergistic effects. Recent advances and challenges, such as optimal nanomaterials selection and scalability for large-scale applications, are addressed. Case studies and experimental setups for microorganism inactivation underscore the potential of magnetic nanomaterials in water treatment, air purification, and medical disinfection. Finally, further research directions and research highlights the substantial potential of magnetic nanomaterials as catalysts in photocatalytic processes, offering an efficient and sustainable solution for microorganism inactivation and contributing valuable insights to environmental and public health advancement.
Collapse
Affiliation(s)
- Rangayasami Aswini
- Department of Botany, Padmavani Arts and Science College for Women, Salem, 636 011, Tamil Nadu, India
| | - Sri Hartati
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Kannupaiyan Jothimani
- Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Yen-Yi Lee
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Srinivaas Masimukku
- Center for Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan; Institute of Environment Toxin and Emerging Contaminant Research, Center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Allied Sciences, Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Allied Sciences, Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha, 2713, Qatar; Central Laboratories Unit (CLU), Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
20
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
21
|
Reviansyah FH, Putra DRD, Supriatna JA, Takarini V, Komariah M. Green Dentistry in Oral Cancer Treatment Using Biosynthesis Superparamagnetic Iron Oxide Nanoparticles: A Systematic Review. Cancer Manag Res 2024; 16:1231-1245. [PMID: 39282609 PMCID: PMC11402364 DOI: 10.2147/cmar.s477791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Oral cancer is a worldwide health issue with high incidence and mortality, demands an effective treatment to improve patient prognosis. Superparamagnetic iron oxide nanoparticles (SPIONs) emerged as a candidate for oral cancer treatment due to their unique attributes, enabling a synergistic combination with its drug-delivery capabilities and hyperthermia when exposed to magnetic fields. SPIONs can be synthesized using biopolymers from agricultural waste like lignin from paddy, which produce biogenic nano iron oxide with superparamagnetic and antioxidant effects. In addition, lignin also acts as a stabilizing agent in creating SPIONs. This study aimed to explore how agricultural waste could be used to prepare SPIONs using the green synthesis method and to evaluate its potential for oral cancer specifically focusing on its effectiveness, side effects, biocompatibility, and toxicity. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. PubMed, EBSCO, and Scopus databases were exploited in the selection of articles published within the last decade. This study quality assessment uses OHAT for critical appraisal tools. Only 10 studies met the inclusion criteria. The findings suggest that the use of agricultural waste in the preparation of SPIONs not only holds potency for oral cancer treatment through drug delivery and hyperthermia but also aligns with the concept of green dentistry. SPIONs as a treatment modality for oral cancer have demonstrated notable effectiveness and versatility. This study provides robust evidence supporting green dentistry by using agricultural waste in the preparation and formulation of SPIONs for managing oral cancer. Its multifunctional nature and ability to enhance treatment efficacy while minimizing adverse effects on healthy tissues highlights the potency of SPION-based oral cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Veni Takarini
- Department of Dental Materials and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
- Oral Biomaterials Research Centre, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
| | - Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Padjadjaran University, Bandung, 40132, Indonesia
| |
Collapse
|
22
|
Macêdo HLRDQ, de Oliveira LL, de Oliveira DN, Lima KFA, Cavalcanti IMF, Campos LADA. Nanostructures for Delivery of Flavonoids with Antibacterial Potential against Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:844. [PMID: 39335017 PMCID: PMC11428843 DOI: 10.3390/antibiotics13090844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Flavonoids are secondary metabolites that exhibit remarkable biological activities, including antimicrobial properties against Klebsiella pneumoniae, a pathogen responsible for several serious nosocomial infections. However, oral administration of these compounds faces considerable challenges, such as low bioavailability and chemical instability. Thus, the encapsulation of flavonoids in nanosystems emerges as a promising strategy to mitigate these limitations, offering protection against degradation; greater solubility; and, in some cases, controlled and targeted release. Different types of nanocarriers, such as polymeric nanoparticles, liposomes, and polymeric micelles, among others, have shown potential to increase the antimicrobial efficacy of flavonoids by reducing the therapeutic dose required and minimizing side effects. In addition, advances in nanotechnology enable co-encapsulation with other therapeutic agents and the development of systems responsive to more specific stimuli, optimizing treatment. In this context, the present article provides an updated review of the literature on flavonoids and the main nanocarriers used for delivering flavonoids with antibacterial properties against Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Hanne Lazla Rafael de Queiroz Macêdo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Lara Limeira de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - David Nattan de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Karitas Farias Alves Lima
