1
|
Lorenzi AS, Chia MA. Cyanobacteria's power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol 2024; 40:381. [PMID: 39532755 DOI: 10.1007/s11274-024-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacteria, often overlooked in traditional agriculture, are gaining recognition for their roles in enhancing plant growth and soil health through diverse mechanisms. This review examines their multifaceted contributions to agricultural systems, highlighting their proficiency in auxin production, which promotes plant growth and development. Additionally, we examined cyanobacteria's ability to produce siderophores that enhance iron absorption and address micronutrient deficiencies, as well as their capacity for nitrogen fixation, which converts atmospheric nitrogen into a form that plants can utilize, all with the goal of reducing reliance on synthetic fertilizers. A meta-analysis of existing studies indicates significant positive effects of cyanobacteria on crop yield, although variability exists. While some research shows considerable yield increases, other studies report non-significant changes, suggesting benefits may depend on specific conditions and crop types. The overall random-effects model estimate indicates a significant aggregate effect, with a few exceptions, emphasizing the need for further research to optimize the use of cyanobacteria as biofertilizers. Although cyanobacteria-based products are limited in comparison to seaweed-derived alternatives, for instance, ongoing challenges include regulatory issues and production costs. Integrating cultivation with wastewater treatment could enhance competitiveness and viability in the agricultural market.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Graduate Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil.
- GenomaA Biotech, Piracicaba, SP, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria.
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Luz R, Cordeiro R, Gonçalves V, Vasconcelos V, Urbatzka R. Screening of Lipid-Reducing Activity and Cytotoxicity of the Exometabolome from Cyanobacteria. Mar Drugs 2024; 22:412. [PMID: 39330293 PMCID: PMC11433081 DOI: 10.3390/md22090412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Cyanobacteria are rich producers of secondary metabolites, excreting some of these to the culture media. However, the exometabolome of cyanobacteria has been poorly studied, and few studies have dwelled on its characterization and bioactivity assessment. In this work, exometabolomes of 56 cyanobacterial strains were characterized by HR-ESI-LC-MS/MS. Cytotoxicity was assessed on two carcinoma cell lines, HepG2 and HCT116, while the reduction in lipids was tested in zebrafish larvae and in a steatosis model with fatty acid-overloaded human liver cells. The exometabolome analysis using GNPS revealed many complex clusters of unique compounds in several strains, with no identifications in public databases. Three strains reduced viability in HCT116 cells, namely Tolypotrichaceae BACA0428 (30.45%), Aphanizomenonaceae BACA0025 (40.84%), and Microchaetaceae BACA0110 (46.61%). Lipid reduction in zebrafish larvae was only observed by exposure to Dulcicalothrix sp. BACA0344 (60%). The feature-based molecular network shows that this bioactivity was highly correlated with two flavanones, a compound class described in the literature to have lipid reduction activity. The exometabolome characterization of cyanobacteria strains revealed a high chemodiversity, which supports it as a source for novel bioactive compounds, despite most of the time being overlooked.
Collapse
Affiliation(s)
- Rúben Luz
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Rita Cordeiro
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vítor Gonçalves
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Sanchez LRS, Untiveros DPM, Tengco MTT, Cao EP. Genome assembly, characterization, and mining of biosynthetic gene clusters (BGCs) from Chlorogloeopsis sp. ULAP02 isolated from Mt. Ulap, Itogon, Benguet, Philippines. Front Genet 2024; 15:1422274. [PMID: 39280101 PMCID: PMC11392904 DOI: 10.3389/fgene.2024.1422274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Libertine Rose S Sanchez
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Danica Pearl M Untiveros
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Theresa T Tengco
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ernelea P Cao
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
4
|
Gomes AFR, Almeida MC, Sousa E, Resende DISP. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173044. [PMID: 38723971 DOI: 10.1016/j.scitotenv.2024.173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms. The pollution caused by these toxic metals is increasing, and therefore it is urgent to find practical, sustainable, and economical solutions for remediation. One of the strategies is siderophore-assisted bioremediation, an innovative and advantageous alternative for various environmental applications. This research highlights the various uses of siderophores and metallophores in the environment, underscoring their significance to ecosystems. The study delves into the utilization of siderophores and metallophores in both marine and terrestrial settings (e.g. bioremediation, biocontrol of pathogens, and plant growth promotion), such as bioremediation, biocontrol of pathogens, and plant growth promotion, providing context for the different instances outlined in the existing literature and highlighting their relevance in each field. The study delves into the structures and types of siderophores focusing on their singular characteristics for each application and methodologies used. Focusing on recent developments over the last two decades, the opportunities and challenges associated with siderophores and metallophores applications in the environment were mapped to arm researchers in the fight against environmental pollution.
