1
|
Wang K, Qin L, Lin H, Yao M, Cao J, Zhang Q, Qu C, He Y, Miao J, Liu M. Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses. Antioxidants (Basel) 2024; 14:30. [PMID: 39857364 PMCID: PMC11763201 DOI: 10.3390/antiox14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days. At the end of the experiment, UVB exposure caused erythema, wrinkling, collagen degradation, and mast cell infiltration in mouse dorsal skin. M-Gly treatment improved skin appearance and reduced mast cell numbers, while also elevating antioxidant levels, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Furthermore, M-Gly reduced inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β, typically upregulated after UVB exposure. M-Gly also protected skin collagen by upregulating type I procollagen and decreasing MMP-1 levels. Skin metabolomic profiling identified 34 differentially abundant metabolites, and transcriptomic analysis revealed 752 differentially expressed genes. The combined metabolomic and transcriptomic data indicate that M-Gly's protective effects may involve the regulation of ion transport, cellular repair, metabolic stability, collagen preservation, and the Nrf2/HO-1 pathway. These findings highlight M-Gly's potential as an endogenous antioxidant for protecting skin from UVB-induced damage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Ling Qin
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Huan Lin
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Mengke Yao
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Junhan Cao
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Qing Zhang
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Changfeng Qu
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Yingying He
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
| | - Jinlai Miao
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (L.Q.); (H.L.); (M.Y.); (J.C.); (Q.Z.); (C.Q.); (Y.H.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Arsın S, Pollari M, Delbaje E, Jokela J, Wahlsten M, Permi P, Fewer D. A refactored biosynthetic pathway for the production of glycosylated microbial sunscreens. RSC Chem Biol 2024:d4cb00128a. [PMID: 39247679 PMCID: PMC11378024 DOI: 10.1039/d4cb00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024] Open
Abstract
Mycosporine-like amino acids (MAAs) are a family of water-soluble and colorless secondary metabolites, with high extinction coefficients, that function as microbial sunscreens. MAAs share a cyclohexinimine chromophore that is diversified through amino acid substitutions and attachment of sugar moieties. The genetic and enzymatic bases for the chemical diversity of MAAs remain largely unexplored. Here we report a series of structurally distinct MAAs and evidence for an unusual branched biosynthetic pathway from a cyanobacterium isolated from lake sediment. We used a combination of high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analysis and nuclear magnetic resonance (NMR) spectroscopy to identify diglycosylated-palythine-Ser (C22H36N2O15) as the dominant chemical variant in a series of MAAs from Nostoc sp. UHCC 0302 that contained either Ser or Thr. We obtained a complete 9.9 Mb genome sequence to gain insights into the genetic basis for the biosynthesis of these structurally distinct MAAs. We identified MAA biosynthetic genes encoded at two locations on the circular chromosome. Surprisingly, direct pathway cloning and heterologous expression of the complete mysABCJ 1 D 1 G 1 H biosynthetic gene cluster in Escherichia coli (E. coli) led to the production of 450 Da monoglycosylated-palythine-Thr (C18H30N2O11). We reconstructed combinations of the two distant biosynthetic gene clusters in refactored synthetic pathways and expressed them in the heterologous host. These results demonstrated that the MysD1 and MysD2 enzymes displayed a preference for Thr and Ser, respectively. Furthermore, one of the four glycosyltransferases identified, MysG1, was active in E. coli and catalysed the attachment of a hexose moiety to the palythine-Thr intermediate. Together these results provide the first insights into the enzymatic basis for glycosylation of MAAs and demonstrates how paralogous copies of the MysD enzymes allow the simultaneous biosynthesis of specific chemical variants to increase the structural variation in this family of microbial sunscreens.
Collapse
Affiliation(s)
- Sıla Arsın
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Maija Pollari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto Brazil
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä 40014 Jyväskylä Finland
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä 40014 Jyväskylä Finland
| | - David Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki 00014 Helsinki Finland
| |
Collapse
|
4
|
Singh VK, Das B, Jha S, Rana P, Kumar R, Sinha RP. Characterization, DFT study and evaluation of antioxidant potentials of mycosporine-like amino acids (MAAs) in the cyanobacterium Anabaenopsis circularis HKAR-22. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112975. [PMID: 38970967 DOI: 10.1016/j.jphotobiol.2024.112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The physiological parameters such as growth, Chl a content, and photosynthetic performance of the experimental cyanobacterium Anabaenopsis circularis HKAR-22 were estimated to evaluate the cumulative effects of photosynthetically active radiation (PAR) and ultraviolet (UV) radiation. Maximum induction of UV-screening molecules, MAAs, was observed under the treatment condition of PAR + UV-A + UV-B (PAB) radiations. UV/VIS absorption spectroscopy and HPLC-PDA detection primarily confirmed the presence of MAA-shinorine (SN) having absorption maxima (λmax) at 332.3 nm and retention time (RT) of 1.47 min. For further validation of the presence of SN, HRMS, FTIR and NMR were utilized. UV-stress elevated the in vivo ROS scavenging and in vitro enzymatic antioxidant capabilities. SN exhibited substantial and concentration-dependent antioxidant capabilities which was determined utilizing 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS), ferric reducing power (FRAP) and superoxide radical scavenging assay (SRSA). The density functional theory (DFT) method using B3LYP energy model and 6-311G++(d,p) basis set was implied to perform the quantum chemical calculation to systematically investigate the antioxidant nature of SN. The principal pathways involved in the antioxidant reactions along with the basic molecular descriptors affecting the antioxidant potentials of a compound were also studied. The results favor the potential of SN as an active ingredient to be used in cosmeceutical formulations.
Collapse
Affiliation(s)
- Varsha K Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, U.P., India
| | - Sapana Jha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Palak Rana
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, U.P., India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Mishra R, Kaur P, Soni R, Madan A, Agarwal P, Singh G. Decoding the photoprotection strategies and manipulating cyanobacterial photoprotective metabolites, mycosporine-like amino acids, for next-generation sunscreens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108744. [PMID: 38781638 DOI: 10.1016/j.plaphy.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The most recent evaluation of the impacts of UV-B radiation and depletion of stratospheric ozone points out the need for effective photoprotection strategies for both biological and nonbiological components. To mitigate the disruptive consequences of artificial sunscreens, photoprotective compounds synthesized from gram-negative, oxygenic, and photoautotrophic prokaryote, cyanobacteria have been studied. In a quest to counteract the harmful UV radiation, cyanobacterial species biosynthesize photoprotective metabolites named as mycosporine-like amino acids (MAAs). The investigation of MAAs as potential substitutes for commercial sunscreen compounds is motivated by their inherent characteristics, such as antioxidative properties, water solubility, low molecular weight, and high molar extinction coefficients. These attributes contribute to the stability of MAAs and make them promising candidates for natural alternatives in sunscreen formulations. They are effective at reducing direct damage caused by UV radiation and do not lead to the production of reactive oxygen radicals. In order to better understand the role, ecology, and its application at a commercial scale, tools like genome mining, heterologous expression, and synthetic biology have been explored in this review to develop next-generation sunscreens. Utilizing tactical concepts of bio-nanoconjugate formation for the development of an efficient MAA-nanoparticle conjugate structure would not only give the sunscreen complex stability but would also serve as a promising tool for the production of analogues. This review would provide insight on efforts to produce MAAs by diversifying the biosynthetic pathways, modulating the precursors and stress conditions, and comprehending the gene cluster arrangement for MAA biosynthesis and its application in developing effective sunscreen.