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
- Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 50670-901, PE, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| |
Collapse
|
23
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
24
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
25
|
Splinter K, Möckel R, Hlawacek G, Lendzion-Bieluń Z. Studies of the Morphology of Hematite Synthesized from Waste Iron Sulfate. Molecules 2024; 29:3527. [PMID: 39124932 PMCID: PMC11314163 DOI: 10.3390/molecules29153527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Microwave-based reactions have gained traction in recent years due to their ability to enhance reaction rates and yield while reducing energy consumption. Also, according to the conception of 'waste to materials', various waste feeds are intensively sought to be tested. The experimental setup of this study involved varying pH levels, oxidation agents, and precipitation agents to optimize the synthesis process of iron red based on waste iron sulfate. The selection of oxidation and precipitation agents was found to significantly influence the pigment synthesis process. Various oxidizing agents, including hydrogen peroxide and atmospheric air, were evaluated for their effectiveness in promoting the oxidation of ferrous ions to ferric ions, essential for pigment formation. Additionally, different precipitation agents such as sodium hydroxide and ammonia solution were assessed for their ability to precipitate iron hydroxides and facilitate pigment particle formation. The characterization of synthesized pigments revealed promising results in terms of quality and color properties. Helium Ion Microscopy (HIM) analysis confirmed the formation of well-defined pigment particles with controlled morphology. X-ray diffraction (XRD) studies provided insights into the crystalline structure of the pigments, indicating the presence of characteristic iron oxide phases. By improving this technology, waste iron sulfate can be efficiently transformed into valuable iron pigments, offering a sustainable solution for waste management while meeting the growing demand for high-quality pigments.
Collapse
Affiliation(s)
- Kamila Splinter
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Robert Möckel
- Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Chemnitzer Str. 40, 09599 Freiberg, Germany;
| | - Gregor Hlawacek
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Zofia Lendzion-Bieluń
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| |
Collapse
|
26
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
28
|
Mishra A, Pandey J, Ojha H, Sharma M, Kaur L, Pandey A, Sharma P, Murab S, Singhal R, Pathak M. A green and economic approach to synthesize magnetic Lagenaria siceraria biochar (γ-Fe 2O 3-LSB) for methylene blue removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34038-34055. [PMID: 38696013 DOI: 10.1007/s11356-024-33477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
In the printing and textile industries, methylene blue (a cationic azo dye) is commonly used. MB is a well-known carcinogen, and another major issue is its high content in industrial discharge. There are numerous removal methodologies that have been employed to remove it from industrial discharge; however, these current modalities have one or more limitations. In this research, a novel magnetized biochar (γ-Fe2O3-LSB) was synthesized using Lagenaria siceraria peels which were further magnetized via the co-precipitation method. The synthesized γ-Fe2O3-LSB was characterized using FTIR, X-ray diffraction, Raman, SEM-EDX, BET, and vibrating sample magnetometry (VSM) for the analysis of magnetic properties. γ-Fe2O3-LSB showed a reversible type IV isotherm, which is a primary characteristic of mesoporous materials. γ-Fe2O3-LSB had a specific surface area (SBET = 135.30 m2/g) which is greater than that of LSB (SBET = 11.54 m2/g). γ-Fe2O3-LSB exhibits a saturation magnetization value (Ms) of 3.72 emu/g which shows its superparamagnetic nature. The batch adsorption process was performed to analyze the adsorptive removal of MB dye using γ-Fe2O3-LSB. The adsorption efficiency of γ-Fe2O3-LSB for MB was analyzed by varying parameters like the initial concentration of adsorbate (MB), γ-Fe2O3-LSB dose, pH effect, contact time, and temperature. Adsorption isotherm, kinetic, and thermodynamics were also studied after optimizing the protocol. The non-linear Langmuir model fitted the best to explain the adsorption isotherm mechanism and resulting adsorption capacity ( q e =54.55 mg/g). The thermodynamics study showed the spontaneous and endothermic nature, and pseudo-second-order rate kinetics was followed during the adsorption process. Regeneration study showed that γ-Fe2O3-LSB can be used up to four cycles. In laboratory setup, the cost of γ-Fe2O3-LSB synthesis comes out to be 162.75 INR/kg which is low as compared to commercially available adsorbents. The results obtained suggest that magnetic Lagenaria siceraria biochar, which is economical and efficient, can be used as a potential biochar material for industrial applications in the treatment of wastewater.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Himanshu Ojha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Malti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