Collapse
Affiliation(s)
- Ana F R Gomes
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Mariana C Almeida
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Ghio AJ, Hilborn ED. Cyanobacterial blooms, iron, and environmental pollutants. Biometals 2024; 37:577-586. [PMID: 37910342 PMCID: PMC11209704 DOI: 10.1007/s10534-023-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Iron determines the abundance and diversity of life and controls primary production in numerous aqueous environments. Over the past decades, the availability of this metal in natural waters has decreased. Iron deficiency can apply a selective pressure on microbial aquatic communities. Each aquatic organism has their individual requirements for iron and pathways for metal acquisition, despite all having access to the common pool of iron. Cyanobacteria, a photosynthesizing bacterium that can accumulate and form so-called 'algal blooms', have evolved strategies to thrive in such iron-deficient aqueous environments where they can outcompete other organisms in iron acquisition in diverse microbial communities. Metabolic pathways for iron acquisition employed by cyanobacteria allow it to compete successfully for this essential nutrient. By competing more effectively for requisite iron, cyanobacteria can displace other species and grow to dominate the microbial population in a bloom. Aquatic resources are damaged by a diverse number of environmental pollutants that can further decrease metal availability and result in a functional deficiency of available iron. Pollutants can also increase iron demand. A pollutant-exposed microbe is compelled to acquire further metal critical to its survival. Even in pollutant-impacted waters, cyanobacteria enjoy a competitive advantage and cyanobacterial dominance can be the result. We propose that cyanobacteria have a distinct competitive advantage over many other aquatic microbes in polluted, iron-poor environments.
Collapse
Affiliation(s)
- Andrew J Ghio
- US Environmental Protection Agency, Chapel Hill, NC, USA.
- Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27514, USA.
| | | |
Collapse
|
6
|
Ikhane AO, Sithole SZ, Cele ND, Osunsanmi FO, Mosa RA, Opoku AR. In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants (Basel) 2024; 13:608. [PMID: 38790713 PMCID: PMC11117491 DOI: 10.3390/antiox13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, •OH, and Fe2+) systems. Molecular docking of the major constituents of the extracts against β-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC50 range of 8-10 µg/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.
Collapse
Affiliation(s)
- Albert O. Ikhane
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Siphesihle Z. Sithole
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Nkosinathi D. Cele
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Foluso O. Osunsanmi
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Rebamang A. Mosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa;
| | - Andrew R. Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| |
Collapse
|
7
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
9
|
Sun X, Xiao Y, Yong C, Sun H, Li S, Huang H, Jiang H. Interactions between the nitrogen-fixing cyanobacterium Trichodesmium and siderophore-producing cyanobacterium Synechococcus under iron limitation. ISME COMMUNICATIONS 2024; 4:ycae072. [PMID: 38873030 PMCID: PMC11171426 DOI: 10.1093/ismeco/ycae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Indexed: 06/15/2024]
Abstract
As diazotrophic cyanobacteria of tremendous biomass, Trichodesmium continuously provide a nitrogen source for carbon-fixing cyanobacteria and drive the generation of primary productivity in marine environments. However, ocean iron deficiencies limit growth and metabolism of Trichodesmium. Recent studies have shown the co-occurrence of Trichodesmium and siderophore-producing Synechococcus in iron-deficient oceans, but whether siderophores secreted by Synechococcus can be used by Trichodesmium to adapt to iron deficiency is not clear. We constructed a mutant Synechococcus strain unable to produce siderophores to explore this issue. Synechococcus filtrates with or without siderophores were added into a Trichodesmium microbial consortium consisting of Trichodesmium erythraeum IMS 101 as the dominant microbe with chronic iron deficiency. By analyzing the physiological phenotype, metagenome, and metatranscriptome, we investigated the interactions between the nitrogen-fixing cyanobacterium Tricodesmium and siderophore-producing cyanobacterium Synechococcus under conditions of iron deficiency. The results indicated that siderophores secreted by Synechococcus are likely to chelate with free iron in the culture medium of the Trichodesmium consortium, reducing the concentration of bioavailable iron and posing greater challenges to the absorption of iron by Trichodesmium. These findings revealed the characteristics of iron-competitive utilization between diazotrophic cyanobacteria and siderophore-producing cyanobacteria, as well as potential interactions, and provide a scientific basis for understanding the regulatory effects of nutrient limitation on marine primary productivity.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Yan Xiao
- School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People’s Republic of China
| | - Chengwen Yong
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Hansheng Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 1 Jintang Road, Zhuhai, Guangdong, 519000, People’s Republic of China
- School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People’s Republic of China
| |
Collapse
|
10
|
Brauner M, Briggs BR. Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environ Microbiol 2023; 25:3450-3465. [PMID: 37956696 PMCID: PMC10872409 DOI: 10.1111/1462-2920.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.
