1
|
Alsaloum M, Dib-Hajj SD, Page DA, Ruben PC, Krainer AR, Waxman SG. Voltage-gated sodium channels in excitable cells as drug targets. Nat Rev Drug Discov 2025:10.1038/s41573-024-01108-x. [PMID: 39901031 DOI: 10.1038/s41573-024-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
Excitable cells - including neurons, muscle cells and cardiac myocytes - are unique in expressing high densities of voltage-gated sodium (NaV) channels. This molecular adaptation enables these cells to produce action potentials, and is essential to their function. With the advent of the molecular revolution, the concept of 'the' sodium channel has been supplanted by understanding that excitable cells in mammals can express any of nine different forms of sodium channels (NaV1.1-NaV1.9). Selective expression in particular types of cells, together with a key role in controlling action potential firing, makes some of these NaV subtypes especially attractive molecular targets for drug development. Although these different channel subtypes display a common overall structure, differences in their amino acid sequences have provided a basis for the development of subtype-specific drugs. This approach has resulted in exciting progress in the development of drugs for epilepsy, cardiac disorders and pain. In this Review, we discuss recent progress in the development of drugs that selectively target each of the sodium channel subtypes.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
3
|
Baudouin R, Hans S, Mailly M, Charlier P. Is tetrodotoxin intoxication the cause of "zombi voice" in Haiti? Eur Arch Otorhinolaryngol 2024; 281:6253-6259. [PMID: 39093422 DOI: 10.1007/s00405-024-08861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Zombification, a magical and religious process in Haiti, has been scientifically studied and remains relevant. Originating from the convergence of African, Caribbean, and Christian rites, it involves a comatose trance, transforming individuals into living dead through Voodoo practices. Haitian zombies consistently exhibit a preserved expression marked by a nasal voice, a result of nasalization-using nasal cavities as resonators during phonation. The aim of this study was to ascertain the mechanisms through which zombification could impact the voices of the subjects. METHODS A comprehensive investigation was conducted using both primary and secondary sources. Primary sources involved direct or reported testimonies of individuals undergoing zombification, with audio or video recordings available from the collections of the Laboratory of Anthropology, Archaeology, and Biology (UVSQ/Paris-Saclay University), as well as on the internet. Secondary sources encompassed the entirety of existing literature regarding zombification in Haiti on one hand, alterations in the voices of subjects when mentioned on the other hand, and toxicological hypotheses or evidence available on PubMed/Medline and Google Scholar. RESULTS Few post-zombification observations exist, but 20th-century studies clarified the physio pathological process, confirming its reality. Wade Davis demonstrated in 1983 that zombification results from poisoning, with effects ranging from reversible to fatal, implicating substances like tetrodotoxin and datura. Nasalization can be natural or pathological, affecting various phonemes. No mutilating acts or surgery have been reported related to Haitian zombification. CONCLUSION The pharmacological characteristics of tetrodotoxin, coupled with testimonials, present a medical hypothesis elucidating the biological mechanism underlying nasalization in this context. Given that tetrodotoxin induces flaccid paralysis as a neurotropic poison, its neurological impact could account for soft palate paralysis or spasms. Additionally, the severe hypotension induced by tetrodotoxin may elucidate oral and pharyngeal necrosis.
Collapse
Affiliation(s)
- Robin Baudouin
- Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, Suresnes, France.
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, 78 180, Montigny-le-Bretonneux, France.
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ/Paris-Saclay University), Montigny-le-Bretonneux, France.
| | - Stéphane Hans
- Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, 78 180, Montigny-le-Bretonneux, France
- Phonetics and Phonology Laboratory (UMR 7018 CNRS and Université Sorbonne Nouvelle), Paris, France
| | - Marie Mailly
- Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, 78 180, Montigny-le-Bretonneux, France
| | - Philippe Charlier
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, 78 180, Montigny-le-Bretonneux, France
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ/Paris-Saclay University), Montigny-le-Bretonneux, France
- Foundation Anthropology, Archaeology, Biology (FAAB)-Institut de France, Palais de l'Institut, 23 quai de Conti, Paris, France
| |
Collapse
|
4
|
Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, Liu Z. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Mar Drugs 2024; 22:531. [PMID: 39728106 DOI: 10.3390/md22120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a neurotoxin that binds to sodium channels and blocks sodium conduction. Importantly, TTX has been increasingly detected in edible aquatic organisms. Because of this and the lack of specific antidotes, TTX poisoning is now a major threat to public health. However, it is of note that ultra-low dose TTX is an excellent analgesic with great medicinal value. These contradictory effects highlight the need for further research to elucidate the impacts and functional mechanisms of TTX. This review summarizes the latest research progress in relation to TTX sources, analogs, mechanisms of action, detection methods, poisoning symptoms, therapeutic options, biosynthesis pathways, and mechanisms of transport and accumulation in pufferfish. This review also provides a theoretical basis for reducing the poisoning risks associated with TTX and for establishing an effective system for its use and management to ensure the safety of fisheries and human health.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Ruimin Cui
- College of Food Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| |
Collapse
|
5
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Lin C, Li Q, Liu D, Feng Q, Zhou H, Shi B, Zhang X, Hu Y, Jiang X, Sun X, Wang D. Recent research progress in tetrodotoxin detection and quantitative analysis methods. Front Chem 2024; 12:1447312. [PMID: 39206441 PMCID: PMC11349515 DOI: 10.3389/fchem.2024.1447312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.
Collapse
Affiliation(s)
- Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Bohe Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinxin Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiaoming Sun
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Wassel MA, Makabe-Kobayashi Y, Iqbal MM, Takatani T, Sakakura Y, Hamasaki K. The impact of tetrodotoxin (TTX) on the gut microbiome in juvenile tiger pufferfish, Takifugu rubripes. Sci Rep 2024; 14:16684. [PMID: 39085277 PMCID: PMC11291987 DOI: 10.1038/s41598-024-66112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that accumulates in Takifugu rubripes, commonly known as pufferfish, through the ingestion of TTX-bearing organisms as part of their food chain. Although researchers believe that pufferfish use TTX to relieve stress, data are not currently available on how TTX affects the gut microbiota of pufferfish. To address this gap, our study aimed to investigate whether administering TTX to fish could alter their gut microbiota and overall health under various salinity conditions, including 30.0 ppt, 8.5 ppt, and 1.7 ppt salinity, which represent full-strength, isosmotic, and low-salinity stress, respectively. We analyzed the effect of TTX ingestion on the community structure, core microbiome, and metabolic capabilities of the gut microbiome using high-throughput sequencing technologies. The predominant bacterial taxa within the gut microbiome were Firmicutes (21-85%), Campilobacterota (2.8-67%), Spirochaetota (0.5-14%), and Proteobacteria (0.7-9.8%), with Mycoplasma, uncultured Arcobacteraceae, Brevinema, Vibrio, Rubritalea, and uncultured Pirellulaceae as core genera. Our findings indicated that the impact of TTX on high-abundance genera at 30.0 ppt and 8.5 ppt salinity levels was negligible, indicating their stability and resilience to TTX ingestion. However, at 1.7 ppt, TTX-fed fish showed a significant increase in uncultured Arcobacteraceae. Furthermore, our analysis of TTX-fed fish revealed taxonomic alterations in low-abundance taxa, which altered the predicted functions of the gut microbiota at all salinity levels. These results suggest that TTX administration could cause subtle effects on the metabolic functions of gut microbial communities. Overall, our study provides insights into the complex relationship between a TTX-accumulating animal, T. rubripes, and its gut microbiota.
