1
|
Yang P, Tian D, Han XY, Zou QJ, Ma LJ, Wei M, Yu M, Zou ZM. Optimal harvest period and quality control markers of cultivated Flos Chrysanthemi Indici using untargeted/targeted metabolomics, chemometric analysis and in vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118533. [PMID: 38971347 DOI: 10.1016/j.jep.2024.118533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum Indicum L., is a popular traditional Chinese medicine (TCM) for treatment of inflammatory diseases in China. FCI is also a functional food, and is widely used as herbal tea for clearing heat and detoxicating. AIM OF THE STUDY To explore quality control markers of FCI based on the optimal harvest period. MATERIALS AND METHODS First, UPLC-Q-TOF/MS based untargeted metabolomics was applied to explore the chemical profiles of FCIs collected at bud stages (BS), initial stages (IS), full bloom stages (FS) and eventual stages (ES) from eight cultivated regions in China. Subsequently, lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model and carrageenan-induced rat paw edema model were used to confirm the anti-inflammatory effect of FCIs collected at IS/FS. Then, UPLC-PDA targeted metabolomics was used to quantitatively analyze 9 constituents with anti-inflammatory activity (7 flavonoids and 2 phenolic acids) changed significantly (VIP > 4) during flowering stages. Finally, ROC curves combined with PCA analysis based on the variation of 9 active constituents in FCIs from different flowering stages were applied to screen the quality markers of FCI. RESULTS FCIs at IS/FS had almost same chemical characteristics, but quite different from those at BS and ES. A total of 32 constituents in FCIs including flavonoids and phenolic acids were changed during flowering development. Most of the varied constituents had the highest or higher contents at IS/FS compared with those at ES, indicating that the optimal harvest period of FCI should be at IS/FS. FCI extract could effectively suppress nitric oxide (NO) production in LPS-induced RAW264.7 cells and regulate the abnormal levels of cytokines and PGE2 in carrageenan-induced paw edema model rat. The results of quantitatively analysis revealed that the variation trends of phenolic acids and flavonoids in FCIs were different during flowering development, but most of them had higher contents at IS/FS than those at ES in all FCIs collected from eight cultivated regions, except one sample from Anhui. Finally, linarin, luteolin, apigenin and 3,5-dicaffeoylquinic acid were selected as the Q-markers based on the contribution of their AUC values in ROC and clustering of PCA analysis. CONCLUSIONS Our study demonstrates the optimal harvest period of FCI and specifies the multi-constituents Q-markers of FCI based on the influence of growth progression on the active constituents using untargeted/targeted metabolomics. The findings not only greatly increase the utilization rate of FCI resources and improve quality control of FCI products, but also offer new strategy to identify the Q-markers of FCI.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Dong Tian
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiao-Yu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Qing-Jun Zou
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Liang-Ju Ma
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518110, China.
| | - Meng Yu
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhong-Mei Zou
- State Key Laboratory for Qualiny Ensurance and sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Shi J, Zhang K, Li T, Wu L, Yang Y, Zhang Y, Tu P, Liu W, Song Y. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum. J Chromatogr A 2024; 1720:464773. [PMID: 38432106 DOI: 10.1016/j.chroma.2024.464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO‑d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.
Collapse
Affiliation(s)
- Jingjing Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Zhou X, Cheng W, Chen X, Wang K. UPLC-quadrupole time-of-flight-tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt. Biomed Chromatogr 2024; 38:e5797. [PMID: 38084786 DOI: 10.1002/bmc.5797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
Coreopsis tinctoria Nutt. (C. tinctoria) is a traditional medicinal plant, primarily found in plateau areas with altitudes exceeding 3000 m. The efficacy of C. tinctoria appears to be intricately tied to its quality. However, there is a scarcity of studies focused on evaluating the quality of C. tinctoria from diverse geographical locations. In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry to analyze and identify the prevalent chemical components in 12 batches of C. tinctoria sourced from Xinjiang, Qinghai, Tibet, and Yunnan provinces in China. By using cluster analysis and discriminant analysis of partial least squares, we assessed the similarity and identified varying components in the 12 batches of C. tinctoria. Subsequently, their quality was further evaluated. Utilizing network pharmacology, we identified potential active components for the treatment of diabetes mellitus. The findings revealed the presence of 16 flavonoids, 3 phenylpropanes, 2 sugars, 2 amino acids, and 7 hydrocarbons in the analyzed samples. Through variable importance screening, 17 constituents were identified as quality difference markers. Marein and flavanomarein emerged as pivotal markers, crucial for distinguishing variations in C. tinctoria. In addition, network pharmacology predicted 187 targets for 9 common active components, including marein and flavanomarein. Simultaneously, 1747 targets related to diabetes mellitus were identified. The drug-component-disease target network comprised 91 nodes and 179 edges, encompassing 1 drug node, 9 component nodes, and 81 target nodes. In summary, marein and flavanomarein stand out as key biomarkers for assessing the quality of C. tinctoria, offering a scientific foundation for the quality evaluation of C. tinctoria Nutt.
