1
|
Ersoydan S, Rustemeyer T. Investigating the Anti-Inflammatory Activity of Various Brown Algae Species. Mar Drugs 2024; 22:457. [PMID: 39452865 PMCID: PMC11509244 DOI: 10.3390/md22100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
This literature review investigated the anti-inflammatory properties of brown algae, emphasizing their potential for dermatological applications. Due to the limitations and side effects associated with corticosteroids and immunomodulators, interest has been growing in harnessing therapeutic qualities from natural products as alternatives to traditional treatments for skin inflammation. This review explored the bioactive compounds in brown algae, specifically looking into two bioactive compounds, namely, fucoidans and phlorotannins, which are widely known to exhibit anti-inflammatory properties. This review synthesized the findings from various studies, highlighting how these compounds can mitigate inflammation by mechanisms such as reducing oxidative stress, inhibiting protein denaturation, modulating immune responses, and targeting inflammatory pathways, particularly in conditions like atopic dermatitis. The findings revealed species-specific variations influenced by the molecular weight and sulphate content. Challenges related to skin permeability were addressed, highlighting the potential of nanoformulations and penetration enhancers to improve delivery. While the in vivo results using animal models provided positive results, further clinical trials are necessary to confirm these outcomes in humans. This review concludes that brown algae hold substantial promise for developing new dermatological treatments and encourages further research to optimize extraction methods, understand the molecular mechanisms, and address practical challenges such as sustainability and regulatory compliance. This review contributes to the growing body of evidence supporting the integration of marine-derived compounds into therapeutic applications for inflammatory skin diseases.
Collapse
Affiliation(s)
- Selin Ersoydan
- Faculty of Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Thomas Rustemeyer
- Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chwil M, Mihelič R, Matraszek-Gawron R, Terlecka P, Skoczylas MM, Terlecki K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals (Basel) 2024; 17:1321. [PMID: 39458962 PMCID: PMC11510008 DOI: 10.3390/ph17101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0-71.3/46.0-63.0), carbohydrates (16.0-20.0/12.0-17.0), fats (0.9-14.2/6.4-14.3), polyphenolic compounds and phenols (7.3-33.2/7.8-44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Rok Mihelič
- Department of Agronomy, University of Ljubljana, Jamnikarjeva 101 Street, 1000 Ljubljana, Slovenia;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Paulina Terlecka
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Basic Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H Street, 20-708 Lublin, Poland;
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Solidarności 8 Street, 20-841 Lublin, Poland;
| |
Collapse
|
3
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
4
|
Amuso D, Medoro A, Scapagnini G, Gambacorta A, Davinelli S, Iorio EL, Bonetti LR, Sbarbati A. A pilot study on the efficacy of a seaweed mud application in the treatment of cellulite. J Cosmet Dermatol 2024; 23:2181-2189. [PMID: 38450959 DOI: 10.1111/jocd.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Cellulite represents a common multi-factorial condition that affects nearly all women and is now recognized as a clinical condition associated with systemic factors and negative psychological effects. Several noninvasive and minimally invasive treatments were developed during the last few years, but limited evidence supports many of them due to lack of evidence, insufficient participants, and potential adverse effects. METHODS This study aimed to evaluate the efficacy of a seaweed mud application in improving both the structure and function of tissues affected by cellulite. Sixty women with cellulite underwent 4-week applications of seaweed mud on the buttocks and thighs. The following assessments were performed at baseline and after the last treatment: photographic, clinical, and anthropometric evaluation; tests for elasticity and hydration; ultrasonography of cellulite nodules; and cellulite biopsies in the trochanteric region. Patient satisfaction was assessed using a 5-point Likert-scale questionnaire. RESULTS The treatment resulted in a significant improvement in the severity of cellulite severity between the initial assessment and the 4-week follow-up, with enhanced structure, elasticity, and hydration of the affected tissues. Microscopic analysis of the cellulite biopsies revealed a significant restoration of dermal organization with induced collagen synthesis and reduced inflammation, edema, and lipid deposition following the 4-week seaweed mud applications. Additionally, the treatment led to a remarkable improvement in comfort and satisfaction as well as a reduction in body circumferences. CONCLUSIONS The cosmetic application of seaweed mud has proven to be a safe, non-invasive treatment for improving the tissue alterations characteristic of cellulite.
Collapse
Affiliation(s)
- Domenico Amuso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children & Adults, Division of Pathology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Fekete G, Sebők A, Klátyik S, Varga ZI, Grósz J, Czinkota I, Székács A, Aleksza L. Comparative Analysis of Laboratory-Based and Spectroscopic Methods Used to Estimate the Algal Density of Chlorella vulgaris. Microorganisms 2024; 12:1050. [PMID: 38930433 PMCID: PMC11205756 DOI: 10.3390/microorganisms12061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorella vulgaris is of great importance in numerous exploratory or industrial applications (e.g., medicals, food, and feed additives). Rapid quantification of algal biomass is crucial in photobioreactors for the optimization of nutrient management and the estimation of production. The main goal of this study is to provide a simple, rapid, and not-resource-intensive estimation method for determining the algal density of C. vulgaris according to the measured parameters using UV-Vis spectrophotometry. Comparative assessment measurements were conducted with seven different methods (e.g., filtration, evaporation, chlorophyll a extraction, and detection of optical density and fluorescence) to determine algal biomass. By analyzing the entire spectra of diluted algae samples, optimal wavelengths were determined through a stepwise series of linear regression analyses by a novel correlation scanning method, facilitating accurate parameter estimation. Nonlinear formulas for spectrometry-based estimation processes were derived for each parameter. As a result, a general formula for biomass concentration estimation was developed, with recommendations for suitable measuring devices based on algae concentration levels. New values for magnesium content and the average single-cell weight of C. vulgaris were established, in addition to the development of a rapid, semiautomated cell counting method, improving efficiency and accuracy in algae quantification for cultivation and biotechnology applications.
