1
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
2
|
Hejna M, Dell'Anno M, Liu Y, Rossi L, Aksmann A, Pogorzelski G, Jóźwik A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci Rep 2024; 14:21044. [PMID: 39251803 PMCID: PMC11383966 DOI: 10.1038/s41598-024-71961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
In swine farming, animals develop diseases that require the use of antibiotics. In-feed antibiotics as growth promoters have been banned due to the increasing concern of antimicrobial resistance. Seaweeds offer bioactive molecules with antibacterial and antioxidant properties. The aim was to estimate the in vitro properties of seaweed extracts: Ascophyllum nodosum (AN), Palmaria palmata (PP), Ulva lactuca (UL), and 1:1 mixes (ANPP, ANUL, PPUL). Escherichia coli strains were used to test for growth inhibitory activity, and chemical-based assays were performed for antioxidant properties. The treatments were 2 (with/without Escherichia coli) × 2 (F4 + and F18 +) × 5 doses (0, 1.44, 2.87, 5.75, 11.50, and 23.0 mg/mL). Bacteria were supplemented with seaweed extracts, and growth was monitored. The antioxidant activity was assessed with 6 doses (0, 1, 50, 100, 200, 500, and 600 mg/mL) × 6 compounds using two chemical assays. Data were evaluated through SAS. The results showed that AN and UL significantly inhibited (p < 0.05) the growth of F4 + and F18 +. PP and mixes did not display an inhibition of the bacteria growth. AN, PP, UL extracts, and mixes exhibited antioxidant activities, with AN showing the strongest dose-response. Thus, AN and UL seaweed extracts reveal promising antibacterial and antioxidant effects and may be candidates for in-feed additives.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland.
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Yanhong Liu
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Pogorzelski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| |
Collapse
|
3
|
Sousa D, Fortunato MAG, Silva J, Pingo M, Martins A, Afonso CAM, Pedrosa R, Siopa F, Alves C. Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity. Mar Drugs 2024; 22:408. [PMID: 39330289 PMCID: PMC11432771 DOI: 10.3390/md22090408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (1-6) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by spectroscopic methods. Cytotoxic analyses (1-100 µM; 24 h) were accomplished on A549, DU-145, and MCF-7 cells. The six novel sphaerococcenol A analogues displayed an IC50 range between 14.31 and 70.11 µM on A549, DU-145, and MCF-7 malignant cells. Compound 1, resulting from the chemical addition of 4-methoxybenzenethiol, exhibited the smallest IC50 values on the A549 (18.70 µM) and DU-145 (15.82 µM) cell lines, and compound 3, resulting from the chemical addition of propanethiol, exhibited the smallest IC50 value (14.31 µM) on MCF-7 cells. The highest IC50 values were exhibited by compound 4, suggesting that the chemical addition of benzylthiol led to a loss of cytotoxic activity. The remaining chemical modifications were not able to potentiate the cytotoxicity of the original compounds. Regarding A549 cell viability, analogue 1 exhibited a marked effect on mitochondrial function, which was accompanied by an increase in ROS levels, Caspase-3 activation, and DNA fragmentation and condensation. This study opens new avenues for research by exploring sphaerococcenol A as a scaffold for the synthesis of novel bioactive molecules.
Collapse
Affiliation(s)
- Dídia Sousa
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| | - Milene A. G. Fortunato
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| | - Mónica Pingo
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| | - Filipa Siopa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
4
|
Imchen T, Tilvi S, Singh KS, Thakur N. Allelochemicals from the seaweeds and their bioprospecting potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5387-5401. [PMID: 38396154 DOI: 10.1007/s00210-024-03002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Allelochemicals are secondary metabolites which function as a natural protection against grazing activities by algae and higher plants. They are one of the major metabolites engaged in the interactions of organisms. The chemically mediated interactions between organisms significantly influence the functioning of the ecosystems. Most of these compounds are secondary metabolites comprising sterols, terpenes, and polyphenols. These compounds not only play a defensive role, but also exhibit biological activities such as antioxidants, anti-cancer, anti-diabetes, anti-inflammation, and anti-microbial properties. This review article discusses the current understanding of the allelochemicals of seaweeds and their bioprospecting potential that can bring benefit to humanity. Specifically, the bioactive substances having specific health benefits associated with the consumption or application of seaweed-derived compounds. The properties of such allelochemicals can have implications for bioprospecting pharmaceutical, nutraceutical and cosmetic applications.
Collapse
Affiliation(s)
- Temjensangba Imchen
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Keisham Sarjit Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Narsinh Thakur
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| |
Collapse
|
5
|
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson's Disease? Mar Drugs 2023; 21:451. [PMID: 37623732 PMCID: PMC10455662 DOI: 10.3390/md21080451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Francisca Soledade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
6
|
Song Y, Wang H, Wang X, Wang X, Cong P, Xu J, Xue C. Comparative Lipidomics Study of Four Edible Red Seaweeds Based on RPLC-Q-TOF. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2183-2196. [PMID: 36669856 DOI: 10.1021/acs.jafc.2c07988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Red seaweeds (Rhodophyta) are becoming increasingly important as a food and medicine source in blue biotechnology applications such as functional foods, feeds, and pharmaceuticals. Compared to fatty acid composition and sterols, the lipidome in red seaweeds is still in an early disclosure stage. In this study, the lipidomes of four red seaweeds (Gracilaria sjoestedtii, Gracilaria verrucosa, Gelidium amansii, and Chondrus ocellatus) collected from the coastal area in north China were characterized using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF). Hundreds of lipid molecular species including glycolipids, phospholipids, sphingolipids, glycerolipids, and betaine lipids were identified and quantified. Novel lipids with unique molecular structures such as glucuronosyldiacylglycerols (GlcADG), head-group acylated GlcADG (acGlcADG), and hexose-inositol-phosphoceramides (Hex-IPC) were discovered in red seaweeds for the first time, greatly expanding our knowledge on glycolipids and sphingolipids in seaweeds. Glycolipids were the dominant components (45.6-67.7% of total lipids) with a high proportion of polyunsaturated fatty acids (PUFA) including arachidonic acid (AA) and eicosapentaenoic acid (EPA), indicating the potential nutritional value of the four red seaweeds. The investigated red seaweeds showed a distinctive sphingolipid profile with the t18:1 being the predominant LCB in Cer (41.1-71.5%) and HexCer (91.3-97.9%) except for Gelidium amansii, which had the highest proportion of t18:0. Comparison of lipid profiles among the four red seaweeds revealed that AA- and EPA-glycolipids are good lipid markers for the differentiation of red seaweed samples. The AA proportion in glycolipids of Gracilaria genus was much higher than Gelidium genus and Chondrus genus. This study acquired comprehensive lipid profiles from four red seaweeds, revealing the uniqueness of natural biochemical fingerprints of red seaweeds and further promoting their utilization.