Collapse
Affiliation(s)
- Xinyu Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaixuan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Chen X, Zhou X, Gao Y. Optimizing Coreopsis tinctoria Flower Extraction and Inhibiting CML Activity: Box-Behnken Design. Anticancer Agents Med Chem 2024; 24:1151-1158. [PMID: 38919005 DOI: 10.2174/0118715206299886240620070011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the bone marrow associated with high mortality. Although several effective therapies have been developed to reduce symptoms in patients with CML, many of these methods are associated with side effects. Coreopsis tinctoria Nutt. (C. tinctoria) is a natural medicinal material that possesses antioxidant and anticancer activities. Yet, its effect in treating leukemia has still not been fully explored. OBJECTIVE To optimize the C. tinctoria flower extraction process and investigate whether these extracts can impair CML cell survival. METHODS The extraction process of C. tinctoria was optimized by the Box-Behnken design response surface method. K562 cells were treated with different volumes (0, 10, 25, 50, and 100 μL) of C. tinctoria flower extracts. The effect of C. tinctoria extract on cell morphology and cell apoptosis was assessed by light microscopy, laser confocal microscopy, and flow cytometry. RESULTS We established the following optimized C. tinctoria flower extraction conditions: temperature of 84.4°C, extraction period of 10 mins, solid-liquid ratio of 1:65, and times 4. These conditions were applied for C. tinctoria flower extraction. Pre-incubation of extracts prepared under the aforementioned optimal conditions with K562 cells induced cell cytotoxicity and cell apoptosis. CONCLUSION C. tinctoria flower extracts exert obvious anti-leukemia effects in vitro and may be a potential drug candidate for leukemia treatment.
Collapse
MESH Headings
- Humans
- Flowers/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Coreopsis/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- K562 Cells
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Apoptosis/drug effects
- Drug Screening Assays, Antitumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Cell Proliferation/drug effects
- Structure-Activity Relationship
- Tumor Cells, Cultured
- Molecular Structure
Collapse
Affiliation(s)
- Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyu Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ya Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
5
|
Arruda HS, Angolini CFF, Eberlin MN, Pastore GM, Marostica Junior MR. UHPLC-ESI-QTOF-MS/MS Profiling of Phytochemicals from Araticum Fruit ( Annona crassiflora Mart.) and Its Antioxidant Activity. Foods 2023; 12:3456. [PMID: 37761165 PMCID: PMC10528599 DOI: 10.3390/foods12183456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Araticum is a native species of the Brazilian Cerrado with a high potential for exploitation. Several studies have stated that araticum is a rich source of phytochemicals with multifaceted biological actions. However, little information is available regarding the characterization of phytochemicals found in the pulp of this fruit. In this context, this study aimed to carry out a comprehensive characterization of phytochemicals present in the araticum pulp using ultra-high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UHPLC-ESI-QTOF-MS/MS). The antioxidant potential of araticum pulp was also evaluated. UHPLC-ESI-QTOF-MS/MS profiling of the phytochemicals allowed for the identification and annotation of 139 phytochemicals, including organic acids, jasmonates, iridoids, phenolic compounds, alkaloids, annonaceous acetogenins, fatty acid derivatives, and other compounds. Among them, 116 compounds have been found for the first time in araticum pulp. Phenolic compounds and their derivatives represented about 59% of the phytochemicals identified in the extract. Moreover, araticum pulp showed high total phenolic compound content and antioxidant activity. The majority of identified phytochemicals have been associated with key roles in the plant's defense mechanisms against biotic and abiotic stress factors in the Cerrado environment. Furthermore, many of these phytochemicals found in the araticum pulp are already widely recognized for their beneficial effects on human health. Our findings showed that the araticum fruit contains different classes of phytochemicals that exert various biological activities, both in the plant itself and in humans.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Célio Fernando Figueiredo Angolini
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados 5001, Santo André 09210-580, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| |
Collapse
|
6
|
Nur S, Setiawan H, Hanafi M, Elya B. Phytochemical composition, antioxidant, in vitro and in silico studies of active compounds of Curculigo latifolia extracts as promising elastase inhibitor. Saudi J Biol Sci 2023; 30:103716. [PMID: 37457237 PMCID: PMC10344807 DOI: 10.1016/j.sjbs.2023.103716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Curculigo latifolia is a plant in the Hypoxidaceae family commonly used in herbal medicine. The study objective was to evaluate the antioxidant and anti-elastase properties of C. latifolia extracts in vitro and silico as a candidate for antiaging active ingredients. This study identified secondary metabolites of the hexane (HE), ethyl acetate (EAE), and ethanol extracts (EE) from the root (R), stem (S), and leaf (L) organs by LC-ESI-MS and evaluated in vitro antioxidant and inhibitor elastase activity. An antioxidant evaluation was performed using ABTS, Beta Carotene Bleaching (BCB), and Ferric Reduction Antioxidant Power (FRAP). Evaluation of anti-elastase was carried out using elastase and followed by an in silico study of molecular docking using the target protein elastase (1B0F). Fifteen C. latifolia metabolites were identified in C. latifolia extracts, most of which were phenolic compounds. In antioxidant testing, REE, REAE, SEE, and SEAE extracts showed potent antioxidant activity based on the ABTS, BCB, and FRAP methods. In anti-elastase testing, it was found that SEE, REE, REAE, and RHE extracts gave powerful inhibition of elastase activity (in the ranges of 16.89 to 27.91 µg/mL). The in-silico study demonstrated the potential of the identified metabolites to bind to the target protein 1B0F involved in remodeling the skin aging process. This research concludes that the extracts from C. latifolia have the potential to serve as an active antiaging source.
