1
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
2
|
Lin YL, Wang CL, Chiang TI. Eicosapentaenoic acid supplementation alleviates pruritus, enhances skin moisture, and mitigates depression in maintenance hemodialysis patients. FRONTIERS IN NEPHROLOGY 2024; 4:1365809. [PMID: 39139799 PMCID: PMC11319273 DOI: 10.3389/fneph.2024.1365809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Background The objective of this study is to investigate the effects of oral supplementation with eicosapentaenoic acid (EPA) on circulating inflammatory factors, cardiometabolic parameters, skin moisturization, and the consequent symptoms of pruritus and depression in maintenance hemodialysis patients. Materials and methods A total of 60 maintenance hemodialysis patients with severe pruritus symptoms completed this randomized, placebo-controlled study. Subjects of treatment group (n = 30) were instructed to consume 1000 mg fish oil (>900 mg EPA) and subjects of placebo group (n = 30) were instructed to consume 1000 mg soybean oil twice daily for 3 months. 5-D pruritus scoring, the Beck Depression Inventory (BDI) scale, skin moisture, serum creatinine, inflammatory factors, and cardiometabolic parameters were examined at baseline, and at the first, second, and third month post-supplementation. Results A significantly decreased pruritus level was observed in the treatment group, whereas an opposite result was observed in the placebo group. Increased skin moisture levels on both the face and arms were observed in the treatment group, but not in the placebo group. Supplementation of EPA significantly decreased serum CRP and IL-6 levels. Significant decreases in total cholesterol (CHO), and triglycerides (TG) levels were observed; however, a decrease in high-density lipoprotein (HDL) level was observed in the treatment group. There was no change in plasma creatinine (CR) observed in both groups. A significantly decreased BDI score was observed, whereas the opposite result was observed in the placebo group. A correlational study showed that the severity of pruritus was significantly associated with skin moisture and serum CRP. The severity of pruritus was also positively correlated with the BDI score. Conclusion Supplementation of EPA may provide multiple benefits including alleviating pruritus symptoms, addressing skin dryness, and mitigating depression in maintenance hemodialysis patients.
Collapse
Affiliation(s)
- Ya-ling Lin
- Department of Nursing, Tajen University, Pingtung, Taiwan
| | - Chia-Liang Wang
- Department of Nephrology, Kuang-Tien General Hospital, Taichung, Taiwan
| | - Tsay-I Chiang
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
3
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Cheng T, Yu D, Liu B, Qiu X, Tang Q, Li G, Zhou L, Wen Z. Oily fish reduces the risk of acne by lowering fasting insulin levels: A Mendelian randomization study. Food Sci Nutr 2024; 12:3964-3972. [PMID: 38873457 PMCID: PMC11167188 DOI: 10.1002/fsn3.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 06/15/2024] Open
Abstract
Meat intake, particularly from oily fish, has been associated with various chronic diseases. However, its relationship with acne has always been controversial. Therefore, we have adopted Mendelian randomization (MR) analysis to investigate the causal relationship between different types of meat intake and acne. The exposure and outcome datasets for this study were obtained from the Integrative Epidemiology Unit (IEU) Open GWAS project. Seven datasets on meat intake were included, which consisted of non-oily fish, oily fish, lamb/mutton, poultry, pork, beef, and processed meat. The main methods used for MR analysis were inverse variance weighted, weighted median, and MR-egger. To ensure the accuracy of the results, heterogeneity, pleiotropy, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) analyses were conducted. Additionally, an analysis of four risk factors (fasting insulin, insulin resistance, total testosterone level, and estradiol level) was performed to investigate the underlying mechanisms linking statistically significant meat intake to acne. Oily fish intake was found to be a protective factor for acne (OR: 0.22, 95% CI: 0.10-0.49, p < .001), and it was also observed that oily fish intake can reduce the level of fasting insulin by the IVW method (OR: 0.89, 95% CI: 0.81-0.98, p = .02). No causal relationship was identified between other types of meat intake and acne. The intake of oily fish reduces the risk of acne by lowering fasting insulin levels.
Collapse
Affiliation(s)
- Ting Cheng
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Dongdong Yu
- First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Bingqing Liu
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xingying Qiu
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qi Tang
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Geng Li
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Li Zhou
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Zehuai Wen
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
- Science and Technology Innovation Center of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
5
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Cunha SA, Coscueta ER, Alexandre AMRC, Partidário AMC, Fernández N, Paiva A, Silva JL, Pintado ME. Enzymatic hydrolysis allows an integral valorization of Nannochloropsis oceanica resulting in the production of bioactive peptide extracts and an eicosapentaenoic acid enriched fraction. Biotechnol J 2024; 19:e2300291. [PMID: 38013664 DOI: 10.1002/biot.202300291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Nannochloropsis oceanica is a microalga with relevant protein content, making it a potential source of bioactive peptides. Furthermore, it is also rich in fatty acids, with a special focus on eicosapentaenoic acid (EPA), an omega-3 fatty acid mainly obtained from marine animal sources, with high importance for human health. N. oceanica has a rigid cell wall constraining protein extraction, thus hydrolyzing it may help increase its components' extractability. Therefore, a Box-Behnken experimental design was carried out to optimize the hydrolysis. The hydrolysate A showed 67% ± 0.7% of protein, antioxidant activity of 1166 ± 63.7 μmol TE g-1 of protein and an ACE inhibition with an IC50 of 379 μg protein mL-1 . The hydrolysate B showed 60% ± 1.8% of protein, antioxidant activity of 775 ± 13.0 μmol TE g-1 of protein and an ACE inhibition with an IC50 of 239 μg protein mL-1 . The by-product showed higher yields of total fatty acids when compared to "raw" microalgae, being 5.22% and 1%, respectively. The sustainable developed methodology led to the production of one fraction rich in bioactive peptides and another with interesting EPA content, both with value-added properties with potential to be commercialized as ingredients for different industrial applications, such as functional food, supplements, or cosmetic formulations.
Collapse
Affiliation(s)
- Sara A Cunha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Agostinho M R C Alexandre
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE-Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
7
|
López-Enríquez S, Múnera-Rodríguez AM, Leiva-Castro C, Sobrino F, Palomares F. Modulation of the Immune Response to Allergies Using Alternative Functional Foods. Int J Mol Sci 2023; 25:467. [PMID: 38203638 PMCID: PMC10779275 DOI: 10.3390/ijms25010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Modulation of the allergic immune response through alternative therapies is a field of study that aims to address allergic reactions differently from traditional approaches. These therapies encompass the utilization of natural functional foods, which have been observed to exert an influence on the immune response, thus mitigating the severity of allergies. Indeed, some studies suggest that the incorporation of these nutraceuticals can regulate immune function, leading to a reduction in histamine release and subsequent alleviation of allergic symptoms. Moreover, certain herbs and dietary supplements, such as curcumin, are believed to possess anti-inflammatory properties, which may serve to moderate allergic responses. Although the results remain somewhat mixed and require further research, these alternative therapies exhibit the potential to impact the allergic immune response, thereby providing complementary options to conventional treatments. Therefore, in this review, we aim to provide an updated account of functional foods capable of modulating the immune response to allergies. In that sense, the review delves into functional foods sourced from plants (phytochemicals), animals, and marine algae. Emphasis is placed on their potential application in the treatment of allergic disorders. It also provides an overview of how these foods can be effectively utilized as functional foods. Additionally, it explores the molecular mechanisms and scientific validity of various bioactive natural compounds in the management of allergies.
Collapse
Affiliation(s)
- Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenue Sanchez Pizjuan s/n, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Virgen Macarena University Hospital, University of Seville, CSIC, 41013 Seville, Spain
| | - Ana M Múnera-Rodríguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenue Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenue Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenue Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenue Sanchez Pizjuan s/n, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Virgen Macarena University Hospital, University of Seville, CSIC, 41013 Seville, Spain
| |
Collapse
|
8
|
Wong R, Murphy A, Lira M, Sichmann MGDO, Kim AR, Saechee VD, Hermanson KD, Hawkins SS. Microneedling with a Novel, n-3-PUFA-Rich Formulation Accelerates Inflammation Resolution to Improve Skin Recovery Outcomes in Adults with Healthy Skin. Dermatol Ther (Heidelb) 2023; 13:3057-3069. [PMID: 37833618 PMCID: PMC10689607 DOI: 10.1007/s13555-023-01049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Microneedling is a cosmetic procedure that leverages the skin's natural ability to heal in order to promote collagen formation and skin rejuvenation. To provide improved results, the technique can be combined with topical formulations. A new formulation of multiple actives, including omega-3 (n-3) polyunsaturated fatty acids (PUFAs), was designed to accelerate the resolution of inflammation and wound healing following micro-injury treatments, while enhancing the visible appearance of procedure results, including erythema, luminosity and skin texture. METHODS In this randomised, controlled, split-face study, we examined 32 healthy female participants aged 30-70 years for 4 weeks following microneedling treatment with a novel multiple-active-ingredient formulation or conventional microneedling protocol with a hyaluronic acid control serum. Changes in skin condition were assessed by blinded clinical photography and expert evaluation. Measurements were collected at baseline, 1 h, 1 day, 7 days and 28 days post treatment. RESULTS Significantly greater improvements in expert-assessed erythema, luminosity and skin texture were reported following application of the novel multiple-active-ingredient formulation than the hyaluronic acid control serum. This was confirmed by representative VISIA®-CR imaging. CONCLUSION These data provide new evidence for the role of a novel multiple-active-ingredient formulation for improving skin outcomes up to 28 days following microneedling in adults with healthy skin when compared with a hyaluronic acid serum. The n-3 PUFA content of this formulation may drive accelerated inflammation resolution and wound healing alongside the complementary action of the other active ingredients, leading to the observed improvements in erythema, luminosity and skin texture.