Collapse
Affiliation(s)
- György Fekete
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - András Sebők
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Szandra Klátyik
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Zsolt István Varga
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - János Grósz
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - Imre Czinkota
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - András Székács
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
| | - László Aleksza
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (G.F.); (A.S.); (S.K.); (Z.I.V.); (J.G.); (I.C.); (L.A.)
- Profikomp Environmental Technologies Inc., Kühne Ede u. 7, H-2100 Gödöllő, Hungary
| |
Collapse
|
6
|
Cassani L, Silva A, Carpena M, Pellegrini MC, García-Pérez P, Grosso C, Barroso MF, Simal-Gandara J, Gómez-Zavaglia A, Prieto MA. Phytochemical compounds with promising biological activities from Ascophyllum nodosum extracts using microwave-assisted extraction. Food Chem 2024; 438:138037. [PMID: 38011789 DOI: 10.1016/j.foodchem.2023.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Phytochemical-rich antioxidant extracts were obtained from Ascophyllum nodosum (AN) using microwave-assisted extraction (MAE). Critical extraction factors such as time, pressure, and ethanol concentration were optimized by response surface methodology with a circumscribed central composite design. Under the optimal MAE conditions (3 min, 10.4 bar, 46.8 % ethanol), the maximum recovery of phytochemical compounds (polyphenols and fucoxanthin) with improved antioxidant activity from AN was obtained. In addition, the optimized AN extract showed significant biological activities as it was able to scavenge reactive oxygen and nitrogen species, inhibit central nervous system-related enzymes, and exhibit cytotoxic activity against different cancer cell lines. In addition, the optimized AN extract showed antimicrobial, and anti-quorum sensing activities, indicating that this extract could offer direct and indirect protection against infection by pathogenic microorganisms. This work demonstrated that the sustainably obtained AN extract could be an emerging, non-toxic, and natural ingredient with potential to be included in different applications.
Collapse
Affiliation(s)
- Lucía Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Argentina
| | - Pascual García-Pérez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| |
Collapse
|
7
|
Costa JP, Custódio L, Reis CP. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar Drugs 2023; 21:620. [PMID: 38132941 PMCID: PMC10744737 DOI: 10.3390/md21120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of "blue biotechnology" have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, "blue biotechnology", together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future's cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in "blue biotechnology" and its relevance to the sustainable development of innovative cosmetics.
Collapse
Affiliation(s)
- João Pedro Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Lim MW, Yow YY, Gew LT. LC-MS profiling-based non-targeted secondary metabolite screening for deciphering cosmeceutical potential of Malaysian algae. J Cosmet Dermatol 2023; 22:2810-2815. [PMID: 37313630 DOI: 10.1111/jocd.15794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Application of natural resources from the marine environment in the cosmeceutical industry is gaining great attention. AIM This study pursues to discover the cosmeceutical potential of two Malaysian algae, Sargassum sp. and Kappaphycus sp. by determining their antioxidant capacity and assessing the presence of their secondary metabolites with cosmeceutical potential using non-targeted metabolite profiling. METHODS Metabolite profiling using Quadrupole Time-of-Flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) in the Electrospray Ionization (ESI) mode resulted in 110 putative metabolites in Sargassum sp. and 47 putative metabolites in Kappaphycus sp. and were grouped according to their functions. To the best of our knowledge, the bioactive compounds of both algae have not been studied in any great detail. This is the first report to explore their cosmeceutical potential. RESULTS Six antioxidants were detected in Sargassum sp., including fucoxanthin, (3S, 4R, 3'R)-4-Hydroxyalloxanthin, enzacamene N-stearoyl valine, 2-hydroxy-hexadecanoic acid, and metalloporphyrins. Meanwhile, three antioxidants detected in Kappahycus sp., namely Tanacetol A, 2-fluoro palmitic acid and idebenone metabolites. Three antioxidants are found in both algae species, namely, 3-tert-Butyl-5-methylcatechol, (-)-isoamijiol, and (6S)-dehydrovomifoliol. Anti-inflammatory metabolites such as 5(R)-HETE, protoverine, phytosphingosine, 4,5-Leukotriene-A4, and 5Z-octadecenoic acid were also found in both species. Sargassum sp. possesses higher antioxidant capacity as compared to Kappahycus sp. which may be linked to its number of antioxidant compounds found through LC-MS. CONCLUSIONS Hence, our results conclude that Malaysian Sargassum sp. and Kappaphycus sp. are potential natural cosmeceutical ingredients as we aim to produce algae cosmeceutical products using native algae.
Collapse
Affiliation(s)
- Min Wen Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Lai Ti Gew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Wu YJ, Huang TY, Huang CY, Lin CC, Wang WL, Huang HC, Liu SYV, Chao CH, Sheu JH. Anti-Inflammatory Halogenated Monoterpenes from the Red Alga Portieria hornemannii. Mar Drugs 2023; 21:493. [PMID: 37755106 PMCID: PMC10533049 DOI: 10.3390/md21090493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
The chemical investigation of a red alga Portieria hornemannii enabled the identification of three new halogenated monoterpenes (1-3) along with two previously identified metabolites (4 and 5). Their structures were determined by spectroscopic analysis and also by utilizing single-crystal diffraction analysis and quantum chemical calculation, as well as by comparison with literature data. Further corrections for dichloro and dibromo carbons using the sorted training set (STS) method were established in this study to significantly improve the accuracy in GIAO 13C NMR calculation of compounds 1-3. To discover the potential bioactive metabolites from P. hornemannii, the anti-inflammatory activities of all compounds were examined. Compounds 1 and 3-5 showed significant anti-inflammatory activity to inhibit the production of pro-inflammatory cytokines in the LPS-stimulated mature dendritic cells.