Collapse
Affiliation(s)
- Syamsu Nur
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
- Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90245, Indonesia
| | - Heri Setiawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhammad Hanafi
- Research Centre for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15314, Indonesia
- Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, Indonesia
| | - Berna Elya
- Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
7
|
Lv Q, Wu X, Guan Y, Lin J, Sun Y, Hu M, Xiao P, He C, Jiang B. Integration of network pharmacology, transcriptomics and molecular docking reveals two novel hypoglycemic components in snow chrysanthemum. Biomed Pharmacother 2023; 163:114818. [PMID: 37182513 DOI: 10.1016/j.biopha.2023.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
Our previous studies uncovered the glucose-lowering properties of snow chrysanthemum tea, however, the active ingredients and underlying mechanisms were yet to be uncovered. Flavonoids are the most active and abundant components in snow chrysanthemum tea. In this study, we treated leptin-deficient diabetic ob/ob or high-fat diet (HFD)-induced C57BL/6 J obese mice with or without total flavonoids of snow chrysanthemum (TFSC) for 14 weeks. Results indicated that TFSC ameliorated dyslipidemia and fatty liver, thereby reducing hyperlipidemia. Further mechanism experiments, including RNA-seq and experimental validation, revealed TFSC improved glycolipid metabolism primarily by activating the AMPK/Sirt1/PPARγ pathway. Additionally, by integrating UPLC, network pharmacology, transcriptomics, and experimental validation, we identified two novel hypoglycemic compounds, sulfuretin and leptosidin, in TFSC. Treatment with 12.5 μmol/L sulfuretin obviously stimulated cellular glucose consumption, and sulfuretin (3.125, 6.25 and 12.5 μmol/L) significantly mitigated glucose uptake damage and reliably facilitated glucose consumption in insulin-resistant HepG2 cells. Remarkably, sulfuretin interacted with the ligand-binding pocket of PPARγ via three hydrogen bond interactions with the residues LYS-367, GLN-286 and TYR-477. Furthermore, a concentration of 12.5 μmol/L sulfuretin effectively upregulated the expression of PPARγ, exhibiting a comparable potency to a renowned PPARγ agonist at 20 μmol/L. Taken together, our findings have identified two new hypoglycemic compounds and revealed their mechanisms, which significantly expands people's understanding of the active components in snow chrysanthemum that have hypoglycemic effects.
Collapse
Affiliation(s)
- Qiuyue Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yuwen Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jinrong Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yuhua Sun
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
8
|
Gao Y, Song O, Wang M, Guo X, Zhang G, Liu X, Liu J, Zhao L. Hydrogen Protection Boosts the Bioactivity of Chrysanthemum morifolium Extract in Preventing Palmitate-Induced Endothelial Dysfunction by Restoring MFN2 and Alleviating Oxidative Stress in HAEC Cells. Antioxidants (Basel) 2023; 12:antiox12051019. [PMID: 37237885 DOI: 10.3390/antiox12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
As the most important natural antioxidants in plant extracts, polyphenols demonstrate versatile bioactivities and are susceptible to oxidation. The commonly used ultrasonic extraction often causes oxidation reactions involving the formation of free radicals. To minimize the oxidation effects during the ultrasonic extraction process, we designed a hydrogen (H2)-protected ultrasonic extraction method and used it in Chrysanthemum morifolium extraction. Hydrogen-protected extraction improved the total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and polyphenol content of Chrysanthemum morifolium water extract (CME) compared with air and nitrogen (N2) conditions. We further investigated the protective effects and mechanisms of CME on palmitate (PA)-induced endothelial dysfunction in human aorta endothelial cells (HAECs). We found that hydrogen-protected CME (H2-CME) best-prevented impairment in nitric oxide (NO) production, endothelial NO synthase (eNOS) protein level, oxidative stress, and mitochondrial dysfunction. In addition, H2-CME prevented PA-induced endothelial dysfunction by restoring mitofusin-2 (MFN2) levels and maintaining redox balance.