Collapse
Affiliation(s)
- Megan Brauner
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| |
Collapse
|
11
|
Martínez-López NA, Peña-Ocaña BA, García-Contreras R, Maeda T, Rincón-Rosales R, Cazares A, Hoshiko Y, Ruíz-Valdiviezo VM. Complete genome sequence of Paenibacillus sp. VCA1 isolated from crater lake of the El Chichón Volcano. Microbiol Resour Announc 2023; 12:e0058323. [PMID: 37882561 PMCID: PMC10652845 DOI: 10.1128/mra.00583-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
We report the complete genome of Paenibacillus sp. strain VCA1, which was isolated from sediment from El Chichón Volcano. This genome consists of 6,690,819 bp and 6,312 coding sequences, with 51.8% G+C content. Whole-genome sequencing was performed to explore the strain's biocontrol and plant growth promotion properties.
Collapse
Affiliation(s)
- Nancy Abril Martínez-López
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana ,Tuxtla Gutiérrez, Chiapas, México
| | - Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano, Colonia Sección XVI, Tlalpan, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan
| | - Reiner Rincón-Rosales
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana ,Tuxtla Gutiérrez, Chiapas, México
| | - Adrián Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, Massachusetts, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Massachusetts, United Kingdom
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Asahi-Machi, Kurume-City, Fukuoka, Japan
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana ,Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|
12
|
Passari AK, Ruiz-Villafán B, Cruz-Bautista R, Díaz-Domínguez V, Rodríguez-Sanoja R, Sanchez S. Opportunities and challenges of microbial siderophores in the medical field. Appl Microbiol Biotechnol 2023; 107:6751-6759. [PMID: 37755507 PMCID: PMC10589192 DOI: 10.1007/s00253-023-12742-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Siderophores are low-molecular-weight secondary metabolites that function as iron chelators. Under iron-deficiency conditions, they are produced by a wide variety of microbes, allowing them to increase their iron uptake. The primary function of these compounds is the environmental iron scavenging and its transport into the cytosol. Iron is then reduced to its ferrous form to operate as an enzymatic cofactor for various functions, including respiration, nitrogen fixation, photosynthesis, methanogenesis, and amino acid synthesis. Depending on their functional group, siderophores are classified into hydroxamate, catecholate, phenolate, carboxylate, and mixed types. They have achieved great importance in recent years due to their medical applications as antimicrobial, antimalarial, or anticancer drugs, vaccines, and drug-delivery agents. This review integrates current advances in specific healthcare applications of microbial siderophores, delineating new opportunities and challenges as viable therapies to fight against diseases that represent crucial public health problems in the medical field.Key points• Siderophores are low-molecular-weight secondary metabolites functioning as iron chelators.• The siderophore's properties offer viable options to face diverse clinical problems.• Siderophores are alternatives for the enhancement of antibiotic activities.
Collapse
Affiliation(s)
- Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Valerie Díaz-Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
13
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
14
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
15
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
16
|
Maghembe RS, Mdoe FP, Makaranga A, Mpemba JA, Mark D, Mlay C, Moto EA, Mtewa AG. Complete genome sequence data of Priestia megaterium strain MARUCO02 isolated from marine mangrove-inhabited sediments of the Indian Ocean in the Bagamoyo Coast. Data Brief 2023. [DOI: 10.1016/j.dib.2023.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
17
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
18
|
Vaghela N, Gohel S. Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J Basic Microbiol 2023; 63:308-325. [PMID: 36336634 DOI: 10.1002/jobm.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Interest in cultivating valuable medicinal plants to collect bioactive components has risen extensively over the world to meet the demands of health care systems, pharmaceuticals, and food businesses. Farmers commonly use chemical fertilizers to attain maximal biomass and yield, which have negative effects on the growth, development, and bioactive constituents of such medicinally important plants. Because of its low cost, environmentally friendly behavior, and nondestructive impact on soil fertility, plant health, and human health, the use of beneficial rhizobial microbiota is an alternative strategy for increasing the production of useful medicinal plants under both standard and stressed conditions. Plant growth-promoting rhizobacteria (PGPR) associated with medicinal plants belong to the genera Azotobacter, Acinetobacter, Bacillus, Brevibacterium, Burkholderia, Exiguobacterium, Pseudomonas, Pantoea, Mycobacterium, Methylobacterium, and Serratia. These microbes enhance plant growth parameters by producing secondary metabolites, including enzymes and antibiotics, which help in nutrient uptake, enhance soil fertility, improve plant growth, and protect against plant pathogens. The role of PGPR in the production of biomass and their effect on the quality of bioactive compounds (phytochemicals) is described in this review. Additionally, the mitigation of environmental stresses including drought stress, saline stress, alkaline stress, and flooding stress to herbal plants is illustrated.