Collapse
Affiliation(s)
- Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Haitang Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao 266237, Shandong, China
| |
Collapse
|
7
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
8
|
Seagrasses, seaweeds and plant debris: An extraordinary reservoir of fungal diversity in the Mediterranean Sea. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Carpena M, Garcia-Perez P, Garcia-Oliveira P, Chamorro F, Otero P, Lourenço-Lopes C, Cao H, Simal-Gandara J, Prieto MA. Biological properties and potential of compounds extracted from red seaweeds. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-32. [PMID: 35791430 PMCID: PMC9247959 DOI: 10.1007/s11101-022-09826-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/22/2022] [Indexed: 05/03/2023]
Abstract
Macroalgae have been recently used for different applications in the food, cosmetic and pharmaceutical industry since they do not compete for land and freshwater against other resources. Moreover, they have been highlighted as a potential source of bioactive compounds. Red algae (Rhodophyta) are the largest group of seaweeds, including around 6000 different species, thus it can be hypothesized that they are a potential source of bioactive compounds. Sulfated polysaccharides, mainly agar and carrageenans, are the most relevant and exploited compounds of red algae. Other potential molecules are essential fatty acids, phycobiliproteins, vitamins, minerals, and other secondary metabolites. All these compounds have been demonstrated to exert several biological activities, among which antioxidant, anti-inflammatory, antitumor, and antimicrobial properties can be highlighted. Nevertheless, these properties need to be further tested on in vivo experiments and go in-depth in the study of the mechanism of action of the specific molecules and the understanding of the structure-activity relation. At last, the extraction technologies are essential for the correct isolation of the molecules, in a cost-effective way, to facilitate the scale-up of the processes and their further application by the industry. This manuscript is aimed at describing the fundamental composition of red algae and their most studied biological properties to pave the way to the utilization of this underused resource.
Collapse
Affiliation(s)
- M. Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
10
|
Alves C, Silva J, Afonso MB, Guedes RA, Guedes RC, Alvariño R, Pinteus S, Gaspar H, Goettert MI, Alfonso A, Rodrigues CMP, Alpoím MC, Botana L, Pedrosa R. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomed Pharmacother 2022; 149:112886. [PMID: 35378501 DOI: 10.1016/j.biopha.2022.112886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Romina A Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rebeca Alvariño
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Márcia I Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS 95914-014, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria C Alpoím
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luis Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
11
|
Gelidiales Are Not Just Agar—Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics (Basel) 2022; 11:antibiotics11040481. [PMID: 35453232 PMCID: PMC9030148 DOI: 10.3390/antibiotics11040481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1–F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against Staphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27–23.02) μg/mL and 51.04 (43.36–59.74) μg/mL against C. acnes, respectively, and 53.29 (48.75–57.91) μg/mL and 102.80 (87.15–122.30) μg/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.
Collapse
|
12
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Surendhiran D, Li C, Cui H, Lin L. Marine algae as efficacious bioresources housing antimicrobial compounds for preserving foods - A review. Int J Food Microbiol 2021; 358:109416. [PMID: 34601353 DOI: 10.1016/j.ijfoodmicro.2021.109416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Certain synthetic chemicals used in global food industries eliminate pathogenic food microbes and prevent spoilage. Nevertheless, their toxicity precludes human consumption. This phenomenon has made scientific fraternity to look for alternative antimicrobial compounds from natural resources. In recent times, marine algae have been illustrated to be potent and rich sources of antimicrobial agents as chemical replacements for applications in food. Identifying novel antimicrobial agents from natural resources have become a worldwide research with immense significance. Marine algae are now considered as one of the most inexhaustible and unexposed sources of antimicrobial agents due to their abundance in seawaters and renewability. This review elaborated on marine algal antimicrobial agents against foodborne pathogens, mode of action and cumulated the prospective use of algal compounds in active food packaging as a natural food preservative. Due to poor solubility, unpleasant odor and ineffectiveness of plant derived antimicrobial agents against Gram-negative bacteria, researchers opted for marine algae, an ideal candidate to be used as natural food preservatives. This article elaborates and summarizes the efficient bioactive molecules in marine algae and their possible application in food preservation to extend shelf life of foods without causing any toxicity. In conclusion, marine algae have potential antimicrobial property against food pathogens and have more advantages than other natural sources of antimicrobial agents.