Collapse
Affiliation(s)
- Yilin Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Oumeng Song
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Guo
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Zhang PP, Zhuo BY, Duan ZW, Li X, Huang SL, Cao Q, Zhao T, Wei SL, Hu XH, Zhang Y. Marein reduces lipid levels via modulating the PI3K/AKT/mTOR pathway to induce lipophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116523. [PMID: 37080364 DOI: 10.1016/j.jep.2023.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The capitulum of Coreopsis tinctoria Nutt. (CT, Xue-Ju in Chinese) is a precious medicine in Xinjiang Uygur Autonomous region of China. The Coreopsis tinctoria Nutt. is used to prevent and treat dyslipidemia, coronary heart disease, etc. Recent studies have shown that its extract has a pharmacological effect on hyperlipidemia and hyperglycemia. AIM OF THE STUDY The study aimed to systematically evaluate the lipid-lowering activity of CT through a mice model of hyperlipidemia and a human hepatoma G2 (HepG2) cells model of lipid accumulation, and to investigate its main active components and mechanism. MATERIALS AND METHODS Biochemical analysis of blood/liver lipids and liver histopathology were used to evaluate the effect of the aqueous extract of Coreopsis tinctoria Nutt. (AECT) on hyperlipidemia mice. High-performance liquid chromatography (HPLC) analysis was used to identify the main components in the AECT. Oil red O staining, immunofluorescence, western blotting, and determination of the total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were used to further study the effect and potential mechanism of the AECT main components on sodium oleate-induced lipid accumulation in HepG2 cells. RESULTS We confirmed the lipid-lowering activity of the aqueous extract and further identified flavonoids as its main components. Among them, five Coreopsis tinctoria Nutt. flavonoids mixture (FM) significantly reduced lipid droplet area, lipid content, TC, TG, and LDL-C levels, and elevated HDL-C levels in HepG2 cells induced by sodium oleate. Furthermore, they increased lipophagy in HepG2 lipid-accumulating cells, while decreasing the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Most importantly, marein may be a key component. CONCLUSIONS Our study demonstrated that AECT, with flavonoids as the main component, can improve diet-induced hyperlipidemia in obese mice. Among the main five flavonoids, marein plays a key role in promoting lipophagy by regulating the PI3K/AKT/mTOR pathway, resulting in a lipid-lowering effect.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Bing-Yu Zhuo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zi-Wei Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Song-Li Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qian Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Sheng-Li Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Xiu-Hua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| |
Collapse
|
10
|
Zhang M, Zhao N, Xie M, Dong D, Chen W, He Y, Yan D, Fu H, Liang X, Zhou L. Antioxidant properties of polyphenols from snow chrysanthemum ( Coreopsis tinctoria) and the modulation on intestinal microflora in vitro. PHARMACEUTICAL BIOLOGY 2022; 60:1771-1780. [PMID: 36093612 PMCID: PMC9467560 DOI: 10.1080/13880209.2022.2117386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/07/2022] [Accepted: 08/14/2022] [Indexed: 06/07/2023]
Abstract
CONTEXT Coreopsis tinctoria Nutt (Asteraceae), named snow chrysanthemum, is known to have a high level of polyphenols. However, the potential prebiotic effect on modulating intestinal microflora is still unclear. OBJECTIVE The chemical composition, antioxidant properties of snow chrysanthemum polyphenols (SCPs) and their effects on human intestinal microbiota were investigated. MATERIALS AND METHODS SCPs were extracted using ultrasonic-assisted extraction, and further determined using UPLC-QE Orbitrap/MS. Five assays were used to investigate the antioxidant activities of SCPs. Subsequently, the effects of SCPs on intestinal microbiota in vitro were determined by high throughput sequencing and bioinformatics analysis. RESULTS Marein, isookanin and cymaroside were the major phenolic compounds, which accounted for 42.17%, 19.53% and 12.25%, respectively. Marein exhibited higher scavenging capacities in DPPH (EC50 = 8.84 µg/mL) and super anion radical assay (EC50 = 282.1 µg/mL) compared to cymaroside and isookanin. The antioxidant capacity of cymaroside was weakest among the three phenolic compounds due to the highest EC50 values, especially for superoxide anion radical assay, EC50 > 800 µg/mL. The result of in vitro fermentation showed that the three phenolic compounds increased the relative abundances of Escherichia/Shigella, Enterococcus, Klebsiella, etc., and isookanin notably increased the relative abundance of Bifidobacterium and Lactobacillus. DISCUSSION AND CONCLUSIONS SCPs exhibited antioxidant properties and potential prebiotic effects on modulating the gut microbiota composition. The findings indicated that SCPs consumption could exert prebiotic activity that is beneficial for human health.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Naiyu Zhao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, P. R. China
| | - Deqiao Dong
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Weilin Chen
- Medscience-Tech Institute for Non-communicable Diseases at Optics Valley, Wuhan, P. R. China
| | - Yuanpeng He
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Dalin Yan
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Haiyan Fu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Xinlin Liang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| |
Collapse
|
11
|
Impact of Geraniol and Geraniol Nanoemulsions on Botrytis cinerea and Effect of Geraniol on Cucumber Plants’ Metabolic Profile Analyzed by LC-QTOF-MS. PLANTS 2022; 11:plants11192513. [PMID: 36235379 PMCID: PMC9571098 DOI: 10.3390/plants11192513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