Collapse
Affiliation(s)
- Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Pritam Kaur
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Renu Soni
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Akanksha Madan
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Garvita Singh
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| |
Collapse
|
6
|
Yunus IS, Hudson GA, Chen Y, Gin JW, Kim J, Baidoo EEK, Petzold CJ, Adams PD, Simmons BA, Mukhopadhyay A, Keasling JD, Lee TS. Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida. Metab Eng 2024; 84:69-82. [PMID: 38839037 DOI: 10.1016/j.ymben.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.
Collapse
Affiliation(s)
- Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Yamamoto R, Toriumi S, Kawagoe C, Saburi W, Kishimura H, Kumagai Y. Extraction and antioxidant capacity of mycosporine-like amino acids from red algae in Japan. Biosci Biotechnol Biochem 2024; 88:830-838. [PMID: 38684478 DOI: 10.1093/bbb/zbae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Mycosporine-like amino acids (MAAs) are the natural UV-absorbing compounds with antioxidant activity found in microalgae and macroalgae. We collected red algae Asparagopsis taxiformis, Meristotheca japonica, and Polysiphonia senticulosa from Nagasaki, where UV radiation is more intense than in Hokkaido, and investigated the effect of UV radiation on MAA content. It was suggested that A. taxiformis and M. japonica contained shinorine and palythine, while UV-absorbing compound in P. senticulosa could not be identified. The amounts of these MAAs were lower compared to those from Hokkaido. Despite an increase in UV radiation in both regions from February to April, MAA contents of red algae from Nagasaki slightly decreased while those from Hokkaido significantly decreased. This difference was suggested the amount of inorganic nitrogen in the ocean. Antioxidant activity of MAAs increased under alkaline conditions. The extract containing MAAs from P. senticulosa showed the highest antioxidant activity among 4 red algae.
Collapse
Affiliation(s)
- Ryuya Yamamoto
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Shigeru Toriumi
- Hokkaido Industrial Technology Center, Hakodate, Hokkaido, Japan
| | - Chikara Kawagoe
- Algatech Kyowa, Kyowa Concrete Industry Co. Ltd, Hakodate, Hokkaido, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
8
|
Pereira DT, García-García P, Korbee N, Vega J, Señoráns FJ, Figueroa FL. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Mar Drugs 2024; 22:284. [PMID: 38921595 PMCID: PMC11204741 DOI: 10.3390/md22060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and β-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.
Collapse
Affiliation(s)
- Débora Tomazi Pereira
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Paz García-García
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Nathalie Korbee
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Julia Vega
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Francisco J. Señoráns
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Félix L. Figueroa
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| |
Collapse
|
9
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
10
|
Rosic N, Thornber C. Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds. Mar Drugs 2023; 21:633. [PMID: 38132954 PMCID: PMC10744652 DOI: 10.3390/md21120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Carol Thornber
- Department of Natural Resources Science, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA;
| |
Collapse
|
11
|
Punchakara A, Prajapat G, Bairwa HK, Jain S, Agrawal A. Applications of mycosporine-like amino acids beyond photoprotection. Appl Environ Microbiol 2023; 89:e0074023. [PMID: 37843273 PMCID: PMC10686070 DOI: 10.1128/aem.00740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Recent years have seen a lot of interest in mycosporine-like amino acids (MAAs) because of their alleged potential as a natural microbial sunscreen. Since chemical ultraviolet (UV) absorbers are unsafe for long-term usage, the demand for natural UV-absorbing substances has increased. In this situation, MAA is a strong contender for an eco-friendly UV protector. The capacity of MAAs to absorb light in the UV-A (320-400 nm) and UV-B (280-320 nm) range without generating free radicals is potentially relevant in photoprotection. The usage of MAAs for purposes other than photoprotection has now shifted in favor of medicinal applications. Aside from UV absorption, MAAs also have anti-oxidant, anti-inflammatory, wound-healing, anti-photoaging, cell proliferation stimulators, anti-cancer agents, and anti-adipogenic properties. Recently, MAAs application to combat SARS-CoV-2 infection was also investigated. In this review article, we highlight the biomedical applications of MAAs that go beyond photoprotection, which can help in utilizing the MAAs as promising bioactive compounds in both pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Akhila Punchakara
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ganshyam Prajapat
- The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, New Delhi, India
| | - Himanshu Kumar Bairwa
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shikha Jain
- Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
| | - Akhil Agrawal
- Energy and Environment Research Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
12
|
Tavares JO, Cotas J, Valado A, Pereira L. Algae Food Products as a Healthcare Solution. Mar Drugs 2023; 21:578. [PMID: 37999402 PMCID: PMC10672234 DOI: 10.3390/md21110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as β-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.
Collapse
Affiliation(s)
- Joana O Tavares
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Biomedical Laboratory Sciences, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Wang K, Deng Y, He Y, Cao J, Zhang L, Qin L, Qu C, Li H, Miao J. Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:15055. [PMID: 37894736 PMCID: PMC10606268 DOI: 10.3390/ijms242015055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yashan Deng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Hongmei Li
- Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan 250100, China;
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
14
|
Salehian S, Saadatbakht M, Tabarzad M, Hosseinabadi T. Culture Optimization to Produce High Yields of Mycosporine-Like Amino Acids by Fischerella sp. F5. Mol Biotechnol 2023:10.1007/s12033-023-00854-4. [PMID: 37597118 DOI: 10.1007/s12033-023-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Fischerella sp. is a valuable source of active metabolites, including UV-protecting compounds, among which mycosporin-like amino acids (MAAs) can be mentioned. Mycosporine-like amino acids are attractive secondary metabolites of a wide range of microorganisms, including microalgae and cyanobacteria. Enhanced production of MAAs has been studied in different sources. This study aimed to optimize the phosphate and nitrate concentrations of the culture medium on BG11 to maximize MAAs production from Fischerella sp. F5, using response surface methodology. The extraction process from the cultures, grown in adjusted conditions, was also optimized. The results confirmed that increasing both, nitrate and phosphate concentration, in the culture medium had a positive effect on the MAAs production by Fischerella sp. F5. While, optimization of the extraction process was not led to a highly accurate predictive model; temperature, sonication time, methanol ratio, and solvent/biomass ratio exhibited significant effects on the final MAAs' concentration in partially purified extracts. In general, more optimization cultures studies need to complete these findings in reference to MAAs production and extraction from Fischerella sp. F5, for commercial-scale applications.