Collapse
Affiliation(s)
- Nishtha Vaghela
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Sangeeta Gohel
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
19
|
Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain Synechococcus sp. Strain PCC 7002. Appl Environ Microbiol 2023; 89:e0173222. [PMID: 36533965 PMCID: PMC9888192 DOI: 10.1128/aem.01732-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.
Collapse
|
20
|
A Four-Step Platform to Optimize Growth Conditions for High-Yield Production of Siderophores in Cyanobacteria. Metabolites 2023; 13:metabo13020154. [PMID: 36837773 PMCID: PMC9967094 DOI: 10.3390/metabo13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In response to Iron deprivation and in specific environmental conditions, the cyanobacteria Anabaena flos aquae produce siderophores, iron-chelating molecules that in virtue of their interesting environmental and clinical applications, are recently gaining the interest of the pharmaceutical industry. Yields of siderophore recovery from in vitro producing cyanobacterial cultures are, unfortunately, very low and reach most of the times only analytical quantities. We here propose a four-step experimental pipeline for a rapid and inexpensive identification and optimization of growth parameters influencing, at the transcriptional level, siderophore production in Anabaena flos aquae. The four-steps pipeline consists of: (1) identification of the promoter region of the operon of interest in the genome of Anabaena flos aquae; (2) cloning of the promoter in a recombinant DNA vector, upstream the cDNA coding for the Green Fluorescent Protein (GFP) followed by its stable transformation in Escherichia Coli; (3) identification of the environmental parameters affecting expression of the gene in Escherichia coli and their application to the cultivation of the Anabaena strain; (4) identification of siderophores by the combined use of high-resolution tandem mass spectrometry and molecular networking. This multidisciplinary, sustainable, and green pipeline is amenable to automation and is virtually applicable to any cyanobacteria, or more in general, to any microorganisms.
Collapse
|
21
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
22
|
Enzingmüller-Bleyl TC, Boden JS, Herrmann AJ, Ebel KW, Sánchez-Baracaldo P, Frankenberg-Dinkel N, Gehringer MM. On the trail of iron uptake in ancestral Cyanobacteria on early Earth. GEOBIOLOGY 2022; 20:776-789. [PMID: 35906866 DOI: 10.1111/gbi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.
Collapse
Affiliation(s)
| | - Joanne S Boden
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, UK
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Achim J Herrmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katharina W Ebel
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
23
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
24
|
Paquette AJ, Vadlamani A, Demirkaya C, Strous M, De la Hoz Siegler H. Nutrient management and medium reuse for cultivation of a cyanobacterial consortium at high pH and alkalinity. Front Bioeng Biotechnol 2022; 10:942771. [PMID: 36032714 PMCID: PMC9402938 DOI: 10.3389/fbioe.2022.942771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaliphilic cyanobacteria have gained significant interest due to their robustness, high productivity, and ability to convert CO2 into bioenergy and other high value products. Effective nutrient management, such as re-use of spent medium, will be essential to realize sustainable applications with minimal environmental impacts. In this study, we determined the solubility and uptake of nutrients by an alkaliphilic cyanobacterial consortium grown at high pH and alkalinity. Except for Mg, Ca, Co, and Fe, all nutrients are in fully soluble form. The cyanobacterial consortium grew well without any inhibition and an overall productivity of 0.15 g L−1 d−1 (AFDW) was achieved. Quantification of nutrient uptake during growth resulted in the empirical formula CH1.81N0.17O0.20P0.013S0.009 for the consortium biomass. We showed that spent medium can be reused for at least five growth/harvest cycles. After an adaptation period, the cyanobacterial consortium fully acclimatized to the spent medium, resulting in complete restoration of biomass productivity.
