1
|
Sieng CKT, Yi CJ, Yasui T, Yamashita K, Sanda R, Sakamoto K, Kondo Y, Suzuki K, Idogawa S, Seikoba Y, Numano R, Koida K, Kawano T. Magnetic assembly of microwires on a flexible substrate for minimally invasive electrophysiological recording. Biosens Bioelectron 2025; 271:116927. [PMID: 39642530 DOI: 10.1016/j.bios.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate. Two-channel 15-μm-diameter and 400-μm-length nickel-microwire electrodes on a 5-μm-thick flexible parylene film are designed and fabricated. Impedance characteristics of these electrodes are <500 kΩ at 1 kHz, with output/input signal amplitude ratios of over 90%. In vivo neural recording in mice demonstrates that both local field potentials and action potentials are detected through each wire electrode, confirming the minimal invasiveness during the electrode penetration and through immunohistochemical tissue analysis.
Collapse
Affiliation(s)
- Claire King Teck Sieng
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Chan Jun Yi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Taiki Yasui
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Koji Yamashita
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rioki Sanda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kensei Sakamoto
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Yuki Kondo
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Ko Suzuki
- TechnoPro, Inc., TechnoPro R&D, Company, Roppongi Hills Mori Tower 35F, 6-10-1 Roppongi, Minato-ku, Tokyo, 106-6135, Japan
| | - Shinnosuke Idogawa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; National Institute of Technology, Kushiro College, Otanoshike-Nishi 2-32-1, Kushiro-Shi, Hokkaido, 084-0916, Japan
| | - Yu Seikoba
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rika Numano
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kowa Koida
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Takeshi Kawano
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan.
| |
Collapse
|
2
|
Perillo ML, Gupta B, Siegenthaler JR, Christensen IE, Kepros B, Mitul A, Han M, Rechenberg R, Becker MF, Li W, Purcell EK. Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2024; 14:352. [PMID: 39056628 PMCID: PMC11274679 DOI: 10.3390/bios14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.
Collapse
Affiliation(s)
- Mason L. Perillo
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Isabelle E. Christensen
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Brandon Kepros
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Abu Mitul
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Ming Han
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Wen Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Erin K. Purcell
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| |
Collapse
|
3
|
Abbott JR, Jeakle EN, Haghighi P, Usoro JO, Sturgill BS, Wu Y, Geramifard N, Radhakrishna R, Patnaik S, Nakajima S, Hess J, Mehmood Y, Devata V, Vijayakumar G, Sood A, Doan Thai TT, Dogra K, Hernandez-Reynoso AG, Pancrazio JJ, Cogan SF. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex. Biomaterials 2024; 308:122543. [PMID: 38547834 PMCID: PMC11065583 DOI: 10.1016/j.biomaterials.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Chronic implantation of intracortical microelectrode arrays (MEAs) capable of recording from individual neurons can be used for the development of brain-machine interfaces. However, these devices show reduced recording capabilities under chronic conditions due, at least in part, to the brain's foreign body response (FBR). This creates a need for MEAs that can minimize the FBR to possibly enable long-term recording. A potential approach to reduce the FBR is the use of MEAs with reduced cross-sectional geometries. Here, we fabricated 4-shank amorphous silicon carbide (a-SiC) MEAs and implanted them into the motor cortex of seven female Sprague-Dawley rats. Each a-SiC MEA shank was 8 μm thick by 20 μm wide and had sixteen sputtered iridium oxide film (SIROF) electrodes (4 per shank). A-SiC was chosen as the fabrication base for its high chemical stability, good electrical insulation properties, and amenability to thin film fabrication. Electrochemical analysis and neural recordings were performed weekly for 4 months. MEAs were characterized pre-implantation in buffered saline and in vivo using electrochemical impedance spectroscopy and cyclic voltammetry at 50 mV/s and 50,000 mV/s. Neural recordings were analyzed for single unit activity. At the end of the study, animals were sacrificed for immunohistochemical analysis. We observed statistically significant, but small, increases in 1 and 30 kHz impedance values and 50,000 mV/s charge storage capacity over the 16-week implantation period. Slow sweep 50 mV/s CV and 1 Hz impedance did not significantly change over time. Impedance values increased from 11.6 MΩ to 13.5 MΩ at 1 Hz, 1.2 MΩ-2.9 MΩ at 1 kHz, and 0.11 MΩ-0.13 MΩ at 30 kHz over 16 weeks. The median charge storage capacity of the implanted electrodes at 50 mV/s was 58.1 mC/cm2 on week 1 and 55.9 mC/cm2 on week 16, and at 50,000 mV/s, 4.27 mC/cm2 on week 1 and 5.93 mC/cm2 on week 16. Devices were able to record neural activity from 92% of all active channels at the beginning of the study, At the study endpoint, a-SiC devices were still recording single-unit activity on 51% of electrochemically active electrode channels. In addition, we observed that the signal-to-noise ratio experienced a small decline of -0.19 per week. We also classified observed units as fast and slow repolarizing based on the trough-to-peak time. Although the overall presence of single units declined, fast and slow repolarizing units declined at a similar rate. At recording electrode depth, immunohistochemistry showed minimal tissue response to the a-SiC devices, as indicated by statistically insignificant differences in activated glial cell response between implanted brains slices and contralateral sham slices at 150 μm away from the implant location, as evidenced by GFAP staining. NeuN staining revealed the presence of neuronal cell bodies close to the implantation site, again statistically not different from a contralateral sham slice. These results warrant further investigation of a-SiC MEAs for future long-term implantation neural recording studies.
Collapse
Affiliation(s)
- Justin R Abbott
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Eleanor N Jeakle
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joshua O Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Brandon S Sturgill
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Negar Geramifard
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Sourav Patnaik
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jordan Hess
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yusef Mehmood
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Veda Devata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
| | - Gayathri Vijayakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Sood
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Teresa Thuc Doan Thai
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Komal Dogra
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
4
|
Malekoshoaraie MH, Wu B, Krahe DD, Ahmed Z, Pupa S, Jain V, Cui XT, Chamanzar M. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:91. [PMID: 38947533 PMCID: PMC11211464 DOI: 10.1038/s41378-024-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 07/02/2024]
Abstract
Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.