Collapse
Affiliation(s)
- Russell Wong
- Rejuvenation Medical Group, 5083 Windermere Blvd Unit 101, Edmonton, AB, T6W 0J5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cohen G, Jakus J, Portillo M, Gvirtz R, Ogen-Shtern N, Silberstein E, Ayzenberg T, Rozenblat S. In vitro, ex vivo, and clinical evaluation of anti-aging gel containing EPA and CBD. J Cosmet Dermatol 2023; 22:3047-3057. [PMID: 37264742 DOI: 10.1111/jocd.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Skin aging manifestation, such as coarse wrinkles, loss of elasticity, pigmentation, and rough-textured appearance, is a multifactorial process that can be exacerbated by air pollution, smoking, poor nutrition, and sun exposure. Exposure to UV radiation is considered the primary cause of extrinsic skin aging and accounts for about 80% of facial aging. Extrinsic skin aging signs can be reduced with demo-cosmetic formulations. Both cannabidiol (CBD) and eicosapentaenoic acid (EPA) have been previously suggested as potent active dermatological ingredients. AIMS The objective of the current research was to evaluate the compatibility of both agents in the prevention and treatment of skin aging. First, the impact of both agents was assessed using standard photoaging models of UV-induced damage, both in vitro (HaCaT cells) and ex vivo (human skin organ culture). Then, a clinical validation study (n = 33) was performed using an optimized topical cream formulation tested at different time points (up to Day 56). RESULTS EPA was found to potentiate the protective effects of CBD by reducing the secretion of prostaglandin E2 (PGE2 ) and interleukin-8 (IL-8), two primary inflammatory agents associated with photoaging. In addition, a qualitative histological examination signaled that applying the cream may result in an increase in extracellular matrix (ECM) remodeling following UV radiation. This was also evidenced clinically by a reduction of crow's feet wrinkle area and volume, as well as a reduction of fine line wrinkle volume as measured by the AEVA system. The well-established age-dependent subepidermal low-echogenic band (SLEB) was also reduced by 8.8%. Additional clinical results showed significantly reduced red spots area and count, and an increase in skin hydration and elasticity by 31.2% and 25.6% following 56 days of cream application, respectively. These impressive clinical results correlated with high satisfaction ratings by the study participants. DISCUSSION AND CONCLUSIONS Collectively, the results show a profound anti-aging impact of the developed formulation and strengthen the beneficial derm-cosmetic properties of CBD-based products.
Collapse
Affiliation(s)
- Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
- Ben Gurion University of the Negev, Eilat, Israel
| | - Jeannette Jakus
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Raanan Gvirtz
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
| | - Navit Ogen-Shtern
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
- Ben Gurion University of the Negev, Eilat, Israel
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Ayzenberg
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
10
|
Long X, Guo J, Yin Y, Cheng M, Zhang X, Zhang J, Wang P, Zang J, Zhao L. A blinded-endpoint, randomized controlled trial of Sanyrene with natural active ingredient for prophylaxis of radiation dermatitis in patients receiving radiotherapy. Radiat Oncol 2023; 18:174. [PMID: 37891689 PMCID: PMC10604398 DOI: 10.1186/s13014-023-02363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Randomized controlled study was conducted to evaluate the efficacy of Sanyrene® vs. control intervention (DaBao®, a complex of hyaluronic acid and Vitamin E) for acute radiation dermatitis in patients receiving radiotherapy. METHODS Patients with breast cancer or head and neck cancer undergoing radiotherapy (≥ 50 Gy) were eligible. Participants were randomly assigned to either Sanyrene arm or control intervention arm in a ratio of 1:1. The primary endpoint was incidence rate of ≥ grade 2 radiation induced dermatitis. (Trial Registration: ChiCTR2100050910, registration date: 9/7/2021) RESULTS: A total of 102 eligible patients were randomly assigned into the study. The rate of ≥ grade 2 radiation dermatitis was 22% in Sanyrene group, as compared with 67.3% in the control intervention group (P<0.001). The incidence of grade 3 radiation dermatitis was 20.4% and 8.0% in control intervention group and Sanyrene group, respectively (P = 0.076). Patients in Sanyrene group had a longer median time to reach ≥ grade 2 radiation dermatitis compared to these in control intervention group, with hazard ratio of 0.231 (95%CI:0.116-0.458, p < 0.001). Mean score of SD-16 were much higher in control intervention group than Sanyrene group at end of radiotherapy (25 vs.8.3), 2 weeks after radiotherapy (22.9 vs. 0.5) and 4 weeks after radiotherapy (4.2 vs.0), with significantly statistical difference between two groups. CONCLUSIONS This trial suggests that Sanyrene is effective on preventing serious radiation dermatitis and improving skin related quality of life in patients with breast cancer or head and neck cancer receiving radiotherapy.
Collapse
Affiliation(s)
- Xiaoli Long
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Guo
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yutian Yin
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ming Cheng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiao Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Zhang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Pengyuan Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Zang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Caffrey C, Leamy A, O’Sullivan E, Zabetakis I, Lordan R, Nasopoulou C. Cardiovascular Diseases and Marine Oils: A Focus on Omega-3 Polyunsaturated Fatty Acids and Polar Lipids. Mar Drugs 2023; 21:549. [PMID: 37999373 PMCID: PMC10672651 DOI: 10.3390/md21110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence, establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health systems. Dietary modification is an effective primary prevention strategy against CVD. Research regarding dietary supplementation has become increasingly popular. This review focuses on the current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore, this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However, the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting evidence, future human trials must be completed to confirm whether PL supplementation may be more effective than n-3 PUFA supplementation to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cliodhna Caffrey
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Anna Leamy
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ellen O’Sullivan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry—Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, University of the Aegean, 814 00 Lemnos, Greece
| |
Collapse
|
12
|
Phongpradist R, Semmarath W, Kiattisin K, Jiaranaikulwanitch J, Chaiyana W, Chaichit S, Phimolsiripol Y, Dejkriengkraikul P, Ampasavate C. The in vitro effects of black soldier fly larvae ( Hermitia illucens) oil as a high-functional active ingredient for inhibiting hyaluronidase, anti-oxidation benefits, whitening, and UVB protection. Front Pharmacol 2023; 14:1243961. [PMID: 37799972 PMCID: PMC10548269 DOI: 10.3389/fphar.2023.1243961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Objective: Larvae of Hermitia illucens, or black soldier fly larvae (BSFL), have been recognized for their high lipid yield with a remarkable fatty acid profile. BSFL oil (SFO) offers the added value of a low environmental footprint and a sustainable product. In this study, the characteristics and cosmetic-related activities of SFO were investigated and compared with rice bran oil, olive oil and krill oil which are commonly used in cosmetics and supplements. Methods: The physicochemical characteristics were determined including acid value, saponification value, unsaponifiable matter and water content of SFO. The fatty acid composition was determined using GC-MS equipped with TR-FAME. The in vitro antioxidant properties were determined using DPPH, FRAP and lipid peroxidation inhibition assays. Antihyaluronidase (anti-HAase) activity was measured by detecting enzyme activity and molecular docking of candidate compounds toward the HAase enzyme. The safety assessment towards normal human cells was determined using the MTT assay and the UVB protection upon UVB-irradiated fibroblasts was determined using the DCF-DA assay. The whitening effect of SFO was determined using melanin content inhibition. Results: SFO contains more than 60% polyunsaturated fatty acids followed by saturated fatty acids (up to 37%). The most abundant component found in SFO was linoleic acid (C18:2 n-6 cis). Multiple anti-oxidant mechanisms of SFO were discovered. In addition, SFO and krill oil prevented hyaluronic acid (HA) degradation via strong HAase inhibition comparable with the positive control, oleanolic acid. The molecular docking confirmed the binding interactions and molecular recognition of major free fatty acids toward HAase. Furthermore, SFO exhibited no cytotoxicity on primary human skin fibroblasts, HaCaT keratinocytes and PBMCs (IC50 values > 200 μg/mL). SFO possessed significant in-situ anti-oxidant activity in UVB-irradiated fibroblasts and the melanin inhibition activity as effective as well-known anti-pigmenting compounds (kojic acid and arbutin, p < 0.05). Conclusion: This study provides scientific support for various aspects of SFO. SFO can be considered an alternative oil ingredient in cosmetic products with potential implications for anti-skin aging, whitening and UVB protection properties, making it a potential candidate oil in the cosmetic industry.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Warathit Semmarath
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Pornngarm Dejkriengkraikul
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
LE LTT, Kim BK, Chien PN, Choi KW, Kim HB, Hwang UJ, Han HS, Heo CY. Investigating the Anti-Aging Effects of Caviar Oil on Human Skin. In Vivo 2023; 37:2078-2091. [PMID: 37652485 PMCID: PMC10500528 DOI: 10.21873/invivo.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM As the largest organ of the human body, the skin serves as a critical barrier against environmental damage. However, many factors, such as genetics, sun exposure, and lifestyle choices can lead to skin damage creating wrinkles, sagging, and loss of elasticity. The use of skincare products containing natural ingredients has become increasingly popular as a way to combat the signs of aging. Caviar oil is one such ingredient that has gained attention due to its rich composition of fatty acids, vitamins, and minerals. The objective of this study was to investigate the potential anti-aging effects of caviar oil and to develop a product, Cavi Balm, which could potentially reduce wrinkles and skin sagging. MATERIALS AND METHODS An in vitro model using the 3T3-L1 cell line was employed to assess the effect of caviar oil on adipocyte differentiation. An ex vivo study using human skin tissue was conducted to investigate the impact of caviar oil on collagen and elastin formation and the expression of matrix metalloproteinase-1,2,9 (MMP-1, MMP-2, MMP-9). Furthermore, 102 participants were enrolled in five clinical studies to evaluate the anti-aging efficacy of our product, "Cavi Balm", in facial and neck wrinkles, facial and eye area lifting, and various skin parameters, such as skin moisture, skin elasticity, skin density, skin tightening relief, skin clarity, and skin turnover. RESULTS In vitro, caviar oil enhanced adipocyte differentiation, and increased lipid accumulation inside the cells. The ex vivo analysis revealed that caviar oil reduced the expression levels of MMP-1, MMP-2, and MMP-9, and increased the formation of elastin and collagen I, III. Moreover, in the clinical study, Cavi Balm improved skin parameters after one-time use, with more significant effects observed after four weeks of usage. CONCLUSION Caviar oil has a substantial impact on mitigating skin aging and holds potential for application in anti-aging products.