Collapse
Affiliation(s)
- Yuan-Jhong Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (Y.-J.W.); (C.-Y.H.); (S.-Y.V.L.)
| | - Tzu-Yin Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan;
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (Y.-J.W.); (C.-Y.H.); (S.-Y.V.L.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan;
| | - Shang-Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (Y.-J.W.); (C.-Y.H.); (S.-Y.V.L.)
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (Y.-J.W.); (C.-Y.H.); (S.-Y.V.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Mago Y, Sharma Y, Thakran Y, Mishra A, Tewari S, Kataria N. Next-Generation Organic Beauty Products Obtained from Algal Secondary Metabolites: A Sustainable Development in Cosmeceutical Industries. Mol Biotechnol 2023:10.1007/s12033-023-00841-9. [PMID: 37603213 DOI: 10.1007/s12033-023-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Algae lay over most of the earth's habitats, and it is said that there are more algal cells in water than there are stars in the sky. They are among the wealthiest marine resources that are to be deemed harmless, with hardly any deleterious consequences. Recently, they have received a lot of consideration to be used in cosmeceuticals. Cosmetics encompass synthetic concoctions that are extremely toxic to the environment. Due to their higher molecular size, synthetic cosmetic items induce undesirable side effects and inadequate absorption rates. Consequently, utilizing algae or their secondary metabolites in cosmetics has won multiple votes. Various secondary metabolites synthesized from algae are known to provide skin advantages, such as ultraviolet protection and reduction of skin flaccidity, rough texture, and wrinkles. The tangent drawn here using algae reduces the inorganic/organic chemicals used in the industry that are known to accumulate and affect other organisms and thus opens a pandora's box of ways to a less-polluted environment. The alga is indeed very intriguing. According to the reported studies, algal cells provide biosorption, bio-assimilation, biotransformation, and biodegradation, making them suitable for the eradication of chronic and harmful contaminants from the environment. Another rapid innovation is the product's sustainability. While presenting and marketing new algal products, cosmetics producers have greatly highlighted that they are eco-friendly. This review thus accentuates the significance of using algae and their secondary metabolites in cosmetics to produce extensive variety of products that include sunscreens, moisturizers, anti-aging creams, colorants, and hair care items and extensive insight on the possible remedial capacities of algae species against environmentally dangerous substances in the context of cosmetic chemicals.
Collapse
Affiliation(s)
- Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashita Sharma
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Thakran
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anurag Mishra
- Department of Science and Technology, New Delhi, 110030, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
11
|
Mousavi SE, Razaghi S, Emami N, Yegdaneh A. A Review on the Cytotoxicity and Antibacterial Effect of Marine Organisms of Persian Gulf. Adv Biomed Res 2023; 12:195. [PMID: 37694247 PMCID: PMC10492621 DOI: 10.4103/abr.abr_290_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 09/12/2023] Open
Abstract
Marine organisms contain several natural products and bioactive compounds, including hydrolyzed proteins, antioxidant peptides, gelatin, collagen, ω-3 unsaturated fatty acids, vitamin A, vitamin D, calcium phosphate, hydroxyapatite, chitosan, lectin, and various toxins. They can inhibit diverse diseases, be used in pharmaceutical compounds, or as antibiotics and pigments. In this regard, these microorganisms are of crucial medicinal and economical importance. Thanks to new technologies and advanced laboratory methods, bioactive compounds can be extracted from aquatic organisms. In this review study, the cytotoxicity (IC50) and antibacterial effect of various extracts from marine organisms of the Persian Gulf are explored, compiled, and compared. Due to their easy accessibility, most of the studies are green, red, and brown algae.
Collapse
Affiliation(s)
- Seyed Erfan Mousavi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Sheyda Razaghi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Dini I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023; 28:molecules28104032. [PMID: 37241773 DOI: 10.3390/molecules28104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
13
|
Jayawardhana HHACK, Jayawardena TU, Sanjeewa KKA, Liyanage NM, Nagahawatta DP, Lee HG, Kim JI, Jeon YJ. Marine Algal Polyphenols as Skin Protective Agents: Current Status and Future Prospectives. Mar Drugs 2023; 21:md21050285. [PMID: 37233479 DOI: 10.3390/md21050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
The skin is the outermost anatomical barrier, which plays a vital role in the maintenance of internal homeostasis and protection against physical, chemical, and biological detractors. Direct contact with various stimuli leads to several physiological changes that are ultimately important for the growth of the cosmetic industry. Due to the consequences of using synthetic compounds in skincare and cosmeceutical-related industries, the pharmaceutical and scientific communities have recently shifted their focus to natural ingredients. The nutrient-rich value of algae, which are some of the most interesting organisms in marine ecosystems, has attracted attention. Secondary metabolites isolated from seaweeds are potential candidates for a wide range of economic applications, including food, pharmaceuticals, and cosmetics. An increasing number of studies have focused on polyphenol compounds owing to their promising biological activities against oxidation, inflammation, allergies, cancers, melanogenesis, aging, and wrinkles. This review summarizes the potential evidence of the beneficial properties and future perspectives of using marine macroalgae-derived polyphenolic compounds for advancing the cosmetic industry.
Collapse
Affiliation(s)
- H H A C K Jayawardhana
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - K K A Sanjeewa
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
14
|
Biopigments of Microbial Origin and Their Application in the Cosmetic Industry. COSMETICS 2023. [DOI: 10.3390/cosmetics10020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Along with serving as a source of color, many microbial pigments have gained attention as interesting bioactive molecules with potential health advantages. These pigments have several applications in the food, agrochemical, medicine, and cosmetic industries. They have attracted the attention of these industries due to their high production value, low cost, stability, and biodegradability. Recently, many consumers worldwide have noted the impact of synthetic dyes; thus, natural pigments are more in demand than synthetic colors. On the other hand, the cosmetic industry has been moving toward greener manufacturing, from the formulation to the packaging material. Microbial pigments have several applications in the field of cosmetics due to their photoprotection, antioxidant, and antiaging properties, including inhibiting melanogenesis and acting as natural colorants for cosmetics, as some microorganisms are rich in pigments. More investigations are required to estimate the safety and efficacy of employing microbial pigments in cosmetic products. Furthermore, it is necessary to obtain information about DNA sequencing, metabolic pathways, and genetic engineering. In addition, unique habitats should be explored for novel pigments and new producing strains. Thus, new microbial pigments could be of consideration to the cosmetic industry, as they are ideal for future cosmetics with positive health effects.