Collapse
Affiliation(s)
- Shayan Salehian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Melika Saadatbakht
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tahereh Hosseinabadi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Peng J, Guo F, Liu S, Fang H, Xu Z, Wang T. Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules 2023; 28:5588. [PMID: 37513460 PMCID: PMC10384724 DOI: 10.3390/molecules28145588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are a class of water-soluble active substances produced by various aquatic organisms. However, due to the limitations of low accumulation of MAAs in organisms, the cumbersome extraction process, difficult identification, and high cost, MAAs have not yet been widely used in human life. Recently, there has been an emergence of heterologous synthesis for MAAs, making increasing yield the key to the quantification and application of MAAs. This review summarizes the latest research progress of MAAs, including: (1) introducing the biodistribution of MAAs and the content differences among different species to provide a reference for the selection of research subjects; (2) elaborating the species and molecular information of MAAs; (3) dissecting the synthesis mechanism and sorting out the synthesis pathways of various MAAs; (4) summarizing the methods of extraction and identification, summarizing the advantages and disadvantages, and providing a reference for the optimization of extraction protocols; (5) examining the heterologous synthesis method; and (6) summarizing the physiological functions of MAAs. This paper comprehensively updates the latest research status of MAAs and the various problems that need to be addressed, especially emphasizing the potential advantages of heterologous synthesis in the future production of MAAs.
Collapse
Affiliation(s)
- Jiahui Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Sishi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Haiyan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
16
|
Kim S, Park BG, Jin H, Lee D, Teoh JY, Kim YJ, Lee S, Kim SJ, Moh SH, Yoo D, Choi W, Hahn JS. Efficient production of natural sunscreens shinorine, porphyra-334, and mycosporine-2-glycine in Saccharomyces cerevisiae. Metab Eng 2023; 78:137-147. [PMID: 37257683 DOI: 10.1016/j.ymben.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Mycosporine-like amino acids (MAAs) are promising natural sunscreens mainly produced in marine organisms. Until now, metabolic engineering efforts to produce MAAs in heterologous hosts have mainly focused on shinorine production, and the low production levels are still not suitable for industrial applications. In this study, we successfully developed Saccharomyces cerevisiae strains that can efficiently produce various disubstituted MAAs, including shinorine, porphyra-334, and mycosporine-2-glycine (M2G), which are formed by conjugating serine, threonine, and glycine to mycosporine-glycine (MG), respectively. We first generated an MG-producing strain by multiple integration of the biosynthetic genes from cyanobacteria and applying metabolic engineering strategies to increase sedoheptulose-7-phosphate pool, a substrate for MG production. Next, five mysD genes from cyanobacteria, which encode D-Ala-D-Ala ligase homologues that conjugate an amino acid to MG, were introduced into the MG-producing strain to determine the substrate preference of each MysD enzyme. MysDs from Lyngbya sp., Nostoclinckia, and Euhalothece sp. showed high specificity toward serine, threonine, and glycine, resulting in efficient production of shinorine, porphyra-334, and M2G, respectively. This is the first report on the production of porphyra-334 and M2G in S. cerevisiae. Furthermore, we identified that the substrate specificity of MysD was determined by the omega loop region of 43-45 amino acids predicted based on its structural homology to a D-Ala-D-Ala ligase from Thermus thermophilus involved in peptidoglycan biosynthesis. The substrate specificities of two MysD enzymes were interchangeable by swapping the omega loop region. Using the engineered strain expressing mysD from Lyngbya sp. or N. linckia, up to 1.53 g/L shinorine or 1.21 g/L porphyra-334 was produced by fed-batch fermentation in a 5-L bioreactor, the highest titer reported so far. These results suggest that S. cerevisiae is a promising host for industrial production of different types of MAAs, providing a sustainable and eco-friendly alternative for the development of natural sunscreens.
Collapse
Affiliation(s)
- Sojeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Beom Gi Park
- CutisBio Co., Ltd., 842 Nonhyeon-ro, Gangnam-gu, Seoul, 06025, Republic of Korea
| | - Hyunbin Jin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Daeyeol Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jie Ying Teoh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yung Jae Kim
- CutisBio Co., Ltd., 842 Nonhyeon-ro, Gangnam-gu, Seoul, 06025, Republic of Korea
| | - Sak Lee
- BioFD&C Co., Ltd., 30 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sang Hyun Moh
- BioFD&C Co., Ltd., 30 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wonwoo Choi
- CutisBio Co., Ltd., 842 Nonhyeon-ro, Gangnam-gu, Seoul, 06025, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Vega J, Bárcenas-Pérez D, Fuentes-Ríos D, López-Romero JM, Hrouzek P, Figueroa FL, Cheel J. Isolation of Mycosporine-like Amino Acids from Red Macroalgae and a Marine Lichen by High-Performance Countercurrent Chromatography: A Strategy to Obtain Biological UV-Filters. Mar Drugs 2023; 21:357. [PMID: 37367682 DOI: 10.3390/md21060357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Marine organisms have gained considerable biotechnological interest in recent years due to their wide variety of bioactive compounds with potential applications. Mycosporine-like amino acids (MAAs) are UV-absorbing secondary metabolites with antioxidant and photoprotective capacity, mainly found in organisms living under stress conditions (e.g., cyanobacteria, red algae, or lichens). In this work, five MAAs were isolated from two red macroalgae (Pyropia columbina and Gelidium corneum) and one marine lichen (Lichina pygmaea) by high-performance countercurrent chromatography (HPCCC). The selected biphasic solvent system consisted of ethanol, acetonitrile, saturated ammonium sulphate solution, and water (1:1:0.5:1; v:v:v:v). The HPCCC process for P. columbina and G. corneum consisted of eight separation cycles (1 g and 200 mg of extract per cycle, respectively), whereas three cycles were performed for of L. pygmaea (1.2 g extract per cycle). The separation process resulted in fractions enriched with palythine (2.3 mg), asterina-330 (3.3 mg), shinorine (14.8 mg), porphyra-334 (203.5 mg) and mycosporine-serinol (46.6 mg), which were subsequently desalted by using precipitation with methanol and permeation on a Sephadex G-10 column. Target molecules were identified by HPLC, MS, and NMR.