| | - Lajpreet Kaur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Akhilesh Pandey
- Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Pankaj Sharma
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Sumit Murab
- BioX Center, School of Biosciences & Bioengineering, IIT Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, 110027, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
29
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Chavarría-Fernández SM, Jiménez-Alvarado R, Santos-López EM, Hernández-Hernandez AA, Cariño-Cortés R. Iron nanoparticles as food additives and food supplements, regulatory and legislative perspectives. Food Sci Biotechnol 2024; 33:1295-1305. [PMID: 38585565 PMCID: PMC10992046 DOI: 10.1007/s10068-024-01518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, the use of nanotechnology in food has gained great interest. Iron nanoparticles with unique chemical, physical and structural properties allow their potential use mainly as iron fortifiers, colorants and antimicrobial agents. However, in the market we can find only supplements and food colorants based on iron nanoparticles. Their use in food fortification has so far been focused only on in vitro and in vivo experimental studies, since the toxicological evaluation of these studies has so far been the basis for the proposals of laws and regulations, which are still in an early stage of development. Therefore, the aim of this work was to summarize the use of the different forms of iron nanoparticles (oxides, oxyhydroxides, phosphates, pyrophosphates and sulfates) as food additives and supplements and to resume the perspectives of legislation regarding the use of these types of nanoparticles in the food industry.
Collapse
Affiliation(s)
- Sara Madai Chavarría-Fernández
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Eva María Santos-López
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5 Colonia Carboneras, 42184 Mineral de la Reforma, Hidalgo México
| | - Aldahir Alberto Hernández-Hernandez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Raquel Cariño-Cortés
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| |
Collapse
|
31
|
Zuo Y, Sun R, Del Piccolo N, Stevens MM. Microneedle-mediated nanomedicine to enhance therapeutic and diagnostic efficacy. NANO CONVERGENCE 2024; 11:15. [PMID: 38634994 PMCID: PMC11026339 DOI: 10.1186/s40580-024-00421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nanomedicine has been extensively explored for therapeutic and diagnostic applications in recent years, owing to its numerous advantages such as controlled release, targeted delivery, and efficient protection of encapsulated agents. Integration of microneedle technologies with nanomedicine has the potential to address current limitations in nanomedicine for drug delivery including relatively low therapeutic efficacy and poor patient compliance and enable theragnostic uses. In this Review, we first summarize representative types of nanomedicine and describe their broad applications. We then outline the current challenges faced by nanomedicine, with a focus on issues related to physical barriers, biological barriers, and patient compliance. Next, we provide an overview of microneedle systems, including their definition, manufacturing strategies, drug release mechanisms, and current advantages and challenges. We also discuss the use of microneedle-mediated nanomedicine systems for therapeutic and diagnostic applications. Finally, we provide a perspective on the current status and future prospects for microneedle-mediated nanomedicine for biomedical applications.
Collapse
Affiliation(s)
- Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nuala Del Piccolo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
32
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Grumezescu AM, Antohi AM, Nicolae CL. Metallic nanomaterials - targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:145-158. [PMID: 39020529 PMCID: PMC11384046 DOI: 10.47162/rjme.65.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This paper explores the integral role of metallic nanomaterials in drug delivery, specifically focusing on their unique characteristics and applications. Exhibiting unique size, shape, and surface features, metallic nanoparticles (MNPs) (e.g., gold, iron oxide, and silver NPs) present possibilities for improving medication efficacy while minimizing side effects. Their demonstrated success in improving drug solubility, bioavailability, and targeted release makes them promising carriers for treating a variety of diseases, including inflammation and cancer, which has one of the highest rates of mortality in the world. Furthermore, it is crucial to acknowledge some limitations of MNPs in drug delivery before successfully incorporating them into standard medical procedures. Thus, challenges such as potential toxicity, issues related to long-term safety, and the need for standardized production methods will also be addressed.