Collapse
Affiliation(s)
| | - Bingchen Wu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Daniela D. Krahe
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zabir Ahmed
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Stephen Pupa
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Vishal Jain
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittburgh, 15213 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 USA
| | - Maysamreza Chamanzar
- Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, 15213 USA
| |
Collapse
|
5
|
Gupta B, Saxena A, Perillo ML, Wade-Kleyn LC, Thompson CH, Purcell EK. Structural, Functional, and Genetic Changes Surrounding Electrodes Implanted in the Brain. Acc Chem Res 2024; 57:1346-1359. [PMID: 38630432 PMCID: PMC11079975 DOI: 10.1021/acs.accounts.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Implantable neurotechnology enables monitoring and stimulating of the brain signals responsible for performing cognitive, motor, and sensory tasks. Electrode arrays implanted in the brain are increasingly used in the clinic to treat a variety of sources of neurological diseases and injuries. However, the implantation of a foreign body typically initiates a tissue response characterized by physical disruption of vasculature and the neuropil as well as the initiation of inflammation and the induction of reactive glial states. Likewise, electrical stimulation can induce damage to the surrounding tissue depending on the intensity and waveform parameters of the applied stimulus. These phenomena, in turn, are likely influenced by the surface chemistry and characteristics of the materials employed, but further information is needed to effectively link the biological responses observed to specific aspects of device design. In order to inform improved design of implantable neurotechnology, we are investigating the basic science principles governing device-tissue integration. We are employing multiple techniques to characterize the structural, functional, and genetic changes that occur in the cells surrounding implanted electrodes. First, we have developed a new "device-in-slice" technique to capture chronically implanted electrodes within thick slices of live rat brain tissue for interrogation with single-cell electrophysiology and two-photon imaging techniques. Our data revealed several new observations of tissue remodeling surrounding devices: (a) there was significant disruption of dendritic arbors in neurons near implants, where losses were driven asymmetrically on the implant-facing side. (b) There was a significant loss of dendritic spine densities in neurons near implants, with a shift toward more immature (nonfunctional) morphologies. (c) There was a reduction in excitatory neurotransmission surrounding implants, as evidenced by a reduction in the frequency of excitatory postsynaptic currents (EPSCs). Lastly, (d) there were changes in the electrophysiological underpinnings of neuronal spiking regularity. In parallel, we initiated new studies to explore changes in gene expression surrounding devices through spatial transcriptomics, which we applied to both recording and stimulating arrays. We found that (a) device implantation is associated with the induction of hundreds of genes associated with neuroinflammation, glial reactivity, oligodendrocyte function, and cellular metabolism and (b) electrical stimulation induces gene expression associated with damage or plasticity in a manner dependent upon the intensity of the applied stimulus. We are currently developing computational analysis tools to distill biomarkers of device-tissue interactions from large transcriptomics data sets. These results improve the current understanding of the biological response to electrodes implanted in the brain while producing new biomarkers for benchmarking the effects of novel electrode designs on responses. As the next generation of neurotechnology is developed, it will be increasingly important to understand the influence of novel materials, surface chemistries, and implant architectures on device performance as well as the relationship with the induction of specific cellular signaling pathways.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Akash Saxena
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Mason L. Perillo
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Lauren C. Wade-Kleyn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Cort H. Thompson
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Erin K. Purcell
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Mueller NN, Kim Y, Ocoko MYM, Dernelle P, Kale I, Patwa S, Hermoso AC, Chirra D, Capadona JR, Hess-Dunning A. Effects of Micromachining on Anti-oxidant Elution from a Mechanically-Adaptive Polymer. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2024; 34:10.1088/1361-6439/ad27f7. [PMID: 38586082 PMCID: PMC10996452 DOI: 10.1088/1361-6439/ad27f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intracortical microelectrodes (IMEs) can be used to restore motor and sensory function as a part of brain-computer interfaces in individuals with neuromusculoskeletal disorders. However, the neuroinflammatory response to IMEs can result in their premature failure, leading to reduced therapeutic efficacy. Mechanically-adaptive, resveratrol-eluting (MARE) neural probes target two mechanisms believed to contribute to the neuroinflammatory response by reducing the mechanical mismatch between the brain tissue and device, as well as locally delivering an antioxidant therapeutic. To create the mechanically-adaptive substrate, a dispersion, casting, and evaporation method is used, followed by a microfabrication process to integrate functional recording electrodes on the material. Resveratrol release experiments were completed to generate a resveratrol release profile and demonstrated that the MARE probes are capable of long-term controlled release. Additionally, our results showed that resveratrol can be degraded by laser-micromachining, an important consideration for future device fabrication. Finally, the electrodes were shown to have a suitable impedance for single-unit neural recording and could record single units in vivo.
Collapse
Affiliation(s)
- Natalie N Mueller
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Mali Ya Mungu Ocoko
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Peter Dernelle
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Ishani Kale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Simran Patwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anna Clarissa Hermoso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Deeksha Chirra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
7
|
Zhou J, Zhou S, Fan P, Li X, Ying Y, Ping J, Pan Y. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. NANO-MICRO LETTERS 2023; 16:49. [PMID: 38087121 PMCID: PMC10716106 DOI: 10.1007/s40820-023-01274-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 10/11/2024]
Abstract
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Peidi Fan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunjia Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Yuxiang Pan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| |
Collapse
|
8
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
9
|
Garwood IC, Major AJ, Antonini MJ, Correa J, Lee Y, Sahasrabudhe A, Mahnke MK, Miller EK, Brown EN, Anikeeva P. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. SCIENCE ADVANCES 2023; 9:eadh0974. [PMID: 37801492 PMCID: PMC10558126 DOI: 10.1126/sciadv.adh0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.