Collapse
|
15
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
16
|
Goyal N, Jerold F. Biocosmetics: technological advances and future outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25148-25169. [PMID: 34825334 PMCID: PMC8616574 DOI: 10.1007/s11356-021-17567-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 04/16/2023]
Abstract
The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Frankline Jerold
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
17
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
18
|
Aung WW, Panich K, Watthanophas S, Naridsirikul S, Ponphaiboon J, Krongrawa W, Kulpicheswanich P, Limmatvapirat S, Limmatvapirat C. Preparation of Bioactive De-Chlorophyll Rhein-Rich Senna alata Extract. Antibiotics (Basel) 2023; 12:antibiotics12010181. [PMID: 36671382 PMCID: PMC9854576 DOI: 10.3390/antibiotics12010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Senna alata leaves display various biological activities as a result of their rhein and phenolic composition. The objective of this study was to develop bioactive de-chlorophyll rhein-rich S. alata extracts. The rhein content was quantified using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. The best process parameters for maximizing rhein were established using ultrasound-assisted extraction (UAE). The optimal conditions for the parameters were determined using the Box-Behnken design (BBD); 95% v/v ethanol was used as the extraction solvent at 59.52 °C for 18.4 min with a solvent-to-solid ratio of 25.48:1 (mL/g) to obtain the predicted value of rhein at 10.44 mg/g extract. However, the color of the rhein-rich extract remained dark brown. For the removal of chlorophyll, liquid-liquid extraction with vegetable oils and adsorption with bleaching agents were employed. The bleaching agents were significantly more effective at removing chlorophyll and had less of an effect on the reduction in rhein content than vegetable oils. The presence of rhein and phenolics in the de-chlorophyll extracts might be responsible for their antioxidant, anti-inflammatory, and antibacterial activities. These findings indicate that rhein-rich extract and its de-chlorophyll extracts possess sufficient biological activities for the further development of cosmeceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokpon Panich
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Suchawalee Watthanophas
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sutada Naridsirikul
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | | | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: ; Tel.: +66-34-255800; Fax: +66-34-255801
| |
Collapse
|
19
|
Li Q, Wang C, Li X, Zhang J, Zhang Z, Yang K, Ouyang J, Zha S, Sha L, Ge J, Chen Z, Gu Z. Epidermis-on-a-chip system to develop skin barrier and melanin mimicking model. J Tissue Eng 2023; 14:20417314231168529. [PMID: 37114033 PMCID: PMC10126702 DOI: 10.1177/20417314231168529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In vitro skin models are rapidly developing and have been widely used in various fields as an alternative to traditional animal experiments. However, most traditional static skin models are constructed on Transwell plates without a dynamic three-dimensional (3D) culture microenvironment. Compared with native human and animal skin, such in vitro skin models are not completely biomimetic, especially regarding their thickness and permeability. Therefore, there is an urgent need to develop an automated biomimetic human microphysiological system (MPS), which can be used to construct in vitro skin models and improve bionic performance. In this work, we describe the development of a triple-well microfluidic-based epidermis-on-a-chip (EoC) system, possessing epidermis barrier and melanin-mimicking functions, as well as being semi-solid specimen friendly. The special design of our EoC system allows pasty and semi-solid substances to be effectively utilized in testing, as well as allowing for long-term culturing and imaging. The epidermis in this EoC system is well-differentiated, including basal, spinous, granular, and cornified layers with appropriate epidermis marker (e.g. keratin-10, keratin-14, involucrin, loricrin, and filaggrin) expression levels in corresponding layers. We further demonstrate that this organotypic chip can prevent permeation of over 99.83% of cascade blue (a 607 Da fluorescent molecule), and prednisone acetate (PA) was applied to test percutaneous penetration in the EoC. Finally, we tested the whitening effect of a cosmetic on the proposed EoC, thus demonstrating its efficacy. In summary, we developed a biomimetic EoC system for epidermis recreation, which could potentially serve as a useful tool for skin irritation, permeability, cosmetic evaluation, and drug safety tests.
Collapse
Affiliation(s)
- Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Xiaoran Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zilin Zhang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Keyu Yang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jun Ouyang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Shaohui Zha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Lifeng Sha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Zaozao Chen, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou #2, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
| |
Collapse
|
20
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
21
|
Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw. FERMENTATION 2022. [DOI: 10.3390/fermentation8120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cultivation of microalgae in waste digestate is a promising cost-effective and environmentally friendly strategy for algal biomass accumulation and valuable product production. Two different digestates obtained as by-products of the anaerobic fermentation at 35 °C and 55 °C of wheat straw as a renewable source for biogas production in laboratory-scale bioreactors were tested as cultivation media for microalgae after pretreatment with active carbon for clarification. The strains of microalgae involved were the red marine microalga Porphyridium cruentum, which reached 4.7 mg/mL dry matter when grown in thermophilic digestate and green freshwater microalga-Scenedesmus acutus, whose growth was the highest—7.3 mg/mL in the mesophilic digestate. During cultivation, algae reduced the available nutrient components in the liquid digestate at the expense of increasing their biomass. This biomass can find further applications in cosmetics, pharmacy, and feed. The nitrogen and phosphorus uptake from both digestates during algae cultivation was monitored and modeled. The results led to the idea of nonlinear dynamic approximations with an exponential character. The purpose was to develop relatively simple nonlinear dynamic models based on available experimental data, as knowing the mechanisms of the considered processes can permit creating protocols for industrial-scale algal production toward obtaining economically valuable products from microalgae grown in organic waste digestate.