In the present study, the bioactive substance geraniol was tested in vitro and in planta against B. cinerea on cucumber plants, and the changes in the metabolic profile of cucumber plants inoculated with the pathogen and/or treated with geraniol were monitored by a novel LC-QTOF-MS method employing target and suspect screening. The aforementioned treatments were also studied for their impact on membrane lipid peroxidation calculated as malondialdehyde (MDA) content. Additionally, geraniol-loaded nanoemulsions (GNEs) were synthesized and tested against B. cinerea as an integrated formulation mode of geraniol application. The EC50 values calculated for geraniol and GNEs against B. cinerea were calculated at 235 μg/mL and 105 μg/mL, respectively. The in planta experiment on cucumber plants demonstrated the ability of geraniol and GNEs to significantly inhibit B. cinerea under greenhouse conditions. The LC-QTOF-MS analysis of the metabolic profile of the cucumber plants treated with geraniol demonstrated an increase in the concentration levels of myricetin, chlorogenic acid, and kaempferol rhamnoside, as compared to control plants and the presence of B. cinerea caused an increase in sinapic acid and genistein. These compounds are part of important biosynthetic pathways mostly related to responses against a pathogen attack.
Collapse
|
12
|
Shi Y, Tang Q, Xing H, Zheng X, Cao K, Yang J, Chen X. Study on the metabolism profile of flavanomarein in Coreopsis tinctoria Nutt. J Sep Sci 2022; 45:3827-3837. [PMID: 35962784 DOI: 10.1002/jssc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Coreopsis tinctoria Nutt. (family Asteraceae) is a popular medicine-food plant, which improves chronic diseases such as hyperlipemia, hypertension, and diabetes. Flavanomarein is the main active component of Coreopsis tinctoria Nutt, in which the blood concentration of volunteers is low and bioavailability is poor. Thus, the understanding of flavanomarein metabolites and metabolic pathways is significant to clarify its effectiveness. This study systematically studied the metabolites of flavanomarein by oral and injection. The biological samples (feces, urine, and plasma) were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in negative ion mode. The metabolic law of flavanomarein in the liver was further verified by a liver microsomal incubation experiment in vitro. A total of 12 metabolites were identified by oral administration while 15 metabolites were detected by injection. It was shown that metabolic pathways include acetylation, hydroxylation, glucuronidation, methylation, dehydrogenation, etc. The liver extraction rate of flavanomarein was 0.08, which means the metabolic stability of flavanomarein is well in rats' liver microsomes. It is a systematic study on the metabolism of flavanomarein and provides a metabolic rationale for further in-depth in vivo biotransformation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yumeng Shi
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Qian Tang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Hong Xing
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Xin Zheng
- Beijing Analytical Center-SSL Shimadzu (China) Co., LTD
| | - Kunfeng Cao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Jialu Yang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Xiaopeng Chen
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| |
Collapse
|
13
|
Liu Y, Xiong B, Qiu X, Hao H, Sha A. Study on the antithrombotic effect and physiological mechanism of okanin. Biomed Pharmacother 2022; 153:113358. [PMID: 35785699 DOI: 10.1016/j.biopha.2022.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The objectives of this study were to investigate the antithrombotic effect and physiological mechanism of okanin, a flavonoid monomer in Coreopsis tinctoria Nutt. The antithrombotic effects of okanin were determined by the anticoagulant activity test in vitro and in vivo, the venous thrombosis and arterial thrombosis test in rats. To study the antithrombotic physiological mechanisms of okanin, UV spectrophotometer and enzyme-linked immunosorbent assay (ELISA) were used to determine the effects of three concentrations of okanin on the contents of 6-keto-prostaglandin F1α (6-Keto-PGF1α), thromboxane B2 (TXB2), endothelin-1 (ET-1), antithrombin III (AT-Ⅲ), protein C (PC) and von willebrand factor (vWF) in the plasma of rats with arterial thrombosis; ELISA was used to detect the effects of okanin on the contents of plasminogen (PLG), tissue plasminogen activator (t-PA) and type-1 plasminogen activator inhibitor (PAI-1) in the plasma of mice and Chinese white rabbits. The results showed that okanin could prolong the coagulation time in vitro and in vivo of animals (P < 0.01 in the high dose group) and the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of human venous blood (ATPP of medium dose group P < 0.01; PT, TT P < 0.05. P < 0.01 in the high dose group); inhibit the maximum platelet aggregation rate of rabbits (P < 0.05 in the low dose group; P < 0.01 in the medium and high dose groups), decrease the dry and wet weight of venous thrombosis and the wet weight of common carotid artery thrombosis in rats (low dose group, P < 0.05; medium and high dose groups, P < 0.01); increase the levels of 6-Keto-PGF1α, AT-Ⅲ, PLG and t-PA in animal plasma; decrease the levels of TXB2, ET-1, vWF and PAI-1 in animal plasma. It is concluded that okanin can significantly inhibit thrombosis, and its physiological mechanisms were related to affecting the activation of related coagulation factors in endogenous and exogenous coagulation pathways, affecting the physiological characteristics of platelets, repairing damaged vascular endothelial cells and enhancing the activity of the fibrinolytic system.