Collapse
Affiliation(s)
- Julia Vega
- Centro Experimental Grice Hutchinson, Lomas de San Julián, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 2, 29004 Málaga, Spain
| | - Daniela Bárcenas-Pérez
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - David Fuentes-Ríos
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Juan Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Félix López Figueroa
- Centro Experimental Grice Hutchinson, Lomas de San Julián, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, 2, 29004 Málaga, Spain
| | - José Cheel
- Laboratory of Algal Biotechnology-Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
18
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
19
|
González-Conde M, Vega J, López-Figueroa F, García-Castro M, Moscoso A, Sarabia F, López-Romero JM. Green Synthesis of Silver Nanoparticles and Its Combination with Pyropia columbina (Rhodophyta) Extracts for a Cosmeceutical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1010. [PMID: 36985903 PMCID: PMC10054154 DOI: 10.3390/nano13061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
We report the green synthesis of silver nanoparticles (AgNPs) by using daisy petals (Bellis perennis), leek (Allium porrum) and garlic skin (Allium sativum) as reducing agents and water as solvent. AgNPs are obtained with high monodispersity, spherical shapes and size ranging from 5 to 35 nm and characterized by UV-Vis and TEM techniques. The obtained yields in AgNPs are in concordance with the total phenolic content of each plant. We also study the incorporation of AgNPs in combination with the red algae Pyropia columbina extracts (PCE) into cosmetic formulations and analyze their combined effect as photoprotective agents. Moreover, we carry out the inclusion of the PCE containing mycosporine-like amino acids (MAAs), which are strong UV-absorbing and antioxidant compounds, into β-cyclodextrin (βCD) and pNIPAM nanoparticles and analyze stability and release. The thermoresponsive polymer is grown by free radical polymerization using N-isopropylacrylamide (NIPAM) as the monomer, N,N'-methylenebisacrylamide (BIS) as the cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as the initiator, while βCD complex is prepared by heating in water. We evaluate the nanoparticle and βCD complex formation by UV-Vis and FT-IR, and NMR spectroscopies, respectively, and the nanoparticles' morphology, including particle size, by TEM. The cosmetic formulations are subsequently subjected to accelerated stability tests and photoprotective analyses: a synergistic effect in the combination of AgNPs and PCE in photoprotection was found. It is not related to a UV screen effect but to the antioxidant activity, having potential against photoaging.
Collapse
Affiliation(s)
- Mercedes González-Conde
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Julia Vega
- Andalusian Institute of Blue Biotechnology and Development (IBYDA) Experimental Center Grice Hutchinson, University of Málaga, Lomas de San Julián, 2, 29004 Malaga, Spain
| | - Félix López-Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA) Experimental Center Grice Hutchinson, University of Málaga, Lomas de San Julián, 2, 29004 Malaga, Spain
| | - Miguel García-Castro
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Ana Moscoso
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - J. Manuel López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| |
Collapse
|
20
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
21
|
Chen M, Jiang Y, Ding Y. Recent progress in unraveling the biosynthesis of natural sunscreens mycosporine-like amino acids. J Ind Microbiol Biotechnol 2023; 50:kuad038. [PMID: 37950572 PMCID: PMC10666671 DOI: 10.1093/jimb/kuad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of synthetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients. Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organisms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD, and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring enzymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but also for exploring the evolution of this unique family of natural sunscreens. ONE-SENTENCE SUMMARY This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens and delves into recent progress in their biosynthesis.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yujia Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| |
Collapse
|
22
|
Optimization of a two-phase culture system of Chlamydomonas hedleyi using light-emitting diodes and potential as a biodiesel feedstock. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
23
|
Kasanah N, Ulfah M, Imania O, Hanifah AN, Marjan MID. Rhodophyta as Potential Sources of Photoprotectants, Antiphotoaging Compounds, and Hydrogels for Cosmeceutical Application. Molecules 2022; 27:7788. [PMID: 36431889 PMCID: PMC9697178 DOI: 10.3390/molecules27227788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Seaweeds are macroscopic, multicellular, eukaryotic and photosynthetic organisms, and are a source of chemical diversity with powerful biological activities for diversified industrial applications including cosmeceuticals. Red seaweeds (Rhodophyta) are good sources of Mycosporine-like amino acids (MAA) for photoprotectant and antiphotoaging compounds. In addition, Rhodophyta are also good sources for hydrogel compounds that are used widely in the food, pharmaceutical and cosmeceutical industries as gelling agents, moisturizers or for their antiphotoaging effects. Our survey and ongoing studies revealed that the biodiversity of Indonesian Rhodophyta is rich and is a treasure trove for cosmeceutical agents including MAA and hydrogels. This study delivers valuable information for identifying potential red seaweeds in screening and searching for cosmeceutical agents.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Maria Ulfah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Okmalisda Imania
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Annisa Nur Hanifah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
24
|
Moreira BR, Vega J, Sisa ADA, Bernal JSB, Abdala-Díaz RT, Maraschin M, Figueroa FL, Bonomi-Barufi J. Antioxidant and anti-photoaging properties of red marine macroalgae: Screening of bioactive molecules for cosmeceutical applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Hatakeyama M, Nakamura S. Intrinsic Nature of the Ultrafast Deexcitation Pathway of Mycosporine-like Amino Acid Porphyra-334. J Phys Chem A 2022; 126:7460-7467. [PMID: 36205073 DOI: 10.1021/acs.jpca.2c05034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyra-334 is a member of natural UV-screening compounds named mycosporine-like amino acids found in several marine organisms. The UV excited porphyra-334 has been identified to deexcite quickly by puckering the intramolecular cyclohexenimine ring; however, the reason for such a ring-puckering occurrence is yet unclear. In this study, we show the ring-puckering to be the relaxation pathway of the UV excited π electron which shifts from the in-ring bond to the out-of-ring bond. The ring-puckering is characterized by the torsion among the in-ring and out-of-ring bonds. Since the π electron shift is possible in two different directions at the Franck-Condon UV excited state, it enables two ring-puckering pathways: the previously reported pathway and another one newly identified at present. We also examine the ring-unpuckering pathways which are an analogy of cis/trans photoisomerization, and we find them to be not suited for the π electron shift character of the UV excited state and thus not related to the deexcitation pathway. The present study provides insight into how porphyra-334 exerts the UV-screening ability based on its cyclohexenimine ring structure.
Collapse
Affiliation(s)
- Makoto Hatakeyama
- Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | | |
Collapse
|
26
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
27
|
Santiesteban-Romero B, Martínez-Ruiz M, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Microalgae Photo-Protectants and Related Bio-Carriers Loaded with Bioactive Entities for Skin Applications-An Insight of Microalgae Biotechnology. Mar Drugs 2022; 20:487. [PMID: 36005491 PMCID: PMC9409820 DOI: 10.3390/md20080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae are photosynthetic organisms known for producing valuable metabolites under different conditions such as extreme temperatures, high salinity, osmotic pressure, and ultraviolet radiation. In recent years, these metabolites have become a trend due to their versatility in applications such as pharmaceuticals, cosmetics, and others. They have even been proposed as an alternative source of bioactive metabolites to avoid the harmful effects on the environment produced by active compounds such as oxybenzone in commercials sunscreens. One of the most studied applications is the use of microalgae for skin care and topical use as cosmeceuticals. With the increasing demand for more environmentally friendly products in cosmetics, microalgae have been further explored in relation to this application. It has been shown that some microalgae are resistant to UV rays due to certain compounds such as mycosporine-like amino acids, sporopollenin, scytonemin, and others. These compounds have different mechanisms of action to mitigate UV damage induced. Still, they all have been proven to confer UV tolerance to microalgae with an absorbance spectrum like the one in conventional sunscreens. This review focuses on the use of these microalgae compounds obtained by UV stimulation and takes advantage of their natural UV-resistant characteristics to potentially apply them as an alternative for UV protection products.