Collapse
Affiliation(s)
- Indie C. Garwood
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J. Major
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josefina Correa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Youngbin Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meredith K. Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Gregory BA, Thompson CH, Salatino JW, Railing MJ, Zimmerman AF, Gupta B, Williams K, Beatty JA, Cox CL, Purcell EK. Structural and functional changes of deep layer pyramidal neurons surrounding microelectrode arrays implanted in rat motor cortex. Acta Biomater 2023; 168:429-439. [PMID: 37499727 PMCID: PMC10441615 DOI: 10.1016/j.actbio.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Devices capable of recording or stimulating neuronal signals have created new opportunities to understand normal physiology and treat sources of pathology in the brain. However, it is possible that the tissue response to implanted electrodes may influence the nature of the signals detected or stimulated. In this study, we characterized structural and functional changes in deep layer pyramidal neurons surrounding silicon or polyimide-based electrodes implanted in the motor cortex of rats. Devices were captured in 300 µm-thick tissue slices collected at the 1 or 6 week time point post-implantation, and individual neurons were assessed using a combination of whole-cell electrophysiology and 2-photon imaging. We observed disrupted dendritic arbors and a significant reduction in spine densities in neurons surrounding devices. These effects were accompanied by a decrease in the frequency of spontaneous excitatory post-synaptic currents, a reduction in sag amplitude, an increase in spike frequency adaptation, and an increase in filopodia density. We hypothesize that the effects observed in this study may contribute to the signal loss and instability that often accompany chronically implanted electrodes. STATEMENT OF SIGNIFICANCE: Implanted electrodes in the brain can be used to treat sources of pathology and understand normal physiology by recording or stimulating electrical signals generated by local neurons. However, a foreign body response following implantation undermines the performance of these devices. While several studies have investigated the biological mechanisms of device-tissue interactions through histology, transcriptomics, and imaging, our study is the first to directly interrogate effects on the function of neurons surrounding electrodes using single-cell electrophysiology. Additionally, we provide new, detailed assessments of the impacts of electrodes on the dendritic structure and spine morphology of neurons, and we assess effects for both traditional (silicon) and newer polymer electrode materials. These results reveal new potential mechanisms of electrode-tissue interactions.
Collapse
Affiliation(s)
| | - Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, United States
| | - Joseph W Salatino
- Department of Biomedical Engineering, Michigan State University, United States
| | - Mia J Railing
- Department of Physiology, Michigan State University, United States
| | | | - Bhavna Gupta
- Neuroscience Program, Michigan State University, United States
| | - Kathleen Williams
- Department of Biomedical Engineering, Michigan State University, United States
| | - Joseph A Beatty
- Department of Physiology, Michigan State University, United States; Neuroscience Program, Michigan State University, United States
| | - Charles L Cox
- Department of Physiology, Michigan State University, United States; Neuroscience Program, Michigan State University, United States
| | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University, United States; Neuroscience Program, Michigan State University, United States; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
11
|
Jeakle EN, Abbott JR, Usoro JO, Wu Y, Haghighi P, Radhakrishna R, Sturgill BS, Nakajima S, Thai TTD, Pancrazio JJ, Cogan SF, Hernandez-Reynoso AG. Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. MICROMACHINES 2023; 14:680. [PMID: 36985087 PMCID: PMC10054633 DOI: 10.3390/mi14030680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation. The spectral density and bandpower between 1 and 500 Hz of recordings were compared over the implantation period for both device types. Initially, the bandpower of the a-SiC devices and standard MEAs was comparable. However, the standard MEAs showed a consistent decline in both bandpower and power spectral density throughout the 16 weeks post-implantation, whereas the a-SiC MEAs showed substantially more stable performance. These differences in bandpower and spectral density between standard and a-SiC MEAs were statistically significant from week 6 post-implantation until the end of the study at 16 weeks. These results support the use of ultra-thin a-SiC MEAs to develop chronic, reliable brain-machine interfaces.
Collapse
Affiliation(s)
- Eleanor N. Jeakle
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Justin R. Abbott
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Teresa T. D. Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
12
|
Niederhoffer T, Vanhoestenberghe A, Lancashire HT. Methods of poly(3,4)-ethylenedioxithiophene (PEDOT) electrodeposition on metal electrodes for neural stimulation and recording. J Neural Eng 2023; 20. [PMID: 36603213 DOI: 10.1088/1741-2552/acb084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Conductive polymers are of great interest in the field of neural electrodes because of their potential to improve the interfacial properties of electrodes. In particular, the conductive polymer poly (3,4)-ethylenedioxithiophene (PEDOT) has been widely studied for neural applications.Objective:This review compares methods for electrodeposition of PEDOT on metal neural electrodes, and analyses the effects of deposition methods on morphology and electrochemical performance.Approach:Electrochemical performances were analysed against several deposition method choices, including deposition charge density and co-ion, and correlations were explained to morphological and structural arguments as well as characterisation methods choices.Main results:Coating thickness and charge storage capacity are positively correlated with PEDOT electrodeposition charge density. We also show that PEDOT coated electrode impedance at 1 kHz, the only consistently reported impedance quantity, is strongly dependent upon electrode radius across a wide range of studies, because PEDOT coatings reduces the reactance of the complex impedance, conferring a more resistive behaviour to electrodes (at 1 kHz) dominated by the solution resistance and electrode geometry. This review also summarises how PEDOT co-ion choice affects coating structure and morphology and shows that co-ions notably influence the charge injection limit but have a limited influence on charge storage capacity and impedance. Finally we discuss the possible influence of characterisation methods to assess the robustness of comparisons between published results using different methods of characterisation.Significance:This review aims to serve as a common basis for researchers working with PEDOT by showing the effects of deposition methods on electrochemical performance, and aims to set a standard for accurate and uniform reporting of methods.
Collapse
Affiliation(s)
- Thomas Niederhoffer
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Guljakow J, Lang W. Failure Reason of PI Test Samples of Neural Implants. SENSORS (BASEL, SWITZERLAND) 2023; 23:1340. [PMID: 36772377 PMCID: PMC9919689 DOI: 10.3390/s23031340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Samples that were meant to simulate the behavior of neural implants were put into Ringer's solution, and the occurring damage was assessed. The samples consist of an interdigitated gold-structure and two contact pads embedded between two Polyimide layers, resulting in free-floating structures. The two parts of the interdigitated structure have no electric contacts and are submerged in the solution during the experiment. The samples were held at temperatures of 37 and 57 ∘C in order to undergo an accelerated lifetime test and to compare the results. During the course of the experiment, a voltage was applied and measured over a resistance of 1 kOhm over time. Arduinos were used as measuring devices. As the intact samples are insulating, a sudden rise in voltage indicates a sample failure due to liquid leaking in between the two polyimide layers. Once a short-circuit occurred and a sample broke down, the samples were taken out of the vial and examined under a microscope. In virtually all cases, delamination was observable, with variation in the extent of the delaminated area. A comparison between measured voltages after failure and damage did not show a correlation between voltage and area affected by delamination. However, at a temperature of 37 ∘C, voltage remained constant most of the time after delamination, and a pin-hole lead to a lower measured voltage and strong fluctuations. Visually, no difference in damage between the 37 and the 57 ∘C samples was observed, although fluctuations of measured voltage occurred in numerous samples at a higher temperature. This difference hints at differences in the reasons for failure and thus limited applicability of accelerated lifetime tests.