Collapse
Affiliation(s)
- Yi Liu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Binbing Xiong
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Xinyu Qiu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Haiyan Hao
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404120, China.
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China.
| |
Collapse
|
14
|
Sun J, Li Q, Li J, Liu J, Xu F. Nutritional composition and antioxidant properties of the fruit of Berberis heteropoda Schrenk. PLoS One 2022; 17:e0262622. [PMID: 35390002 PMCID: PMC8989241 DOI: 10.1371/journal.pone.0262622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Objective This study assessed the major nutrients and antioxidant properties of Berberis heteropoda Schrenk fruits collected from the Nanshan Mountain area of Urumqi City, Xinjiang Uygur Autonomous Region, China. Methods and materials We assessed the basic nutrients, including amino acids, minerals, and fatty acids, and determined the total phenol, flavonoid, and anthocyanin contents of the extracts. Results The analytical results revealed the average water (75.22 g/100 g), total fat (0.506 g/100 g), total protein (2.55 g/100 g), ash (1.31 g/100 g), and carbohydrate (17.72 g/100 g) contents in fresh B. heteropoda fruit, with total phenol, flavonoid, and anthocyanin contents of B. heteropoda fruits at 68.55 mg gallic acid equivalents/g, 108.42 mg quercetin equivalents/g, and 19.83 mg cyanidin-3-glucoside equivalent/g, respectively. Additionally, UPLC-Q-TOF-MSE analysis of polyphenols in B. heteropoda fruit revealed 32 compounds. Conclusion B. heteropoda fruits may have potential nutraceutical value and represent a potential source of nutrition and antioxidant phytochemicals in the human diet.
Collapse
Affiliation(s)
- Jixiang Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qian Li
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianguang Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- * E-mail:
| | - Jing Liu
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fang Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Wufuer Y, Yang X, Guo L, Aximujiang K, Zhong L, Yunusi K, Wu G. The Antitumor Effect and Mechanism of Total Flavonoids From Coreopsis Tinctoria Nutt (Snow Chrysanthemum) on Lung Cancer Using Network Pharmacology and Molecular Docking. Front Pharmacol 2022; 13:761785. [PMID: 35350758 PMCID: PMC8957955 DOI: 10.3389/fphar.2022.761785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Coreopsis tinctoria Nutt (C. tinctoria), also known as Snow Chrysanthemum, is rich in polyphenols and flavonoids. It has important pharmacological effects such as lowering blood lipids, regulating blood glucose, and anti-tumor effect. However, its anti-tumor mechanism has not yet been investigated thoroughly. This study aimed to explore the anti-tumor effect of total flavonoids extracted from C. tinctoria (CTFs) on lung cancer and the possible mechanism. The components of CTFs were analyzed using Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The active components of CTFs were screened according to oral bioavailability (OB) and drug-likeness (DL). Totally, 68 components of CTFs were identified and 23 active components were screened. Network pharmacological analysis on the active components identified 288 potential targets associated with lung cancer. After protein-protein interaction (PPI) network topology analysis, 17 key protein targets including Akt1, MAPK1, TP53, Bcl-2, Caspase-3, Bax, GSK3B and CCND1 were screened. The molecular docking results showed that the active components of CTFs had good binding activity with key targets. GO and KEGG analysis of candidate targets found that the main enrichment was in PI3K/Akt-mediated intrinsic apoptotic pathways. Finally, according to the results of network pharmacology, the potential molecular mechanism of CTFs intervention in lung cancer was validated experimentally in vitro and in vivo. The experimental validation results demonstrated that the antitumor activity of CTFs on lung cancer may be related to inhibiting the PI3K-Akt signaling pathway and activating the mitochondrial-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yilimire Wufuer
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xu Yang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyuan Guo
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | | | - Li Zhong
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
16
|
Jiang H, Li Z, Jiang X, Qin Y. Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis in Two Colors of Coreopsis tinctoria Nutt. FRONTIERS IN PLANT SCIENCE 2022; 13:810422. [PMID: 35356116 PMCID: PMC8959828 DOI: 10.3389/fpls.2022.810422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Coreopsis tinctoria Nutt. (C. tinctoria) has a long history of application and high economic and medicinal value. Flavonoids, the main active components of C. tinctoria, are widely studied in pharmacology and food development. However, the flavonoid biosynthesis pathway in C. tinctoria is unclear. In this study, we comprehensively compared the transcriptomes and metabolite profiles of two colors of C. tinctoria flowers (LS and JS) at different flowering stages. A total of 165 flavonoids (46 flavonoids, 42 flavonols, 22 anthocyanins, 18 chalcones, 12 dihydroflavonols, nine isoflavones, eight dihydroflavonoids, six flavanols, and