Collapse
Affiliation(s)
- George Alexandru Croitoru
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
33
|
Mwebembezi T, Wakatuntu J, Jjagwe J, Kanyesigye C, Kulabako RN, Olupot PW. Synthesis, characterization and application of steel waste-based iron oxide nanoparticles for removal of heavy metals from industrial wastewaters. Heliyon 2024; 10:e28153. [PMID: 38524616 PMCID: PMC10958420 DOI: 10.1016/j.heliyon.2024.e28153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Water treatment and reuse can avail more clean and safe water for human use. In this study, iron oxide waste powder generated from the steel pickling process was used to develop iron oxide nanoparticles (IONPs) using solution gelation synthesis process. The powder and developed IONPs were characterized by X-ray fluorescence and diffraction (XRF, XRD), scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) analyses. Adsorption experiments were carried out on synthetic water with lead and chromium metal ions. The adsorption data were analysed with Langmuir and Freundlich models. Adsorption kinetics were also analysed with Pseudo-First-Order and Pseudo-Second-Order models using non-linear regression. The synthesized IONPs were porous with active surface functional groups of hydroxyl bonds, with BET specific surface area of 325.02 m2/g. XRD results confirmed the cubic spinel structure of IONPs with particle sizes of 20-30 nm. The nanoparticles at a dosage of 0.35 g in 10 mL for 50 min effectively removed Pb(II) and Cr(VI) metal ions up to 99.9% from both synthetic water and industrial wastewater. The adsorption capacity (qmax) of IONPs was found to be 417 and 326.80 for Pb(II) and Cr(VI) respectively. Freundlich isotherm model data fitted best for the removal of both metal ions. The regression values for kinetic models confirmed that pseudo-second-order best fit the adsorption of both Pb(II) and Cr(VI) confirming chemisorption processes. This study contributes to elucidating alternative application of pickling waste from the steel rolling mills for the benefit of heavy metal removal in industrial wastewater.
Collapse
Affiliation(s)
- Tumutungire Mwebembezi
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
| | - Joel Wakatuntu
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
| | - Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
| | | | - Robinah N. Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
| |
Collapse
|
34
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
35
|
Kunjan F, Shanmugam R, Govindharaj S. Evaluation of Free Radical Scavenging and Antimicrobial Activity of Coleus amboinicus-Mediated Iron Oxide Nanoparticles. Cureus 2024; 16:e55472. [PMID: 38571817 PMCID: PMC10988995 DOI: 10.7759/cureus.55472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Background In this research, iron oxide nanoparticles were synthesized using Coleus amboinicus stem extract, which is used for various diseases such as throat infection, cough, fever, nasal congestion, and digestive problems. Aim This study aimed to formulate a green synthesis of iron oxide nanoparticles mediated by Coleus amboinicus (known as karpuravalli in Tamil) and assess its antimicrobial and antioxidant properties. Materials and methods Iron oxide nanoparticles were synthesized, and then their antimicrobial properties were tested against two specific pathogens, i.e., Streptococcus mutans and Candida albicans, using the agar well diffusion technique. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, hydroxyl radical scavenging (H2O2) assay, and ferric ion reducing antioxidant power (FRAP) assay were conducted to check the free radical scavenging activity. Result The results obtained showed that these iron oxide nanoparticles showed better antimicrobial activity against Streptococcus mutans when compared to Candida albicans, and the antioxidant activity showed a very close efficacy when compared to the standard. Conclusion The research has demonstrated the high antioxidant activity and high antibacterial activity of iron oxide nanoparticles using Coleus amboinicus stem, a natural and cheaper antimicrobial drug compared to the drugs present on the market.