Collapse
Affiliation(s)
- Alexandre J. Paquette
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- *Correspondence: Alexandre J. Paquette,
| | | | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
25
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
26
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
27
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
28
|
Teta R, Esposito G, Kundu K, Stornaiuolo M, Scarpato S, Pollio A, Costantino V. A Glimpse at Siderophores Production by Anabaena flos-aquae UTEX 1444. Mar Drugs 2022; 20:md20040256. [PMID: 35447929 PMCID: PMC9025534 DOI: 10.3390/md20040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a strain of Anabaena flos-aquae UTEX 1444 was cultivated in six different concentrations of iron (III). Cultures were extracted with organic solvents and analyzed using our dereplication strategy, based on the combined use of high-resolution tandem mass spectrometry and molecular networking. The analysis showed the presence of the siderophores’ family, named synechobactins, only in the zero iron (III) treatment culture. Seven unknown synechobactin variants were present in the extract, and their structures have been determined by a careful HRMS/MS analysis. This study unveils the capability of Anabaena flos-aquae UTEX 1444 to produce a large array of siderophores and may be a suitable model organism for a sustainable scale-up exploitation of such bioactive molecules, for the bioremediation of contaminated ecosystems, as well as in drug discovery.
Collapse
Affiliation(s)
- Roberta Teta
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Germana Esposito
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Karishma Kundu
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Silvia Scarpato
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Antonino Pollio
- Department of Biology, Complesso Universitario Monte Sant’Angelo via Cinthia–Edificio 7, University of Naples Federico II, 80126 Napoli, Italy;
| | - Valeria Costantino
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
- Correspondence:
| |
Collapse
|
29
|
Heterologous Expression and Biochemical Analysis Reveal a Schizokinen-Based Siderophore Pathway in Leptolyngbya (Cyanobacteria). Appl Environ Microbiol 2022; 88:e0237321. [PMID: 35285240 DOI: 10.1128/aem.02373-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Siderophores are low molecular weight iron-chelating molecules that many organisms secrete to scavenge ferric iron from the environment. While cyanobacteria inhabit a wide range of environments with poor iron availability, only two siderophore families have been characterized from this phylum. Herein, we sought to investigate siderophore production in the marine genus, Leptolyngbya. A 12 open reading frame (14.5 kb) putative nonribosomal peptide synthetase-independent siderophore biosynthesis gene cluster, identified in the genome of Leptolyngbya sp. PCC 7376, was cloned and heterologously expressed in Escherichia coli. Under iron-limiting conditions, expression strains harboring the first seven genes (lidA to lidF), produced a potent siderophore, which was subsequently identified via UPLC-MS/MS and NMR as schizokinen. The enzymes encoded by the remaining genes (lidG1 to lidG5) did not appear to be active in E. coli, therefore their function could not be determined. Bioinformatic analysis revealed gene clusters with high homology to lidA to lidF in phylogenetically and biogeographically diverse cyanobacteria, suggesting that schizokinen-based siderophore production is widespread in this phylum. Siderophore yields in E. coli expression strains were significantly higher than those achieved by Leptolyngbya, highlighting the potential of this platform for producing siderophores of industrial value. IMPORTANCE Iron availability limits the growth of many microorganisms, particularly those residing in high nutrient-low chlorophyll aquatic environments. Therefore, characterizing iron acquisition pathways in phytoplankton is essential for understanding nutrient cycling in our oceans. The results of this study suggest that Leptolyngbya sp. PCC 7376, and many other cyanobacteria, use schizokinen-based iron chelators (siderophores) to scavenge iron from the environment. We have shown that these pathways are amenable to heterologous expression in E. coli, which expands the limited arsenal of known cyanobacterial siderophores and is advantageous for the downstream overproduction of relevant siderophores of ecological and industrial value.
Collapse
|
30
|
Abstract
Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host–pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet’s habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO2.
Collapse
|
31
|
Draft genome and description of Waterburya agarophytonicola gen. nov. sp. nov. (Pleurocapsales, Cyanobacteria): a seaweed symbiont. Antonie van Leeuwenhoek 2021; 114:2189-2203. [PMID: 34674103 PMCID: PMC8580901 DOI: 10.1007/s10482-021-01672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
This work introduces Waterburya agarophytonicola Bonthond and Shalygin gen. nov., sp. nov, a baeocyte producing cyanobacterium that was isolated from the rhodophyte Agarophyton vermiculophyllum (Ohmi) Gurgel et al., an invasive seaweed that has spread across the northern hemisphere. The new species genome reveals a diverse repertoire of chemotaxis and adhesion related genes, including genes coding for type IV pili assembly proteins and a high number of genes coding for filamentous hemagglutinin family (FHA) proteins. Among a genetic basis for the synthesis of siderophores, carotenoids and numerous vitamins, W. agarophytonicola is potentially capable of producing cobalamin (vitamin B12), for which A. vermiculophyllum is an auxotroph. With a taxonomic description of the genus and species and a draft genome, this study provides as a basis for future research, to uncover the nature of this geographically independent association between seaweed and cyanobiont.