Collapse
|
14
|
Patel PR, Welle EJ, Letner JG, Shen H, Bullard AJ, Caldwell CM, Vega-Medina A, Richie JM, Thayer HE, Patil PG, Cai D, Chestek CA. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J Neural Eng 2023; 20:10.1088/1741-2552/acab86. [PMID: 36595323 PMCID: PMC9954796 DOI: 10.1088/1741-2552/acab86] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Collapse
Affiliation(s)
- Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elissa J. Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hao Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Autumn J. Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ciara M. Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hope E. Thayer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, United States of America
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
15
|
Dobariya A, El Ahmadieh TY, Good LB, Hernandez-Reynoso AG, Jakkamsetti V, Brown R, Dunbar M, Ding K, Luna J, Kallem RR, Putnam WC, Shelton JM, Evers BM, Azami A, Geramifard N, Cogan SF, Mickey B, Pascual JM. Recording of pig neuronal activity in the comparative context of the awake human brain. Sci Rep 2022; 12:15503. [PMID: 36109613 PMCID: PMC9478131 DOI: 10.1038/s41598-022-19688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Gyriform mammals display neurophysiological and neural network activity that other species exhibit only in rudimentary or dissimilar form. However, neural recordings from large mammals such as the pig can be anatomically hindered and pharmacologically suppressed by anesthetics. This curtails comparative inferences. To mitigate these limitations, we set out to modify electrocorticography, intracerebral depth and intracortical recording methods to study the anesthetized pig. In the process, we found that common forms of infused anesthesia such as pentobarbital or midazolam can be neurophysiologic suppressants acting in dose-independent fashion relative to anesthetic dose or brain concentration. Further, we corroborated that standard laboratory conditions may impose electrical interference with specific neural signals. We thus aimed to safeguard neural network integrity and recording fidelity by developing surgical, anesthesia and noise reduction methods and by working inside a newly designed Faraday cage, and evaluated this from the point of view of neurophysiological power spectral density and coherence analyses. We also utilized novel silicon carbide electrodes to minimize mechanical disruption of single-neuron activity. These methods allowed for the preservation of native neurophysiological activity for several hours. Pig electrocorticography recordings were essentially indistinguishable from awake human recordings except for the small segment of electrical activity associated with vision in conscious persons. In addition, single-neuron and paired-pulse stimulation recordings were feasible simultaneously with electrocorticography and depth electrode recordings. The spontaneous and stimulus-elicited neuronal activities thus surveyed can be recorded with a degree of precision similar to that achievable in rodent or any other animal studies and prove as informative as unperturbed human electrocorticography.
Collapse
Affiliation(s)
- Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Tarek Y El Ahmadieh
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Mail Code 8813, Dallas, TX, 75390-8813, USA
| | | | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Ronnie Brown
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misha Dunbar
- Animal Resource Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kan Ding
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jesus Luna
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raja Reddy Kallem
- Department of Pharmacy Practice and Clinical Pharmacology, Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
| | - William C Putnam
- Department of Pharmacy Practice and Clinical Pharmacology, Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
- Department of Pharmaceutical Science, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bret M Evers
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amirhossein Azami
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Negar Geramifard
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Bruce Mickey
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Mail Code 8813, Dallas, TX, 75390-8813, USA.
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Riggins TE, Li W, Purcell EK. Atomic Force Microscope Characterization of the Bending Stiffness and Surface Topography of Silicon and Polymeric Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2348-2352. [PMID: 36085626 DOI: 10.1109/embc48229.2022.9871216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implanted electrodes in the brain are increasingly used in research and clinical settings to understand and treat neurological conditions. However, a foreign body response typically occurs after implantation, and glial encapsulation of the device is a commonly observed. Multiple factors affect how gliosis surrounding the implantable electrodes evolves. Characterizing and measuring the surface features and mechanical properties of these devices may allow us to predict where gliosis will occur, and understanding how electrode design features may impact astrogliosis may give researchers a set of design guidelines to follow to maximize chronic performance. In this study, we used atomic force microscopy to measure surface roughness on parylene, polyimide, and silicon devices. Multiple features on microelectrode arrays were measured, including electrode sites, traces, and the bulk substrate. We found differences in surface roughness according to device material, but not device features. We also directly measured the bending stiffness of silicon devices, providing a more exact quantification of this property to corroborate calculated estimates.
Collapse
|
17
|
Geramifard N, Dousti B, Nguyen CK, Abbott JR, Cogan S, Varner V. Insertion mechanics of amorphous SiC ultra-micro scale neural probes. J Neural Eng 2022; 19. [PMID: 35263724 PMCID: PMC9339220 DOI: 10.1088/1741-2552/ac5bf4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Trauma induced by the insertion of microelectrodes into cortical neural tissue is a significant problem. Further, micromotion and mechanical mismatch between microelectrode probes and neural tissue is implicated in an adverse foreign body response (FBR). Hence, intracortical ultra-microelectrode probes have been proposed as alternatives that minimize this FBR. However, significant challenges in implanting these flexible probes remain. We investigated the insertion mechanics of amorphous silicon carbide (a-SiC) probes with a view to defining probe geometries that can be inserted into cortex without buckling. APPROACH We determined the critical buckling force of a-SiC probes as a function of probe geometry and then characterized the buckling behavior of these probes by measuring force-displacement responses during insertion into agarose gel and rat cortex. MAIN RESULTS Insertion forces for a range of probe geometries were determined and compared with critical buckling forces to establish geometries that should avoid buckling during implantation into brain. The studies show that slower insertion speeds reduce the maximum insertion force for single-shank probes but increase cortical dimpling during insertion of multi-shank probes. SIGNIFICANCE Our results provide a guide for selecting probe geometries and insertion speeds that allow unaided implantation of probes into rat cortex. The design approach is applicable to other animal models where insertion of intracortical probes to a depth of 2 mm is required.