Collapse
Affiliation(s)
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Michelon W, da Silva MLB, Matthiensen A, Silva E, Pilau EJ, de Oliveira Nunes E, Soares HM. Microalgae produced during phycoremediation of swine wastewater contains effective bacteriostatic compounds against antibiotic-resistant bacteria. CHEMOSPHERE 2021; 283:131268. [PMID: 34182646 DOI: 10.1016/j.chemosphere.2021.131268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Studies on the antimicrobial effects of microalgae extracts are commonly reported using algae biomass grown in sterile synthetic mineral medium and controlled laboratory conditions. However, variations in environmental conditions and culture medium composition are known to alter microalgae biochemical structure possibly affecting the type and concentrations of bioactive compounds with antimicrobial properties. In this work, solvent extracts of the microalgae Chlorella spp. were tested for antimicrobial effects against gram-positive and multidrug resistant pathogenic bacteria Staphylococcus hyicus, Enterococcus faecalis and Streptococcus suis. Microalgae was cultivated at field scale open pond reactor using raw swine wastewater as growth substrate. Dichloromethane or methanol were used to obtain the microalgae extracts. Characterization of the extracts by ultra-high performance liquid chromatography-quadrupole mass spectrometry revealed the presence of 23 phytochemicals with recognized antimicrobial properties. Bacteriostatic activity was observed in plating assays by formation of inhibition zones ranging from 7 to 18 mm in diameter. Only dichloromethane extracts were inhibitory to all three model bacteria. The minimum inhibitory concentration assessed for dichloromethane extracts were 0.5 mg mL-1 for Staphylococcus hyicus and Enterococcus faecalis and 0.2 mg mL-1 for Streptococcus suis. Bactericidal effects were not observed using solvent-extracts at 2 or 5 mg L-1. To the best of authors knowledge, this is the first report on the antimicrobial effects of Chlorella spp. extracts against Staphylococcus hyicus and Streptococcus suis. Overall, Chlorella spp. grown on swine wastewater contains several phytochemicals that could be further explored for the treatment of infections caused by antibiotic-resistant bacteria pathogens.
Collapse
Affiliation(s)
- William Michelon
- Department of Chemical Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-700, Brazil.
| | | | | | - Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, 87020-080, Brazil.
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, 87020-080, Brazil.
| | | | - Hugo Moreira Soares
- Department of Chemical Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-700, Brazil.
| |
Collapse
|
15
|
Bamunuarachchi NI, Khan F, Kim YM. Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms. Curr Pharm Biotechnol 2021; 22:920-944. [PMID: 32744964 DOI: 10.2174/1389201021666200730144536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. The emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms are considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. METHODS The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. RESULTS The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. CONCLUSION A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
16
|
Afonso C, Correia AP, Freitas MV, Baptista T, Neves M, Mouga T. Seasonal Changes in the Nutritional Composition of Agarophyton vermiculophyllum (Rhodophyta, Gracilariales) from the Center of Portugal. Foods 2021; 10:1145. [PMID: 34065392 PMCID: PMC8160604 DOI: 10.3390/foods10051145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Seaweeds exhibit high nutritional value due to a balanced concentration of proteins, vitamins and minerals, a high concentration of low digestibility polysaccharides, and reduced levels of lipids, many of which are n-3 and n-6 fatty acids. The species Agarophyton vermiculophyllum is no exception and, as such, a comprehensive study of the chemical and nutritional profile of this red seaweed was carried out for 1 year. Seasonal variations in moisture, ash, protein and amino acids content, crude fibers, ascorbic acid, agar, lipids, and the corresponding fatty acid profile, were analyzed. We found low levels of fatty acids and a high protein content, but also noticed interesting seasonal change patterns in these compounds. The present study gives insights on the environmental conditions that can lead to changes in the nutritional composition of this species, aiming, therefore, to bring new conclusions about the manipulation of environmental conditions that allow for maximizing the nutritional value of this seaweed.
Collapse
Affiliation(s)
- Clélia Afonso
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-641 Peniche, Portugal; (A.P.C.); (M.V.F.); (T.B.); (M.N.); (T.M.)
| | | | | | | | | | | |
Collapse
|
17
|
Cabral EM, Oliveira M, Mondala JRM, Curtin J, Tiwari BK, Garcia-Vaquero M. Antimicrobials from Seaweeds for Food Applications. Mar Drugs 2021; 19:md19040211. [PMID: 33920329 PMCID: PMC8070350 DOI: 10.3390/md19040211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Márcia Oliveira
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, 24071 León, Spain;
| | - Julie R. M. Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - Brijesh K. Tiwari
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Correspondence:
| |
Collapse
|
18
|
Silva J, Alves C, Pinteus S, Susano P, Simões M, Guedes M, Martins A, Rehfeldt S, Gaspar H, Goettert M, Alfonso A, Pedrosa R. Disclosing the potential of eleganolone for Parkinson's disease therapeutics: Neuroprotective and anti-inflammatory activities. Pharmacol Res 2021; 168:105589. [PMID: 33812007 DOI: 10.1016/j.phrs.2021.105589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
The treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1-1 µM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Patrícia Susano
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Marco Simões
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Miguel Guedes
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Stephanie Rehfeldt
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari - UNIVATES, 95901-120 Lajeado, RS, Brazil
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Goettert
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari - UNIVATES, 95901-120 Lajeado, RS, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
19
|
Cytotoxic Mechanism of Sphaerodactylomelol, an Uncommon Bromoditerpene Isolated from Sphaerococcus coronopifolius. Molecules 2021; 26:molecules26051374. [PMID: 33806445 PMCID: PMC7961984 DOI: 10.3390/molecules26051374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Marine natural products have exhibited uncommon chemical structures with relevant antitumor properties highlighting their potential to inspire the development of new anticancer agents. The goal of this work was to study the antitumor activities of the brominated diterpene sphaerodactylomelol, a rare example of the dactylomelane family. Cytotoxicity (10-100 µM; 24 h) was evaluated on tumor cells (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-ML-28) and the effects estimated by MTT assay. Hydrogen peroxide (H2O2) levels and apoptosis biomarkers (membrane translocation of phosphatidylserine, depolarization of mitochondrial membrane potential, Caspase-9 activity, and DNA condensation and/or fragmentation) were studied in the breast adenocarcinoma cellular model (MCF-7) and its genotoxicity on mouse fibroblasts (L929). Sphaerodactylomelol displayed an IC50 range between 33.04 and 89.41 µM without selective activity for a specific tumor tissue. The cells' viability decrease was accompanied by an increase on H2O2 production, a depolarization of mitochondrial membrane potential and an increase of Caspase-9 activity and DNA fragmentation. However, the DNA damage studies in L929 non-malignant cell line suggested that this compound is not genotoxic for normal fibroblasts. Overall, the results suggest that the cytotoxicity of sphaerodactylomelol seems to be mediated by an increase of H2O2 levels and downstream apoptosis.