Collapse
Affiliation(s)
- Linh Thi Thuy LE
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Baek-Kyu Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korea Skin Clinical Research Center, Seongnam, Republic of Korea
| | - Keon-Woo Choi
- Korea Skin Clinical Research Center, Seongnam, Republic of Korea
| | - Hong-Bin Kim
- Korea Skin Clinical Research Center, Seongnam, Republic of Korea
| | - Ui-Jae Hwang
- Department of Physical Therapy, Yonsei University, Wonju, Republic of Korea
| | - Hyo Sun Han
- Department of Beauty Design, Bucheon University, Bucheon, Republic of Korea
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea;
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Skin Clinical Research Center, Seongnam, Republic of Korea
| |
Collapse
|
14
|
Morsy BM, El Domiaty S, Meheissen MAM, Heikal LA, Meheissen MA, Aly NM. Omega-3 nanoemulgel in prevention of radiation-induced oral mucositis and its associated effect on microbiome: a randomized clinical trial. BMC Oral Health 2023; 23:612. [PMID: 37648997 PMCID: PMC10470147 DOI: 10.1186/s12903-023-03276-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Oral mucositis (OM) is recognized as one of the most frequent debilitating sequelae encountered by head and neck cancer (HNC) patients treated by radiotherapy. This results in severe mucosal tissue inflammation and oral ulcerations that interfere with patient's nutrition, quality of life (QoL) and survival. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) have recently gained special interest in dealing with oral diseases owing to its anti-inflammatory, anti-oxidant and wound healing properties. Thus, this study aims to assess topical Omega-3 nanoemulgel efficacy in prevention of radiation-induced oral mucositis and regulation of oral microbial dysbiosis. MATERIALS AND METHODS Thirty-four head and neck cancer patients planned to receive radiotherapy were randomly allocated into two groups: Group I: conventional preventive treatment and Group II: topical Omega-3 nanoemulgel. Patients were evaluated at baseline, three and six weeks after treatment using the World Health Organization (WHO) grading system for oral mucositis severity, Visual Analogue Scale (VAS) for perceived pain severity, and MD-Anderson Symptom Inventory for Head and Neck cancer (MDASI-HN) for QoL. Oral swabs were collected to assess oral microbiome changes. RESULTS VAS scores and WHO mucositis grades were significantly lower after six weeks of treatment with topical Omega-3 nanoemulgel when compared to the conventional treatment. The total MDASI score was significantly higher in the control group after three weeks of treatment, and the head and neck subscale differed significantly at both three and six weeks. A significant reduction in Firmicutes/Bacteroidetes ratio was observed after six weeks in the test group indicating less microbial dysbiosis. CONCLUSIONS Topical Omega-3 nanoemulgel demonstrated a beneficial effect in prevention of radiation-induced oral mucositis with a possibility of regulating oral microbial dysbiosis.
Collapse
Affiliation(s)
- Basma M Morsy
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt.
| | - Shahira El Domiaty
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt
| | - Mohamed A M Meheissen
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria Governorate, Egypt
| | - Marwa A Meheissen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Nourhan M Aly
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Alexandria University, Alexandria Governorate, Egypt
| |
Collapse
|
15
|
Lúcio M, Giannino N, Barreira S, Catita J, Gonçalves H, Ribeiro A, Fernandes E, Carvalho I, Pinho H, Cerqueira F, Biondi M, Lopes CM. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023; 15:2078. [PMID: 37631292 PMCID: PMC10459668 DOI: 10.3390/pharmaceutics15082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.
Collapse
Affiliation(s)
- Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Nicole Giannino
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sérgio Barreira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - José Catita
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Paralab, SA, 4420-392 Valbom, Portugal;
| | | | - Artur Ribeiro
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Isabel Carvalho
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Hugo Pinho
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - Fátima Cerqueira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marco Biondi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
17
|
Mititelu M, Licu M, Lupu CE, Neacșu SM, Olteanu G, Gabriela S, Drăgănescu D, Oancea CN, Busnatu ȘS, Hîncu L, Ciocîlteu MV, Lupuleasa D. Characterization of Some Dermato-Cosmetic Preparations with Marine Lipids from Black Sea Wild Stingray. Mar Drugs 2023; 21:408. [PMID: 37504939 PMCID: PMC10381174 DOI: 10.3390/md21070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The traditional knowledge about the therapeutic and nutritional value of fish has been unanimously recognized among the population since ancient times. So, thanks to the therapeutic virtues of these marine animals, it was possible to develop therapies for certain pathologies as well as the use of bioactive compounds as adjunctive therapies incorporated into the treatment regimen of patients. In the present study, stingray liver oil from wild species collected from the Romanian coast of the Black Sea was isolated and analyzed. Fatty acid analysis was performed by gas chromatography. The analysis of the distribution of fatty acids in the composition of stingray liver oil indicates a ratio of 2.83 of omega 3 fatty acids to omega 6, a ratio of 1.33 of polyunsaturated fatty acids to monounsaturated fatty acids, an iodine index of 111.85, and a total percentage of 68.98% of unsaturated fatty acids. Stingray liver oil was used to evaluate the healing action after preparing a fatty ointment. According to the experimental data, a complete regeneration capacity of the wounds was noted in 12 days without visible signs. Four emulgels with stingray liver oil were formulated and analyzed from a rheological and structural point of view in order to select the optimal composition, after which the anti-inflammatory effect on inflammation caused in laboratory rats was studied and an anti-inflammatory effect was found significant (a maximum inhibitory effect of 66.47% on the edemas induced by the 10% kaolin suspension and 65.64% on the edemas induced by the 6% dextran solution).