Collapse
Affiliation(s)
- Negar Geramifard
- Department of Bioeengineering, The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Rd., BSB 13.601, Richardson, Texas, 75080-3021, UNITED STATES
| | - Behnoush Dousti
- The University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, 75080-3021, UNITED STATES
| | - Christopher Khanhtuan Nguyen
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080-3021, UNITED STATES
| | - Justin Robert Abbott
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, Texas, 75080, UNITED STATES
| | - Stuart Cogan
- Department of Bioengineering, The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, Texas, 75080-3021, UNITED STATES
| | - Victor Varner
- Department of Bioengineering, The University of Texas at Dallas Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Rd, Richardson, Texas, 75080, UNITED STATES
| |
Collapse
|
18
|
Vázquez-Guardado A, Yang Y, Rogers JA. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac016. [PMID: 36196123 PMCID: PMC9522382 DOI: 10.1093/nsr/nwac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
|
19
|
Dabbour AH, Tan S, Kim SH, Guild SJ, Heppner P, McCormick D, Wright BE, Leung D, Gallichan R, Budgett D, Malpas SC. The Safety of Micro-Implants for the Brain. Front Neurosci 2021; 15:796203. [PMID: 34955740 PMCID: PMC8695845 DOI: 10.3389/fnins.2021.796203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Technological advancements in electronics and micromachining now allow the development of discrete wireless brain implantable micro-devices. Applications of such devices include stimulation or sensing and could enable direct placement near regions of interest within the brain without the need for electrode leads or separate battery compartments that are at increased risk of breakage and infection. Clinical use of leadless brain implants is accompanied by novel risks, such as migration of the implant. Additionally, the encapsulation material of the implants plays an important role in mitigating unwanted tissue reactions. These risks have the potential to cause harm or reduce the service of life of the implant. In the present study, we have assessed post-implantation tissue reaction and migration of borosilicate glass-encapsulated micro-implants within the cortex of the brain. Twenty borosilicate glass-encapsulated devices (2 × 3.5 × 20 mm) were implanted into the parenchyma of 10 sheep for 6 months. Radiographs were taken directly post-surgery and at 3 and 6 months. Subsequently, sheep were euthanized, and GFAP and IBA-1 histological analysis was performed. The migration of the implants was tracked by reference to two stainless steel screws placed in the skull. We found no significant difference in fluoroscopy intensity of GFAP and a small difference in IBA-1 between implanted tissue and control. There was no glial scar formation found at the site of the implant’s track wall. Furthermore, we observed movement of up to 4.6 mm in a subset of implants in the first 3 months of implantation and no movement in any implant during the 3–6-month period of implantation. Subsequent histological analysis revealed no evidence of a migration track or tissue damage. We conclude that the implantation of this discrete micro-implant within the brain does not present additional risk due to migration.
Collapse
Affiliation(s)
- Abdel-Hameed Dabbour
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sheryl Tan
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Sang Ho Kim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Auckland Bioengineering Institute, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Peter Heppner
- Auckland District Health Board, Auckland, New Zealand
| | - Daniel McCormick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Bryon E Wright
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Dixon Leung
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Robert Gallichan
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Budgett
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Simon C Malpas
- Auckland Bioengineering Institute, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Rommelfanger NJ, Keck CH, Chen Y, Hong G. Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces. Curr Opin Biotechnol 2021; 72:8-12. [PMID: 34365114 PMCID: PMC8671194 DOI: 10.1016/j.copbio.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
While early neural interfaces consisted of rigid, monolithic probes, recent implantable technologies include meshes, gels, and threads that imitate various properties of the neural tissue itself. Such mimicry brings new capabilities to the traditional electrophysiology toolbox, with benefits for both neuroscience studies and clinical treatments. Specifically, by matching the multi-dimensional mechanical properties of the brain, neural implants can preserve the endogenous environment while functioning over chronic timescales. Further, topological mimicry of neural structures enables seamless integration into the tissue and provides proximal access to neurons for high-quality recordings. Ultimately, we envision that neuromorphic devices incorporating functional, mechanical, and topological mimicry of the brain may facilitate stable operation of advanced brain machine interfaces with minimal disruption of the native tissue.
Collapse
Affiliation(s)
- Nicholas J Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Carl Hc Keck
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Ahmed Z, Reddy JW, Malekoshoaraie MH, Hassanzade V, Kimukin I, Jain V, Chamanzar M. Flexible optoelectric neural interfaces. Curr Opin Biotechnol 2021; 72:121-130. [PMID: 34826682 PMCID: PMC9741731 DOI: 10.1016/j.copbio.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Understanding the neural basis of brain function and dysfunction and designing effective therapeutics require high resolution targeted stimulation and recording of neural activity. Optical methods have been recently developed for neural stimulation as well as functional and structural imaging. These methods call for implantable devices to deliver light into the neural tissue at depth with high spatiotemporal resolution. To address this need, rigid and flexible neurophotonic implants have been recently designed. This article reviews the state-of-the-art flexible passive and active penetrating optical neural probes developed for light delivery with minimal damage to the tissue. Passive and active flexible neurophotonic implants are compared and insights about future directions are provided.
Collapse
Affiliation(s)
- Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jay W Reddy
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Mohammad H Malekoshoaraie
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vahid Hassanzade
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ibrahim Kimukin
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Vishal Jain
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
22
|
Usoro JO, Dogra K, Abbott JR, Radhakrishna R, Cogan SF, Pancrazio JJ, Patnaik SS. Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites. MICROMACHINES 2021; 12:1158. [PMID: 34683209 PMCID: PMC8539313 DOI: 10.3390/mi12101158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Microelectrode arrays (MEAs) enable the recording of electrical activity from cortical neurons which has implications for basic neuroscience and neuroprosthetic applications. The design space for MEA technology is extremely wide where devices may vary with respect to the number of monolithic shanks as well as placement of microelectrode sites. In the present study, we examine the differences in recording ability between two different MEA configurations: single shank (SS) and multi-shank (MS), both of which consist of 16 recording sites implanted in the rat motor cortex. We observed a significant difference in the proportion of active microelectrode sites over the 8-week indwelling period, in which SS devices exhibited a consistent ability to record activity, in contrast to the MS arrays which showed a marked decrease in activity within 2 weeks post-implantation. Furthermore, this difference was revealed to be dependent on the depth at which the microelectrode sites were located and may be mediated by anatomical heterogeneity, as well as the distribution of inhibitory neurons within the cortical layers. Our results indicate that the implantation depth of microelectrodes within the cortex needs to be considered relative to the chronic performance characterization.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (K.D.); (J.R.A.); (R.R.); (S.F.C.); (S.S.P.)