Collapse
Affiliation(s)
- Mai A Wassel
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
- Genetics and Genetic Engineering Research Group, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Yoko Makabe-Kobayashi
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, 1‑14 Bunkyo, Nagasaki, 852‑8521, Japan
| | - Yoshitaka Sakakura
- Graduate School of Integrated Science and Technology, Nagasaki University, 1‑14 Bunkyo, Nagasaki, 852‑8521, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
9
|
Kawasue S, Kuniyoshi K, Uema M, Oshiro N. Tetrodotoxin Derivatization with a Newly Designed Boron Reagent Leads to Conventional Reversed-Phase Liquid Chromatography. Toxins (Basel) 2024; 16:260. [PMID: 38922154 PMCID: PMC11209320 DOI: 10.3390/toxins16060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Tetrodotoxin (TTX) is a representative natural toxin causing pufferfish food poisoning, which is especially prominent in East and Southeast Asia, including Japan. TTX has been analyzed through post-column derivatization high-performance liquid chromatography (HPLC), ion-pair LC-MS(/MS), and hydrophilic interaction liquid chromatography (HILIC)-MS(/MS) as alternatives to the mouse bioassay method. However, post-column derivatization requires a system for online derivatization reactions, and with the ion-pair LC-MS approach, it is difficult to remove residual ion-pair reagents remaining in the equipment. Moreover, HILIC-MS provides poor separation compared to reversed-phase (RP) HPLC and requires a long time to reach equilibration. Therefore, we decided to develop a TTX analytical method using pre-column derivatization and RP HPLC for the rapid assessment of outbreak samples, including food remnants. In this study, we focused on the vic-diol moiety of TTX and designed a new derivatization reagent coded as NBD-H-DAB. This NBD-H-DAB was synthesized from 4-hydrazino-7-nitro-2,1,3-benzoxadiazole (NBD-H) and 3-fluoro-2-formylphenylboronic acid (FFPBA) with a simple reaction system and rapidly converted to its boronate form, coded NBD-H-PBA, in an aqueous reaction solution. The NBD-H-PBA demonstrated appropriate hydrophobicity to be retained on the RP analytical column and successfully detected with a UV spectrometer. It was easily reacted with the vic-diol moiety of TTX (C6 and C11) to synthesized a boronic ester. The derivatized TTX could be detected using the RP HPLC-UV, and the limit of detection in the fish flesh samples was 0.06 mg/kg. This novel pre-column derivatization of TTX with NBD-H-PBA proves capable for the analysis of TTX.
Collapse
Affiliation(s)
- Shimba Kawasue
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (K.K.); (M.U.)
| | | | | | - Naomasa Oshiro
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (K.K.); (M.U.)
| |
Collapse
|
10
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
11
|
Liu S, Zhang Y, Chen Y, Su Y, Chen B, Wang Y, Xu M, Qiao K, Li S, Liu Z. Isolation and Purification of Protamine from the Cultured Takifugu flavidus and Its Physicochemical Properties. Molecules 2024; 29:263. [PMID: 38202846 PMCID: PMC10780564 DOI: 10.3390/molecules29010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Protamine is a cationic peptide derived from fish sperm and has several important functional properties: antibacterial properties, acting as a carrier for injectable insulin and as a heparin antagonist, combatting fatigue, etc. Thus, it has been widely used in medicinal applications and food products. Cultured Takifugu flavidus is a type of pufferfish with a delicious taste that is popular in China, and its production is increasing significantly. Therefore, protamine was extracted via acid extraction from the sperm of Takifugu flavidus and further isolated and purified via sephadex gel chromatography, ion exchange chromatography, and desalination chromatography. Furthermore, the physicochemical properties of protamine were investigated. The results showed that the sperm of the cultured T. flavidus were non-toxic, and the extracted and purified protamine had high contents of arginine (36.90%) and lysine (27.02%), respectively. The secondary structure of protamine was mainly β-folded and irregularly curled. Additionally, protamine exhibited high thermal stability with a denaturation temperature of 176 °C. This study would provide a theoretical basis for the structural analysis, bioactivity, and resource development of pufferfish protamine and help to promote the development of the pufferfish industry.
Collapse
Affiliation(s)
- Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Yue Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.C.)
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Y.C.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Yin Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| | - Shuigen Li
- Fujian Fisheries Technical Extension Station, Fuzhou 350002, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China; (S.L.); (Y.S.); (B.C.); (Y.W.); (M.X.); (K.Q.)
| |
Collapse
|
12
|
Montuori E, De Luca D, Penna A, Stalberga D, Lauritano C. Alexandrium spp.: From Toxicity to Potential Biotechnological Benefits. Mar Drugs 2023; 22:31. [PMID: 38248656 PMCID: PMC10821459 DOI: 10.3390/md22010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Daniele De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61029 Urbino, Italy;
| | - Darta Stalberga
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, SE-58183 Linköping, Sweden;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
13
|
Liu Z, Wang Z, Wei Y, Shi J, Shi T, Chen X, Li L. Transcriptomic Profiling of Tetrodotoxin-Induced Neurotoxicity in Human Cerebral Organoids. Mar Drugs 2023; 21:588. [PMID: 37999412 PMCID: PMC10672545 DOI: 10.3390/md21110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates remarkable selectivity and affinity for sodium channels on the excitation membrane of nerves. This property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality. Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids-an innovative model closely mirroring the structural and functional intricacies of the human brain. This model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure, thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis, we ascertained that these differential genes predominantly participate in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA network analysis unveiled that DEmRNAs exert control over the expression of ion channels and neurocytokines, suggesting their potential role in mediating apoptosis.
Collapse
Affiliation(s)
- Zhanbiao Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yue Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| |
Collapse
|
14
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
15
|
Zhong Y, Zhang X, Yang Q, Wang Q. Hepatorenal Toxicity after 7-Day Oral Administration of Low-Dose Tetrodotoxin and Its Distribution in the Main Tissues in Mice. Toxins (Basel) 2023; 15:564. [PMID: 37755990 PMCID: PMC10538156 DOI: 10.3390/toxins15090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Tetrodotoxin (TTX) is a highly toxic compound detected in various edible marine animals even in European waters. To characterize the hazard by oral exposure to TTX, its tissue distribution was evaluated after single (75 μg/kg) or 7-day (25-125 μg/kg) oral administration in mice. Moreover, TTX liver and renal toxicity was evaluated after 7-day oral administration. The elimination cycle of a single oral dose of TTX (75 µg/kg) was found to be approximately 168 h (7 days). Daily oral administration of TTX at doses of 25, 75, and 125 µg/kg for 7 consecutive days revealed dose-dependent toxic effects on the liver and kidney. Histopathological examination showed increased inflammatory cell infiltration in the liver and kidney with higher TTX doses, along with disorganization of the hepatic cord and renal tubular cell arrangement. The study results indicated that TTX had more hepatotoxicity than nephrotoxicity in mice. These findings provide insights into the unintentional ingestion of a low dose of TTX in mammals, including humans, and emphasize the importance of food safety.
Collapse
Affiliation(s)
- Yaqian Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Qiyu Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Qianfeng Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (Q.Y.); (Q.W.)