Collapse
|
20
|
Zhong R, Li JQ, Wu SW, He XM, Xuan JC, Long H, Liu HQ. Transcriptome analysis reveals possible antitumor mechanism of Chlorella exopolysaccharide. Gene 2021; 779:145494. [PMID: 33588036 DOI: 10.1016/j.gene.2021.145494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Microalgae, one of the most important classes of biomass producers, can produce exopolysaccharides similar to bacteria. The exopolysaccharide from Chlorella (CEPS) displays remarkable anticancer activity the mechanism of which remains to be elucidated. In this study, we analyzed the inhibitory effect of CEPS on the growth of HeLa cells. The results showed that CEPS inhibited the proliferation, decreased the viability, and changed the morphology of HeLa cells. Transcriptome analysis showed that 1894 genes were differentially expressed in the CEPS-treated group compared with the control group, including 1076 genes that were upregulated and 818 genes that were downregulated. The results of gene function enrichment analysis showed that the differentially expressed genes (DEGs) were significantly enriched in apoptosis and tumor-related biological processes and participated in several cancer and apoptosisrelated signaling pathways, including the MAPK signaling pathway, TNF signaling pathway, and the PI3K-Akt signaling pathway. The protein-protein interaction network identified 13 DEGs including PTPN11, RSAD2, ISG15, IFIT1, MX2, IFIT2, OASL, OAS1, JUN, OAS2, XAF1, ISG20, and IRF9 as hub genes. Our results suggest that CEPS is a promising therapeutic drug for the follow-up interventional therapy of cancer.
Collapse
Affiliation(s)
- Run Zhong
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Jie-Qiong Li
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Si-Wei Wu
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Xiu-Miao He
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Jin-Cai Xuan
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Han Long
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Hong-Quan Liu
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China.
| |
Collapse
|
21
|
Silva J, Martins A, Alves C, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Natural Approaches for Neurological Disorders-The Neuroprotective Potential of Codium tomentosum. Molecules 2020; 25:E5478. [PMID: 33238492 PMCID: PMC7700523 DOI: 10.3390/molecules25225478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and is characterized by a progressive degeneration of the dopaminergic neurons in the substantianigra. Although not completely understood, several abnormal cellular events are known to be related with PD progression, such as oxidative stress, mitochondrial dysfunction and apoptosis. Accordingly, the aim of this study was to evaluate the neuroprotective effects of Codium tomentosum enriched fractions in a neurotoxicity model mediated by 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, and the disclosure of their mechanisms of action. Additionally, a preliminary chemical screening of the most promising bioactive fractions of C. tomentosum was carried out by GC-MS analysis. Among the tested fractions, four samples exhibited the capacity to revert the neurotoxicity induced by 6-OHDA to values higher or similar to the vitamin E (90.11 ± 3.74% of viable cells). The neuroprotective effects were mediated by the mitigation of reactive oxygen species (ROS) generation, mitochondrial dysfunctions and DNA damage, together with the reduction of Caspase-3 activity. Compounds belonging to different chemical classes, such as terpenes, alcohols, carboxylic acids, aldehydes, esters, ketones, saturated and unsaturated hydrocarbons were tentatively identified by GC-MS. The results show that C. tomentosum is a relevant source of neuroprotective agents, with particular interest for preventive therapeutics.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (A.M.); (C.A.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
22
|
Bhowmick S, Mazumdar A, Moulick A, Adam V. Algal metabolites: An inevitable substitute for antibiotics. Biotechnol Adv 2020; 43:107571. [PMID: 32505655 DOI: 10.1016/j.biotechadv.2020.107571] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is rising at a pace that is difficult to cope with; circumvention of this issue requires fast and efficient alternatives to conventional antibiotics. Algae inhabit a wide span of ecosystems, which contributes to their ability to synthesize diverse classes of highly active biogenic metabolites. Here, for the first time, we reviewed all possible algal metabolites with broad spectra antibacterial activity against pathogenic bacteria, including antibiotic-resistant strains, and categorized different metabolites of both freshwater and marine algae, linking them on the basis of their target sites and mechanistic actions along with their probable nanoconjugates. Algae can be considered a boon for novel drug discovery in the era of antibiotic resistance, as various algal primary and secondary metabolites possess potential antibacterial properties. The diversity of these metabolites from indigenous sources provides a promising gateway enabling researchers and pharmaceutical companies to develop novel nontoxic, cost-effective and highly efficient antibacterial medicines.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Aninda Mazumdar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| |
Collapse
|
23
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:molecules25194411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mostafa M. EL-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +20-1224106666; Fax: +20-403350804
| |
Collapse
|
24
|
Alves C, Serrano E, Silva J, Rodrigues C, Pinteus S, Gaspar H, Botana LM, Alpoim MC, Pedrosa R. Sphaerococcus coronopifolius bromoterpenes as potential cancer stem cell-targeting agents. Biomed Pharmacother 2020; 128:110275. [PMID: 32480221 DOI: 10.1016/j.biopha.2020.110275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is one of the major threats to human health and, due to distinct factors, it is expected that its incidence will increase in the next decades leading to an urgent need of new anticancer drugs development. Ongoing experimental and clinical observations propose that cancer cells with stem-like properties (CSCs) are involved on the development of lung cancer chemoresistance. As tumour growth and metastasis can be controlled by tumour-associated stromal cells, the main goal of this study was to access the antitumor potential of five bromoterpenes isolated from Sphaerococcus coronopifolius red alga to target CSCs originated in a co-culture system of fibroblast and lung malignant cells. Cytotoxicity of compounds (10-500 μM; 72 h) was evaluated on monocultures of several malignant and non-malignant cells lines (HBF, BEAS-2B, RenG2, SC-DRenG2) and the effects estimated by MTT assay. Co-cultures of non-malignant human bronchial fibroblasts (HBF) and malignant human bronchial epithelial cells (RenG2) were implemented and the compounds ability to selectively kill CSCs was evaluated by sphere forming assay. The interleucine-6 (IL-6) levels were also determined as cytokine is crucial for CSCs. Regarding the monocultures results bromosphaerol selectively eliminated the malignant cells. Both 12S-hydroxy-bromosphaerol and 12R-hydroxy-bromosphaerol steroisomers were cytotoxic towards non-malignant bronchial BEAS-2B cell line, IC50 of 4.29 and 4.30 μM respectively. However, none of the steroisomers induced damage in the HBFs. As to the co-cultures, 12R-hydroxy-bromosphaerol revealed the highest cytotoxicity and ability to abrogate the malignant stem cells; however its effects were IL-6 independent. The results presented here are the first evidence of the potential of these bromoterpenes to abrogate CSCs opening new research opportunities. The 12R-hydroxy-bromosphaerol revealed to be the most promising compound to be test in more complex living models.