Collapse
|
32
|
Sengupta S, Sahasrabuddhe D, Wangikar PP. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnol Adv 2021; 54:107816. [PMID: 34411662 DOI: 10.1016/j.biotechadv.2021.107816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are attractive candidates for photoautotrophic production of platform chemicals due to their inherent ability to utilize carbon dioxide as the sole carbon source. Metabolic pathways can be engineered more readily in cyanobacteria compared to higher photosynthetic organisms. Although significant progress has been made in pathway engineering, intracellular accumulation of the product is a potential bottleneck in large-scale production. Likewise, substrate uptake is known to limit growth and product formation. These limitations can potentially be addressed by targeted and controlled expression of transporter proteins in the metabolically engineered strains. This review focuses on the transporters that have been explored in cyanobacteria. To highlight the progress on characterization and application of cyanobacterial transporters, we applied text analytics to extract relevant information from over 1000 publications. We have categorized the transporters based on their source, their function and the solute they transport. Further, the review provides insights into the potential of transporters in the metabolic engineering of cyanobacteria for improved product titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
33
|
Cyanochelins, an Overlooked Class of Widely Distributed Cyanobacterial Siderophores, Discovered by Silent Gene Cluster Awakening. Appl Environ Microbiol 2021; 87:e0312820. [PMID: 34132591 DOI: 10.1128/aem.03128-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria require iron for growth and often inhabit iron-limited habitats, yet only a few siderophores are known to be produced by them. We report that cyanobacterial genomes frequently encode polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) biosynthetic pathways for synthesis of lipopeptides featuring β-hydroxyaspartate (β-OH-Asp), a residue known to be involved in iron chelation. Iron starvation triggered the synthesis of β-OH-Asp lipopeptides in the cyanobacteria Rivularia sp. strain PCC 7116, Leptolyngbya sp. strain NIES-3755, and Rubidibacter lacunae strain KORDI 51-2. The induced compounds were confirmed to bind iron by mass spectrometry (MS) and were capable of Fe3+ to Fe2+ photoreduction, accompanied by their cleavage, when exposed to sunlight. The siderophore from Rivularia, named cyanochelin A, was structurally characterized by MS and nuclear magnetic resonance (NMR) and found to contain a hydrophobic tail bound to phenolate and oxazole moieties followed by five amino acids, including two modified aspartate residues for iron chelation. Phylogenomic analysis revealed 26 additional cyanochelin-like gene clusters across a broad range of cyanobacterial lineages. Our data suggest that cyanochelins and related compounds are widespread β-OH-Asp-featuring cyanobacterial siderophores produced by phylogenetically distant species upon iron starvation. Production of photolabile siderophores by phototrophic cyanobacteria raises questions about whether the compounds facilitate iron monopolization by the producer or, rather, provide Fe2+ for the whole microbial community via photoreduction. IMPORTANCE All living organisms depend on iron as an essential cofactor for indispensable enzymes. However, the sources of bioavailable iron are often limited. To face this problem, microorganisms synthesize low-molecular-weight metabolites capable of iron scavenging, i.e., the siderophores. Although cyanobacteria inhabit the majority of the Earth's ecosystems, their repertoire of known siderophores is remarkably poor. Their genomes are known to harbor a rich variety of gene clusters with unknown function. Here, we report the awakening of a widely distributed class of silent gene clusters by iron starvation to yield cyanochelins, β-hydroxy aspartate lipopeptides involved in iron acquisition. Our results expand the limited arsenal of known cyanobacterial siderophores and propose products with ecological function for a number of previously orphan gene clusters.
Collapse
|
34
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Iron transport in cyanobacteria - from molecules to communities. Trends Microbiol 2021; 30:229-240. [PMID: 34175176 DOI: 10.1016/j.tim.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
Iron is an essential micronutrient for the ecologically important photoautotrophic cyanobacteria which are found across diverse aquatic environments. Low concentrations and poor bioavailability of certain iron species exert a strong control on cyanobacterial growth, affecting ecosystem structure and biogeochemical cycling. Here, we review the iron-acquisition pathways cyanobacteria utilize for overcoming these challenges. As the molecular details of cyanobacterial iron transport are being uncovered, an overall scheme of how cyanobacteria handle and exploit this scarce and redox-active micronutrient is emerging. Importantly, the range of biological solutions used by cyanobacteria to increase iron fluxes goes beyond transport and includes behavioral traits of colonial cyanobacteria and intricate cyanobacteria-bacteria interactions.