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Monica Licu
- Department of Medical Psychology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Elena Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, "Ovidius" University of Constanta, 6 Capitan Aviator Al. Serbanescu Street, Campus, C Block, 900001 Constanta, Romania
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Stanciu Gabriela
- Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical and Computer Physics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Carmen-Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy from Craiova, 200345 Craiova, Romania
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Lucian Hîncu
- Department of Drug Industry and Pharmaceutical Biotechnologies Department, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rares Street, no. 2-4, 200638 Craiova, Romania
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Bio-pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
18
|
Chaiyana W, Jiamphun S, Bezuidenhout S, Yeerong K, Krueathanasing N, Thammasorn P, Jittasai P, Tanakitvanicharoen S, Tima S, Anuchapreeda S. Enhanced Cosmeceutical Potentials of the Oil from Gryllus bimaculatus de Geer by Nanoemulsions. Int J Nanomedicine 2023; 18:2955-2972. [PMID: 37293575 PMCID: PMC10246574 DOI: 10.2147/ijn.s406864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose This study aimed to extract the oil from Gryllus bimaculatus de Geer, evaluate its potential for cosmeceutical applications, and develop nanoemulsions to promote the cosmeceutical capabilities of the oil. Methods G. bimaculatus oil was produced by the cold pressing method. Its fatty acid compositions were assessed by fatty acid methyl ester/gas chromatographic-mass spectrometry. The antioxidant activities of the oil were investigated in terms of radical scavengers, reducing power, and lipid peroxidation inhibition. The whitening effects were investigated through anti-tyrosinase activities, whilst the anti-aging effects were investigated through inhibition against collagenase, elastase, and hyaluronidase. The irritant effects were investigated by the hen's egg chorio-allantoic membrane test and the cytotoxicity assay in immortalized human epidermal keratinocytes and human foreskin fibroblast cells. The nanoemulsions were developed, characterized, and evaluated for their stability and cosmeceutical properties. Results G. bimaculatus oil, rich in linoleic acid (31.08 ± 0.00%), oleic acid (30.44 ± 0.01%), palmitic acid (24.80 ± 0.01%), and stearic acid (7.61 ± 0.00%), demonstrated promising cosmeceutical properties in terms of antioxidant, anti-tyrosinase, and anti-skin ageing activities. Besides, the oil was safe since it induced no irritation or cytotoxicity. G. bimaculatus oil was successfully developed into nanoemulsions, and F1, composed of 1% w/w G. bimaculatus oil, 1.12% w/w polysorbate 80, 0.88% w/w sorbitan oleate, and 97% w/w DI water, had the smallest internal droplet size (53.8 ± 0.6 nm), the narrowest polydispersity index (0.129 ± 0.010), and a pronounced zeta potential (-28.23 ± 2.32 mV). All cosmeceutical activities of the oil were significantly enhanced after incorporation in the nanoemulsions (p < 0.001), particularly the whitening effects. Conclusion G. bimaculatus oil nanoemulsion was an attractive cosmeceutical formulation with potent whitening effects, along with antioxidant and anti-aging properties. Therefore, nanoemulsion technology was found to be an effective strategy for improving the cosmeceutical properties of G. bimaculatus oil.
Collapse
Affiliation(s)
- Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Sudarat Jiamphun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Suchanan Bezuidenhout
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Nutnicha Krueathanasing
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Pattiya Thammasorn
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Pipat Jittasai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Singkome Tima
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Shin S, Tae H, Park S, Cho NJ. Lipid Membrane Remodeling by the Micellar Aggregation of Long-Chain Unsaturated Fatty Acids for Sustainable Antimicrobial Strategies. Int J Mol Sci 2023; 24:ijms24119639. [PMID: 37298587 DOI: 10.3390/ijms24119639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Antimicrobial fatty acids derived from natural sources and renewable feedstocks are promising surface-active substances with a wide range of applications. Their ability to target bacterial membrane in multiple mechanisms offers a promising antimicrobial approach for combating bacterial infections and preventing the development of drug-resistant strains, and it provides a sustainable strategy that aligns with growing environmental awareness compared to their synthetic counterparts. However, the interaction and destabilization of bacterial cell membranes by these amphiphilic compounds are not yet fully understood. Here, we investigated the concentration-dependent and time-dependent membrane interaction between long-chain unsaturated fatty acids-linolenic acid (LNA, C18:3), linoleic (LLA, C18:2), and oleic acid (OA, C18:1)-and the supported lipid bilayers (SLBs) using quartz crystal microbalance-dissipation (QCM-D) and fluorescence microscopy. We first determined the critical micelle concentration (CMC) of each compound using a fluorescence spectrophotometer and monitored the membrane interaction in real time following fatty acid treatment, whereby all micellar fatty acids elicited membrane-active behavior primarily above their respective CMC values. Specifically, LNA and LLA, which have higher degrees of unsaturation and CMC values of 160 µM and 60 µM, respectively, caused significant changes in the membrane with net |Δf| shifts of 23.2 ± 0.8 Hz and 21.4 ± 0.6 Hz and ΔD shifts of 5.2 ± 0.5 × 10-6 and 7.4 ± 0.5 × 10-6. On the other hand, OA, with the lowest unsaturation degree and CMC value of 20 µM, produced relatively less membrane change with a net |Δf| shift of 14.6 ± 2.2 Hz and ΔD shift of 8.8 ± 0.2 × 10-6. Both LNA and LLA required higher concentrations than OA to initiate membrane remodeling as their CMC values increased with the degree of unsaturation. Upon incubating with fluorescence-labeled model membranes, the fatty acids induced tubular morphological changes at concentrations above CMC. Taken together, our findings highlight the critical role of self-aggregation properties and the degree of unsaturated bonds in unsaturated long-chain fatty acids upon modulating membrane destabilization, suggesting potential applications in developing sustainable and effective antimicrobial strategies.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
20
|
Liu Y, Shen N, Xin H, Yu L, Xu Q, Cui Y. Unsaturated fatty acids in natural edible resources, a systematic review of classification, resources, biosynthesis, biological activities and application. FOOD BIOSCI 2023; 53:102790. [DOI: 10.1016/j.fbio.2023.102790] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
|
21
|
Evaluation of the effect of fish oil in the prevention of pressure ulcers in patients admitted to the intensive care unit. Contemp Clin Trials Commun 2023; 32:101063. [PMID: 36698744 PMCID: PMC9868843 DOI: 10.1016/j.conctc.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction Today, the anti-inflammatory property of fish oil is used to heal wounds, but this property has not been investigated to prevent the occurrence of pressure ulcers. So the research team decided to evaluate this feature as well. Materials and methods This clinical trial study was performed on 102 patients admitted to the intensive care unit located at Besat Hospital in 2020. Samples were assigned to three groups control, placebo, and intervention using permutation blocks. Before the intervention, the questionnaire of demographic and clinical variables, level of consciousness, Braden scale, and short nutritional status questionnaire was completed by the main researcher. In the intervention group, in addition to routine care, 2 cc of fish oil was gently rubbed into the sacrum once a day for 5 days. The same intervention was repeated in the placebo group, with the difference that soybean oil was used instead of fish oil, and the control group received only the usual care. The daily evaluation of pressure ulcers by one of the ICU nurses lasted up to 6 days. Results The results showed that there was a significant difference in the incidence of pressure ulcers in the three groups (P = 0.043). The risk of pressure ulcers in the control group was 11.9 and 2.7 times higher than the fish oil group and placebo group (P = 0.023) & (P = 0.132). Conclusion The use of topical fish oil can be effective in preventing pressure ulcers.
Collapse
|
22
|
Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol 2023; 11:1154301. [PMID: 36994359 PMCID: PMC10042448 DOI: 10.3389/fbioe.2023.1154301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
The rapid healing and repair of skin wounds has been receiving much clinical attention. Covering the wound with wound dressing to promote wound healing is currently the main treatment for skin wound repair. However, the performance of wound dressing prepared by a single material is limited and cannot meet the requirements of complex conditions for wound healing. MXene is a new two-dimensional material with electrical conductivity, antibacterial and photothermal properties and other physical and biological properties, which has a wide range of applications in the field of biomedicine. Based on the pathophysiological process of wound healing and the properties of ideal wound dressing, this review will introduce the preparation and modification methods of MXene, systematically summarize and review the application status and mechanism of MXene in skin wound healing, and provide guidance for subsequent researchers to further apply MXene in the design of skin wound dressing.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weijian Kong
- The Second Hospital of Jilin University, Changchun, China
| | - Renfeng Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chunli Yao,
| |
Collapse
|
23
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
24
|
Umoh SD, Bojase G, Masesane IB, Majinda RT, Sichilongo KF. Untargeted GC-MS metabolomics to identify and classify bioactive compounds in Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:127-138. [PMID: 36377224 DOI: 10.1002/pca.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Combretum platypetalum is used in traditional African healing practices against different infections. Unfortunately, no scientific knowledge of its phytochemical composition exists, except for the isolation of two compounds from the leaves. Scientific study has been limited to the leaves only, despite the applications of stems and roots in traditional medicine practice and natural product drug discovery programs. OBJECTIVE Omics was applied to identify and classify different volatile and semivolatile bioactive compounds in the leaf, stem, and root parts of C. platypetalum. The thermal stability of the plant constituents at 60-65°C extraction temperature by Soxhlet and maceration at room temperature on the type, class, and concentration of compounds in the leaf was further investigated. METHOD A GC-MS untargeted metabolomics approach, automated deconvolution by the Automated Mass Spectral Deconvolution and Identification System (AMDIS) for GC-MS data, preprocessing by Metab R, and multivariate statistical data analysis were employed in this study. RESULTS A total of 97 phytoconstituents, including 17 bioactive compounds belonging to the terpenoids, flavonoids, long-chain fatty acids, and other unclassified structural arrangements distributed across C. platypetalum, were identified for the first time. A correlation (r = 0.782; P = 0.000) between Soxhlet and maceration extraction methods relative to resolved chromatographic peak areas of metabolites was established. CONCLUSION Findings corroborate the reported bio-investigation of its leaf extracts, its traditional uses, and previous findings from the Combretum genus. The results substantiate the possible applications of C. platypetalum in natural product drug discovery and provide a guide for future investigations.