Collapse
Affiliation(s)
- Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
28
|
Rosic N. Genome Mining as an Alternative Way for Screening the Marine Organisms for Their Potential to Produce UV-Absorbing Mycosporine-like Amino Acid. Mar Drugs 2022; 20:478. [PMID: 35892946 PMCID: PMC9394291 DOI: 10.3390/md20080478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are small molecules with robust ultraviolet (UV)-absorbing capacities and a huge potential to be used as an environmentally friendly natural sunscreen. MAAs, temperature, and light-stable compounds demonstrate powerful photoprotective capacities and the ability to capture light in the UV-A and UV-B ranges without the production of damaging free radicals. The biotechnological uses of these secondary metabolites have been often limited by the small quantities restored from natural resources, variation in MAA expression profiles, and limited success in heterologous expression systems. Overcoming these obstacles requires a better understanding of MAA biosynthesis and its regulatory processes. MAAs are produced to a certain extent via a four-enzyme pathway, including genes encoding enzymes dehydroquinate synthase, enzyme O-methyltransferase, adenosine triphosphate grasp, and a nonribosomal peptide synthetase. However, there are substantial genetic discrepancies in the MAA genetic pathway in different species, suggesting further complexity of this pathway that is yet to be fully explored. In recent years, the application of genome-mining approaches allowed the identification of biosynthetic gene clusters (BGCs) that resulted in the discovery of many new compounds from unconventional sources. This review explores the use of novel genomics tools for linking BGCs and secondary metabolites based on the available omics data, including MAAs, and evaluates the potential of using novel genome-mining tools to reveal a cryptic potential for new bioproduct screening approaches and unrevealing new MAA producers.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia;
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
29
|
Gan J, Guan C, Zhang X, Sun L, Zhang Q, Pan S, Zhang Q, Chen H. The Preparation of Anti-Ultraviolet Composite Films Based on Fish Gelatin and Sodium Alginate Incorporated with Mycosporine-like Amino Acids. Polymers (Basel) 2022; 14:polym14152980. [PMID: 35893944 PMCID: PMC9330497 DOI: 10.3390/polym14152980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are ultraviolet-absorbing compounds and have antioxidant functions. In this paper, MAAs were added into fish gelatin/sodium alginate films as an anti-ultraviolet additive. The effects of 0–5% MAAs (w/w, MAAs/fish gelatin) on the physical properties, antioxidant properties, antibacterial properties and anti-ultraviolet properties of fish gelatin/sodium alginate films were investigated. The results suggest that the content of the MAAs influenced the mechanical properties. The water content, swelling and water vapor permeability of the films were not altered with the addition of MAAs. In addition, the composite films showed effective antioxidant activity and antimicrobial activity. The incorporation of MAAs significantly improved the DPPH radical scavenging activity of the films from 35.77% to 46.61%. Moreover, the block ultraviolet rays’ ability was also greatly improved when the film mixed with the MAAs and when the value of the light transmission was 0.6% at 350 nm. Compared with the pure composite film, the growth of E. coli covered by the composite film with 3.75% and 5% MAAs exhibited the best survival rate. These results reveal that MAAs are a good film-forming substrate, and MAAs have good potential to prepare anti-ultraviolet active films and antioxidant active films for applications. Overall, this project provides a theoretical basis for the study of active composite films with anti-ultraviolet activities, and it provides new ideas for the application of MAAs.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China;
| | - Chenxia Guan
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Xiaoyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Lirong Sun
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Qinling Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Shihui Pan
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Hao Chen
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
- Correspondence: ; Tel.: +86-0631-5688079
| |
Collapse
|
30
|
Hosseinabadi T, Gharib R, Salehian S, Tabarzad M. A Study on the Effect of Nitrate and Phosphate Concentrations on the Production of Mycosporine-Like Amino Acids by Chlorella Vulgaris. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3194. [PMID: 36381286 PMCID: PMC9618020 DOI: 10.30498/ijb.2022.313739.3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cyanobacteria can produce compounds absorbing ultraviolet irradiation. Mycosporine like amino acids (MAAs) are some of these important metabolites, which can be potentially considered as a sunscreen agent in the pharmaceutical and cosmetic industry. Different factors have been reported that can affect the biosynthesis of MAA. OBJECTIVE In this study, the influence of different concentrations of phosphate and nitrate under different environmental conditions on MAA production by Chlorella vulgaris was investigated using an experimental design method, in order to enhance MAAs production in this specious. MATERIALS AND METHODS A 23 full factorial design (FFD) using Design-Expert v7.0.0 software was used to optimize simultaneously all the three factors of nitrate and phosphate concentration and condition of incubation environment on the MAA production by this species of C. vulgaris. Two milliliter of organism stock were grown in 200 mL BG11 medium and after 21 days, the biomasses of all samples were separated. Then, the MAA was extracted from dried biomass using methanol extraction. The extracts were analyzed by reverse-phase high performance liquid chromatography (RP-HPLC). After complete analysis, four samples were then cultured at the optimized conditions and analyzed by liquid chromatohraphy coupled to mass spectrometry (LC/MS). RESULTS The results showed that this microalga could produce compounds with λmax of 330 nm and a retention time of about 2 min. According to the central composite analysis, phosphate at 0.51 g.L-1 and nitrate at 2.5 g.L-1 can be considered as the optimum concentrations, resulting to the preferable conditions concerning the culture in germinator. Based on LC/MSS analysis, the major compound had a m/z of 332 at the optimum condition. CONCLUSION Thus, this species is expected to have the capability of MAA production (maybe Shinorine) or one of its glycosylated derivatives.