Collapse
Affiliation(s)
- Faris Kunjan
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sulochana Govindharaj
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
36
|
Cui X, Na X, Wang X, Ernst R, Yves F. RETRACTED: Impact of High-Frequency Traveling-Wave Magnetic Fields on Low-Conductivity Liquids: Investigation and Potential Applications in the Chemical Industry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:944. [PMID: 38399194 PMCID: PMC10890104 DOI: 10.3390/ma17040944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that propagate through space in a wave-like manner at high frequencies. These magnetic fields are characterized by their ability to generate driving forces and induce currents in conductive materials, such as liquids or metals. This article investigates the application and approaches of a unique form of high-frequency traveling-wave magnetic fields to low-conductivity liquids with conductivity ranging from 1 to 102 S/m. Experiments were conducted using four representative electrolytic solutions commonly employed in the chemical industry: sulfuric acid (H2SO4), sodium hydroxide (NaOH), sodium chloride (NaCl), and ionic liquid ([Bmim]BF4). The investigation focuses on the impact of high-frequency magnetic fields on these solutions at the optimal operating point of the system, considering the effects of Joule heating. The findings reveal that the high-frequency traveling magnetic field exerts a significant volumetric force on all four low-conductivity liquids. This technology, characterized by its non-contact and pollution-free nature, high efficiency, large driving volume, and rapid driving speeds (up to several centimeters per second), also provides uniform velocity distribution and notable thermal effects. It holds considerable promise for applications in the chemical industry, metallurgy, and other sectors where enhanced three-phase transfer processes are essential.
Collapse
Affiliation(s)
- Xinyu Cui
- State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing 100081, China;
- College of Material Science and Opto-Electronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhao Na
- State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing 100081, China;
| | - Xiaodong Wang
- College of Material Science and Opto-Electronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Roland Ernst
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, F-38000 Grenoble, France; (E.R.); (F.Y.)
| | - Fautrelle Yves
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, F-38000 Grenoble, France; (E.R.); (F.Y.)
| |
Collapse
|
37
|
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed Microdevices 2024; 26:16. [PMID: 38324228 DOI: 10.1007/s10544-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Zuben de Valega Negrão CV, Cerize NN, Silva Justo-Junior AD, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Almeida Gonçalves KD, Cornejo DR, Leo P, Perecin C, Adamoski D, Gomes Dias SM. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. Nanomedicine (Lond) 2024; 19:231-254. [PMID: 38284384 DOI: 10.2217/nnm-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 μg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.
Collapse
Affiliation(s)
- Cyro von Zuben de Valega Negrão
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Natália Np Cerize
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Amauri da Silva Justo-Junior
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Raquel Bester Liszbinski
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Giovanna Pastore Meneguetti
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Larissa Araujo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Daniel R Cornejo
- Department of Materials & Mechanics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Patrícia Leo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Caio Perecin
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Sandra M Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
39
|
Shen Q, Yu C. Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging. Front Bioeng Biotechnol 2024; 11:1323316. [PMID: 38333548 PMCID: PMC10851169 DOI: 10.3389/fbioe.2023.1323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Multimodal imaging are approaches which combines multiple imaging techniques to obtain multi-aspect information of a target through different imaging modalities, thereby greatly improve the accuracy and comprehensiveness of imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) modified with branched polyethyleneimine have revealed good biocompatibility and stability, high drug loading capacity and nucleic acid transfection efficiency. SPIONs have been developed as functionalized platforms which can be further modified to enhance their functionalities. Those further modifications facilitate the application of SPIONs in multimodal imaging. In this review, we discuss the methods, advantages, applications, and prospects of BPEI-modified SPIONs in multimodal imaging.
Collapse
Affiliation(s)
- Qiaoling Shen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
41
|
Panhwar S, Keerio HA, Khokhar NH, Muqeet M, Ali Z, Bilal M, Ul Rehman A. Magnetic nanomaterials as an effective absorbent material for removal of fluoride concentration in water: a review. JOURNAL OF WATER AND HEALTH 2024; 22:123-137. [PMID: 38295076 PMCID: wh_2023_116 DOI: 10.2166/wh.2023.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The rapid increases in industrialization and populations are significant sources of water contamination. The speed with which contamination of groundwater and surface water occurs is becoming a serious problem and poses a significant obstacle for water stakeholders. Heavy metals, organic, and inorganic contaminants in the form of suspended and dissolved materials are just a few of the contaminants that can be found in drinking water. One of the most common contaminants in the water is fluoride, which is responsible for numerous toxic diseases. Different traditional techniques, for example, coagulation, ion exchange, absorption, and membrane filtration are being used to dispose of fluoride from water. However, nanomaterials such as magnetic nanoparticles (NPs) are very efficient, reliable, cost-effective, and stable materials to replace traditional water treatment techniques. There has been an increase in interest in the application of nanomaterials to the purification of drinking water over the past few decades. The use of magnetic NPs, such as metal and metal oxide NPs, to remove fluoride ions and organic matter from water is highlighted in this review article. Also, this section also discusses the properties, benefits and drawbacks, and difficulties of utilizing magnetic NPs in the process of purifying drinking water.