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| |
Collapse
|
16
|
Han JL, Zhang L, Zhou PP, Xu JJ, Pan XD, Cao P, Xu XM. Analytical Method Optimization of Tetrodotoxin and Its Contamination in Gastropods. Foods 2023; 12:3103. [PMID: 37628101 PMCID: PMC10453083 DOI: 10.3390/foods12163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Tetrodotoxin (TTX) is an extremely potent marine biotoxin. An analytical method was developed for both trace contamination and extremely high levels of TTX in gastropods by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with clean-up of cation exchange solid phase extraction (SPE) in this study. The limit of detection (LOD) in the sample matrix was 0.5 μg/kg. With the calibration of a screened internal standard (validamycin, IS), the linear range was 0.1-100 ng/mL (1.5-1500 μg/kg in sample matrix) with a correlation coefficient of r2 > 0.999. The average recoveries at three spiking levels (1.5 μg/kg, 44 μg/kg, and 1500 μg/kg) were 82.6-94.4% with relative standard deviations (RSDs) less than 8.4%. TTX levels in seven gastropods (741 samples) were studied. The contamination and analogues in Neverita didyma (N. didyma, 565 samples collected in Zhejiang province, China, from 2016 to 2022) were first reported. The detection rate of TTX in N. didyma was 34.2%. The average concentration was 23.1 μg/kg, and the maximum value was 2327 μg/kg. The time distribution study indicated that high contaminations of TTX occurred from May to August for N. didyma.
Collapse
Affiliation(s)
- Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Ping-Ping Zhou
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Jiao-Jiao Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| | - Pei Cao
- China National Center for Food Safety Risk Assessment, Beijing 100026, China; (L.Z.); (P.-P.Z.)
| | - Xiao-Min Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (J.-L.H.); (J.-J.X.); (X.-D.P.)
| |
Collapse
|
17
|
Amzil Z, Derrien A, Terre Terrillon A, Savar V, Bertin T, Peyrat M, Duval A, Lhaute K, Arnich N, Hort V, Nicolas M. Five Years Monitoring the Emergence of Unregulated Toxins in Shellfish in France (EMERGTOX 2018-2022). Mar Drugs 2023; 21:435. [PMID: 37623716 PMCID: PMC10456248 DOI: 10.3390/md21080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin β-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018-2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins.
Collapse
Affiliation(s)
- Zouher Amzil
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Amélie Derrien
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | | | - Véronique Savar
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Thomas Bertin
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marion Peyrat
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Audrey Duval
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | - Korian Lhaute
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Nathalie Arnich
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France;
| | - Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marina Nicolas
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| |
Collapse
|
18
|
Tran DT, Do CVT, Dinh CT, Dang MT, Le Ho KH, Le TG, Dao VH. Recovery of tetrodotoxin from pufferfish viscera extract by amine-functionalized magnetic nanocomposites. RSC Adv 2023; 13:18108-18121. [PMID: 37323433 PMCID: PMC10267608 DOI: 10.1039/d3ra02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Tetrodotoxin (TTX) has been widely used in pharmacology, food poisoning analysis, therapeutic use, and neurobiology. In the last decades, the isolation and purification of TTX from natural sources (e.g., pufferfish) were mostly based on column chromatography. Recently, functional magnetic nanomaterials have been recognized as promising solid phases for the isolation and purification of bioactive compounds from aqueous matrices due to their effective adsorptive properties. Thus far, no studies have been reported on the utilization of magnetic nanomaterials for the purification of TTX from biological matrices. In this work, an effort has been made to synthesize Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanocomposites for the adsorption and recovery of TTX derivatives from a crude pufferfish viscera extract. The experimental data showed that Fe3O4@SiO2-NH2 displayed a higher affinity toward TTX derivatives than Fe3O4@SiO2, achieving maximal adsorption yields for 4epi-TTX, TTX, and Anh-TTX of 97.9, 99.6, and 93.8%, respectively, under the optimal conditions of contact time of 50 min, pH of 2, adsorbent dosage of 4 g L-1, initial adsorbate concentration of 1.92 mg L-1 4epi-TTX, 3.36 mg L-1 TTX and 1.44 mg L-1 Anh-TTX and temperature of 40 °C. Interestingly, desorption of 4epi-TTX, TTX, and Anh-TTX from Fe3O4@SiO2-NH2-TTX investigated at 50 °C was recorded to achieve the highest recovery yields of 96.5, 98.2, and 92.7% using 1% AA/ACN for 30 min reaction, respectively. Remarkably, Fe3O4@SiO2-NH2 can be regenerated up to three cycles with adsorptive performance remaining at nearly 90%, demonstrating a promising adsorbent for purifying TTX derivatives from pufferfish viscera extract and a potential replacement for resins used in column chromatography-based techniques.
Collapse
Affiliation(s)
- Dang Thuan Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Cam Van T Do
- HaUI Institute of Technology, Hanoi University of Industry (HaUI) 298 Cau Dien, Bac Tu Liem Hanoi Vietnam
| | - Cuc T Dinh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Mai T Dang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Khanh Hy Le Ho
- Institute of Oceanography, Vietnam Academy of Science and Technology (VAST) 01 Cau Da St. Nha Trang City 650000 Vietnam
| | - Truong Giang Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Viet Ha Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology (VAST) 01 Cau Da St. Nha Trang City 650000 Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| |
Collapse
|
19
|
Huerta MÁ, de la Nava J, Artacho-Cordón A, Nieto FR. Efficacy and Security of Tetrodotoxin in the Treatment of Cancer-Related Pain: Systematic Review and Meta-Analysis. Mar Drugs 2023; 21:md21050316. [PMID: 37233510 DOI: 10.3390/md21050316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The pharmacological treatment of cancer-related pain is unsatisfactory. Tetrodotoxin (TTX) has shown analgesia in preclinical models and clinical trials, but its clinical efficacy and safety have not been quantified. For this reason, our aim was to perform a systematic review and meta-analysis of the clinical evidence that was available. A systematic literature search was conducted in four electronic databases (Medline, Web of Science, Scopus, and ClinicalTrials.gov) up to 1 March 2023 in order to identify published clinical studies evaluating the efficacy and security of TTX in patients with cancer-related pain, including chemotherapy-induced neuropathic pain. Five articles were selected, three of which were randomized controlled trials (RCTs). The number of responders to the primary outcome (≥30% improvement in the mean pain intensity) and those suffering adverse events in the intervention and placebo groups were used to calculate effect sizes using the log odds ratio. The meta-analysis showed that TTX significantly increased the number of responders (mean = 0.68; 95% CI: 0.19-1.16, p = 0.0065) and the number of patients suffering non-severe adverse events (mean = 1.13; 95% CI: 0.31-1.95, p = 0.0068). However, TTX did not increase the risk of suffering serious adverse events (mean = 0.75; 95% CI: -0.43-1.93, p = 0.2154). In conclusion, TTX showed robust analgesic efficacy but also increased the risk of suffering non-severe adverse events. These results should be confirmed in further clinical trials with higher numbers of patients.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs. Granada, 18012 Granada, Spain
| | - Javier de la Nava
- Department of Pharmacology, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs. Granada, 18012 Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs. Granada, 18012 Granada, Spain
| |
Collapse
|
20
|
Huang Y, Xu A, Xu Y, Wu H, Sun M, Madushika L, Wang R, Yuan J, Wang S, Ling S. Sensitive and rapid detection of tetrodotoxin based on gold nanoflower-and latex microsphere-labeled monoclonal antibodies. Front Bioeng Biotechnol 2023; 11:1196043. [PMID: 37260827 PMCID: PMC10227513 DOI: 10.3389/fbioe.2023.1196043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Tetrodotoxin (TTX) could result in serious diseases due to its extremely high neurotoxicity. Thus, it is of great importance to measure TTX for food safety. In this study, an anti-TTX monoclonal antibody with good specificity and high affinity was used to develop the immunochromatographic test strips (ICTS). Gold nanoflower (AuNF) with multiple branches and latex microsphere (LM) with large particle size as signal reporters were employed for improving the sensitivity of test strips. Both AuNF and LM probes are stable, and the developed ICTS were specific to TTX, demonstrating no cross-reactivity with other marine toxins. The linear range of AuNF- and LM-based strips for TTX was 9.49-330.98 ng/mL and 5.40-443.19 ng/mL, respectively. The limit of detection (LOD) of AuNF- and LM-based strips was determined to be 9.49 ng/mL and 5.40 ng/mL, respectively. In summary, the developed ICTS based on AuNF and LM signal probes displayed enhancement of sensitivity and provided rapid and specific detection of TTX.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sumei Ling
- *Correspondence: Shihua Wang, ; Sumei Ling,
| |
Collapse
|
21
|
Wang F, Zhang F, Song J, Zou S, Li J, Huang Y, Zhang L, Wang Q. Acute Toxic Effects of Tetrodotoxin in Mice via Intramuscular Injection and Oral Gavage. Toxins (Basel) 2023; 15:toxins15050334. [PMID: 37235368 DOI: 10.3390/toxins15050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrodotoxin (TTX) is a highly fatal marine biotoxin. Constantly increasing intoxications and the lack of specific antitoxic drugs in clinical applications highlight the need for further research into the toxic effects of TTX. Current reports on poisoning cases and the TTX toxicity mechanism suggest that the blocking of voltage-gated sodium channels (VGSCs) by TTX is probably reversible, but direct evidence of this is lacking, as far as we are aware. This study explored the acute toxic effects of TTX at sub-lethal doses via different routes, analyzing variations in muscle strength and TTX concentration in the blood in mice. We found that the loss of muscle strength in mice caused by TTX was dose-dependent and reversible, and the death time and muscle strength variations after oral gavage with TTX appeared to occur later and were more variable than those after intramuscular injection. In conclusion, we systematically compared the acute toxic effects of TTX for two different administration routes at sub-lethal doses, directly verifying the reversible reaction of TTX blocking VGSCs and speculating that averting a complete block of VGSCs by TTX could be an effective strategy for preventing death from TTX poisoning. This work may provide data for the diagnosis and treatment of TTX poisoning.