Collapse
|
36
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
37
|
Abstract
Photo-induced Advanced Oxidation Processes (AOPs) using H2O2 or S2O82− as radical precursors were assessed for the abatement of six different contaminants of emerging concern (CECs). In order to increase the efficiency of these AOPs at a wider pH range, the catechol organic functional compound was studied as a potential assistant in photo-driven iron-based processes. Different salinity regimes were also studied (in terms of Cl− concentration), namely low salt water (1 g·L−1) or a salt–water (30 g·L−1) matrix. Results obtained revealed that the presence of catechol could efficiently assist the photo-Fenton system and partly promote the photo-induced S2O82− system, which was highly dependent on salinity. Regarding the behavior of individual CECs, the photo-Fenton reaction was able to enhance the degradation of all six CECs, meanwhile the S2O82−-based process showed a moderate enhancement for acetaminophen, amoxicillin or clofibric acid. Finally, a response-surface methodology was employed to determine the effect of pH and catechol concentration on the different photo-driven processes. Catechol was removed during the degradation process. According to the results obtained, the presence of catechol in organic macromolecules can bring some advantages in water treatment for either freshwater (wastewater) or seawater (maritime or aquaculture industry).
Collapse
|
38
|
Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576. Microorganisms 2021; 9:microorganisms9020431. [PMID: 33669780 PMCID: PMC7922959 DOI: 10.3390/microorganisms9020431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Anabaena sp. UTEX 2576 metabolizes multiple nitrogen (N) sources and is deemed a biotechnological platform for chemical production. Cyanobacteria have been identified as prolific producers of biofertilizers, biopolymers, biofuels, and other bioactive compounds. Here, we analyze the effect of different N-sources and Fe availability on the bioproduction of phycobiliproteins and β-carotene. We characterize nutrient demand in modified BG11 media, including data on CO2 fixation rates, N-source consumption, and mineral utilization (e.g., phosphorus (P), and 11 metallic elements). Results suggest that non-diazotrophic cultures grow up to 60% faster than diazotrophic cells, resulting in 20% higher CO2-fixation rates. While the production of β-carotene was maximum in medium with NaNO3, Fe starvation increased the cellular abundance of C-phycocyanin and allophycocyanin by at least 22%. Compared to cells metabolizing NaNO3 and N2, cultures adapted to urea media increased their P, calcium and manganese demands by at least 72%, 97% and 76%, respectively. Variations on pigmentation and nutrient uptake were attributed to changes in phycocyanobilin biosynthesis, light-induced oxidation of carotenoids, and urea-promoted peroxidation. This work presents insights into developing optimal Anabaena culture for efficient operations of bioproduction and wastewater bioremediation with cyanobacteria.
Collapse
|
39
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
40
|
Wu Q, Throckmorton K, Maity M, Chevrette MG, Braun DR, Rajski SR, Currie CR, Thomas MG, Bugni TS. Bacillibactins E and F from a Marine Sponge-Associated Bacillus sp. JOURNAL OF NATURAL PRODUCTS 2021; 84:136-141. [PMID: 33337146 PMCID: PMC7856188 DOI: 10.1021/acs.jnatprod.0c01170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical investigation of a marine sponge-associated Bacillus sp. led to the discovery of bacillibactins E and F (1 and 2). Despite containing the well-established cyclic triester core of iron-binding natural products such as enterobactin, bacillibactins E and F (1 and 2) are the first bacterial siderophores that contain nicotinic and benzoic acid moieties. The structures of the new compounds, including their absolute configurations, were determined by extensive spectroscopic analyses and Marfey's method. A plausible biosynthetic pathway to 1 and 2 is proposed; this route bears great similarity to other previously established bacillibactin-like pathways but appears to differentiate itself by a promiscuous DhbE, which likely installs the nicotinic moiety of 1 and the benzoic acid group of 2.