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Eurico Serrano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Carlos Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal; Department of Internal Medicine, Hospital of Aveiro, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal; University of Lisbon, Faculty of Science, BioISI - Biosystems and Integrative Sciences Institute, 1749-016 Lisbon, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Maria C Alpoim
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-630 Peniche, Portugal.
| |
Collapse
|
25
|
Mello FV, Kasper D, Alonso MB, Torres JPM. Halogenated natural products in birds associated with the marine environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137000. [PMID: 32062248 DOI: 10.1016/j.scitotenv.2020.137000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Halogenated natural products (HNPs) are widespread compounds found at high concentrations in top predators such as seabirds. This paper reviews available data on methoxylated polybrominated diphenyl ethers (MeO-BDEs), heptachloro-1'-methyl-1,2'-bipyrrole (Q1) and 1,1'-dimethyl-2,2'-bipyrroles (HDBPs) in these animals. In all, 25 papers reported such HNPs in seabirds. White tailed sea eagle from Sweden was the seabird species with higher MeO-BDEs levels in eggs and blood, while in liver the European shag from Norway was the one. Regarding HDBPs, glaucous gull livers from North Water Polynya and Leach's storm petrel eggs from South Canada (NE Atlantic) showed the highest levels, while brown skua eggs presented the highest concentration of Q1. DBP-Br4Cl2 and DBP-Br6 were the most abundant HDBPs in seabirds, although only one study investigated DBP-Br6. Furthermore, 2'-MeO-BDE-68/6'-MeO-BDE-47 ratios were lower than one in mostly of the studies (91%). The main sources of methoxylated congeners found in seabirds might to be from sponges and/or associated organisms (bacteria). The scarcity of data in seabirds showed the gap in knowledge. Few studies were done especially in tropical areas and Southern Hemisphere and the most were conducted in the northwest part of the globe. This review arouses the need of knowledge about the distribution of these compounds in seabirds worldwide as well as it encourages toxicological studies to better understand the possible effects of HNPs on seabirds.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - Daniele Kasper
- Laboratório de Traçadores em Ciências Ambientais, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-49, CCS, RJ 21941-902, Brazil.
| | - Mariana B Alonso
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - João Paulo M Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| |
Collapse
|
26
|
Pinteus S, Lemos MFL, Freitas R, Duarte IM, Alves C, Silva J, Marques SC, Pedrosa R. Medusa polyps adherence inhibition: A novel experimental model for antifouling assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136796. [PMID: 32007874 DOI: 10.1016/j.scitotenv.2020.136796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Although in the last decades significant advances have been made to improve antifouling formulations, the main current options continue to be highly toxic to marine environment, leading to an urgent need for new safer alternatives. For anti-adherence studies, barnacles and mussels are commonly the first choice for experimental purposes. However, the use of these organisms involves a series of laborious and time-consuming stages. In the present work, a new approach for testing antifouling formulations was developed under known formulations and novel proposed options. Due to their high resilience, ability of surviving in hostile environments and high abundance in different ecosystems, medusa polyps present themselves as prospect candidates for antifouling protocols. Thus, a complete protocol to test antifouling formulations using polyps is presented, while the antifouling properties of two invasive seaweeds, Asparagopsis armata and Sargassum muticum, were evaluated within this new test model framework. The use of medusa polyps as model to test antifouling substances revealed to be a reliable alternative to the conventional organisms, presenting several advantages since the protocol is less laborious, less time-consuming and reproductive. The results also show that the seaweeds A. armata and S. muticum produce compounds with anti-adherence properties being therefore potential candidates for the development of new greener antifouling formulations.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Marco F L Lemos
- MARE. Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Rafaela Freitas
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Inês M Duarte
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Celso Alves
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Joana Silva
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Sónia C Marques
- MARE. Marine and Environmental Sciences Centre, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Rui Pedrosa
- MARE. Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
27
|
Diversity and ecology of culturable marine fungi associated with Posidonia oceanica leaves and their epiphytic algae Dictyota dichotoma and Sphaerococcus coronopifolius. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
29
|
Smyrniotopoulos V, de Andrade Tomaz AC, Vanderlei de Souza MDF, Leitão da Cunha EV, Kiss R, Mathieu V, Ioannou E, Roussis V. Halogenated Diterpenes with In Vitro Antitumor Activity from the Red Alga Sphaerococcus coronopifolius. Mar Drugs 2019; 18:E29. [PMID: 31905719 PMCID: PMC7024270 DOI: 10.3390/md18010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/17/2022] Open
Abstract
Eight new (1-8) structurally diverse diterpenes featuring five different carbocycles were isolated from the organic extracts of the red alga Sphaerococcus coronopifolius collected from the coastline of the Ionian Sea in Greece. The structures of the new natural products, seven of which were halogenated, and the relative configuration of their stereocenters were determined on the basis of comprehensive spectroscopic analyses, including NMR and HRMS data. Compounds 5 and 8 were found to possess in vitro antitumor activity against one murine and five human cancer cell lines with mean IC50 values 15 and 16 μM, respectively.