Collapse
|
22
|
Kasanah N, Ulfah M, Imania O, Hanifah AN, Marjan MID. Rhodophyta as Potential Sources of Photoprotectants, Antiphotoaging Compounds, and Hydrogels for Cosmeceutical Application. Molecules 2022; 27:7788. [PMID: 36431889 PMCID: PMC9697178 DOI: 10.3390/molecules27227788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Seaweeds are macroscopic, multicellular, eukaryotic and photosynthetic organisms, and are a source of chemical diversity with powerful biological activities for diversified industrial applications including cosmeceuticals. Red seaweeds (Rhodophyta) are good sources of Mycosporine-like amino acids (MAA) for photoprotectant and antiphotoaging compounds. In addition, Rhodophyta are also good sources for hydrogel compounds that are used widely in the food, pharmaceutical and cosmeceutical industries as gelling agents, moisturizers or for their antiphotoaging effects. Our survey and ongoing studies revealed that the biodiversity of Indonesian Rhodophyta is rich and is a treasure trove for cosmeceutical agents including MAA and hydrogels. This study delivers valuable information for identifying potential red seaweeds in screening and searching for cosmeceutical agents.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Maria Ulfah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Okmalisda Imania
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Annisa Nur Hanifah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
23
|
Lu Z, Xia Q, Cheng Y, Lu Q, Li Y, Zeng N, Luan X, Li Y, Fan L, Luo D. Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. J Cosmet Dermatol 2022; 21:6261-6269. [PMID: 35816390 DOI: 10.1111/jocd.15230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ultraviolet A (UVA) radiation causes skin damage. Recently, natural compounds have become an interest to protect skin from UV-induced photodamages. METHODS In this study, we investigated the protective effects of hesperetin, a citrus flavonoid, on UVA-induced oxidative stress, inflammation, apoptosis, and photoaging. RESULTS Our results showed that hesperetin increased the cell viability, suppressed the intracellular ROS levels, and decreased the expression of MMPs including MMP-1 and MMP-3, pro-inflammatory cytokines including IL-6 and COX-2 in UVA-irradiated HDFs. Besides, hesperetin exerted an anti-apoptotic effect by increasing expression of anti-apoptotic protein Bcl-2 and decreasing expression of pro-apoptotic protein Bax. Moreover, these anti-photodamage effects were mediated by inhibition of ERK, p38/AP-1, and NF-κb/p65 phosphorylation. CONCLUSION Therefore, hesperetin may be useful in the prevention of UVA-induced skin damage.
Collapse
Affiliation(s)
- Zhiyu Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qingyue Xia
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Cheng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yueyue Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Xingbao Luan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Lipan Fan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Liu F, Qu L, Li H, He J, Wang L, Fang Y, Yan X, Yang Q, Peng B, Wu W, Jin L, Sun D. Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics 2022; 14:2308. [PMID: 36365128 PMCID: PMC9697978 DOI: 10.3390/pharmaceutics14112308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Pigmentation diseases can lead to significant color differences between the affected part and the normal part, resulting in severe psychological and emotional distress among patients. The treatment of pigmentation diseases with good patient compliance is mainly in the form of topical drugs. However, conventional hydroquinone therapy contributes to several pathological conditions, such as erythema, dryness, and skin desquamation, and requires a longer treatment time to show significant results. To address these shortcomings, natural whitening substances represented by kojic acid and arbutin have gradually become the candidate ingredients of traditional local preparations due to their excellent biological safety. This review focuses on several natural whitening substances with potential therapeutic effects in pigmentation disease and their mechanisms, and a thorough discussion has been conducted into the solution methods for the challenges involved in the practical application of natural whitening substances.
Collapse
Affiliation(s)
- Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- Chinese–American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| |
Collapse
|
25
|
Agarwal A, Jeevanandham S, Sangam S, Chakraborty A, Mukherjee M. Exploring the Role of Carbon-Based Nanomaterials in Microalgae for the Sustainable Production of Bioactive Compounds and Beyond. ACS OMEGA 2022; 7:22061-22072. [PMID: 35811909 PMCID: PMC9260754 DOI: 10.1021/acsomega.2c01009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/03/2022] [Indexed: 05/05/2023]
Abstract
An enchanting yet challenging task is the development of higher productivity in plants to meet the ample food demands for the growing global population while harmonizing the ecosystem using front-line technologies. This has kindled the practice of green microalgae cultivation as a driver of key biostimulant products, targeting agronomic needs. To this end, a prodigious and economical strategy for producing bioactive compounds (sources of secondary metabolites) from microalgae using carbon-based nanomaterials (CNMs) as a platform can circumvent these hurdles. Recently, the nanobionics approach of incorporating CNMs with living systems has emerged as a promising technique to develop organelles with new and augmented functions. Herein, we discuss the importance of 2D carbon nanosheets (CNS) as an alternative carbon source for the phototrophic cultivation of microalgae. CNS not only aids in cost reduction for algal cultivation but also confers combinatorial innate or exogenous functions that enhance its programmed biosynthetic metabolism, proliferation, or tolerance to stress. Moreover, the inherent ability of CNS to act as efficient biocatalysts can enhance the rate of photosynthesis. The primary focus of this mini-review is the development of an economic route for enhanced yield of bioactive compounds while simultaneously serving as a heterogeneous platform for enhancing the sustainable production of biostimulants including bioactive compounds from algal biomass for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sampathkumar Jeevanandham
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sujata Sangam
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Arnab Chakraborty
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Monalisa Mukherjee
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
- . Tel: +91(0)-120-4392194
| |
Collapse
|
26
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
27
|
Ding J, Wu B, Chen L. Application of Marine Microbial Natural Products in Cosmetics. Front Microbiol 2022; 13:892505. [PMID: 35711762 PMCID: PMC9196241 DOI: 10.3389/fmicb.2022.892505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the market size of the cosmetics industry increases, the safety and effectiveness of new products face higher requirements. The marine environment selects for species of micro-organisms with metabolic pathways and adaptation mechanisms different from those of terrestrial organisms, resulting in their natural products exhibiting unique structures, high diversity, and significant biological activities. Natural products are usually safe and non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic ingredients that are effective, safe, and natural for marine micro-organisms. However, marine micro-organisms can be difficult, or impossible, to culture because of their special environmental requirements. Metagenomics technology can help to solve this problem. Moreover, using marine species to produce more green and environmentally friendly products through biotransformation has become a new choice for cosmetic manufacturers. In this study, the natural products of marine micro-organisms are reviewed and evaluated with respect to various cosmetic applications.