two tannins) were identified in LS and JS at different flowering stages. Thirty-three metabolites (11 anthocyanins, 11 flavonols, seven flavonoids, two dihydroflavonols, one dihydroflavone, and one chalcone) were found to be statistically significantly different in the LS vs. JS groups. LS flowers accumulated higher levels of 10 anthocyanins (seven cyanidins and three pelargonidins) than JS flowers. Furthermore, candidate genes related to the regulation of flavonoid and anthocyanin synthesis were identified and included 28 structural genes (especially F3H, Cluster-28756.299649, and 3GT, Cluster-28756.230942) in LS and JS, six key differentially expressed transcription factors (especially MYB90a, Cluster-28756.143139) in LS and JS, and 17 other regulators (mainly including transporter proteins and others) in LS. Our results provide valuable information for further studies on the mechanism underlying flavonoid biosynthesis in C. tinctoria.
Collapse
Affiliation(s)
| | | | | | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Xinjiang, China
| |
Collapse
|
17
|
Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS. Molecules 2021; 26:molecules26237113. [PMID: 34885694 PMCID: PMC8658894 DOI: 10.3390/molecules26237113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
Collapse
|
18
|
New Flavone C-Glycosides from Scleranthus perennis and Their Anti-Collagenase Activity. Molecules 2021; 26:molecules26185631. [PMID: 34577102 PMCID: PMC8468783 DOI: 10.3390/molecules26185631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Three new flavone glycosides, one known flavone glycoside, and the phenolic derivative apiopaenonside were isolated and identified from the ethyl acetate fraction of the aerial parts of Scleranthus perennis. The planar structures were elucidated through extensive analysis of UV-Vis, IR, and 1H NMR and 13C NMR spectral data, including the 2D techniques COSY, HSQC, and HMBC, as well as ESI mass spectrometry. The isolated compounds were established as 5,7,3′-trihydroxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (1), 5,7,3′-trihydroxy-4′-methoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (2), 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (3), 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-(4′′′-acetoxy)-glucoside (4), and apiopaenonside (5). Moreover, all isolated compounds were evaluated for anti-collagenase activity. All compounds exhibited moderate inhibitory activity with IC50 values ranging from 36.06 to 70.24 µM.
Collapse
|
19
|
Chiang YH, Wu YT, Lin LC, Tsai TH. Comparative biotransformation of luteolin and apigenin from the flower extract and the stem-and-leaf extract of Dendranthema morifolium Ramat. Tzvel. in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4934-4945. [PMID: 33543470 DOI: 10.1002/jsfa.11137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/26/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The flower of Dendranthema morifolium Ramat Tzvel has been widely used as a nutritional health supplement worldwide. However, most of the studies have focused on the flower and the rest of the plant was neglected. Our hypothesis is that similar flavonoids may be present at different parts of D. morifolium, and the flavonoids may undergo a similar biotransformation pathway within the body. To investigate this hypothesis, an in vivo pharmacokinetic experimental model was developed to explore the comparative biotransformation of luteolin and apigenin after administration of D. morifolium extracts (10 g kg-1 , p.o.) in freely moving rats. Because luteolin and apigenin mainly underwent phase II metabolism, the metabolic enzymes of β-glucuronidase/sulfatase or β-glucuronidase were used to hydrolyze the plasma sample, depending on the biotransformation pathway involved. RESULTS The results revealed that luteolin and apigenin mainly went through glucuronide and sulfate conjugations, respectively, in both the extract of flowers and the stem-and-leaf group. In addition, the area under the concentration curve (AUClast ) of luteolin glucuronides and sulfates in the group administered the stem-and-leaf extract was approximately 4.6 times higher than that of the flower extract group. The dominant products of biotransformation for apigenin were sulfates. CONCLUSION These findings support our hypothesis that not only the flower parts of D. morifolium, but also the stem-and-leaf parts contain rich flavones, including glycosides and aglycone, and they undergo similar biotransformation pathways. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-He Chiang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
20
|
Kim BR, Paudel SB, Han AR, Park J, Kil YS, Choi H, Jeon YG, Park KY, Kang SY, Jin CH, Kim JB, Nam JW. Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. PLANTS 2021; 10:plants10081661. [PMID: 34451706 PMCID: PMC8401970 DOI: 10.3390/plants10081661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Coreopsis species have been developed to produce cultivars of various floral colors and sizes and are also used in traditional medicine. To identify and evaluate mutant cultivars of C. rosea and C. verticillata, their phytochemical profiles were systematically characterized using ultra-performance liquid chromatography time-of-flight mass spectrometry, and their anti-diabetic effects were evaluated using the dipeptidyl peptidase (DPP)-IV inhibitor screening assay. Forty compounds were tentatively identified. This study is the first to provide comprehensive chemical information on the anti-diabetic effect of C. rosea and C. verticillata. All 32 methanol extracts of Coreopsis cultivars inhibited DPP-IV activity in a concentration-dependent manner (IC50 values: 34.01–158.83 μg/mL). Thirteen compounds presented as potential markers for distinction among the 32 Coreopsis cultivars via principal component analysis and orthogonal partial least squares discriminant analysis. Therefore, these bio-chemometric models can be useful in distinguishing cultivars as potential dietary supplements for functional plants.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