Collapse
Affiliation(s)
- Vangelis Smyrniotopoulos
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| | - Anna Cláudia de Andrade Tomaz
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Maria de Fátima Vanderlei de Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Emídio Vasconcelos Leitão da Cunha
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Robert Kiss
- Fonds National de la Recherche Scientifique, 1050 Bruxelles, Belgium;
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium;
- ULB Cancer Research Center, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| |
Collapse
|
30
|
Corino C, Modina SC, Di Giancamillo A, Chiapparini S, Rossi R. Seaweeds in Pig Nutrition. Animals (Basel) 2019; 9:E1126. [PMID: 31842324 PMCID: PMC6940929 DOI: 10.3390/ani9121126] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/23/2023] Open
Abstract
Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown algae, red algae and green algae, which all have a different chemical composition and bioactive molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans. These bioactive compounds may have several positive effects on health in livestock. In order to reduce the antimicrobials used in livestock, research has recently focused on finding natural and sustainable molecules that boost animal performance and health. The present study thus summarizes research on the dietary integration of seaweeds in swine. In particular the influence on growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities were considered. The review highlights that brown seaweeds seem to be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit further investigation.
Collapse
Affiliation(s)
- Carlo Corino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Silvia Clotilde Modina
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Alessia Di Giancamillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| | - Sara Chiapparini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (S.C.M.); (S.C.)
| | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.)
| |
Collapse
|
31
|
Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson's Disease Model. Mar Drugs 2019; 17:md17020085. [PMID: 30717087 PMCID: PMC6410415 DOI: 10.3390/md17020085] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/14/2023] Open
Abstract
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1⁻F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin⁻Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H₂O₂ production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5 exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H₂O₂ levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies.
Collapse
|
32
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Brominated Molecules From Marine Algae and Their Pharmacological Importance. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00013-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Botana LM, Gaspar H, Pedrosa R. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018; 9:777. [PMID: 30127738 PMCID: PMC6089330 DOI: 10.3389/fphar.2018.00777] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine environment has demonstrated to be an interesting source of compounds with uncommon and unique chemical features on which the molecular modeling and chemical synthesis of new drugs can be based with greater efficacy and specificity for the therapeutics. Cancer is a growing public health threat, and despite the advances in biomedical research and technology, there is an urgent need for the development of new anticancer drugs. In this field, it is estimated that more than 60% of commercially available anticancer drugs are natural biomimetic inspired. Among the marine organisms, algae have revealed to be one of the major sources of new compounds of marine origin, including those exhibiting antitumor and cytotoxic potential. These compounds demonstrated ability to mediate specific inhibitory activities on a number of key cellular processes, including apoptosis pathways, angiogenesis, migration and invasion, in both in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This review will focus on the bioactive molecules from algae with antitumor potential, from their origin to their potential uses, with special emphasis to the alga Sphaerococcus coronopifolius as a producer of cytotoxic compounds.
Collapse
Affiliation(s)
- Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Biology Department, DoMar Doctoral Programme on Marine Science, Technology and Management, University of Aveiro, Aveiro, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Maria C Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
36
|
Omar H, Al-Judaibi A, El-Gendy A. Antimicrobial, Antioxidant, Anticancer Activity and Phytochemical Analysis of the Red Alga, Laurencia papillosa. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.572.583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R, Benevides NMB. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 2018; 112:1248-1256. [PMID: 29427681 DOI: 10.1016/j.ijbiomac.2018.02.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
This study assessed the antioxidant, antimicrobial, anticancer and neuroprotective activities of the kappa(k)-carrageenan isolated from the red alga Hypnea musciformis (Hm-SP). The chemical spectrum of the k-carrageenan from Hm-SP was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Hm-SP revealed an antibacterial and antifungal action against Staphylococcus aureus and Candida albicans, respectively. Hm-SP did not promoted cytotoxic effects against Human breast cancer (MCF-7) and Human neuroblastoma (SH-SY5Y) cell-lines. However, it was observed a significant reduction of the cellular proliferation capacity in these cancer cells in presence of the Hm-SP. Furthermore, Hm-SP showed neuroprotective activity in 6-hydroxydopamine-induced neurotoxicity on SH-SY5Y cells by modulation of the mitochondria transmembrane potential and reducing Caspase 3 activity. In addition, Hm-SP demonstrates low antioxidant potential and did not induce significant cytotoxic effects or changes in the cell proliferation on Balb/c 3T3 mouse fibroblast cell-line. In summary, our data suggest that Hm-SP shows antimicrobial, anticancer and neuprotective activities.