Collapse
Affiliation(s)
- Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Baochuan Wu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Liqun Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Liqun Chen,
| |
Collapse
|
28
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
29
|
Abstract
Marine-derived natural products are rich source of secondary metabolites with huge potentials including novel therapeutic agents. Marine algae are considered to be a good source of secondary metabolites with versatile bioactivities. During the last few decades, researches related to natural products obtained from brown algae have remarkably escalated as they contain active compounds with varied biologically activities like antimicrobial, anticancer, antioxidant, anti-inflammatory, antidiabetic, and antiparasitic properties. The main bioactive components such as phlorotannin, fucoxanthin, alginic acid, fucoidan, and laminarin have been briefly discussed here, together with their composition and biological activities. In this review, the biological function of extracts and the metabolites of brown algae as well as their pharmacological impacts with the description of the possible mechanism of their action are described and discussed. Also, this study is expected to examine the multifunctional properties of brown algae that facilitate natural algal products, including the ability to integrate these functional properties in a variety of applications.
Collapse
|
30
|
Park SH, Kyndt JA, Brown JK. Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer. Life (Basel) 2022; 12:life12030458. [PMID: 35330209 PMCID: PMC8955559 DOI: 10.3390/life12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Resequencing of the chloroplast genome (cpDNA) of Auxenochlorella protothecoides UTEX 25 was completed (GenBank Accession no. KC631634.1), revealing a genome size of 84,576 base pairs and 30.8% GC content, consistent with features reported for the previously sequenced A. protothecoides 0710, (GenBank Accession no. KC843975). The A. protothecoides UTEX 25 cpDNA encoded 78 predicted open reading frames, 32 tRNAs, and 4 rRNAs, making it smaller and more compact than the cpDNA genome of C. variabilis (124,579 bp) and C. vulgaris (150,613 bp). By comparison, the compact genome size of A. protothecoides was attributable primarily to a lower intergenic sequence content. The cpDNA coding regions of all known Chlorella species were found to be organized in conserved colinear blocks, with some rearrangements. The Auxenochlorella and Chlorella species genome structure and composition were similar, and of particular interest were genes influencing photosynthetic efficiency, i.e., chlorophyll synthesis and photosystem subunit I and II genes, consistent with other biofuel species of interest. Phylogenetic analysis revealed that Prototheca cutis is the closest known A. protothecoides relative, followed by members of the genus Chlorella. The cpDNA of A. protothecoides encodes 37 genes that are highly homologous to representative cyanobacteria species, including rrn16, rrn23, and psbA, corroborating a well-recognized symbiosis. Several putative coding regions were identified that shared high nucleotide sequence identity with virus-like sequences, suggestive of horizontal gene transfer. Despite these predictions, no corresponding transcripts were obtained by RT-PCR amplification, indicating they are unlikely to be expressed in the extant lineage.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001, USA
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
- Correspondence:
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
| |
Collapse
|
31
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
32
|
Kalasariya HS, Patel NB, Yadav A, Perveen K, Yadav VK, Munshi FM, Yadav KK, Alam S, Jung YK, Jeon BH. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021; 26:molecules26247515. [PMID: 34946597 PMCID: PMC8706032 DOI: 10.3390/molecules26247515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cosmetic industries are highly committed to finding natural sources of functional active constituents preferable to safer materials to meet consumers' demands. Marine macroalgae have diversified bioactive constituents and possess potential benefits in beauty care products. Hence, the present study was carried out to characterize the biochemical profile of marine macroalga Chaetomorpha crassa by using different techniques for revealing its cosmetic potentials. In results, the FTIR study characterized the presence of different bioactive functional groups that are responsible for many skin-beneficial compounds whereas six and fifteen different important phycocompounds were found in GCMS analysis of ethanolic and methanolic extracts, respectively. In the saccharide profile of C. crassa, a total of eight different carbohydrate derivatives were determined by the HRLCMS Q-TOF technique, which showed wide varieties of cosmetic interest. In ICP AES analysis, Si was found to be highest whereas Cu was found to be lowest among other elements. A total of twenty-one amino acids were measured by the HRLCMS-QTOF technique, which revealed the highest amount of the amino acid, Aspartic acid (1207.45 nmol/mL) and tyrosine (106.77 nmol/mL) was found to be the lowest in amount among other amino acids. Their cosmetic potentials have been studied based on previous research studies. The incorporation of seaweed-based bioactive components in cosmetics has been extensively growing due to its skin health-promoting effects.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India; (H.S.K.); (N.B.P.)
| | - Nikunj B. Patel
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India; (H.S.K.); (N.B.P.)
| | - Akanksha Yadav
- Department of Home Science, Institute of Science, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Virendra Kumar Yadav
- School of Sciences, P P Savani University, NH 8, GETCO, Near Biltech, Village, Dhamdod, Kosamba 394125, India;
| | - Faris M. Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (F.M.M.); (S.A.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Shamshad Alam
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (F.M.M.); (S.A.)