Collapse
Affiliation(s)
- Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yichao Huang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Nwankwegu AS, Zhang L, Xie D, Ohore OE, Li Y, Yang G, Yao X, Song Z, Yang Q. Metabolites dynamics exacerbated by external nutrients inputs into a Ceratium hirundinella-dominated bloom in the Pengxi River, Three Gorges Reservoir, China. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106507. [PMID: 36965430 DOI: 10.1016/j.aquatox.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Secondary metabolites (toxins) production during harmful algal blooms (HABs) further increases the public health risks associated with water quality deterioration from anthropogenic eutrophication. In the present study, the dynamic pattern in the production of metabolites under different nutrient conditions in Ceratium-dominated spring HABs was investigated in Pengxi River, China. Results revealed five (5) important toxins all attributable to the Dinophyceae including azaspiracid 2&4, okadaic acid, tetrodotoxin, brevetoxin, and saxitoxin, each exhibiting certain levels of specificity to the ecosystem enrichments. In effect, while the production of azaspiracid 2 and okadaic acid was N-driven, azaspiracid 4 and tetrodotoxin were enhanced by Ca enrichment. The ambient HABs community structure shows absolute ecosystem dominance by a dinoflagellate, Ceratium hirundinella with relative abundance ((RA = 78.81%, p ˂ 0.05). However, P enrichment triggered a slight shift (p ≥ 0.05) in the HABs species structure within the cyanobacteria strictly represented by Chroococcus minor (RA = 26.60%) and Dolichospermum circinalis (RA = 23.91%) initiating possible emergency dominance. The effect of nutrient addition on biomass production as chlorophyll-a (Chl-a) confirmed a P-limited ecosystem juxtaposed by a secondary limitation by Ca. The significant stimulation on biomass as Chl-a from day 3 through day 4 by N and the multiple enrichments designated as NPFeCa was attributed to luxury consumption rather than limitation following N repletion thus delaying biomass accumulation. The study, therefore, offers useful insights into the dynamic pattern of toxins during spring HABs while it also provides comprehensive knowledge of the HABs impact predictions in the TGR.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716 China; College of Environment, Hohai University, No. 1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716 China.
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716 China.
| | - Okugbe E Ohore
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yiping Li
- College of Environment, Hohai University, No. 1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Guanglang Yang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China
| | - Xuexing Yao
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China
| | - Zenghui Song
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China
| | - Qing Yang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716 China
| |
Collapse
|
23
|
Rossignoli AE, Mariño C, Martín H, Blanco J. First Report of Two Gymnodimines and Two Tetrodotoxin Analogues in Invertebrates from the North Atlantic Coast of Spain. Mar Drugs 2023; 21:md21040232. [PMID: 37103371 PMCID: PMC10144553 DOI: 10.3390/md21040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Gymnodimine D (GYM D), 16-desmethyl gymnodimine D (16-desmethyl GYM D), and two tetrodotoxin analogues have been found in invertebrates obtained from the north Atlantic coast of Spain from May 2021 to October 2022. It is the first report of GYMD and 16-desmethyl GYM D in invertebrates worldwide and of the tetrodotoxin analogues, 5,6,11 trideoxy tetrodotoxin (5,6,11 trideoxy TTX) and its isomer (referred to as 5,6,11 trideoxy-epi-TTX), in the north Atlantic Coast of Spain. In this study, we also report for the first time the detection of tetrodotoxin (TTX) in three species (the cnidaria Calliactis parasitica, an unidentified species, and the bivalve Tellina donacina). The prevalence was medium for GYM D and 16-desmethyl GYM D and low for TTXs overall. The concentrations recorded were variable, with maximum values of GYM D in the bivalve Cerastoderma edule (8.8 μg GYM A equivalents kg-1), of 16-desmethyl GYM D in the bivalve Magellana gigas (10 μg GYM A equivalents kg-1) and of TTX and 5,6,11 trideoxy TTX in the cnidaria C. parasitica (49.7 and 233 μg TTX equivalents kg-1, respectively). There is very scarce information about these compounds. Therefore, the reporting of these new detections will increase the knowledge on the current incidence of marine toxins in Europe that the European Food Safety Authority (EFSA), in particular, and the scientific community, in general, have. This study also highlights the importance of analyzing toxin analogues and metabolites for effective monitoring programs and adequate health protection.
Collapse
Affiliation(s)
- Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| |
Collapse
|
24
|
Rene Blickem E, Bell JW, C M Oliveira A, Mona Baumgartel D, DeBeer J. An Analysis of Seafood Recalls in the Unitedthrough 2022. J Food Prot 2023; 86:100090. [PMID: 37024092 DOI: 10.1016/j.jfp.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
This review analyzes the seafood recalls registered by the United States Food and Drug Administration (USFDA) from October 2002 through March 2022. There were more than 2,400 recalls for seafood products over this 20-year period. Biological contamination was the listed root cause for about 40% of these recalls. Almost half were designated as Class I recalls, due to the high risk of the recalled seafood to cause disease or death. Independent of the recall classification, 74% of the recalls were due to violations of the Current Good Manufacturing Practices (cGMPs) regulations. The most common cause for these seafood recalls was due to undeclared allergens (34%). More than half of the undeclared allergen recalls were for undeclared milk and eggs. Recalls for Listeria monocytogenes accounted for 30% of all recalls and were all Class I. Finfish comprised 70% of the recall incidents, and salmon was the single most recalled species (22%). Improper cold smoking treatment that resulted in Listeria monocytogenes contamination was the most common reason reported for the salmon recalls. The goal of this review is to evaluate the main causes for food safety failures within the seafood manufacturing and distribution sectors. Human errors and failures to control food safety risks during the processing of food are the main driving factors for most reported recalls in the U.S. Properly applying the Hazard Analysis Critical Control Points (HACCP) approach and procedures are needed to identify the potential food safety risks. The key to reducing the risks of human error and loss of process control is the development and implementation of an effective food safety culture program at the manufacturing facility, which must require strong senior management support at corporate and enterprise levels.