Collapse
Affiliation(s)
- Sampson D Umoh
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, formerly known as University of Agriculture, Makurdi Nigeria PMB, Makurdi, Nigeria
| | - Gomotsang Bojase
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Ishmael B Masesane
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Runner T Majinda
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Kwenga F Sichilongo
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
25
|
Shen S, Yan G, Cao Y, Zeng Q, Zhao J, Wang X, Wang P. Dietary supplementation of n-3 PUFAs ameliorates LL37-induced rosacea-like skin inflammation via inhibition of TLR2/MyD88/NF-κB pathway. Biomed Pharmacother 2023; 157:114091. [PMID: 36481403 DOI: 10.1016/j.biopha.2022.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Rosacea is a facial chronic inflammatory skin disease with dysfunction of immune and neurovascular system and treatments for rosacea are challenging. N-3 polyunsaturated fatty acids (PUFAs), one of essential fatty acids, are needed for health maintenance and exert anti-inflammation and immunomodulatory effects in a series of cutaneous diseases such as atopic dermatitis and photoaging through dietary supplementation. However, the role of n-3 PUFAs on rosacea remains to be elucidated. In this study, KEGG enrichment analysis and GO analysis indicated that the biological process and signaling pathways, including chemokine signaling pathway, regulated by n-3 PUFAs highly overlapped with those in the pathogenic biological process of rosacea, especially the erythema telangiectasia type. Next, mice were randomized to fed with a customized n-3 PUFAs diet. We showed that n-3 PUFAs ameliorated skin erythema, inhibited dermal inflammatory cell infiltration (mast cells, neutrophils, and CD4 +T cells) and suppressed elevated pro-inflammatory cytokines in LL37-induced rosacea-like mice. Besides, n-3 PUFAs were also verified to repress angiogenesis in LL37-induced mice skin. Further investigation revealed that n-3 PUFAs attenuated LL37-induced inflammation via TLR2/ MyD88/ NF-κB pathway both in mice and in keratinocytes. In conclusion, our findings underscore that dietary supplementation of n-3 PUFAs have the potential to become an efficient and safe clinical therapeutic candidate for rosacea.
Collapse
Affiliation(s)
- Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Yajing Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
26
|
Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar Drugs 2022; 20:md20120734. [PMID: 36547881 PMCID: PMC9787341 DOI: 10.3390/md20120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The market demand for marine-based cosmetics has shown a tremendous growth rate in the last decade. Marine resources represent a promising source of novel bioactive compounds for new cosmetic ingredient development. However, concern about sustainability also becomes an issue that should be considered in developing cosmetic ingredients. The fisheries industry (e.g., fishing, farming, and processing) generates large amounts of leftovers containing valuable substances, which are potent sources of cosmeceutical ingredients. Several bioactive substances could be extracted from the marine by-product that can be utilized as a potent ingredient to develop cosmetics products. Those bioactive substances (e.g., collagen from fish waste and chitin from crustacean waste) could be utilized as anti-photoaging, anti-wrinkle, skin barrier, and hair care products. From this perspective, this review aims to approach the potential active ingredients derived from marine by-products for cosmetics and discuss the possible activity of those active ingredients in promoting human beauty. In addition, this review also covers the prospect and challenge of using marine by-products toward the emerging concept of sustainable blue cosmetics.
Collapse
|
27
|
Carreño GF, Álvarez-Figueroa MJ, González-Aramundiz JV. Dextran Nanocapsules with ω-3 in Their Nucleus: An Innovative Nanosystem for Imiquimod Transdermal Delivery. Pharmaceutics 2022; 14:pharmaceutics14112445. [PMID: 36432637 PMCID: PMC9695725 DOI: 10.3390/pharmaceutics14112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transdermal administration of molecules across the skin has gained interest because it can be considered a non-invasive route compared with traditional ones. However, going through the skin is challenging due to the presence of the stratum corneum, the main barrier of substances. For this reason, the goal of this research was the combination of omega-3 (ω-3) and a dextran sulfate assembly in a nanostructure form, which allows passage through the skin and improves the bioavailability and the therapeutic profiles of active molecules, such as imiquimod. Here we report a new colloidal system, named dextran nanocapsules, with ω-3 in its nucleus and a coat made of dextran sulfate with a size ~150 nm, monomodal distribution, and negative zeta potential (~-33 mV). This nanosystem encapsulates imiquimod with high efficacy (~86%) and can release it in a controlled fashion following Korsmeyer-Peppas kinetics. This formulation is stable under storage and physiological conditions. Furthermore, a freeze-dried product could be produced with different cryoprotectants and presents a good security profile in the HaCaT cell line. Ex vivo assays with newborn pig skin showed that dextran nanocapsules promote transdermal delivery and retention 10 times higher than non-encapsulated imiquimod. These promising results make this nanosystem an efficient vehicle for imiquimod transdermal delivery.
Collapse
Affiliation(s)
- Gisela F. Carreño
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| |
Collapse
|
28
|
Suzan AJ, Garcia PHD, Furlan CPB, Barba FCR, Franco YEM, Longato GB, Contesini FJ, de Oliveira Carvalho P. Oxidative stability of fish oil dietary supplements and their cytotoxic effect on cultured human keratinocytes. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Xue H, Shen S, Yan G, Yang Y, Li J, Kang Z, Cao Y, Wang X, Wang P. A dose-dependent protective effect of n-3 PUFAs in photoaging by promoting collagen production through MAPK pathway in SKH-1 mouse model. J Cosmet Dermatol 2022; 21:6225-6232. [PMID: 35808862 DOI: 10.1111/jocd.15220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dietary supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) can inhibit inflammation and oxidation of photoaging, but the effect and mechanism on regulation of dermis collagen remains poorly elucidated. The destruction of dermal collagen plays a crucial role in the process of long-term ultraviolet radiation (UVR) induced-photoaging, especially leading to deterioration of skin appearance and function. METHODS In this study, we explored the protective effect of n-3 PUFAs on the regulation of collagen through the MAPK pathway using the SKH-1 photoaging mouse model. RESULTS The results showed that n-3 PUFAs promoted collagen synthesis and reduced collagen degradation in a dose-dependent manner, which was mediated by the down-regulation of the MAPK pathway. In addition, n-3 PUFAs supplementation inhibited the production of MMP-1 and the UV-induced abnormal proliferation of keratinocytes. All these effects resulted in the remodeling of extracellular matrix (ECM) and finally made a significant improvement in the appearance of skin. CONCLUSION Overall, the present study suggested that dietary supplementation of n-3 PUFAs has the potential clinical prospect to prevent UV-induced skin damage and photoaging.
Collapse
Affiliation(s)
- Huan Xue
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziwei Kang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajing Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
31
|
Azmi NAN, Elgharbawy AAM, Salleh HM, Moniruzzaman M. Preparation, Characterization and Biological Activities of an Oil-in-Water Nanoemulsion from Fish By-Products and Lemon Oil by Ultrasonication Method. Molecules 2022; 27:6725. [PMID: 36235261 PMCID: PMC9570546 DOI: 10.3390/molecules27196725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Fish by-product oil and lemon oil have potential applications as active ingredients in many industries, including cosmetics, pharmaceuticals and food. However, the physicochemical properties, especially the poor stability, compromised the usage. Generally, nanoemulsions were used as an approach to stabilize the oils. This study employed an ultrasonication method to form oil-in-water nanoemulsion of lemon and fish by-product oils (NE-FLO). The formulation is produced at a fixed amount of 2 wt% fish by-product oil, 8 wt% lemon oil, 10 wt% surfactant, 27.7 wt% co-surfactants and 42 min of ultrasonication time. The size, polydispersity index (PDI) and zeta potential obtained were 44.40 nm, 0.077, and -5.02 mV, respectively. The biological properties, including antioxidant, antibacterial, cell cytotoxicity, and anti-inflammatory, showed outstanding performance. The antioxidant activity is comparable without any significant difference with ascorbic acid as standard and is superior to pure lemon oil. NE-FLO successfully inhibits seven Gram-positive and seven Gram-negative bacterial strains. NE-FLO's anti-inflammatory activity is 99.72%, comparable to nordihydroguaiaretic acid (NDGA) as the standard. At a high concentration of 10,000 µg·mL-1, NE-FLO is non-toxic to normal skin cells. These findings demonstrate that the NE-FLO produced in this study has significant potential for usage in various industries.