| | - You-Kyung Jung
- Department of Chemistry, Yonsei University, Wonju 26493, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
33
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
34
|
Kim SY, Kwon YM, Kim KW, Kim JYH. Exploring the Potential of Nannochloropsis sp. Extract for Cosmeceutical Applications. Mar Drugs 2021; 19:md19120690. [PMID: 34940690 PMCID: PMC8704537 DOI: 10.3390/md19120690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, there has been emerging interest in various natural products with skin protective effects as they are recognized as safe and efficient. Microalgae have developed chemical defense systems to protect themselves against oxidative stress caused by UV radiation by producing various bioactive compounds including a number of secondary metabolites, which have potential for cosmeceutical applications. In addition, microalgae have various advantages as a sustainable source for bioactive compounds with diverse functions due to their rapid growth rate, high productivity, and use of non-arable land. In this study, we aimed to investigate the cosmeceutical potential of ethanol extract from Nannochloropsis sp. G1-5 (NG15) isolated from the southern West Sea of the Republic of Korea. It contained PUFAs (including EPA), carotenoids (astaxanthin, canthaxanthin, β-carotene, zeaxanthin, violaxanthin), and phenolic compounds, which are known to have various skin protective functions. We confirmed that the NG15 extract showed various skin protective functions with low cytotoxicity, specifically anti-melanogenic, antioxidant, skin-moisturizing, anti-inflammatory, anti-wrinkling, and UV protective function, by measuring tyrosinase inhibition activity; melanin content; DPPH radical scavenging activity; expression of HAS-2, MMP-1, and Col1A1 genes; and elastase inhibition activity as well as cell viability after UV exposure. Our results indicated that the NG15 extract has the potential to be used for the development of natural cosmetics with a broad range of skin protective functions.
Collapse
|
35
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
36
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
37
|
Murphy MJ, Dow AA. Clinical Studies of the Safety and Efficacy of Macroalgae Extracts in Cosmeceuticals. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2021; 14:37-41. [PMID: 34976289 PMCID: PMC8711622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is a growing body of in-vitro and in-vivo laboratory research on the skin bioactive properties of macroalgae. OBJECTIVE We sought to examine the scientific literature for evidence supporting the clinical safety and efficacy of macroalgae-derived ingredients in cosmeceuticals. METHODS We performed a systematic review of scientific and medical electronic databases for published, peer-reviewed, randomized controlled trials and nonrandomized reports on the clinical bioactivity of topical macroalgae extracts in skin. RESULTS Several human studies report scientific data supporting the safety and efficacy of macroalgae-based skincare products, focusing on skin-moisturizing, anti-melanogenic, and anti-cellulite (slimming) benefits. CONCLUSIONS Further clinical research is necessary to determine the long-term safety, efficacy, optimal concentration and formulation of macroalgae extracts in cosmeceuticals with respect to previously reported and yet uninvestigated skin-directed potential functionally and bioactivity.
Collapse
Affiliation(s)
- Michael J Murphy
- Dr. Murphy is with the Department of Dermatology, UConn Health in Farmington, Connecticut
- Ms. Dow is with si SKIN Organics® in Canton, Connecticut
| | - Aileen A Dow
- Dr. Murphy is with the Department of Dermatology, UConn Health in Farmington, Connecticut
- Ms. Dow is with si SKIN Organics® in Canton, Connecticut
| |
Collapse
|
38
|
Messina CM, Arena R, Manuguerra S, Pericot Y, Curcuraci E, Kerninon F, Renda G, Hellio C, Santulli A. Antioxidant Bioactivity of Extracts from Beach Cast Leaves of Posidonia oceanica (L.) Delile. Mar Drugs 2021; 19:560. [PMID: 34677459 PMCID: PMC8539254 DOI: 10.3390/md19100560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
The marine environment is a generous source of biologically active compounds useful for human health. In 50 years, about 25,000 bioactive marine compounds have been identified, with an increase of 5% per year. Peculiar feature of algae and plants is the production of secondary metabolites, such as polyphenols, synthesized as a form of adaptation to environmental stress. Posidonia oceanica is a Mediterranean endemic and dominant seagrass and represents a biologically, ecologically and geologically important marine ecosystem. Within this study, methanolic and ethanolic extracts were generated from fresh and dried Posidonia oceanica leaves, with the aim to employ and valorize the beach cast leaves. The best yield and antioxidant activity (polyphenols content equal to 19.712 ± 0.496 mg GAE/g and DPPH IC50 of 0.090 µg/µL.) were recorded in 70% ethanol extracts (Gd-E4) obtained from leaves dried for two days at 60 °C and ground four times. HPLC analyses revealed the presence of polyphenols compounds (the most abundant of which was chicoric acid) with antioxidant and beneficial properties. Bioactive properties of the Gd-E4 extracts were evaluated in vitro using fibroblast cells line (HS-68), subjected to UV induced oxidative stress. Pre-treatment of cells with Gd-E4 extracts led to significant protection against oxidative stress and mortality associated with UV exposure, thus highlighting the beneficial properties of antioxidants compounds produced by these marine plants against photo damage, free radicals and associated negative cellular effects. Beach cast leaves selection, processing and extraction procedures, and the in vitro assay results suggested the potentiality of a sustainable approach for the biotechnological exploitation of this resource and could serve a model for other marine resources.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Rosaria Arena
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Simona Manuguerra
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Yann Pericot
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Eleonora Curcuraci
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
| | - Fanny Kerninon
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Giuseppe Renda
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy;
| | - Claire Hellio
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France; (Y.P.); (F.K.); (C.H.)
| | - Andrea Santulli
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze Della Terra e del Mare DiSTeM, Università Degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (E.C.); (A.S.)