Collapse
Affiliation(s)
| | - Jon W Bell
- NOAA Fisheries, National Seafood Laboratory, Pascagoula, MS
| | | | | | - John DeBeer
- Retired from Chicken of the Sea International.
| |
Collapse
|
25
|
Local and Traditional Ecological Knowledge of Fish Poisoning in Fiji. Toxins (Basel) 2023; 15:toxins15030223. [PMID: 36977114 PMCID: PMC10051453 DOI: 10.3390/toxins15030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Fish poisoning (FP) affects human health, trade and livelihood in Fiji, where management has depended mainly on traditional ecological knowledge (TEK). This paper investigated and documented this TEK through a 2-day stakeholder workshop, group consultation, in-depth interviews, field observations, and analyses of survey data from the Ministry of Fisheries, Fiji. Six TEK topics were identified and classified as preventative and treatment options. The preventive approach involves identifying toxic reef fishes, the spawning season of edible seaworms, hotspot areas of toxic fishes, folk tests, and locating and removing toxic organs. For example, 34 reef fish species were identified as toxic. The FP season was associated with the spawning of balolo (edible seaworm) and the warmer months of October to April (cyclone seasons). Two well-known toxic hotspots associated with an abundance of bulewa (soft coral) were identified. Folk tests and locating and removing toxic fish organs are also practised for moray eels and pufferfish. At the same time, various locally available herbal plants are used to treat FP as the second line of defence. The TEK collated in this work can help local authorities better identify the sources of toxicity, and applying TEK preventive measures could stem the tide of fish poisoning in Fiji.
Collapse
|
26
|
Rodrigues-Filho JL, Macêdo RL, Sarmento H, Pimenta VRA, Alonso C, Teixeira CR, Pagliosa PR, Netto SA, Santos NCL, Daura-Jorge FG, Rocha O, Horta P, Branco JO, Sartor R, Muller J, Cionek VM. From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being. HYDROBIOLOGIA 2023; 850:2611-2653. [PMID: 37323646 PMCID: PMC10000397 DOI: 10.1007/s10750-023-05171-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/17/2023]
Abstract
In this review we highlight the relevance of biodiversity that inhabit coastal lagoons, emphasizing how species functions foster processes and services associated with this ecosystem. We identified 26 ecosystem services underpinned by ecological functions performed by bacteria and other microbial organisms, zooplankton, polychaetae worms, mollusks, macro-crustaceans, fishes, birds, and aquatic mammals. These groups present high functional redundancy but perform complementary functions that result in distinct ecosystem processes. Because coastal lagoons are located in the interface between freshwater, marine and terrestrial ecosystems, the ecosystem services provided by the biodiversity surpass the lagoon itself and benefit society in a wider spatial and historical context. The species loss in coastal lagoons due to multiple human-driven impacts affects the ecosystem functioning, influencing negatively the provision of all categories of services (i.e., supporting, regulating, provisioning and cultural). Because animals' assemblages have unequal spatial and temporal distribution in coastal lagoons, it is necessary to adopt ecosystem-level management plans to protect habitat heterogeneity and its biodiversity, ensuring the provision of services for human well-being to multi-actors in the coastal zone.
Collapse
Affiliation(s)
- Jorge L. Rodrigues-Filho
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade Do Estado de Santa Catarina, Laguna, SC Brazil
- Programa de Pós-Graduação em Planejamento Territorial e Desenvolvimento Socioambiental (PPGPLAN)/UDESC/FAED, Universidade do Estado de Santa Catarina, Florianópolis, SC Brazil
| | - Rafael L. Macêdo
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Hugo Sarmento
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia), Maringá, Paraná, Brazil
| | - Victor R. A. Pimenta
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade Do Estado de Santa Catarina, Laguna, SC Brazil
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cecilia Alonso
- Microbial Ecology of Aquatic Systems Research Group, Centro Universitario Regional del Este, Universidad de la República, Rocha, Uruguay
| | - Clarissa R. Teixeira
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Whale Habitat, Ecology & Telemetry Laboratory (WHET), Oregon State University (OSU), Newport, OR USA
| | - Paulo R. Pagliosa
- Laboratório de Biodiversidade Costeira, Coordenadoria Especial de Oceanografia, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Sérgio A. Netto
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Natália C. L. Santos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Fábio G. Daura-Jorge
- Laboratório de Mamíferos Aquáticos (LAMAQ), Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ecologia (POSECO), Universidade Federal de Santa Catarina (UFSC), Trindade, Florianópolis, Brazil
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Paulo Horta
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Joaquim O. Branco
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC Brazil
| | - Rodrigo Sartor
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Jean Muller
- Universidade do Sul de Santa Catarina, UNISUL, Tubarão, Santa Catarina, Brazil
| | - Vivian M. Cionek
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC Brazil
| |
Collapse
|
27
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
28
|
Tukker AM, Vrolijk MF, van Kleef RGDM, Sijm DTHM, Westerink RHS. Mixture effects of tetrodotoxin (TTX) and drugs targeting voltage-gated sodium channels on spontaneous neuronal activity in vitro. Toxicol Lett 2023; 373:53-61. [PMID: 36375636 DOI: 10.1016/j.toxlet.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Misha F Vrolijk
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Dick T H M Sijm
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands.
| |
Collapse
|
29
|
Al Dhuhaibat ZK, Zarzour T. Tetrodotoxin Poisoning Due to Pufferfish Ingestion in the United Arab Emirates. Cureus 2023; 15:e33627. [PMID: 36788846 PMCID: PMC9911934 DOI: 10.7759/cureus.33627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Tetrodotoxin is a potent neurotoxin that is found in the ovaries and liver of pufferfish. This lethal toxin is heat stable and does not destroy by cooking that is why precaution should be taken when eating pufferfish. A 60-year-old male presented to the ED after eating pufferfish complaining of perioral and hand numbness, gait disturbance, and generalized body weakness. This presentation is due to a tetrodotoxin found in and not limited to the pufferfish he ingested. Despite having pufferfish with his family, he was the sole person to have symptoms because, unlike the other family members, he ate from the liver part of the fish. The patient was admitted for observation, received supportive care, and underwent multiple investigations that most came to be normal. He improved gradually and was discharged after staying for three nights in the hospital. Symptoms after eating the toxic parts of a pufferfish may progress to paralysis, and respiratory failure, and may lead to death. It is not common to have such fish eaten in the United Arab Emirates due to its limited availability.
Collapse
Affiliation(s)
| | - Talal Zarzour
- Emergency Medicine, National Health Service, London, GBR
| |
Collapse
|
30
|
Vlasenko AE, Magarlamov TY. Tetrodotoxins in Ribbon Worms Cephalothrix cf. simula and Kulikovia alborostrata from Peter the Great Bay, Sea of Japan. Toxins (Basel) 2022; 15:16. [PMID: 36668836 PMCID: PMC9860856 DOI: 10.3390/toxins15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Tetrodotoxin, an extremely potent low-molecular-weight neurotoxin, and its analogues (TTXs) are widely distributed in aquatic and terrestrial ecosystems. Most investigations concerning TTXs have been conducted mainly on puffer fish, octopus, and mollusks, without paying due attention to various non-edible animals including nemerteans, a small group of marine worms, several species of which have been shown to possess high amounts of TTXs. In this study, for the first time, variations in TTX and its analogues, in 32 specimens of Cephalothrix cf. simula and 36 specimens of Kulikovia alborostrata, from Peter the Great Bay Sea of Japan were investigated, which may contribute to elucidation of TTXs migration pathways in ecosystems. Using high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), it was found that the total TTXs concentrations within both species vary by one to several orders of magnitude, 85.75-7108.26 µg/g and 0.35-8.11 ng/g in C. cf. simula and K. alborostrata, respectively. The intra- and interspecies similarities in proportions of TTXs in both species were observed; based on the results, a possible way of their toxification was discussed.