| | | |
Collapse
|
23
|
Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, Bratley JV, Kung TA, Cederna PS, Kemp SWP. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J Neural Eng 2021; 18. [PMID: 34359056 DOI: 10.1088/1741-2552/ac1b6b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Background. Robotic exoskeleton devices have become a promising modality for restoration of extremity function in individuals with limb loss or functional weakness. However, there exists no consistent or reliable way to record efferent motor action potentials from intact peripheral nerves to control device movement. Peripheral nerve motor action potentials are similar in amplitude to that of background noise, producing an unfavorable signal-to-noise ratio (SNR) that makes these signals difficult to detect and interpret. To address this issue, we have developed the muscle cuff regenerative peripheral nerve interface (MC-RPNI), a construct consisting of a free skeletal muscle graft wrapped circumferentially around an intact peripheral nerve. Over time, the muscle graft regenerates, and the intact nerve undergoes collateral axonal sprouting to reinnervate the muscle. The MC-RPNI amplifies efferent motor action potentials by several magnitudes, thereby increasing the SNR, allowing for higher fidelity signaling and detection of motor intention. The goal of this study was to characterize the signaling capabilities and viability of the MC-RPNI over time.Methods. Thirty-seven rats were randomly assigned to one of five experimental groups (Groups A-E). For MC-RPNI animals, their contralateral extensor digitorum longus (EDL) muscle was harvested and trimmed to either 8 mm (Group A) or 13 mm (Group B) in length, wrapped circumferentially around the intact ipsilateral common peroneal (CP) nerve, secured, and allowed to heal for 3 months. Additionally, one 8 mm (Group C) and one 13 mm (Group D) length group had an epineurial window created in the CP nerve immediately preceding MC-RPNI creation. Group E consisted of sham surgery animals. At 3 months, electrophysiologic analyses were conducted to determine the signaling capabilities of the MC-RPNI. Additionally, electromyography and isometric force analyses were performed on the CP-innervated EDL to determine the effects of the MC-RPNI on end organ function. Following evaluation, the CP nerve, MC-RPNI, and ipsilateral EDL muscle were harvested for histomorphometric analysis.Results. Study endpoint analysis was performed at 3 months post-surgery. All rats displayed visible muscle contractions in both the MC-RPNI and EDL following proximal CP nerve stimulation. Compound muscle action potentials were recorded from the MC-RPNI following proximal CP nerve stimulation and ranged from 3.67 ± 0.58 mV to 6.04 ± 1.01 mV, providing efferent motor action potential amplification of 10-20 times that of a normal physiologic nerve action potential. Maximum tetanic isometric force (Fo) testing of the distally-innervated EDL muscle in MC-RPNI groups producedFo(2341 ± 114 mN-2832 ± 102 mN) similar to controls (2497 ± 122 mN), thus demonstrating that creation of MC-RPNIs did not adversely impact the function of the distally-innervated EDL muscle. Overall, comparison between all MC-RPNI sub-groups did not reveal any statistically significant differences in signaling capabilities or negative effects on distal-innervated muscle function as compared to the control group.Conclusions. MC-RPNIs have the capability to provide efferent motor action potential amplification from intact nerves without adversely impacting distal muscle function. Neither the size of the muscle graft nor the presence of an epineurial window in the nerve had any significant impact on the ability of the MC-RPNI to amplify efferent motor action potentials from intact nerves. These results support the potential for the MC-RPNI to serve as a biologic nerve interface to control advanced exoskeleton devices.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Nathan G Lawera
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Vidhya Nadarajan
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Jarred V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
24
|
Sridharan A, Muthuswamy J. Soft, Conductive, Brain-Like, Coatings at Tips of Microelectrodes Improve Electrical Stability under Chronic, In Vivo Conditions. MICROMACHINES 2021; 12:761. [PMID: 34203234 PMCID: PMC8306035 DOI: 10.3390/mi12070761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
Several recent studies have reported improved histological and electrophysiological outcomes with soft neural interfaces that have elastic moduli ranging from 10 s of kPa to hundreds of MPa. However, many of these soft interfaces use custom fabrication processes. We test the hypothesis that a readily adoptable fabrication process for only coating the tips of microelectrodes with soft brain-like (elastic modulus of ~5 kPa) material improves the long-term electrical performance of neural interfaces. Conventional tungsten microelectrodes (n = 9 with soft coatings and n = 6 uncoated controls) and Pt/Ir microelectrodes (n = 16 with soft coatings) were implanted in six animals for durations ranging from 5 weeks to over 1 year in a subset of rats. Electrochemical impedance spectroscopy was used to assess the quality of the brain tissue-electrode interface under chronic conditions. Neural recordings were assessed for unit activity and signal quality. Electrodes with soft, silicone coatings showed relatively stable electrical impedance characteristics over 6 weeks to >1 year compared to the uncoated control electrodes. Single unit activity recorded by coated electrodes showed larger peak-to-peak amplitudes and increased number of detectable neurons compared to uncoated controls over 6-7 weeks. We demonstrate the feasibility of using a readily translatable process to create brain-like soft interfaces that can potentially overcome variable performance associated with chronic rigid neural interfaces.