Collapse
Affiliation(s)
- Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Plant Pathology, Wisconsin Institutes for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
41
|
Basics of Fungal Siderophores: Classification, Iron Transport and Storage, Chemistry and Biosynthesis, Application, and More. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Application of Siderophore in Crop Productivity and Remediation of Heavy Metal-Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Hunnestad AV, Vogel AIM, Armstrong E, Digernes MG, Ardelan MV, Hohmann-Marriott MF. From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper. Microorganisms 2020; 8:E1889. [PMID: 33260337 PMCID: PMC7760322 DOI: 10.3390/microorganisms8121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
Collapse
Affiliation(s)
- Annie Vera Hunnestad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Anne Ilse Maria Vogel
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Maria Guadalupe Digernes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Martin Frank Hohmann-Marriott
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| |
Collapse
|
44
|
Sutak R, Camadro JM, Lesuisse E. Iron Uptake Mechanisms in Marine Phytoplankton. Front Microbiol 2020; 11:566691. [PMID: 33250865 PMCID: PMC7676907 DOI: 10.3389/fmicb.2020.566691] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Oceanic phytoplankton species have highly efficient mechanisms of iron acquisition, as they can take up iron from environments in which it is present at subnanomolar concentrations. In eukaryotes, three main models were proposed for iron transport into the cells by first studying the kinetics of iron uptake in different algal species and then, more recently, by using modern biological techniques on the model diatom Phaeodactylum tricornutum. In the first model, the rate of uptake is dependent on the concentration of unchelated Fe species, and is thus limited thermodynamically. Iron is transported by endocytosis after carbonate-dependent binding of Fe(III)' (inorganic soluble ferric species) to phytotransferrin at the cell surface. In this strategy the cells are able to take up iron from very low iron concentration. In an alternative model, kinetically limited for iron acquisition, the extracellular reduction of all iron species (including Fe') is a prerequisite for iron acquisition. This strategy allows the cells to take up iron from a great variety of ferric species. In a third model, hydroxamate siderophores can be transported by endocytosis (dependent on ISIP1) after binding to the FBP1 protein, and iron is released from the siderophores by FRE2-dependent reduction. In prokaryotes, one mechanism of iron uptake is based on the use of siderophores excreted by the cells. Iron-loaded siderophores are transported across the cell outer membrane via a TonB-dependent transporter (TBDT), and are then transported into the cells by an ABC transporter. Open ocean cyanobacteria do not excrete siderophores but can probably use siderophores produced by other organisms. In an alternative model, inorganic ferric species are transported through the outer membrane by TBDT or by porins, and are taken up by the ABC transporter system FutABC. Alternatively, ferric iron of the periplasmic space can be reduced by the alternative respiratory terminal oxidase (ARTO) and the ferrous ions can be transported by divalent metal transporters (FeoB or ZIP). After reoxidation, iron can be taken up by the high-affinity permease Ftr1.
Collapse
Affiliation(s)
- Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | | | | |
Collapse
|
45
|
Niessen N, Soppa J. Regulated Iron Siderophore Production of the Halophilic Archaeon Haloferax volcanii. Biomolecules 2020; 10:biom10071072. [PMID: 32709147 PMCID: PMC7407949 DOI: 10.3390/biom10071072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
Iron is part of many redox and other enzymes and, thus, it is essential for all living beings. Many oxic environments have extremely low concentrations of free iron. Therefore, many prokaryotic species evolved siderophores, i.e., small organic molecules that complex Fe3+ with very high affinity. Siderophores of bacteria are intensely studied, in contrast to those of archaea. The haloarchaeon Haloferax volcanii contains a gene cluster that putatively encodes siderophore biosynthesis genes, including four iron uptake chelate (iuc) genes. Underscoring this hypothesis, Northern blot analyses revealed that a hexacistronic transcript is generated that is highly induced under iron starvation. A quadruple iuc deletion mutant was generated, which had a growth defect solely at very low concentrations of Fe3+, not Fe2+. Two experimental approaches showed that the wild type produced and exported an Fe3+-specific siderophore under low iron concentrations, in contrast to the iuc deletion mutant. Bioinformatic analyses revealed that haloarchaea obtained the gene cluster by lateral transfer from bacteria and enabled the prediction of enzymatic functions of all six gene products. Notably, a biosynthetic pathway is proposed that starts with aspartic acid, uses several group donors and citrate, and leads to the hydroxamate siderophore Schizokinen.
Collapse
Affiliation(s)
- Natalie Niessen
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Campus Callaghan, Faculty of Health and Medicine, School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
46
|
Hofmann M, Heine T, Schulz V, Hofmann S, Tischler D. Draft genomes and initial characteriaztion of siderophore producing pseudomonads isolated from mine dump and mine drainage. ACTA ACUST UNITED AC 2019; 25:e00403. [PMID: 31867228 PMCID: PMC6906695 DOI: 10.1016/j.btre.2019.e00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
High and stable siderophore production. Identification of siderophore biosynthesis gene clusters. Beech wood hydrolysate as alternative carbon source.
Siderophores are of high interest for biotechnological, pharmaceutical, agricultural and industrial applications. Although they are synthesized by various organisms, the yield is usually low which hindrances their suitability for broad range uses. Thus, it is necessary to identify novel producers and to increase the understanding of the biosynthesis pathways. Herein we report the isolation of two novel Pseudomonas strains and the identification of the gene clusters for the biosynthesis of pseudomonine as well as pyochelin and pyoverdine.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Thomas Heine
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Vivian Schulz
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sarah Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany.,Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|