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; Department of Civil Engineering, National University of Science and Technology, Balochistan, Campus, Quetta, Pakistan E-mail:
| | - Hareef Ahmed Keerio
- Department of Environmental Engineering, Quaid E Awam University of Engineering Science and Technology, Nawabshah, Pakistan
| | | | - Muhammad Muqeet
- Department of Chemistry, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology Mang Khanpur, Karachi, Pakistan
| | - Zouhaib Ali
- Department of Civil Engineering, National University of Science and Technology, Balochistan, Campus, Quetta, Pakistan
| | - Muhammad Bilal
- Department of Civil Engineering, National University of Science and Technology, Balochistan, Campus, Quetta, Pakistan
| | - Ajeeb Ul Rehman
- Department of Civil Engineering, National University of Science and Technology, Balochistan, Campus, Quetta, Pakistan
| |
Collapse
|
42
|
Xiao Y, Xu RH, Dai Y. Nanoghosts: Harnessing Mesenchymal Stem Cell Membrane for Construction of Drug Delivery Platforms Via Optimized Biomimetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304824. [PMID: 37653618 DOI: 10.1002/smll.202304824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are becoming hotspots for application in disease therapies recently, combining with biomaterials and drug delivery system. A major advantage of MSCs applied in drug delivery system is that these cells enable specific targeting and releasing of cargos to the disease sites. However, the potential tumor tropic effects of MSCs raised concerns on biosafety. To solve this problem, there are emerging methods of isolating cell membranes and developing nanoformulations to perform drug delivery, which avoids concerns on biosafety without disturbing the membrane functions of specific polarizing and locating. These cargoes are so called "nanoghosts." This review article summarizes the current applications of nanoghosts, the promising potential of MSCs to be applied in membrane isolation and nanoghost construction, and possible approaches to develop better drug delivery system harnessing from MSC ghost cell membranes.
Collapse
Affiliation(s)
- Yuan Xiao
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ren-He Xu
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunlu Dai
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
43
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
44
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
45
|
Souiade L, Domingo-Diez J, Alcaide C, Gámez B, Gámez L, Ramos M, Serrano Olmedo JJ. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines. Int J Mol Sci 2023; 24:15933. [PMID: 37958913 PMCID: PMC10648011 DOI: 10.3390/ijms242115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform's killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death. For that purpose, we used MNPs and different AMF waveforms: trapezoidal (TP), almost-square (TS), triangular (TR), and sinusoidal signal (SN). MNPs at 1 and 4 mg/mL did not affect cell viability during treatment. The exposition of B16F10 and CT2A cells to only AMF showed nonsignificant mortality. Hence, the synergetic effect of the AMF and MNPs causes the observed cell death. Among the explored cases, the nonharmonic signals demonstrated better efficacy than the SN one as an MHT treatment. This study has revealed that the application of TP, TS, or TR waveforms is more efficient and has considerable capability to increase cancer cell death compared to the traditional sinusoidal treatment. Overall, we can conclude that the application of nonharmonic signals enhances MHT treatment efficiency against tumor cells.
Collapse
Affiliation(s)
- Lilia Souiade
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Cesar Alcaide
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Berta Gámez
- Escula Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain; (B.G.); (L.G.)
| | - Linarejos Gámez
- Escula Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain; (B.G.); (L.G.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Javier Serrano Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
46
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, Huynh PT, Hwang GB, Youn SW, Jeong YH. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. Int J Mol Sci 2023; 24:14954. [PMID: 37834402 PMCID: PMC10573775 DOI: 10.3390/ijms241914954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.