Collapse
Affiliation(s)
- Nor Azrini Nadiha Azmi
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
| | - Amal A. M. Elgharbawy
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
| | - Hamzah Mohd Salleh
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| |
Collapse
|
32
|
Ciprandi G, Kjartansson H, Grussu F, Baldursson BT, Frattaroli J, Urbani U, Zama M. Use of acellular intact fish skin grafts in treating acute paediatric wounds during the COVID-19 pandemic: a case series. J Wound Care 2022; 31:824-831. [DOI: 10.12968/jowc.2022.31.10.824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Objective: More specific strategies are needed to support children requiring skin grafting. Our goal was to identify procedures that reduce operating times, post-operative complications, pain and length of hospital stay. Patient safety, optimal wound bed support and quick micro-debridement with locoregional anaesthesia were prioritised. Ultimately, a novel acellular fish skin graft (FSG) derived from north Atlantic cod was selected for use. Method: We admitted consecutive paediatric patients with various lesions requiring skin grafting for definitive wound closure. All FSGs were applied and bolstered in the operating room following debridement. Results: In a cohort of 15 patients, the average age was 8 years and 9 months (4 years 1 month–13 years 5 months). Negative pressure wound therapy (NPWT) was given to 12 patients. Rapid wound healing was observed in all patients, with a wound area coverage of 100% and complete healing in 95% of wounds. Time until engraftment in patients receiving NPWT was reduced by about a half (to an average 12 days) from our standard experience of 21 days. Ten patients received locoregional anaesthesia and were discharged after day surgery. The operating time was <60 minutes, and no complications or allergic reactions were reported. Excellent pliability of the healed wound was achieved in all patients, without signs of itching and scratching in the postoperative period. This case series is the first and largest using FSG to treat paediatric patients with different wound aetiologies. We attribute the rapid transition to acute wound status and the good pliability of the new epidermal–dermal complex to the preserved molecular components of the FSG, including omega-3. Conclusion: FSG represents an innovative and sustainable solution for paediatric wound care that results in shorter surgery time and reduced hospital stays, with accelerated wound healing times.
Collapse
Affiliation(s)
- Guido Ciprandi
- Division of Plastic and Maxillofacial Surgery, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| | - Hilmar Kjartansson
- Landspitali University Hospital, Reykjavik, Iceland
- Kerecis Limited, Reykjavik, Iceland
| | - Francesca Grussu
- Division of Plastic and Maxillofacial Surgery, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| | - Baldur T Baldursson
- Landspitali University Hospital, Reykjavik, Iceland
- Kerecis Limited, Reykjavik, Iceland
| | - Jacopo Frattaroli
- Division of Plastic and Maxillofacial Surgery, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| | - Urbano Urbani
- Division of Plastic and Maxillofacial Surgery, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| | - Mario Zama
- Division of Plastic and Maxillofacial Surgery, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| |
Collapse
|
33
|
Wang SH, Chen YS, Lai KH, Lu CK, Chang HS, Wu HC, Yen FL, Chen LY, Lee JC, Yen CH. Prinsepiae Nux Extract Activates NRF2 Activity and Protects UVB-Induced Damage in Keratinocyte. Antioxidants (Basel) 2022; 11:antiox11091755. [PMID: 36139829 PMCID: PMC9495439 DOI: 10.3390/antiox11091755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Ultraviolet B (UVB) is one of the most important environmental factors that cause extrinsic aging through increasing intracellular reactive oxygen species (ROS) production in the skin. Due to its protective roles against oxidative stress, nuclear factor erythroid-2-related factor (NRF2) has been traditionally considered as a target for skin aging prevention. Here, we identified the extract of Prinsepiae Nux, a top-grade drug listed in Shen Nong Ben Cao Jing, as a potent NRF2 activator by high-throughput screening. A bioassay-guided fractionation experiment revealed that NRF2-activating components were concentrated in the 90% methanol (MP) fraction. MP fraction significantly increased the expression of NRF2 and HO-1 protein and upregulated HO-1 and NQO1 mRNA expression in HaCaT cells. Moreover, MP fraction pre-treatment dramatically reversed UVB-induced depletion of NRF2 and HO-1, accumulation of intracellular ROS, NF-κB activation, and the upregulation of pro-inflammatory genes. Finally, the qualitative analysis using UPLC-tandem mass spectroscopy revealed the most abundant ion peak in MP fraction was identified as α-linolenic acid, which was further proved to activate NRF2 signaling. Altogether, the molecular evidence suggested that MP fraction has the potential to be an excellent source for the discovery of natural medicine to treat/prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Shih-Han Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Siao Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
| | - Kuei-Hung Lai
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ho-Cheng Wu
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Feng-Lin Yen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lo-Yun Chen
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2686)
| |
Collapse
|
34
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
35
|
Lee S, Koo MH, Han DW, Kim IC, Lee JH, Kim JH, Sultana R, Kim SY, Youn UJ, Kim JH. Comparison of Fatty Acid Contents and MMP-1 Inhibitory Effects of the Two Antarctic Fish, Notothenia rossii and Champsocephalus gunnari. Molecules 2022; 27:molecules27144554. [PMID: 35889426 PMCID: PMC9317339 DOI: 10.3390/molecules27144554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Total fatty-acid (FA) contents of different organs (stomach, liver, brain, and skin) of two Antarctic fish, marbled rockcod (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari), were examined using gas chromatography–mass spectrometry (GC–MS). N. rossii possessed higher contents of total omega-3, where eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the most represented omega-3 FAs, were distributed throughout all parts of the fish. The highest level of EPA was observed in the skin and that of DHA was observed in the brain of N. rossii. C. gunnari showed organ peculiarity in that most of the omega-3 FAs were found in stomach and skin. Specifically, the highest levels of EPA and DHA were both observed in the stomach. Although N. rossii and C. gunnari both inhabit the Antarctic Southern Oceans, their characteristics in terms of the composition of fatty acids were shown to vary. The extracts were also evaluated for matrix metalloproteinase-1 (MMP-1)-inhibitory activities in UVB-induced human dermal fibroblasts, where extracts of the skin and liver of N. rossii showed the most significant inhibition upon MMP-1 production. These findings provide experimental evidence that the extracts of the Antarctic fish could be utilized as bioactive nutrients, particularly in the enhancement of skin health.
Collapse
Affiliation(s)
- Seulah Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
- Seoul School of Integrated Sciences & Technologies (aSSIST), Seoul 03767, Korea
| | - Man Hyung Koo
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea; (M.H.K.); (J.H.L.)
| | - Dong-Won Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea; (M.H.K.); (J.H.L.)
- Polar Science, University of Science & Technology, Incheon 21990, Korea
| | - Jeong-Hoon Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh;
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
- Polar Science, University of Science & Technology, Incheon 21990, Korea
- Correspondence: (U.J.Y.); (J.-H.K.); Tel.: +82-32-760-5562 (U.J.Y.); +82-32-760-5583 (J.-H.K.)
| | - Jin-Hyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (S.L.); (D.-W.H.); (I.-C.K.); (J.-H.K.)
- Polar Science, University of Science & Technology, Incheon 21990, Korea
- Correspondence: (U.J.Y.); (J.-H.K.); Tel.: +82-32-760-5562 (U.J.Y.); +82-32-760-5583 (J.-H.K.)
| |
Collapse
|
36
|
Jain M, Kumar S, Aswal VK, Al-Ghamdi AA, Kumar Kailasa S, Malek NI. Amino Acid Induced Self-Assembled Vesicles of Choline Oleate: pH responsive Nano-carriers for Targeted and Localized Delivery of Doxorubicin for Breast Cancer. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Technologies for Solubility, Dissolution and Permeation Enhancement of Natural Compounds. Pharmaceuticals (Basel) 2022; 15:ph15060653. [PMID: 35745572 PMCID: PMC9227247 DOI: 10.3390/ph15060653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/10/2022] Open
Abstract
The current review is based on the advancements in the field of natural therapeutic agents which could be utilized for a variety of biomedical applications and against various diseases and ailments. In addition, several obstacles have to be circumvented to achieve the desired therapeutic effectiveness, among which limited dissolution and/or solubility and permeability are included. To counteract these issues, several advancements in the field of natural therapeutic substances needed to be addressed. Therefore, in this review, the possible techniques for the dissolution/solubility and permeability improvements have been addressed which could enhance the dissolution and permeability up to several times. In addition, the conventional and modern isolation and purification techniques have been emphasized to achieve the isolation and purification of single or multiple therapeutic constituents with convenience and smarter approaches. Moreover, a brief overview of advanced natural compounds with multiple therapeutic effectiveness have also been anticipated. In brief, enough advancements have been carried out to achieve safe, effective and economic use of natural medicinal agents with improved stability, handling and storage.
Collapse
|
38
|
Lubov JE, Jamison AS, Baltich Nelson B, Amudzi AA, Haas KN, Richmond JM. Medicinal Plant Extracts and Natural Compounds for the Treatment of Cutaneous Lupus Erythematosus: A Systematic Review. Front Pharmacol 2022; 13:802624. [PMID: 35431950 PMCID: PMC9008762 DOI: 10.3389/fphar.2022.802624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is a group of autoimmune connective tissue disorders that significantly impact quality of life. Current treatment approaches typically use antimalarial medications, though patients may become recalcitrant. Other treatment options include general immunosuppressants, highlighting the need for more and more targeted treatment options. The purpose of this systematic review was to identify potential compounds that could be repurposed for CLE from natural products since many rheumatologic drugs are derived from natural products, including antimalarials. This study was registered with PROSPERO, the international prospective register of systematic reviews (registration number CRD42021251048). We comprehensively searched Ovid Medline, Cochrane Library, and Scopus databases from inception to April 27th, 2021. These terms included cutaneous lupus erythematosus; general plant, fungus, bacteria terminology; selected plants and plant-derived products; selected antimalarials; and JAK inhibitors. Our search yielded 13,970 studies, of which 1,362 were duplicates. We screened 12,608 abstracts, found 12,043 to be irrelevant, and assessed 565 full-text studies for eligibility. Of these, 506 were excluded, and 59 studies were included in the data extraction. The ROBINS-I risk of bias assessment tool was used to assess studies that met our inclusion criteria. According to our findings, several natural compounds do reduce inflammation in lupus and other autoimmune skin diseases in studies using in vitro methods, mouse models, and clinical observational studies, along with a few randomized clinical trials. Our study has cataloged evidence in support of potential natural compounds and plant extracts that could serve as novel sources of active ingredients for the treatment of CLE. It is imperative that further studies in mice and humans are conducted to validate these findings. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=251048.