Collapse
Affiliation(s)
- Tahereh Hosseinabadi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Gharib
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayan Salehian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Porphyra tenera Protects against PM2.5-Induced Cognitive Dysfunction with the Regulation of Gut Function. Mar Drugs 2022; 20:md20070439. [PMID: 35877732 PMCID: PMC9324924 DOI: 10.3390/md20070439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
To evaluate the biological effects of Porphyra tenera (P. tenera), we tried to confirm the possibility that the intake of P. tenera could modulate cognitive and intestinal functions in PM2.5-induced cognitive decline mice. P. tenera attenuated PM2.5-induced learning and memory impairment through antioxidant and anti-inflammatory effects by regulating the mitochondrial function and TLR-initiated NF-κB signaling. In addition, P. tenera effectively alleviated Aβ production/tau phosphorylation by inhibiting the JNK phosphorylation. Also, the bioactive constituents of P. tenera determined the sulfated galactan, mycosporine-like amino acids (MAAs), and chlorophyll derivatives. Moreover, the bioactive compounds of P. tenera by gut fermentation protected against gut dysbiosis and intestinal tight junction damage with a decrease in inflammatory response and short-chain fatty acid production. Based on these results, our findings suggest that P. tenera with sulfated galactan and MAAs is a potential material for cognitive function improvement.
Collapse
|
32
|
Zwerger M, Ganzera M. Fast and Efficient Separation of Eleven Mycosporine-like Amino Acids by UHPLC-DAD and Their Quantification in Diverse Red Algae. Mar Drugs 2022; 20:395. [PMID: 35736198 PMCID: PMC9227160 DOI: 10.3390/md20060395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Due to their hostile habitats, characterized by a high exposure to UV-A and UV-B radiation, red algae are known to synthesize unique secondary metabolites: mycosporine-like amino acids (MAAs). These small molecules possess an extremely high UV absorption capacity and therefore mainly act as photoprotective agents. In this study, the first ultrahigh-performance liquid chromatography (UHPLC) method with diode-array detection (DAD) was developed for the determination of eleven MAAs in various algal species. All of the analytes could be separated in under 8 min on a Phenomenex Luna Omega C18 1.6 µm column. The mobile phase comprised water with 0.25% formic acid and 20 mM ammonium formate (A) and acetonitrile (B). Elution was carried out in gradient mode. Method validation following ICH guidelines confirmed excellent linearity (R2 ≥ 0.9998), selectivity, precision and accuracy (from 97.41 to 103.38%) for all analytes. The assay's LOD was always 0.01 µg/mL; its LOQ was not higher than 0.04 µg/mL. Practical applicability was assured by analyzing several algae (e.g., Gracilaria chilensis, Pyropia plicata) using the developed method, and results indicated a high variation in MAA profiles as well as content. Whilst some MAAs were only found in specific samples, shinorine, which was always present, occurred in concentrations from 0.05 to 4.14 mg/g of dried biomass. As UHPLC-MS was also feasible, this method showed high flexibility concerning the detection mode, surpassing established procedures for MAA analysis not only concerning separation efficiency and analysis time.
Collapse
Affiliation(s)
| | - Markus Ganzera
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
33
|
Martínez-Ruiz M, Martínez-González CA, Kim DH, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Ramírez-Gamboa D, Díaz-Zamorano AL, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez AM, Iqbal HMN, Parra-Saldivar R. Microalgae Bioactive Compounds to Topical Applications Products-A Review. Molecules 2022; 27:3512. [PMID: 35684447 PMCID: PMC9182589 DOI: 10.3390/molecules27113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Carlos Alberto Martínez-González
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Dong-Hyun Kim
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Berenice Santiesteban-Romero
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Humberto Reyes-Pardo
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Karen Rocio Villaseñor-Zepeda
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Edgar Ricardo Meléndez-Sánchez
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Diana Ramírez-Gamboa
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Ana Laura Díaz-Zamorano
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Karina G. Coronado-Apodaca
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Ana María Gámez-Méndez
- Basic Sciences Department, Universidad de Monterrey, San Pedro Garza García 66238, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| | - Roberto Parra-Saldivar
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico; (M.M.-R.); (C.A.M.-G.); (D.-H.K.); (B.S.-R.); (H.R.-P.); (K.R.V.-Z.); (E.R.M.-S.); (D.R.-G.); (A.L.D.-Z.); (J.E.S.-H.); (K.G.C.-A.)
| |
Collapse
|
34
|
Kim BK, Park MO, Min JO, Kang SH, Shin KH, Yang EJ, Ha SY. The Interplay of Mycosporine-like Amino Acids between Phytoplankton Groups and Northern Krill (Thysanoessa sp.) in a High-Latitude Fjord (Kongsfjorden, Svalbard). Mar Drugs 2022; 20:md20040238. [PMID: 35447908 PMCID: PMC9028281 DOI: 10.3390/md20040238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated pigment and mycosporine-like amino acid (MAA) concentrations of phytoplankton and Northern krill (Thysanoessa sp.) in sub-Arctic Kongsfjorden. Chlorophyll a (Chl-a) concentrations in the surface and middle-layer water were 0.44 μg L−1 (±0.17 μg L−1) and 0.63 μg L−1 (±0.25 μg L−1), respectively. Alloxanthin (Allo, a marker of cryptophytes) was observed at all stations, and its mean values for surface and middle-layer water were 0.09 μg L−1 (±0.05 μg L−1) and 0.05 (±0.02 μg L−1), respectively. The mean MAA-to-Chl-a ratios at the surface (3.31 ± 2.58 μg (μg Chl-a)−1) were significantly higher than those in the middle-layer water (0.88 ± 0.49 μg (μg Chl-a)−1), suggesting that these compounds play an important role in reducing UV photodamage. In gut pigment levels of Northern krill, the most abundant accessory pigment was Allo (2.79 ± 0.33 μg g−1 dry weight; d.w.), as was the accumulation of Chl-a (8.29 ± 1.13 μg g−1 d.w.). The average concentration of MAAs was 1.87 mg g−1 d.w. (±0.88 mg g−1 d.w.) in krill eyes, which was higher than that in all other body parts (0.99 ± 0.41 mg g−1 d.w.), except for the gut. Thysanoessa sp. was found to contain five identified MAAs (shinorine, palythine, porphyra-334, mycosporine-glycine, and M-332) in the krill eye, whereas shinorine and porphyra-334 were only observed in the krill body, not the eyes and gut. These findings suggest that Northern krill accumulate MAAs of various compositions through the diet (mainly cryptophytes) and translocate them among their body parts as an adaptation for photoprotection and physiological demands.
Collapse
Affiliation(s)
- Bo Kyung Kim
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (B.K.K.); (J.-O.M.); (S.-H.K.); (E.J.Y.)
| | - Mi-Ok Park
- Department of Oceanography, Pukyong National University, Busan 48513, Korea;
| | - Jun-Oh Min
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (B.K.K.); (J.-O.M.); (S.-H.K.); (E.J.Y.)
| | - Sung-Ho Kang
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (B.K.K.); (J.-O.M.); (S.-H.K.); (E.J.Y.)
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Engineering, Hanyang University, Ansan 15588, Korea;
| | - Eun Jin Yang
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (B.K.K.); (J.-O.M.); (S.-H.K.); (E.J.Y.)
| | - Sun-Yong Ha
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (B.K.K.); (J.-O.M.); (S.-H.K.); (E.J.Y.)