Collapse
Affiliation(s)
- Moonseok Choi
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Dongsoo Kim
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Young-Jin Youn
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Min Hui Park
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Phuong Tu Huynh
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Gyu-Bin Hwang
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Sung Won Youn
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Yun Ha Jeong
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| |
Collapse
|
48
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Ali A, Khan S, Garg U, Luqman M, Bhagwath SS, Azim Y. Chitosan-based hydrogel system for efficient removal of Cu[II] and sustainable utilization of spent adsorbent as a catalyst for environmental applications. Int J Biol Macromol 2023; 247:125805. [PMID: 37453639 DOI: 10.1016/j.ijbiomac.2023.125805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The growing requirement for clean potable water requires sustainable methods of eliminating heavy metal ions and other organic contaminants. Herein, we synthesized a novel dual-purpose magnetically separable chitosan-based hydrogel system (CSGO-R@IO) that can efficiently remove toxic Cu2+ pollutants from water. FT-IR, XRD, SEM-EDX, VSM, XPS analyses were used to characterize the synthesized hydrogel. The CSGO-R@IO hydrogel showed high swelling capacity (1036.06 %), prominent adsorption capacity for Cu2+ ions (119.5 mg/g), and good recyclability up to four cycles. The adsorption data of Cu+2 ions on hydrogel fitted better to the Langmuir isotherm model (R2 = 0.9942), indicating spontaneous monolayer adsorption of Cu2+ ions on a homogenous surface. The adsorption kinetic studies fitted better with the pseudo-second-order model (R2 = 0.9992), suggesting that the adsorption process was controlled by chemisorption. We also showed a sustainable way to convert harmful Cu2+ pollutants into valuable Cu nanoparticles for catalysis, and Cu nanoparticles loaded hydrogel (CSGO-R@IO/Cu) had high catalytic activity. Hence, building attractive multipurpose hydrogel systems will give us new ideas about how to design and use new adsorbents to clean water in real life. They will also help in recycle metals (copper and maybe others) to conserve resources.
Collapse
Affiliation(s)
- Anwer Ali
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia.
| | - Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Luqman
- Department of Chemical Engineering, College of Engineering, Taibah University, 4430, Yanbu 46421, Saudi Arabia
| | - Sundeep S Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
50
|
Leena Panigrahi L, Shekhar S, Sahoo B, Arakha M. Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death. RSC Adv 2023; 13:25497-25507. [PMID: 37636508 PMCID: PMC10450573 DOI: 10.1039/d3ra04070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
In the prevailing environmental status quo, bacterial resistance has made antibiotics and antimicrobial peptides (AMPs) ineffective, imparting a serious threat and putting a much greater financial burden on the biomedical and food industries. For this reason, the present study investigates the potential of iron oxide nanoparticles (IONPs) coated with chitosan (CS-IONP) as a platform for augmenting the antimicrobial activity of antimicrobial peptides like nisin. Hence, the nisin is allowed to be adsorbed onto chitosan-coated IONPs to formulate nisin-loaded CS-IONP nanoconjugates. The nanoconjugates were characterized by various optical techniques, such as XRD, FTIR, SEM, zeta and DLS. Remarkably, lower concentrations of N-CS-IONP nanoconjugate exhibited significant and broad-spectrum antibacterial potency compared to bare IONPs and nisin against both Gram-positive and Gram-negative bacteria. Biofilm production was also found to be drastically reduced in the presence of nanoconjugates. Further investigation established a relationship between an increase in antibacterial activity and the enhanced generation of reactive oxygen species (ROS). Oxidative stress exhibited due to enhanced ROS generation is a conclusive reason for the rupturing of bacterial membranes and leakage of cytoplasmic contents, eventually leading to the death of the bacteria. Thus, the current study emphasizes the formulation of a novel antimicrobial agent which exploits magnetic nanoparticles modulated with chitosan for enhanced remediation of resistant bacteria due to oxidative stress imparted by the nanoconjugates upon interaction with the bacteria, leading to cell death.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | | | - Banishree Sahoo
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| |
Collapse
|