Collapse
Affiliation(s)
| | - Timur Yu. Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
31
|
Al-Sulaimani S, Titelbaum NV, Ward RE, Zahran TE, Chalhoub S, Kazzi Z. Case Report of Tetrodotoxin Poisoning from Lagocephalus sceleratus in Lebanon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14648. [PMID: 36429360 PMCID: PMC9690907 DOI: 10.3390/ijerph192214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The Indo-Pacific pufferfish Lagocephalus sceleratus is a tetrodotoxin-containing species believed to have entered the Mediterranean Sea through the Suez Canal. Tetrodotoxin (TTX) is primarily found in the liver, intestine, and ovaries of L. sceleratus. We report a case of a patient with TTX poisoning from L. sceleratus consumption in Lebanon. History of ingestion, clinical presentation, and exam findings were obtained during phone-based consultation with the patient and intensive care physician. A 46-year-old male presented to a hospital in Lebanon with perioral and extremity numbness as well as dizziness 1 h after ingestion of an L. sceleratus fish. He had caught and prepared the fish himself and had eaten a skinless piece of flesh. Over the following 6 h he also developed ataxia and generalized body numbness. His treatment included systemic hydrocortisone, antihistamine, activated charcoal, and fluids. He was admitted to the intensive care unit, where he developed self-limited, stable sinus bradycardia. He was discharged home on hospital day 5 with residual lightheadedness that improved over several days. This is one of the first reported cases of tetrodotoxin poisoning due to L. sceleratus in Lebanon. Public awareness regarding the toxicity of this species after any ingestion is essential to prevent toxicity and death.
Collapse
Affiliation(s)
- Suad Al-Sulaimani
- Division of Medical Toxicology, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
- Georgia Poison Center, Atlanta, GA 30303, USA
| | - Nicholas Vincent Titelbaum
- Division of Medical Toxicology, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
- Georgia Poison Center, Atlanta, GA 30303, USA
| | - Ricardo El Ward
- Department of Internal Medicine, Faculty of Medical Sciences, Rafic Hariri University Campus, Lebanese University, Hadath 6573, Lebanon
| | - Tharwat El Zahran
- Division of Medical Toxicology, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
- Department of Emergency Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Sana Chalhoub
- Department of Emergency Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Ziad Kazzi
- Division of Medical Toxicology, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
- Georgia Poison Center, Atlanta, GA 30303, USA
| |
Collapse
|
32
|
Yin L, Fan M, She Q, You R, Lu Y, Lu D, Li M. Facilely self-assembled and dual-molecule calibration aptasensor based on SERS for ultra-sensitive detection of tetrodotoxin in pufferfish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121275. [PMID: 35605417 DOI: 10.1016/j.saa.2022.121275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is one of the most lethal neurotoxins, so the reliable quantitative analysis of TTX is crucial for food and environmental safety monitoring. Herein, a novel dual-molecule calibration aptasensor was developed for detection of TTX based on Surface-enhanced Raman scattering (SERS). The adaptive surface has high affinity recognition sites for the target of interest, which ensures the high specificity and stability of the aptasensor. In addition, the uniquely labeled signal molecules located in the Raman silent region (1800-2400 cm-1) can avoid the interference of other exogenous biological signal molecules. Meanwhile, in quantitative analysis, the SERS signal generated by the reporter is calibrate in real time using the second-order peak of silicon molecule (Si). The detection linear range of the aptasensor was 0.0319 ng/mL-319.27 ng/mL, with a limit of detection (LOD) of 0.024 ng/mL and the excellent uniformity (RSD = 8.8%) for TTX detection. As a promising and versatile detection candidate, the ultra-sensitive quantitative detection aptasensor of TTX had important practical significance, which can offer more favorable persuasion for TTX analysis in real seafood samples.
Collapse
Affiliation(s)
- Lijun Yin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Min Fan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qiutian She
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Dechan Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Minlin Li
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| |
Collapse
|
33
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
34
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
35
|
Meng H, Jiang S, Zhang Y, Hu Y, Liu Y. In Vivo Detection of Tetrodotoxin in Takifugu obscurus Based on Solid-Phase Microextraction Coupled with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186122. [PMID: 36144854 PMCID: PMC9502389 DOI: 10.3390/molecules27186122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Pufferfish is nutritious and delicious, but the tetrodotoxin (TTX) that may exist in its body poses a serious safety hazard. It is important to use scientific and effective methods to detect the TTX in pufferfish, but most of the existing methods require complex pre-treatment steps and have sample lethality. The solid-phase microextraction (SPME) technology can be used for in vivo detection due to its advantages such as no solvent demand, simple operation, and fast detection speed. In this study, the GO-PAN@PNE SPME fibers were made via a dipping method, and their extraction effect was verified in the TTX aqueous and spiked fish. The established method has good reproducibility, and the limit of detection of TTX in pufferfish was 32 ng·g−1, and the limit of quantitation was 150 ng·g−1, which can meet the detection needs of pufferfish for safe consumption. This method was used to in vivo detect the Takifugu obscurus exposed to the TTX, to determine the content of TTX in the pufferfish muscle. The detection method established in this study can relatively quickly and easily realize the in vivo detection of TTX in the pufferfish, which can provide theoretical support for improvement in the food safety level of the pufferfish.
Collapse
Affiliation(s)
- Hengli Meng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
- Correspondence: (S.J.); (Y.H.)
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yun Hu
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
- Correspondence: (S.J.); (Y.H.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
| |
Collapse
|
36
|
Zhang H, Li P, Wu B, Hou J, Ren J, Zhu Y, Xu J, Si F, Sun Z, Liu X. Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. CHEMOSPHERE 2022; 303:134962. [PMID: 35580645 DOI: 10.1016/j.chemosphere.2022.134962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Biyin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Fei Si
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Xia Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| |
Collapse
|
37
|
Panda D, Dash BP, Manickam S, Boczkaj G. Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. MASS SPECTROMETRY REVIEWS 2022; 41:766-803. [PMID: 33624883 DOI: 10.1002/mas.21689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
There has been a rising concern regarding the harmful impact of biotoxins, source of origin, and the determination of the specific type of toxin. With numerous reports on their extensive spread, biotoxins pose a critical challenge to figure out their parent groups, metabolites, and concentration. In that aspect, liquid chromatography-mass spectrometry (LC-MS) based analysis paves the way for its accurate identification and quantification. The biotoxins are ideally categorized as phytotoxins, mycotoxins, shellfish-toxins, ciguatoxins, cyanotoxins, and bacterial toxins such as tetrodotoxins. Considering the diverse nature of biotoxins, both low-resolution mass spectrometry (LRMS) and high-resolution mass spectrometry (HRMS) methods have been implemented for their detection. The sample preparation strategy for complex matrix usually includes "QuEChERS" extraction or solid-phase extraction coupled with homogenization and centrifugation. For targeted analysis of biotoxins, the LRMS consisting of a tandem mass spectrometer operating in multiple reaction monitoring mode has been widely implemented. With the help of the reference standard, most of the toxins were accurately quantified. At the same time, the suspect screening and nontarget screening approach are facilitated by the HRMS platforms during the absence of reference standards. Significant progress has also been made in sampling device employment, utilizing novel sample preparation strategies, synthesizing toxin standards, employing hybrid MS platforms, and the associated data interpretation. This critical review attempts to elucidate the progress in LC-MS based analysis in the determination of biotoxins while pointing out major challenges and suggestions for future development.