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy;
| |
Collapse
|
39
|
Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs 2021; 19:md19100552. [PMID: 34677451 PMCID: PMC8539943 DOI: 10.3390/md19100552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The interest in seaweeds for cosmetic, cosmeceutics, and nutricosmetics is increasing based on the demand for natural ingredients. Seaweeds offer advantages in relation to their renewable character, wide distribution, and the richness and versatility of their valuable bioactive compounds, which can be used as ingredients, as additives, and as active agents in the formulation of skin care products. Bioactive compounds, such as polyphenols, polysaccharides, proteins, peptides, amino acids, lipids, vitamins, and minerals, are responsible for the biological properties associated with seaweeds. Seaweed fractions can also offer technical features, such as thickening, gelling, emulsifying, texturizing, or moistening to develop cohesive matrices. Furthermore, the possibility of valorizing industrial waste streams and algal blooms makes them an attractive, low cost, raw and renewable material. This review presents an updated summary of the activities of different seaweed compounds and fractions based on scientific and patent literature.
Collapse
|
40
|
Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field. Mar Drugs 2021; 19:md19080444. [PMID: 34436283 PMCID: PMC8401093 DOI: 10.3390/md19080444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.
Collapse
|
41
|
UVB Radiation Protective Effect of Brown Alga Padina australis: A Potential Cosmeceutical Application of Malaysian Seaweed. COSMETICS 2021. [DOI: 10.3390/cosmetics8030058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Marine natural products are a good source of antioxidants due to the presence of a wide range of bioactive compounds. Accumulating evidence proves the potential use of seaweed-derived ingredients in skincare products. This study aims to evaluate the ultraviolet (UV) protective activity of the ethanol and water extracts of Padina australis. As the preliminary attempt for this discovery, the total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by the in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing the power to shed light on its bioactivity. The UVB protective activity was examined on HaCaT human keratinocyte cells. The findings of this study reveal that the P. australis ethanol extract serves as a promising source of antioxidants, as it exhibits stronger antioxidant activities compared with the water extract in DPPH and the reducing power assays. The P. australis ethanol extract also demonstrated a higher level of total phenolic (76 mg GAE/g) and flavonoid contents (50 mg QE/g). Meanwhile, both the ethanol (400 µg/mL) and water extracts (400 µg/mL) protected the HaCaT cells from UVB-induced cell damage via promoting cell viability. Following that, LCMS analysis reveals that the P. australis ethanol extract consists of sugar alcohol, polysaccharide, carotenoid, terpenoid and fatty acid, whereas the water extract contains compounds from phenol, terpenoid, fatty acid, fatty alcohol and fatty acid amide. In summary, biometabolites derived from P. australis have diverse functional properties, and they could be applied to the developments of cosmeceutical and pharmaceutical products.
Collapse
|
42
|
Moreira ASP, da Costa E, Melo T, Lopes D, Pais ACS, Santos SAO, Pitarma B, Mendes M, Abreu MH, Collén PN, Domingues P, Domingues MR. Polar Lipids of Commercial Ulva spp. of Different Origins: Profiling and Relevance for Seaweed Valorization. Foods 2021; 10:foods10050914. [PMID: 33919394 PMCID: PMC8143280 DOI: 10.3390/foods10050914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macroalgae of the genus Ulva have long been used as human food. Local environmental conditions, among other factors, can have an impact on their nutrient and phytochemical composition, as well as on the value of the seaweed for food and non-food applications. This study is the first to initiate a comparison between commercial Ulva spp. from different European origins, France (FR, wild-harvested Ulva spp.), and Portugal (PT, farm-raised Ulva rigida), in terms of proximate composition, esterified fatty acids (FA), and polar lipids. The ash content was higher in PT samples, while FR samples had higher levels of proteins, lipids, and carbohydrates and other compounds. The profile of esterified FA, as well as FA-containing polar lipids at the class and species levels were also significantly different. The FR samples showed about three-fold higher amount of n-3 polyunsaturated FA, while PT samples showed two-fold higher content of monounsaturated FA. Quantification of glycolipids and phospholipids revealed, respectively, two-fold and three-fold higher levels in PT samples. Despite the differences found, the polar lipids identified in both batches included some lipid species with recognized bioactivity, valuing Ulva biomass with functional properties, increasing their added value, and promoting new applications, namely in nutraceutical and food markets.
Collapse
Affiliation(s)
- Ana S. P. Moreira
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- Correspondence:
| | - Elisabete da Costa
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adriana C. S. Pais
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Sónia A. O. Santos
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Bárbara Pitarma
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Madalena Mendes
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
- Green Colab—Associação Oceano Verde, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Maria H. Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Pi Nyvall Collén
- Amadeite SAS, Pôle Biotechnologique du Haut du Bois, 56580 Bréhan, France;
| | - Pedro Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
| | - M. Rosário Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Song C, Yang J, Zhang M, Ding G, Jia C, Qin J, Guo L. Marine Natural Products: The Important Resource of Biological Insecticide. Chem Biodivers 2021; 18:e2001020. [PMID: 33855815 DOI: 10.1002/cbdv.202001020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Gang Ding
- Institute of Medicinal Plant Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
44
|
Abstract
Seaweed-based cosmetics are being gradually used by consumers as a substitute of synthetic equivalent products. These seaweed-based products normally contain purified compounds or extracts with several compounds. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. However, seaweeds’ biochemical profile can be variable, and the extraction methods can cause the loss of some of the biomolecules. This review gives a general look at the seaweed cosmetics benefits and its current application in the cosmetic industry. Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
Collapse
|
45
|
Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals (Basel) 2021; 14:63. [PMID: 33466685 PMCID: PMC7828830 DOI: 10.3390/ph14010063] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.
Collapse
Affiliation(s)
- Vanessa Geraldes
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo-SP CEP 05508-000, Brazil;
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Piracicaba-SP CEP 13400-970, Brazil
| |
Collapse
|
46
|
El-Chaghaby G, Rashad S. An overview of algae prospects in cosmeceuticals. JOURNAL OF THE EGYPTIAN WOMEN'S DERMATOLOGIC SOCIETY 2021. [DOI: 10.4103/jewd.jewd_22_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Potential Anti-Aging Substances Derived from Seaweeds. Mar Drugs 2020; 18:md18110564. [PMID: 33218066 PMCID: PMC7698806 DOI: 10.3390/md18110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.
Collapse
|