Collapse
Affiliation(s)
- Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Annyta Fernandes Frota
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Agnieszka Zofia Neugebauer
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | | | - Edna Maria Silva Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal
| | | |
Collapse
|
38
|
Antitumoral and anti-inflammatory activities of the red alga Sphaerococcus coronopifolius. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Domínguez-Borbor C, Chalén-Alvarado B, Rodríguez JA. A simple in vitro method to evaluate the toxicity of functional additives used in shrimp aquaculture. MethodsX 2018; 5:90-95. [PMID: 30619722 PMCID: PMC6314867 DOI: 10.1016/j.mex.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
To mitigate the economic losses provoked by disease outbreaks, shrimp producers employ therapeutic additives. However, important issues such as the toxicity of these products on shrimp are not always considered. In vivo toxicity assays require a lot of time and large economic and physical resources. Here, we describe an in vitro procedure to evaluate the toxicity of functional additives, used in the production of shrimp Penaeus vannamei. This method adapted the cell viability assay based on the reduction of tetrazolium salts (MTT) to primary cell cultures of shrimp hemocytes. A simple and reliable tool that requires few physical and economic resources to evaluate in short time (6 h) the cytotoxic effect of therapeutic products and additives to be included in shrimp culture This inexpensive method requires only a modified Hank's balanced salt solution (HBSS) containing Ca2+ and Mg2+ to keep hemocytes metabolically active to successfully carry out the cytotoxicity assay This toxicity in vitro assay does not require exposure of the shrimp to compounds at toxic concentrations.
Collapse
Affiliation(s)
- Cristóbal Domínguez-Borbor
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Bolívar Chalén-Alvarado
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jenny A Rodríguez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
40
|
Grand Challenges in Marine Biotechnology: Overview of Recent EU-Funded Projects. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Pinteus S, Lemos MFL, Silva J, Alves C, Neugebauer A, Freitas R, Duarte A, Pedrosa R. An Insight into Sargassum muticum Cytoprotective Mechanisms against Oxidative Stress on a Human Cell In Vitro Model. Mar Drugs 2017; 15:E353. [PMID: 29125578 PMCID: PMC5706042 DOI: 10.3390/md15110353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/17/2017] [Accepted: 11/04/2017] [Indexed: 01/15/2023] Open
Abstract
Sargassum muticum is a brown seaweed with strong potential to be used as a functional food ingredient, mainly due to its antioxidant properties. It is widely used in traditional oriental medicine for the treatment of numerous diseases. Nevertheless, few studies have been conducted to add scientific evidence on its effects as well as on the mechanisms of action involved. In this work, the human cell line MCF-7 was used as an in vitro cellular model to evaluate the capability of Sargassum muticum enriched fractions to protect cells on an oxidative stress condition. The concentration of the bioactive compounds was obtained by vacuum liquid chromatography applied on methanol (M) and 1:1 methanol:dichloromethane (MD) crude extracts, resulting in seven enriched fractions from the M extraction (MF2-MF8), and eight fractions from the MD extraction (MDF1-MDF8). All fractions were tested for cytotoxic properties on MCF-7 cells and the nontoxic ones were tested for their capacity to blunt the damaging effects of hydrogen peroxide-induced oxidative stress. The nontoxic effects were also confirmed in 3T3 fibroblast cells as a nontumor cell line. The antioxidant potential of each fraction, as well as changes in the cell's real-time hydrogen peroxide production, in the mitochondrial membrane potential, and in Caspase-9 activity were evaluated. The results suggest that the protective effects evidenced by S. muticum can be related with the inhibition of hydrogen peroxide production and the inhibition of Caspase-9 activity.
Collapse
Affiliation(s)
- Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Agnieszka Neugebauer
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Rafaela Freitas
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Adriana Duarte
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
42
|
Choudhary A, Naughton LM, Montánchez I, Dobson ADW, Rai DK. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar Drugs 2017; 15:md15090272. [PMID: 28846659 PMCID: PMC5618411 DOI: 10.3390/md15090272] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, Faculty of Science, University of the Basque Country, (UPV/EHU), 48940 Leioa, Spain.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork City T12 YN60, Ireland.
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
43
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
44
|
Alonso MB, Maruya KA, Dodder NG, Lailson-Brito J, Azevedo A, Santos-Neto E, Torres JPM, Malm O, Hoh E. Nontargeted Screening of Halogenated Organic Compounds in Bottlenose Dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1176-1185. [PMID: 28055195 PMCID: PMC6263163 DOI: 10.1021/acs.est.6b04186] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To catalog the diversity and abundance of halogenated organic compounds (HOCs) accumulating in high trophic marine species from the southwestern Atlantic Ocean, tissue from bottlenose dolphins (Tursiops truncatus) stranded or incidentally captured along the coast of Rio de Janeiro, Brazil, were analyzed by a nontargeted approach based on GC×GC/TOF-MS. A total of 158 individual HOCs from 32 different structural classes were detected in the blubber of 4 adult male T. truncatus. Nearly 90% of the detected compounds are not routinely monitored in the environment. DDT-related and mirex/dechlorane-related compounds were the most abundant classes of anthropogenic origin. Methoxy-brominated diphenyl ethers (MeO-BDEs) and chlorinated methyl- and dimethyl bipyrroles (MBPs and DMBPs) were the most abundant natural products. Reported for the first time in southwestern Atlantic cetaceans and in contrast to North American marine mammals, chlorinated MBPs and DMBPs were more abundant than their brominated and/or mixed halogenated counterparts. HOC profiles in coastal T. truncatus from Brazil and California revealed a distinct difference, with a higher abundance of MeO-BDEs, mirex/dechloranes and chlorinated bipyrroles in the Brazilian dolphins. Thirty-six percent of the detected HOCs had an unknown structure. These results suggest broad geographical differences in the patterns of bioaccumulative chemicals found in the marine environment and indicate the need to develop more complete catalogs of HOCs from various marine environments.