Collapse
Affiliation(s)
- Debabrata Panda
- Center of Excellence (CoE), Fakir Mohan University, Nuapadhi, Odisha, India
| | - Bisnu P Dash
- Department of Bioscience and Biotechnology, Fakir Mohan University, Nuapadhi, Odisha, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
38
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
39
|
Hou H, Zhang Y, Ma Z, Wang X, Su P, Wang H, Liu Y. Life cycle assessment of tiger puffer (Takifugu rubripes) farming: A case study in Dalian, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153522. [PMID: 35104527 DOI: 10.1016/j.scitotenv.2022.153522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In China, energy consumption and carbon emission by the aquaculture industry have become major problems. The tiger puffer (Takifugu rubripes) is an emerging aquaculture species in China, but its environmental impact during the farming process has not yet been evaluated systematically. To the best of our knowledge, this is the first life cycle assessment (LCA) of tiger puffer land-sea relay strategy in Dalian, China. To analyze the environmental impact of the tiger puffer farming process, the following four stages were considered: seed rearing, deep-sea cage farming-1, industrial recirculating aquaculture, and deep-sea cage farming-2. The LCA software GaBi 10.5 academy version and CML-IA-Jan. 2016-world method were used to calculate the environmental impacts. According to the LCA results, marine aquatic ecotoxicity potential was the largest contributor to the environmental impact, and industrial recirculating aquaculture was the largest farming stage in the whole tiger puffer farming process. Energy in the form of electricity, coal, and gasoline was consumed to maintain the power supply in the tiger puffer farming process, and it was a key factor that influenced the environmental performance. Based on the sensitivity and energy analyses, energy consumption for equipment operation at the industrial recirculating aquaculture stage, feed consumption, and gasoline consumption for transportation at the deep-sea cage farming-2 stage need to be carefully considered. The following improvement measures were suggested to improve the environmental performance of tiger puffer farming and the aquaculture industry: establish electricity, wind power, and solar energy integrated management systems; ex-ante LCA for parameter optimization in future technology research and development; and new production strategies such as aquaponics and integrated multi-trophic aquaculture. Moreover, life cycle inventory (LCI) of tiger puffer land-sea relay farming was established to obtain essential information, enrich aquaculture LCI databases, and support aquaculture LCA research.
Collapse
Affiliation(s)
- Haochen Hou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Yun Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Zhen Ma
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Peng Su
- Dalian Fugu Food Co., LTD, 888 Bishui Road, Zhuanghe Economic Development Zone, Dalian 116400, PR China
| | - Haiheng Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
40
|
Men L, Zhang Y, Li K, Li Z, Li C, Zhang X, Gong X, Fang L. Metabolism and pharmacokinetics of mebendazole in Japanese pufferfish ( Takifugu rubripes). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:912-924. [PMID: 35442868 DOI: 10.1080/19440049.2022.2052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (Takifugu rubripes). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern. Here, we investigated the metabolism of MBZ using a UPLC-Q-TOF system. Additionally, we evaluated the pharmacokinetics of MBZ and two metabolites, 2-amino-5(6)-benzoylbenzimidazole (MBZ-NH2) and 5-hydroxymebendazole (MBZ-OH), in Japanese pufferfish following intramuscular injection of 20 mg/kg MBZ. We detected three metabolites of MBZ (M1-M3), among which, 2-amino-5(6)-(a-hydroxybenzyl) benzimidazole (M3) was detected in an aquatic animal for the first time. The plasma dispositions of MBZ, MBZ-NH2, and MBZ-OH were characterized by low plasma clearance, medium distribution volume, and long terminal half-life. Moreover, these compounds were widely distributed in the muscle, from which they were rapidly cleared. The pharmacokinetics and metabolism of mebendazole in Japanese pufferfish are described for the first time in this study. Our findings provide a basis for the rational application of MBZ in Japanese pufferfish farming and contribute to our understanding of the metabolism of MBZ in cultured fish.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuhan Zhang
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Keke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Zhongyu Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunbin Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Xueyuan Zhang
- Department of Food Control, Chaozhou Institute for Food and Drug Control, Chaozhou, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Conn DB, Świderski Z, Giese EG, Miquel J. ULTRASTRUCTURE AND CYTOCHEMISTRY OF LATE EMBRYOS AND COTYLOCIDIUM LARVAE OF ROHDELLA AMAZONICA (TREMATODA: ASPIDOGASTREA), FROM THE TROPICAL ESTUARINE FISH, COLOMESUS PSITTACUS. J Parasitol 2022; 108:274-288. [PMID: 35723685 DOI: 10.1645/21-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Developmental ultrastructure of late embryos and cotylocidium larval morphogenesis of Rohdella amazonica, an aspidogastrean parasite of fish, were studied to reveal the functional aspects of larvigenesis within the egg as well as phylogenetically relevant characteristics of the embryos and larvae in this basal trematode group. Gravid worms were removed from the intestine of naturally infected banded puffer fish Colomesus psittacus, collected from the Bay of Marajó, Paracauari River (Pará, Brazil) and processed by standard methods of transmission electron microscopy (TEM) and cytochemistry. During late cleavage and rearrangement of the blastomeres, the vitelline syncytium that plays a role in eggshell formation and nutrient provision to the embryo completes its apoptotic degeneration as the embryonic mass grows substantially. Early larval morphogenesis involves cellular positioning that defines the anteroposterior polarity of the differentiating larva. Progressing through larvigenesis, the anterior end forms a muscular oral sucker surrounding the mouth, which leads inward into the pharynx and expanding digestive cavity. At the posterior end, a large disc forms as a precursor to the eventual ventral disc. The fully formed cotylocidium, still within the eggshell, is flexed ventrally, bringing the 2 poles into near juxtaposition. The neodermatan tegument with outwardly projecting small microvilli becomes fully formed, as myocytons, a protonephridial system, and 2 glandular regions occupy the body's interior. The ultrastructural features described here are very similar to those reported for Aspidogaster limacoides from fish and somewhat similar to those reported for Cotylogaster occidentalis from molluscs, but differ from the more diverse larvae of neodermatan taxa that have been studied more extensively.
Collapse
Affiliation(s)
- David Bruce Conn
- Berry College One Health Center, 2277 Martha Berry Hwy NW, Mount Berry, Georgia 30149.,Department of Invertebrate Zoology, Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, Massachusetts 02138
| | - Zdzisław Świderski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warszawa, Poland
| | - Elane G Giese
- Laboratório de Histologia e Embriologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia, Belém, Pará 077-830, Brazil
| | - Jordi Miquel
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Pradhan B, Ki JS. Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Mar Drugs 2022; 20:md20040271. [PMID: 35447944 PMCID: PMC9030253 DOI: 10.3390/md20040271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Phytoplankton are prominent organisms that contain numerous bioactive substances and secondary metabolites, including toxins, which can be valuable to pharmaceutical, nutraceutical, and biotechnological industries. Studies on toxins produced by phytoplankton such as cyanobacteria, diatoms, and dinoflagellates have become more prevalent in recent years and have sparked much interest in this field of research. Because of their richness and complexity, they have great potential as medicinal remedies and biological exploratory probes. Unfortunately, such toxins are still at the preclinical and clinical stages of development. Phytoplankton toxins are harmful to other organisms and are hazardous to animals and human health. However, they may be effective as therapeutic pharmacological agents for numerous disorders, including dyslipidemia, obesity, cancer, diabetes, and hypertension. In this review, we have focused on the properties of different toxins produced by phytoplankton, as well as their beneficial effects and potential biomedical applications. The anticancer properties exhibited by phytoplankton toxins are mainly attributed to their apoptotic effects. As a result, phytoplankton toxins are a promising strategy for avoiding postponement or cancer treatment. Moreover, they also displayed promising applications in other ailments and diseases such as Alzheimer’s disease, diabetes, AIDS, fungal, bacterial, schizophrenia, inflammation, allergy, osteoporosis, asthma, and pain. Preclinical and clinical applications of phytoplankton toxins, as well as future directions of their enhanced nano-formulations for improved clinical efficacy, have also been reviewed.