- Correspondence: ; Tel.: +82-32-760-5341
| |
Collapse
|
35
|
Choi SY, Lee SY, Kim HG, Jeong JC, Batara DC, Kim SH, Cho JY. Shinorine and porphyra-334 isolated from laver (Porphyra dentata) inhibit adipogenesis in 3T3-L1 cells. Food Sci Biotechnol 2022; 31:617-625. [PMID: 35529689 PMCID: PMC9033900 DOI: 10.1007/s10068-022-01055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) such as shinorine and porphyra-334 from Porphyra spp. are bioactive compounds with strong photoprotective and antioxidant properties. In this study, the anti-adipogenic effect of shinorine and porphyra-334 was examined in vitro utilizing 3T3-L1 preadipocytes. Shinorine and porphyra-334 were extracted from laver (Porphyra dentata) 50% methanolic (MeOH) extract of and their structures were elucidated by MS and NMR spectroscopy. Both compounds had no cytotoxic effect in 3T3-L1 cells (< 200 μg/mL) and inhibited the accumulation of lipid droplets in 3T3-L1 mature adipocytes in a dose-dependent manner (0.1 and 1.0 μM). Interestingly, both compounds had also significantly reduced the expression of adipogenic-related genes such as peroxisome proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer-binding protein α (C/EBPα), adiponectin, and leptin in 3T3-L1 cells. The findings suggest that shinorine and porphyra-334 have the potential to inhibit adipogenesis in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Su-Young Choi
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Su Yeon Lee
- Department of Food Science and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Hyung Gyun Kim
- Mokpo Marine Food-Industry Research Center, Mokpo, 58621 Republic of Korea
| | - Jae Cheon Jeong
- Mokpo Marine Food-Industry Research Center, Mokpo, 58621 Republic of Korea
| | - Don Carlo Batara
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| |
Collapse
|
36
|
Zhang H, Jiang Y, Zhou C, Chen Y, Yu G, Zheng L, Guan H, Li R. Occurrence of Mycosporine-like Amino Acids (MAAs) from the Bloom-Forming Cyanobacteria Aphanizomenon Strains. Molecules 2022; 27:1734. [PMID: 35268833 PMCID: PMC8911825 DOI: 10.3390/molecules27051734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are widespread in various microbes and protect them against harsh environments. Here, four different Aphanizomenon species were isolated from severely eutrophic waterbodies, Lake Dianchi and the Guanqiao fishpond. Morphological characters and molecular phylogenetic analysis verified that the CHAB5919, 5921, and 5926 strains belonged to the Aphanizomenon flos-aquae clade while Guanqiao01 belonged to the Aphanizomenon gracile clade. Full wavelength scanning proved that there was obvious maximal absorption at 334 nm through purified methanol extraction, and these substances were further analyzed by HPLC and UPLC-MS-MS. The results showed that two kinds of MAAs were discovered in the cultured Aphanizomenon strains. One molecular weight was 333.28 and the other was 347.25, and the daughter fragment patterns were in accordance with the previously articles reported shinorine and porphyra-334 ion characters. The concentration of the MAAs was calibrated from semi-prepared MAAs standards from dry cells of Microcystis aeruginosa PCC7806 algal powder, and the purity of shinorine and porphyra-334 were 90.2% and 85.4%, respectively. The average concentrations of shinorine and porphyra-334 were 0.307−0.385 µg/mg and 0.111−0.136 µg/mg in Aphanizomenon flos-aquae species, respectively. And there was only one kind of MAAs (shinorine) in Aphanizomenon gracile species.,with a content of 0.003−0.049 µg/mg dry weight among all Aphanizomenon gracile strains. The shinorine concentration in Aphanizomenon flos-aquae was higher than that in Aphanizomenon gracile strains. The total MAAs production can be ranked as Aphanizomenon flos-aquae > Aphanizomenon gracile.
Collapse
Affiliation(s)
- Hang Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Information Center, Wuhan 430070, China;
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Chi Zhou
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, China;
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (G.Y.)
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (G.Y.)
| | | | - Honglin Guan
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Information Center, Wuhan 430070, China;
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
37
|
Nishida Y, Saburi W, Miyabe Y, Kishimura H, Kumagai Y. Characterization of Antioxidant Activity of Heated Mycosporine-like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Mar Drugs 2022; 20:184. [PMID: 35323483 PMCID: PMC8954034 DOI: 10.3390/md20030184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
We recently demonstrated the monthly variation and antioxidant activity of mycosporine-like amino acids (MAAs) from red alga dulse in Japan. The antioxidant activity of MAAs in acidic conditions was low compared to that in neutral and alkali conditions, but we found strong antioxidant activity from the heated crude MAA fraction in acidic conditions. In this study, we identified and characterized the key compounds involved in the antioxidant activity of this fraction. We first isolated two MAAs, palythine, and porphyra-334, from the fraction and evaluated the activities of the two MAAs when heated. MAAs possess absorption maxima at around 330 nm, while the heated MAAs lost this absorption. The heated MAAs showed a high ABTS radical scavenging activity at pH 5.8-8.0. We then determined the structure of heated palythine via ESI-MS and NMR analyses and speculated about the putative antioxidant mechanism. Finally, a suitable production condition of the heated compounds was determined at 120 °C for 30 min at pH 8.0. We revealed compounds from red algae with antioxidant activities at a wide range of pH values, and this information will be useful for the functional processing of food.
Collapse
Affiliation(s)
- Yuki Nishida
- Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (Y.N.); (Y.M.)
| | - Wataru Saburi
- Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Hokkaido, Japan;
| | - Yoshikatsu Miyabe
- Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (Y.N.); (Y.M.)
- Aomori Prefectural Industrial Technology Research Center, Food Research Institute, 2-10 Chikkogai, Hachinohe-shi 031-0831, Aomori-ken, Japan
| | - Hideki Kishimura
- Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Yuya Kumagai
- Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| |
Collapse
|
38
|
Coral holobionts and biotechnology: from Blue Economy to coral reef conservation. Curr Opin Biotechnol 2021; 74:110-121. [PMID: 34861476 DOI: 10.1016/j.copbio.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.
Collapse
|
39
|
Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12402. [PMID: 34886126 PMCID: PMC8656575 DOI: 10.3390/ijerph182312402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Mycosporine-like amino acids (MAAs), are secondary metabolites, first reported in 1960 and found to be associated with the light-stimulated sporulation in terrestrial fungi. MAAs are nitrogenous, low molecular weight, water soluble compounds, which are highly stable with cyclohexenone or cycloheximine rings to store the free radicals. Microalgae are considered as a good source of different kinds of MAAs, which in turn, has its own applications in various industries due to its UV absorbing, anti-oxidant and therapeutic properties. Microalgae can be easily cultivated and requires a very short generation time, which makes them environment friendly source of biomolecules such as mycosporine-like amino acids. Modifying the cultural conditions along withmanipulation of genes associated with mycosporine-like amino acids biosynthesis can help to enhance MAAs synthesis and, in turn, can make microalgae suitable bio-refinery for large scale MAAs production. This review focuses on properties and therapeutic applications of mycosporine like amino acids derived from microalgae. Further attention is drawn on various culture and genetic engineering approaches to enhance the MAAs production in microalgae.