Collapse
Affiliation(s)
- Janet E. Lubov
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, United States
- Wright State University Boonshoft School of Medicine, Dayton, OH, United States
- *Correspondence: Janet E. Lubov, ; Jillian M. Richmond,
| | - Aisha S. Jamison
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, United States
- Wright State University Boonshoft School of Medicine, Dayton, OH, United States
| | | | - Alice A. Amudzi
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, United States
| | - Kelly N. Haas
- Department of Microbiology, UMass Amherst, Amherst, MA, United States
| | - Jillian M. Richmond
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: Janet E. Lubov, ; Jillian M. Richmond,
| |
Collapse
|
39
|
Chen J, Jayachandran M, Bai W, Xu B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem 2022; 369:130874. [PMID: 34455321 DOI: 10.1016/j.foodchem.2021.130874] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
As one of food sources, fish provides sufficient nutrition to human. Diverse nutrients in fish make fish an important nutrient source available easily across the globe. Fish is proven to possess several health benefits, such as anti-oxidation, anti-inflammation, wound healing, neuroprotection, cardioprotection, and hepatoprotection properties. Fish proteins, such as immunoglobins, act as defense agents against viral and bacterial infections and prevent protein-calorie malnutrition. Besides, fish oil constituents, such as polyunsaturated fatty acids (PUFAs), regulate various signaling pathways, such as nuclear factor kappa B pathway, Toll-like receptor pathway, transforming growth factor-β (TGF-β) pathway, and peroxisome proliferators activated receptor (PPAR) pathways. In this review, the literature about health benefits of fish consumption are accumulated from PubMed, Google Scholar, Scopus, and the mechanistic action of health benefits are summarized. Fish consumption at least twice per week as part of a healthy diet is beneficial for a healthy heart. More advances in this field could pose fish as a major nutrients source of foods.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Baojun Xu
- Programme of Food Science and Technology, BNU-HKBU United International College, Zhuhai, China.
| |
Collapse
|
40
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
41
|
Lôbo de Souza M, Dourado D, Pinheiro Lôbo I, Couto Pires V, Nunes de Oliveira Araújo S, de Souza Rebouças J, Costa AM, Pinho Fernandes C, Machado Tavares N, de Paula Pereira N, Rocha Formiga F. Wild Passiflora (Passiflora spp.) seed oils and their nanoemulsions induce proliferation in HaCaT keratinocytes cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Kim SY, Kwon YM, Kim KW, Kim JYH. Exploring the Potential of Nannochloropsis sp. Extract for Cosmeceutical Applications. Mar Drugs 2021; 19:md19120690. [PMID: 34940690 PMCID: PMC8704537 DOI: 10.3390/md19120690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, there has been emerging interest in various natural products with skin protective effects as they are recognized as safe and efficient. Microalgae have developed chemical defense systems to protect themselves against oxidative stress caused by UV radiation by producing various bioactive compounds including a number of secondary metabolites, which have potential for cosmeceutical applications. In addition, microalgae have various advantages as a sustainable source for bioactive compounds with diverse functions due to their rapid growth rate, high productivity, and use of non-arable land. In this study, we aimed to investigate the cosmeceutical potential of ethanol extract from Nannochloropsis sp. G1-5 (NG15) isolated from the southern West Sea of the Republic of Korea. It contained PUFAs (including EPA), carotenoids (astaxanthin, canthaxanthin, β-carotene, zeaxanthin, violaxanthin), and phenolic compounds, which are known to have various skin protective functions. We confirmed that the NG15 extract showed various skin protective functions with low cytotoxicity, specifically anti-melanogenic, antioxidant, skin-moisturizing, anti-inflammatory, anti-wrinkling, and UV protective function, by measuring tyrosinase inhibition activity; melanin content; DPPH radical scavenging activity; expression of HAS-2, MMP-1, and Col1A1 genes; and elastase inhibition activity as well as cell viability after UV exposure. Our results indicated that the NG15 extract has the potential to be used for the development of natural cosmetics with a broad range of skin protective functions.
Collapse
|
43
|
Mirmohammadsadegh N, Shakoori M, Moghaddam HN, Farhadi R, Shahverdi AR, Amin M. Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. Daru 2021; 30:1-10. [PMID: 34791616 DOI: 10.1007/s40199-021-00405-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Biological activities of Pistacia atlantica have been investigated for few decades. The fruit oil of the plant has been used for treatment of wounds, inflammation, and other ailments in Traditional Persian Medicine (TPM). OBJECTIVES The main objectives of this study were to analyze the chemical composition of Pistacia atlantica fruit oil and to study wound healing and anti-inflammatory effects of oil-absorbed bacterial cellulose in an in vivo burn wound model. METHOD Bacterial cellulose membrane was prepared from Kombucha culture and Fourier-transform infrared was used to characterize the bacterial cellulose. Cold press technique was used to obtain Pistacia atlantica fruit oil and the chemical composition was analyzed by gas chromatography. Bacterial cellulose membrane was impregnated with the Pistacia atlantica fruit oil. Pistacia atlantica hydrogel was prepared using specific Carbopol. Burn wound model was used to evaluate in vivo wound healing and anti-inflammatory effects of the wound dressings containing either silver sulfadiazine as positive control, Pistacia atlantica hydrogel or bacterial cellulose membrane coated with the Pistacia atlantica fruit oil. Blank dressing was used as negative control. RESULTS FT-IR analysis showed that the structure of the bacterial cellulose corresponded with the standard FT-IR spectrum. The major components of Pistacia atlantica fruit oil constituted linoleic acid (38.1%), oleic acid (36.9%) and stearic acid (3.8%). Histological analysis showed that bacterial cellulose coated with fruit oil significantly decreased the number of neutrophils as a measure of inflammation compared to either negative control or positive control (p < 0.05). Wound closure occurred faster in the treated group with fruit oil-coated bacterial cellulose compared to the other treatments (p < 0.05). CONCLUSION The results showed that bacterial cellulose coated with Pistacia atlantica fruit oil can be a potential bio-safe dressing for wound management.
Collapse
Affiliation(s)
- Navid Mirmohammadsadegh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Shakoori
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Nobari Moghaddam
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Farhadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran, Iran.
| |
Collapse
|
44
|
Abstract
Nutrition and dietary supplements have been used to promote a youthful appearance for millennia. Despite high public demand for these products, evidence supporting their efficacy is limited and often inconsistent. We discuss the structural and functional changes that occur in the skin during the aging process. We also review evidence supporting the use of nutritional supplements commonly used to promote a youthful appearance, including essential fatty acids, coenzyme Q, collagen peptides, curcumin, polyphenols, flavonoids, probiotics, silymarin, and vitamins A, C, D, and E. We also consider the role of advanced glycosylated end products, antiinflammatory diets, and caloric restriction in delaying premature skin aging. Although evidence supporting the use of some dietary interventions is promising, further long-term studies in humans are required to fully understand their effects on the promotion of a youthful appearance.
Collapse
Affiliation(s)
- Sonal Muzumdar
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Katalin Ferenczi
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
45
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
46
|
Alsenani F, Ashour AM, Alzubaidi MA, Azmy AF, Hetta MH, Abu-Baih DH, Elrehany MA, Zayed A, Sayed AM, Abdelmohsen UR, Elmaidomy AH. Wound Healing Metabolites from Peters' Elephant-Nose Fish Oil: An In Vivo Investigation Supported by In Vitro and In Silico Studies. Mar Drugs 2021; 19:md19110605. [PMID: 34822477 PMCID: PMC8625051 DOI: 10.3390/md19110605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gnathonemuspetersii (F. Mormyridae) commonly known as Peters' elephant-nose fish is a freshwater elephant fish native to West and Central African rivers. The present research aimed at metabolic profiling of its derived crude oil via GC-MS analysis. In addition, wound healing aptitude in adult male New Zealand Dutch strain albino rabbits along with isolated bioactive compounds in comparison with a commercial product (Mebo®). The molecular mechanism was studied through a number of in vitro investigations, i.e., radical scavenging and inhibition of COX enzymes, in addition to in silico molecular docking study. The results revealed a total of 35 identified (71.11%) compounds in the fish oil, belonging to fatty acids (59.57%), sterols (6.11%), and alkanes (5.43%). Phytochemical investigation of the crude oil afforded isolation of six compounds 1-6. Moreover, the crude oil showed significant in vitro hydrogen peroxide and superoxide radical scavenging activities. Furthermore, the crude oil along with one of its major components (compound 4) exhibited selective inhibitory activity towards COX-2 with IC50 values of 15.27 and 2.41 µM, respectively. Topical application of the crude oil on excision wounds showed a significant (p < 0.05) increase in the wound healing rate in comparison to the untreated and Mebo®-treated groups, where fish oil increased the TGF-β1 expression, down-regulated TNF-α, and IL-1β. Accordingly, Peters' elephant-nose fish oil may be a potential alternative medication helping wound healing owing to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mubarak A. Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed F. Azmy
- Department of Microbiology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt;
| | - Mona H. Hetta
- Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Dalia H. Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
| | - Mahmoud A. Elrehany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Medical Campus, Tanta University, Elguish Street, Tanta 31527, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
- Correspondence: (A.Z.); (U.R.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef 62513, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Maaqal University, Basra 61014, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
- Correspondence: (A.Z.); (U.R.A.)