Collapse
|
43
|
Ye H, Xi Y, Tian L, Huang D, Huang X, Shen X, Cai Y, Wangs Y. Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:925. [PMID: 35407011 PMCID: PMC8997983 DOI: 10.3390/foods11070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Tetrodotoxin (TTX) was simultaneously detected in the fresh and heat-processed aquatic products by high-performance liquid chromatography-tandem mass spectrometry method. The detection conditions were investigated, including the chromatography column and mobile phase. Based on the optimized parameters, a sensitive determination method of TTX was established. The proposed method featured the merits of a good linear relationship between signal and TTX concentration (R2 = 0.9998), a wide detection matrix-based range of 0.2-100 ng/g, and a low detection limit of 0.2 ng/g, etc. The spiked assays evidenced its accuracy and reliability with recoveries of 90.5-107.2%. Finally, the developed method was simultaneously successfully applied in the determination of TTX in various fresh and heat-processed aquatic products.
Collapse
Affiliation(s)
- Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Yinfeng Xi
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Liangliang Tian
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Dongmei Huang
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Xuanyun Huang
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Xiaosheng Shen
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
| | - Youqiong Cai
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Yuan Wangs
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.X.); (L.T.); (D.H.); (X.H.); (X.S.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| |
Collapse
|
44
|
Molecular Characterization of a New Tetrodotoxin-Binding Protein, Peroxiredoxin-1, from Takifugu bimaculatus. Int J Mol Sci 2022; 23:ijms23063071. [PMID: 35328490 PMCID: PMC8954737 DOI: 10.3390/ijms23063071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pufferfish are considered a culinary delicacy but require careful preparation to avoid ingestion of the highly toxic tetrodotoxin (TTX), which accumulates in certain tissues. In this study, the tissue distribution of peroxiredoxin-1 from Takifugu bimaculatus was investigated. The peroxiredoxin-1 protein was obtained by in vitro recombinant expression and purification. The recombinant protein had a strong ability to scavenge hydroxyl radicals, protect superhelical DNA plasmids from oxidative damage, and protect L929 cells from H2O2 toxicity through in vitro antioxidant activity. In addition, we verified its ability to bind to tetrodotoxin using surface plasmon resonance techniques. Further, recombinant proteins were found to facilitate the entry of tetrodotoxin into cells. Through these analyses, we identified, for the first time, peroxiredoxin-1 protein from Takifugu bimaculatus as a potential novel tetrodotoxin-binding protein. Our findings provide a basis for further exploration of the application of peroxiredoxin-1 protein and the molecular mechanisms of tetrodotoxin enrichment in pufferfish.
Collapse
|
45
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
46
|
Bhatia S, Makkar R, Behl T, Sehgal A, Singh S, Rachamalla M, Mani V, Iqbal MS, Bungau SG. Biotechnological Innovations from Ocean: Transpiring Role of Marine Drugs in Management of Chronic Disorders. Molecules 2022; 27:1539. [PMID: 35268639 PMCID: PMC8911953 DOI: 10.3390/molecules27051539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman;
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, India; (R.M.); (A.S.); (S.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
47
|
Das L, Deb S, Arakawa E, Yamasaki S, Das SK. Pufferfish (Tetraodon cutcutia) Sampled from a Freshwater River Serves as an Intermediate Reservoir of a Sucrose Nonfermenting Variant of Vibrio cholerae PS-4. Microbiol Spectr 2022; 10:e0122121. [PMID: 35171023 PMCID: PMC8849079 DOI: 10.1128/spectrum.01221-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
We describe the genomic characteristics of Vibrio cholerae strain PS-4 that is unable to ferment sucrose on a thiosulfate citrate bile salt sucrose (TCBS) agar medium. This bacterium was isolated from the skin mucus of a freshwater pufferfish. The genome of strain PS-4 was sequenced to understand the sucrose nonfermenting phenotype. The gene encoding the sucrose-specific phosphotransferase system IIB (sucR) was absent, resulting in the defective sucrose fermenting phenotype. In contrast, genes encoding the glucose-specific transport system IIB (ptsG) and fructose-specific transport system IIB (fruA) showed acid production while growing with respective sugars. The overall genome relatedness indices (OGRI), such as in silico DNA-DNA hybridization (isDDH), average nucleotide identity (ANI), and average amino acid identity (AAI), were above the threshold value, that is, 70% and 95 to 96%, respectively. Phylogenomic analysis based on genome-wide core genes and the nonrecombinant core genes showed that strain PS-4 clustered with Vibrio cholerae ATCC 14035T. Further, genes encoding cholera toxin (ctx), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), toxin-coregulated pilus (tcp), and lipopolysaccharide biosynthesis (rfb) were absent. PS-4 showed hemolytic activity and reacted strongly to the R antibody. Therefore, the Vibrio cholerae from the pufferfish adds a new ecological niche of this bacterium. IMPORTANCE Vibrio cholerae is native of aquatic environments. In general, V. cholerae ferments sucrose on thiosulfate citrate bile salt sucrose (TCBS) agar and produces yellow colonies. V. cholerae strain PS-4 described in this study is a sucrose nonfermenting variant associated with pufferfish skin and does not produce yellow colonies on TCBS agar. Genes encoding sucrose-specific phosphotransferase system IIB (sucR) were absent. The observed phenotype in the distinct metabolic pathway indicates niche-specific adaptive evolution for this bacterium. Our study suggests that the nonfermenting phenotype of V. cholerae strains on TCBS agar may not always be considered for species delineation.
Collapse
Affiliation(s)
- Lipika Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center of Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sushanta Deb
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Eiji Arakawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Subrata K. Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center of Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
48
|
Bucciarelli GM, Alsalek F, Kats LB, Green DB, Shaffer HB. Toxic Relationships and Arms-Race Coevolution Revisited. Annu Rev Anim Biosci 2022; 10:63-80. [PMID: 35167315 DOI: 10.1146/annurev-animal-013120-024716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin evolution in animals is one of the most fascinating and complex subjects of scientific inquiry today. Gaining an understanding of toxins poses a multifaceted challenge given the diverse modes of acquisition, evolutionary adaptations, and abiotic components that affect toxin phenotypes. Here, we highlight some of the main genetic and ecological factors that influence toxin evolution and discuss the role of antagonistic interactions and coevolutionary dynamics in shaping the direction and extent of toxicity and resistance in animals. We focus on toxic Pacific newts (family Salamandridae, genus Taricha) as a system to investigate and better evaluate the widely distributed toxin they possess, tetrodotoxin (TTX), and the hypothesized model of arms-race coevolution with snake predators that is used to explain phenotypic patterns of newt toxicity. Finally, we propose an alternative coevolutionary model that incorporates TTX-producing bacteria and draws from an elicitor-receptor concept to explain TTX evolution and ecology.
Collapse
Affiliation(s)
- G M Bucciarelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| | - Farid Alsalek
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - L B Kats
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - D B Green
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| |
Collapse
|
49
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
50
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|