Collapse
Affiliation(s)
| | - Jit Muthuswamy
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA;
| |
Collapse
|
25
|
Lee JM, Lin D, Kim HR, Pyo YW, Hong G, Lieber CM, Park HG. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping. NANO LETTERS 2021; 21:3184-3190. [PMID: 33734716 DOI: 10.1021/acs.nanolett.1c00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of a multifunctional device that achieves optogenetic neuromodulation and extracellular neural mapping is crucial for understanding neural circuits and treating brain disorders. Although various devices have been explored for this purpose, it is challenging to develop biocompatible optogenetic devices that can seamlessly interface with the brain. Herein, we present a tissue-like optoelectronic mesh with a compact interface that enables not only high spatial and temporal resolutions of optical stimulation but also the sampling of optically evoked neural activities. An in vitro experiment in hydrogel showed efficient light propagation through a freestanding SU-8 waveguide that was integrated with flexible mesh electronics. Additionally, an in vivo implantation of the tissue-like optoelectronic mesh in the brain of a live transgenic mouse enabled the sampling of optically evoked neural signals. Therefore, this multifunctional device can aid the chronic modulation of neural circuits and behavior studies for developing biological and therapeutic applications.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | | | - Ha-Reem Kim
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Atkinson D, D'Souza T, Rajput JS, Tasnim N, Muthuswamy J, Marvi H, Pancrazio JJ. Advances in Implantable Microelectrode Array Insertion and Positioning. Neuromodulation 2021; 25:789-795. [PMID: 33438369 DOI: 10.1111/ner.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Microelectrode arrays offer a means to probe the functional circuitry of the brain and the promise of cortical neuroprosthesis for individuals suffering from paralysis or limb loss. These devices are typically comprised of one or more shanks incorporating microelectrode sites, where the shanks are positioned by inserting the devices along a straight path that is normal to the brain surface. The lack of consistent long-term chronic recording technology has driven interest in novel probe design and approaches that go beyond the standard insertion approach that is limited to a single velocity or axis. This review offers a description of typical approaches and associated limitations and surveys emergent methods for implantation of microelectrode arrays, in particular those new approaches that leverage embedded microactuators and extend the insertion direction beyond a single axis. MATERIALS AND METHODS This review paper surveys the current technologies that enable probe implantation, repositioning, and the capability to record/stimulate from a tissue volume. A comprehensive literature search was performed using PubMed, Web of Science, and Google Scholar. RESULTS There has been substantial innovation in the development of microscale and embedded technology that enables probe repositioning to maintain quality recordings in the brain. Innovations in material science have resulted in novel strategies for deployable structures that can record from or stimulate a tissue volume. Moreover, new developments involving magnetically steerable catheters and needles offer an alternative approach to "pull" rather than "push" a probe into the tissue. CONCLUSION We envision the emergence of a new generation of probes and insertion methodologies for neuromodulation applications that enable reliable chronic performance from devices that can be positioned virtually anywhere in the brain.
Collapse
Affiliation(s)
- David Atkinson
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Tania D'Souza
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Jai Singh Rajput
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Nishat Tasnim
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Jit Muthuswamy
- Department of Biomedical Engineering, School of Biological and Health Systems, Engineering, Arizona State University, Tempe, AZ, USA
| | - Hamid Marvi
- School for Engineering of Matter Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
28
|
Mobini S, Kuliasha CA, Siders ZA, Bohmann NA, Jamal SM, Judy JW, Schmidt CE, Brennan AB. Microtopographical patterns promote different responses in fibroblasts and Schwann cells: A possible feature for neural implants. J Biomed Mater Res A 2021; 109:64-76. [PMID: 32419308 PMCID: PMC8059778 DOI: 10.1002/jbm.a.37007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/28/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
The chronic reliability of bioelectronic neural interfaces has been challenged by foreign body reactions (FBRs) resulting in fibrotic encapsulation and poor integration with neural tissue. Engineered microtopographies could alleviate these challenges by manipulating cellular responses to the implanted device. Parallel microchannels have been shown to modulate neuronal cell alignment and axonal growth, and Sharklet™ microtopographies of targeted feature sizes can modulate bio-adhesion of an array of bacteria, marine organisms, and epithelial cells due to their unique geometry. We hypothesized that a Sharklet™ micropattern could be identified that inhibited fibroblasts partially responsible for FBR while promoting Schwann cell proliferation and alignment. in vitro cell assays were used to screen the effect of Sharklet™ and channel micropatterns of varying dimensions from 2 to 20 μm on fibroblast and Schwann cell metrics (e.g., morphology/alignment, nuclei count, metabolic activity), and a hierarchical analysis of variance was used to compare treatments. In general, Schwann cells were found to be more metabolically active and aligned than fibroblasts when compared between the same pattern. 20 μm wide channels spaced 2 μm apart were found to promote Schwann cell attachment and alignment while simultaneously inhibiting fibroblasts and warrant further in vivo study on neural interface devices. No statistically significant trends between cellular responses and geometrical parameters were identified because mammalian cells can change their morphology dependent on their environment in a manner dissimilar to bacteria. Our results showed although surface patterning is a strong physical tool for modulating cell behavior, responses to micropatterns are highly dependent on the cell type.
Collapse
Affiliation(s)
- Sahba Mobini
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Universidad Autónoma de Madrid, Spain
| | - Cary A. Kuliasha
- Nanoscience Institute for Medical and Engineering Technology, University of Florida, USA
| | - Zachary A. Siders
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, USA
| | - Nicole A. Bohmann
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Syed-Mustafa Jamal
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Jack W. Judy
- Nanoscience Institute for Medical and Engineering Technology, University of Florida, USA
| | - Christine E. Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Anthony B. Brennan
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
- Materials Science and Engineering Department, University of Florida, USA
| |
Collapse
|
29
|
How is flexible electronics advancing neuroscience research? Biomaterials 2020; 268:120559. [PMID: 33310538 DOI: 10.1016/j.biomaterials.2020.120559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Innovative neurotechnology must be leveraged to experimentally answer the multitude of pressing questions in modern neuroscience. Driven by the desire to address the existing neuroscience problems with newly engineered tools, we discuss in this review the benefits of flexible electronics for neuroscience studies. We first introduce the concept and define the properties of flexible and stretchable electronics. We then categorize the four dimensions where flexible electronics meets the demands of modern neuroscience: chronic stability, interfacing multiple structures, multi-modal compatibility, and neuron-type-specific recording. Specifically, with the bending stiffness now approaching that of neural tissue, implanted flexible electronic devices produce little shear motion, minimizing chronic immune responses and enabling recording and stimulation for months, and even years. The unique mechanical properties of flexible electronics also allow for intimate conformation to the brain, the spinal cord, peripheral nerves, and the retina. Moreover, flexible electronics enables optogenetic stimulation, microfluidic drug delivery, and neural activity imaging during electrical stimulation and recording. Finally, flexible electronics can enable neuron-type identification through analysis of high-fidelity recorded action potentials facilitated by its seamless integration with the neural circuitry. We argue that flexible electronics will play an increasingly important role in neuroscience studies and neurological therapies via the fabrication of neuromorphic devices on flexible substrates and the development of enhanced methods of neuronal interpenetration.