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt;
| |
Collapse
|
47
|
Daidj NBB, Lamri-Senhadji M. Hepatoprotective and Anti-Obesity Properties of Sardine By-Product Oil in Rats Fed a High-Fat Diet. Prev Nutr Food Sci 2021; 26:285-295. [PMID: 34737989 PMCID: PMC8531423 DOI: 10.3746/pnf.2021.26.3.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Excess lipid intake can trigger liver lipid accumulation and oxidative responses, which can lead to metabolic disturbances and contribute to hepatic steatosis and obesity and increase the risk of cardiovascular disease. Production of fish oil rich in omega-3 is a good opportunity for valorizing fish by-products in the therapeutic field. In this study, we explored the effects of oil from Sardina pilchardus by-products on cardiometabolic and oxidative disorders caused by toxic effects of excess lipids in obese rats. Three groups of obese rats received either 20% sardine by-product oil (SBy-Ob-HS; experimental group), 20% fillet oil (SF-Ob-HS; positive control group), or a high-fat diet (Ob-HS). Normal weight rats received a standard diet (normal). There was a significant decrease in serum total cholesterol (TC), triacylglycerols (TG), and insulin concentrations in the SBy-Ob-HS group compared with the SF-Ob-HS group. Compared with the Ob-HS group, TC and TG, glycemia, glycosylated hemoglobin, and insulinemia were decreased in the SBy-Ob-HS (more notably) and SF-Ob-HS groups. Furthermore, hepatic lipids, low density lipoprotein-cholesterol (C), the non-esterified cholesterol/phos-pholipids ratio, serum transaminases activities and lipid peroxidation were lower and serum high density lipoproteins-C were higher in the SBy-Ob-HS and SF-Ob-HS groups compared with the Ob-HS group. Serum isoprostane concentrations were reduced in the SBy-Ob-HS (more notably) and SF-Ob-HS groups compared with the Ob-HS and normal groups. The activities of antioxidant enzymes in tissues were enhanced, particularly in the by-product oil group. The oil extracted from by-products demonstrate anti-obesity properties (hypolipemiant, hepatoprotective, antiatherogenic, antidiabetic, and antioxidant) that may be beneficial for the management of obesity and its complications, such as hepatic steatosis.
Collapse
Affiliation(s)
- Nabila Boukhari Benahmed Daidj
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria.,Higher School of Biological Sciences of Oran (ESSBO), University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria
| | - Myriem Lamri-Senhadji
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria
| |
Collapse
|
48
|
Ahuja A, Gupta J, Gupta R. Miracles of Herbal Phytomedicines in Treatment of Skin Disorders: Natural Healthcare Perspective. Infect Disord Drug Targets 2021; 21:328-338. [PMID: 32568024 DOI: 10.2174/1871526520666200622142710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Human skin is considered as the first line of defense and barrier against the majority of infections caused through the skin that affect humans. Healthy skin promotes a healthy body that can be achieved with the usage of modern, allopathic and natural remedies. Major skin ailments affecting humans are skin cancers, eczema, herpes infection, fungal infection, anti-aging, itching, insect bites, pemphigus vulgaris, trauma, psoriasis, athlete's foot infections, rashes, skin pigmentation, acne, major and minor wound infections that are slowly becoming a burden on health care. Skin infections can be treated from sources that originate from animals and plants. In spite of advancements in science and technology, the emergence of natural herbal remedies for managing skin disorders has become a pivotal and essential contributor in treating skin infections due to increased demand for herbals and their lower price, and continuous adverse effects of modern medicines. In the recent era, herbal extracts and their phytomedicines have made a vital contribution to human health care. Herbal products nowadays are considered as a single line of treatment for many diseases like Cancers, Diabetes, Cardiovascular and Brain disorders, thereby creating awareness regarding purity, efficacy and safety of herbal medicines for health care management. Many therapeutically active natural herbal resources like Aloe, Neem, Liquorice, Tulsi, Amla, Papaya, Ginger and Eucalyptus are potent and safe in the treatment of dermatological infections. This review article summarizes the significance of herbal plants for protecting, treating and minimizing skin infections through the utility of herbal pharmaceuticals like creams, decocted extracts, poultice, paste and lotions that aid in the treatment of skin infections and diseases at a relatively lower cost with lesser side effects as compared to modern and allopathic medicines.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
49
|
Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Mar Drugs 2021; 19:md19080453. [PMID: 34436292 PMCID: PMC8399028 DOI: 10.3390/md19080453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids are well known for their protective properties in relation to different skin diseases. Although seaweeds possess a low lipid fraction, they could act as an alternative renewable source of polyunsaturated fatty acids whenever other valuable seaweed components are also valorized. In this study, a biorefinery process using Mastocarpus stellatus as a model seaweed was proposed. The process started with the supercritical carbon dioxide extraction of the lipid and phenolic fractions. The influence of pressure during extraction with pure supercritical CO2 was studied while operating at a selected temperature and solvent flow rate. Kinetic data obtained during the ethanol-modified supercritical CO2 extraction were fitted to the spline model. Sequential processing was proposed with (i) pure CO2 to obtain a product with 30% PUFA content and ω-3:ω-6 ratio 1:1, (ii) ethanol-modified CO2 to extract phenolics, and (iii) microwave-assisted subcritical water extraction operating under previously optimized conditions for the extraction of phenolics, carrageenan and protein fractions. The composition of the supercritical extracts showed potential for use in both dietary and topical applications in skin care products. The remaining solids are suitable for the extraction of other valuable fractions.
Collapse
|
50
|
Meng F, Qiu J, Chen H, Shi X, Yin M, Zhu M, Yang G. Dietary supplementation with N-3 polyunsaturated fatty acid-enriched fish oil promotes wound healing after ultraviolet B-induced sunburn in mice. Food Sci Nutr 2021; 9:3693-3700. [PMID: 34262728 PMCID: PMC8269668 DOI: 10.1002/fsn3.2330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate ultraviolet B (UVB)-induced skin cancers, but their effects on sunburn and upcoming wound healing remain controversial. This study aimed to explore the impact of n-3 PUFA-enriched fish oil (n-3 PUFA-FO) on UVB-induced sunburns and subsequent healing. Sixty C57BL/6 female mice were divided into two groups. The treated group mice were fed n-3 PUFA-FO for the entire duration of the experiment. Mice in the control group were fed a standard diet. After two weeks of n-3 PUFA-FO feeding, mice were exposed to UVB for 20 min and sacrificed 20 d later. Skin photodamage and lesion area were recorded during wound healing. Epidermal lesion thickness was quantified in hematoxylin and eosin-stained skin sections. Inflammation and macrophage polarization were assessed by qRT-PCR. Oxidative stress and antioxidant enzyme activity were quantified using specific ELISA kits. N-3 PUFA-FO feeding decreased UVB photodamage and accelerated wound healing progression, both of which were coupled with less intense inflammation and increased macrophage M2 phenotype polarization. Furthermore, n-3 PUFA-FO brought about a decrease in malondialdehyde (MDA) levels but increased the activity of catalase (CAT) and glutathione peroxidase (GP), without changing superoxide dismutase (SOD) activity. N-3 PUFA-FO protects against UVB-induced skin photodamage and promotes wound healing by modulating macrophage phenotypic polarization and antioxidant enzyme activities. N-3 PUFA-FO could be a novel therapeutic approach for both the prevention and treatment of sunburns.
Collapse
Affiliation(s)
- Fanxing Meng
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | | | - Houjie Chen
- The Shenzhen Key Laboratory of Health Sciences and TechnologyInternational Graduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Xiaojun Shi
- The Shenzhen Key Laboratory of Health Sciences and TechnologyInternational Graduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Meifang Yin
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| | - Meishu Zhu
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| | - Guang Yang
- Department of Burn and Plastic SurgeryDepartment of Wound RepairShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen Second People's HospitalShenzhenChina
| |
Collapse
|