Collapse
Affiliation(s)
- Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Anusree M. Kuniyil
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Amit K. Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| |
Collapse
|
40
|
Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Rosic NN. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl Microbiol Biotechnol 2021; 105:7053-7067. [PMID: 34480237 PMCID: PMC8416575 DOI: 10.1007/s00253-021-11467-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
Abstract
Abstract Bioactive compounds from marine environments represent a rich source of bioproducts for potential use in medicine and biotechnology. To discover and identify novel marine natural products (MNPs), evaluating diverse biological activities is critical. Increased sensitivity and specificity of omics technologies, especially next-generation high-throughput sequencing combined with liquid chromatography-mass spectrometry and nuclear magnetic resonance, are speeding up the discovery of novel bioactive compounds. Mycosporine-like amino acids (MAAs) isolated from many marine microorganisms are among highly promising MNPs characterized by ultraviolet radiation (UV) absorbing capacities and are recognized as a potential source of ecologically friendly sunscreens. MAAs absorb damaging UV radiation with maximum absorption in the range of 310–360 nm, including both UVA and UVB ranges. MAAs are also characterized by other biological activities such as anti-oxidant, anti-cancer, and anti-inflammatory activities. The application of modern omics approaches promoted some recent developments in our understanding of MAAs’ functional significance and diversity. This review will summarize the various modern tools that could be applied during the identification and characterization of MNPs, including MAAs, to further their innovative applications. Key points • New omics technologies are speeding up the discovery of novel bio-products • The vast diversity of bioactive capacities of marine natural products described • Marine microorganisms as a source of environmentally friendly sunscreens
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Faculty of Health, Southern Cross University, Southern Cross Drive, Gold Coast, QLD, 4225, Australia. .,Marine Ecology Research Centre, Southern Cross University, Military Rd, East Lismore, Lismore, NSW, 2480, Australia.
| |
Collapse
|
43
|
Ferreira MS, Resende DISP, Lobo JMS, Sousa E, Almeida IF. Marine Ingredients for Sensitive Skin: Market Overview. Mar Drugs 2021; 19:md19080464. [PMID: 34436303 PMCID: PMC8398991 DOI: 10.3390/md19080464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Marine ingredients are a source of new chemical entities with biological action, which is the reason why they have gained relevance in the cosmetic industry. The facial care category is the most relevant in this industry, and within it, the sensitive skin segment occupies a prominent position. This work analyzed the use of marine ingredients in 88 facial cosmetics for sensitive skin from multinational brands, as well as their composition and the scientific evidence that supports their efficacy. Marine ingredients were used in 27% of the cosmetic products for sensitive skin and included the species Laminaria ochroleuca, Ascophyllum nodosum (brown macroalgae), Asparagopsis armata (red macroalgae), and Chlorella vulgaris (microalgae). Carotenoids, polysaccharides, and lipids are the chemical classes highlighted in these preparations. Two ingredients, namely the Ascophyllum nodosum extract and Asparagopsis armata extracts, present clinical evidence supporting their use for sensitive skin. Overall, marine ingredients used in cosmetics for sensitive skin are proposed to reduce skin inflammation and improve the barrier function. Marine-derived preparations constitute promising active ingredients for sensitive skin cosmetic products. Their in-depth study, focusing on the extracted metabolites, randomized placebo-controlled studies including volunteers with sensitive skin, and the use of extraction methods that are more profitable may provide a great opportunity for the cosmetic industry.
Collapse
Affiliation(s)
- Marta Salvador Ferreira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Diana I. S. P. Resende
- CIIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (E.S.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (E.S.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-220-428
| |
Collapse
|
44
|
Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.
Collapse
|
45
|
Wang X, Zhang Z, Zhang S, Yang F, Yang M, Zhou J, Hu Z, Xu X, Mao G, Chen G, Xiang W, Sun X, Xu N. Antiaging compounds from marine organisms. Food Res Int 2021; 143:110313. [DOI: 10.1016/j.foodres.2021.110313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
|
46
|
Singh A, Čížková M, Bišová K, Vítová M. Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage. Antioxidants (Basel) 2021; 10:antiox10050683. [PMID: 33925517 PMCID: PMC8145676 DOI: 10.3390/antiox10050683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged exposure to harmful ultraviolet radiation (UVR) can induce many chronic or acute skin disorders in humans. To protect themselves, many people have started to apply cosmetic products containing UV-screening chemicals alone or together with physical sunblocks, mainly based on titanium–dioxide (TiO2) or zinc-oxide (ZnO2). However, it has now been shown that the use of chemical and physical sunblocks is not safe for long-term application, so searches for the novel, natural UV-screening compounds derived from plants or bacteria are gaining attention. Certain photosynthetic organisms such as algae and cyanobacteria have evolved to cope with exposure to UVR by producing mycosporine-like amino acids (MAAs). These are promising substitutes for chemical sunscreens containing commercially available sunblock filters. The use of biopolymers such as chitosan for joining MAAs together or with MAA-Np (nanoparticles) conjugates will provide stability to MAAs similar to the mixing of chemical and physical sunscreens. This review critically describes UV-induced skin damage, problems associated with the use of chemical and physical sunscreens, cyanobacteria as a source of MAAs, the abundance of MAAs and their biotechnological applications. We also narrate the effectiveness and application of MAAs and MAA conjugates on skin cell lines.
Collapse
|
47
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Mycosporine-Like Amino Acids from Marine Resource. Mar Drugs 2021; 19:md19010018. [PMID: 33406728 PMCID: PMC7824388 DOI: 10.3390/md19010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
In the last 10 years, a great number of publications (both regular papers and reviews) have been published on the interesting molecules—mycosporine-like amino acids (MAAs). Despite significant advances in the research of MAAs, current overviews in the recent publications involving MAA research still need reporting. The aim of this Special Issue is to join, as an interdisciplinary approach, the photochemical and photobiological aspects, with emphasis on new natural resources to obtain both algae and zooplankton MAAs, advances in methodology of extraction and chemical identification of new MAAs. Finally, this Special Issue reviews the bioactivities of MAAs including UVR screen, antioxidant, immunostimulant, growth factor, DNA protection, inhibition of collagenase, elastase and hyaluronidase, and anti-photoaging, among others, and their potential use as nutracosmeceutic molecules (i.e., oral and topic photoprotector).
Collapse
|
49
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
50
|
Gauthier M, Senhorinho G, Scott J. Microalgae under environmental stress as a source of antioxidants. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|