Collapse
|
30
|
Stiller AM, Usoro JO, Lawson J, Araya B, González-González MA, Danda VR, Voit WE, Black BJ, Pancrazio JJ. Mechanically Robust, Softening Shape Memory Polymer Probes for Intracortical Recording. MICROMACHINES 2020; 11:E619. [PMID: 32630553 PMCID: PMC7344527 DOI: 10.3390/mi11060619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
While intracortical microelectrode arrays (MEAs) may be useful in a variety of basic and clinical scenarios, their implementation is hindered by a variety of factors, many of which are related to the stiff material composition of the device. MEAs are often fabricated from high modulus materials such as silicon, leaving devices vulnerable to brittle fracture and thus complicating device fabrication and handling. For this reason, polymer-based devices are being heavily investigated; however, their implementation is often difficult due to mechanical instability that requires insertion aids during implantation. In this study, we design and fabricate intracortical MEAs from a shape memory polymer (SMP) substrate that remains stiff at room temperature but softens to 20 MPa after implantation, therefore allowing the device to be implanted without aids. We demonstrate chronic recordings and electrochemical measurements for 16 weeks in rat cortex and show that the devices are robust to physical deformation, therefore making them advantageous for surgical implementation.
Collapse
Affiliation(s)
- Allison M. Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Jennifer Lawson
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Betsiti Araya
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | | | | | - Walter E. Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
- Qualia, Inc., Dallas, TX 75252, USA;
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bryan J. Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| |
Collapse
|
31
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
32
|
Inertial Focusing and Separation of Particles in Similar Curved Channels. Sci Rep 2019; 9:16575. [PMID: 31719582 PMCID: PMC6851121 DOI: 10.1038/s41598-019-52983-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/26/2019] [Indexed: 01/27/2023] Open
Abstract
Inertial particle focusing in curved channels has enormous potential for lab-on-a-chip applications. This paper compares a zigzag channel, which has not been used previously for inertial focusing studies, with a serpentine channel and a square wave channel to explore their differences in terms of focusing performance and separation possibilities. The particle trajectories and fluid fields in the curved channels are studied by a numerical simulation. The effects of different conditions (structure, Reynolds number, and particle size) on the competition between forces and the focusing performance are studied. The results indicate that the zigzag channel has the best focusing effect at a high Reynolds number and that the serpentine channel is second in terms of performance. Regarding the particle separation potential, the zigzag channel has a good performance in separating 5 μm and 10 μm particles at ReC = 62.5. In addition, the pressure drop of the channel is also considered to evaluate the channel performance, which has not been taken into account in the literature on inertial microfluidics. This result is expected to be instructive for the selection and optimization of inertial microchannel structures.
Collapse
|
33
|
Usoro JO, Shih E, Black BJ, Rihani RT, Abbott J, Chakraborty B, Pancrazio JJ, Cogan SF. Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4c02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Ramadi KB, Cima MJ. Materials and Devices for Micro-invasive Neural Interfacing. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Pancrazio JJ, Cogan SF. Editorial for the Special Issue on Neural Electrodes: Design and Applications. MICROMACHINES 2019; 10:E466. [PMID: 31336980 PMCID: PMC6680485 DOI: 10.3390/mi10070466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Neural electrodes enable the recording and stimulation of bioelectrical activity from the nervous system [...].
Collapse
Affiliation(s)
- Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, BSB 13.633, Richardson, TX 75080, USA.
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, BSB 13.633, Richardson, TX 75080, USA.
| |
Collapse
|
36
|
Beygi M, Bentley JT, Frewin CL, Kuliasha CA, Takshi A, Bernardin EK, La Via F, Saddow SE. Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide. MICROMACHINES 2019; 10:E430. [PMID: 31261887 PMCID: PMC6680876 DOI: 10.3390/mi10070430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
One of the main issues with micron-sized intracortical neural interfaces (INIs) is their long-term reliability, with one major factor stemming from the material failure caused by the heterogeneous integration of multiple materials used to realize the implant. Single crystalline cubic silicon carbide (3C-SiC) is a semiconductor material that has been long recognized for its mechanical robustness and chemical inertness. It has the benefit of demonstrated biocompatibility, which makes it a promising candidate for chronically-stable, implantable INIs. Here, we report on the fabrication and initial electrochemical characterization of a nearly monolithic, Michigan-style 3C-SiC microelectrode array (MEA) probe. The probe consists of a single 5 mm-long shank with 16 electrode sites. An ~8 µm-thick p-type 3C-SiC epilayer was grown on a silicon-on-insulator (SOI) wafer, which was followed by a ~2 µm-thick epilayer of heavily n-type (n+) 3C-SiC in order to form conductive traces and the electrode sites. Diodes formed between the p and n+ layers provided substrate isolation between the channels. A thin layer of amorphous silicon carbide (a-SiC) was deposited via plasma-enhanced chemical vapor deposition (PECVD) to insulate the surface of the probe from the external environment. Forming the probes on a SOI wafer supported the ease of probe removal from the handle wafer by simple immersion in HF, thus aiding in the manufacturability of the probes. Free-standing probes and planar single-ended test microelectrodes were fabricated from the same 3C-SiC epiwafers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed on test microelectrodes with an area of 491 µm2 in phosphate buffered saline (PBS) solution. The measurements showed an impedance magnitude of 165 kΩ ± 14.7 kΩ (mean ± standard deviation) at 1 kHz, anodic charge storage capacity (CSC) of 15.4 ± 1.46 mC/cm2, and a cathodic CSC of 15.2 ± 1.03 mC/cm2. Current-voltage tests were conducted to characterize the p-n diode, n-p-n junction isolation, and leakage currents. The turn-on voltage was determined to be on the order of ~1.4 V and the leakage current was less than 8 μArms. This all-SiC neural probe realizes nearly monolithic integration of device components to provide a likely neurocompatible INI that should mitigate long-term reliability issues associated with chronic implantation.
Collapse
Affiliation(s)
- Mohammad Beygi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - John T Bentley
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | | | - Cary A Kuliasha
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Arash Takshi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Evans K Bernardin
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Francesco La Via
- CNR Institute for Microelectronics and Microsystems, Catania, Sicily 95121, Italy
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
37
|
Stiller AM, Usoro J, Frewin CL, Danda VR, Ecker M, Joshi-Imre A, Musselman KC, Voit W, Modi R, Pancrazio JJ, Black BJ. Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. MICROMACHINES 2018; 9:E500. [PMID: 30424433 PMCID: PMC6215160 DOI: 10.3390/mi9100500] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.
Collapse
Affiliation(s)
- Allison M Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Joshua Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Vindhya R Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Qualia, Inc., Dallas, TX 75252, USA.
| | - Melanie Ecker
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kate C Musselman
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Walter Voit
- Qualia, Inc., Dallas, TX 75252, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|