Collapse
Affiliation(s)
- Mariana B. Alonso
- Graduate School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
- Laboratory of Aquatic Mammals and Bioindicators (UERJ), R. São Francisco Xavier, 524 - S.4018 - Bl. E, Rio de Janeiro, RJ, Brasil, 20550-013
- Laboratory of Radioisotopes - Biophysics Institute (UFRJ), Av. Carlos Chagas Filho, 373 CCS - Bl.G, Rio de Janeiro, RJ, Brasil, 21941-902
| | - Keith A. Maruya
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
| | - Nathan G. Dodder
- Graduate School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- San Diego State University Research Foundation, 5250 Campanile Drive, San Diego, CA 92182, USA
| | - José Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators (UERJ), R. São Francisco Xavier, 524 - S.4018 - Bl. E, Rio de Janeiro, RJ, Brasil, 20550-013
| | - Alexandre Azevedo
- Laboratory of Aquatic Mammals and Bioindicators (UERJ), R. São Francisco Xavier, 524 - S.4018 - Bl. E, Rio de Janeiro, RJ, Brasil, 20550-013
| | - Elitieri Santos-Neto
- Laboratory of Aquatic Mammals and Bioindicators (UERJ), R. São Francisco Xavier, 524 - S.4018 - Bl. E, Rio de Janeiro, RJ, Brasil, 20550-013
| | - Joao P. M. Torres
- Laboratory of Radioisotopes - Biophysics Institute (UFRJ), Av. Carlos Chagas Filho, 373 CCS - Bl.G, Rio de Janeiro, RJ, Brasil, 21941-902
| | - Olaf Malm
- Laboratory of Radioisotopes - Biophysics Institute (UFRJ), Av. Carlos Chagas Filho, 373 CCS - Bl.G, Rio de Janeiro, RJ, Brasil, 21941-902
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
45
|
Kang Y, Li H, Wu J, Xu X, Sun X, Zhao X, Xu N. Transcriptome Profiling Reveals the Antitumor Mechanism of Polysaccharide from Marine Algae Gracilariopsis lemaneiformis. PLoS One 2016; 11:e0158279. [PMID: 27355352 PMCID: PMC4927116 DOI: 10.1371/journal.pone.0158279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
Seaweed is one of the important biomass producers and possesses active metabolites with potential therapeutic effects against tumors. The red alga Gracilariopsis lemaneiformis (Gp. lemaneiformis) possesses antitumor activity, and the polysaccharide of Gp. lemaneiformis (PGL) has been demonstrated to be an ingredient with marked anticancer activity. However, the anticancer mechanism of PGL remains to be elucidated. In this study, we analyzed the inhibitory effect of PGL on the cell growth of 3 human cancer cell lines and found that PGL inhibited cell proliferation, reduced cell viability, and altered cell morphology in a time- and concentration-dependent manner. Our transcriptome analysis indicates that PGL can regulate the expression of 758 genes, which are involved in apoptosis, the cell cycle, nuclear division, and cell death. Furthermore, we demonstrated that PGL induced apoptosis and cell cycle arrest and modulated the expression of related genes in the A549 cell line. Our work provides a framework to understand the effects of PGL on cancer cells, and can serve as a resource for delineating the antitumor mechanisms of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Yani Kang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hua Li
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Wu
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoting Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xiaodong Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
46
|
Yu M, Zhao Y. Cantharis by photosynthetic bacteria biotransformation: Reduced toxicity and improved antitumor efficacy. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:151-158. [PMID: 27041400 DOI: 10.1016/j.jep.2016.03.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The blister beetle, also known as Mylabris cichorii, is not only widely used in clinical applications in Chinese anticancer medicine, but is also one of the main ingredients in a variety of traditional Chinese medicinal preparations with anticancer activity. However, the strong toxicity exhibited by this beetle species limits its clinical applicability, with the photosynthetic bacteria featuring a strong biological conversion function. Therefore, in this study we explore the use of photosynthetic bacteria for bioconversion of the blister beetle in order to reduce the toxicity and in effort to enhance the overall antitumor effect. METHODS AND RESULTS In the first set of experiments, we utilized an orthogonal experimental design to optimize the culture medium of photosynthetic bacteria. Concurrently, the growth curve of photosynthetic bacteria was used to determine the inoculation amount of the photosynthetic bacteria and the safe concentration of cantharis. Through antitumor activity experiments conducted in vitro we found that the inhibition rate increased through cantharis by PSB biotransformation of HepG2, A549 and BEL-7406 cells. Furthermore, through acute toxicity tests in mice it was found that the blister beetle water extraction liquid exhibits a LD50 value of 1383mg/kg, while the blister beetle transformation liquid exhibits a LD50 value of 206mg/kg. The LD50 value of the blister beetle water extract was found to be 6.7 times higher than the transformation liquid, thus demonstrating that the toxicity of cantharis by PSB biotransformation may be decreased. More strikingly, decreased toxicity was observed in the mouse liver and in pathological sections of the kidneys after transformation. CONCLUSIONS In this paper we demonstrate for the first time that PSB bioconversion of the blister beetle is able to reduce the toxicity of a common method used in anticancer treatments as part of the principles in traditional Chinese medicine and may therefore improve antitumor activity in vitro.
Collapse
Affiliation(s)
- Man Yu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Zhao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Shannon E, Abu-Ghannam N. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar Drugs 2016; 14:md14040081. [PMID: 27110798 PMCID: PMC4849085 DOI: 10.3390/md14040081] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022] Open
Abstract
The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.
Collapse
Affiliation(s)
- Emer Shannon
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| | - Nissreen Abu-Ghannam
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin D01 HV58, Ireland.
| |
Collapse
|
48
|
Pérez MJ, Falqué E, Domínguez H. Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 2016; 14:E52. [PMID: 27005637 PMCID: PMC4820306 DOI: 10.3390/md14030052] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.
Collapse
Affiliation(s)
- María José Pérez
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Elena Falqué
- Departamento de Química Analítica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Herminia Domínguez
- Departamento de Enxeñería Química, Facultad de Ciencias. Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| |
Collapse
|
49
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|