- Natural Product Research Division, Honam National Institute of Biological Resources, Mokpo-si 58762, Jeollanam-do, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yeo Gyeong Jeon
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Kong Young Park
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan-gun 32439, Chungcheongnam-do, Korea;
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Correspondence: ; Tel.: +82-53-810-2818
| |
Collapse
|
21
|
Wittenborn J, Weikert L, Hangarter B, Stickeler E, Maurer J. The use of micro RNA in the early detection of cervical intraepithelial neoplasia. Carcinogenesis 2021; 41:1781-1789. [PMID: 32417880 DOI: 10.1093/carcin/bgaa046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
An important issue in current oncological research is prevention as well as early detection of cancer. This includes also the difficulty to predict the progression of early or pre-cancerous lesions to invasive cancer. In this context, the characterization and categorization of pre-neoplastic lesions of squamous cell carcinoma [cervical intraepithelial neoplasia (CIN)] are an important task with major clinical impact. Screening programs are worldwide established with the aim to detect and eradicate such lesions with the potential to develop untreated into cervical cancer. From the literature it is known that around 5% of CIN 2 and 12% of CIN 3 cases will progress to cancer. The use of molecular markers extracted from cervical mucus might help to identify these high-risk cases and to exclude unnecessary biopsies or surgical treatment. Here we can show that micro RNA (miRNA) analysis from cervical mucus of 49 patients allowed us to distinguish between healthy patients and patients with CIN 3. The miRNA panel used in combination allowed for highly significant testing (P < 0.0001) of CIN 3 status. In parallel, the human papillomavirus status of the patients, the most important factor for the development of cervical cancer, significantly correlated with the miRNA markers hsa-miR-26b-5p, hsa-miR-191-5p and hsa-miR-143-3p, a subpanel of the original six miRNAs. We provide here a proof-of-concept for cervical mucus-based testing for pre-neoplastic stages of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
| | | | - Birgit Hangarter
- Department of Pathology, University Hospital RWTH, Aachen, Germany
| | | | - Jochen Maurer
- Department of Obstetrics and Gynecology, Aachen, Germany
| |
Collapse
|
22
|
Shen J, Hu M, Tan W, Ding J, Jiang B, Xu L, Hamulati H, He C, Sun Y, Xiao P. Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113690. [PMID: 33309917 DOI: 10.1016/j.jep.2020.113690] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. AIM OF THE REVIEW The purpose of this review is to give an overview of the current phytochemistry and pharmacological activities of C. tinctoria, and reveals the correlation among its traditional uses, phytochemistry, pharmacological profile, and potential toxicity. MATERIALS AND METHODS This review is based on published studies and books from electronic sources and library, including the online ethnobotanical database, ethnobotanical monographs, Scopus, SciFinder, Baidu Scholar, CNKI, and PubMed. These reports are related to the traditional uses, phytochemistry, pharmacology, and toxicology of C. tinctoria. RESULTS Coreopsis tinctoria is traditionally used in diarrhoea, infection, and chronic metabolic diseases. From 1954 to now, more than 120 chemical constituents have been identified from C. tinctoria, such as flavonoids, polyacetylenes, polysaccharides, phenylpropanoids, and volatile oils. Flavonoids are the major bioactive components in C. tinctoria. Current research has shown that its extracts and compounds possess diverse biological and pharmacological activities such as antidiabetes, anti-cardiovascular diseases, antioxidant, anti-inflammatory, protective effects on organs, neuroprotective effects, antimicrobial, and antineoplastic. Studies in animal models, including acute toxicity, long-term toxicity, and genotoxicity have demonstrated that Snow Chrysanthemum is a non-toxic herb, especially for its water-soluble parts. CONCLUSIONS Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Mengyin Hu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Wei Tan
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Jiwei Ding
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China; CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Baoping Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Lei Xu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Hasimu Hamulati
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Yuhua Sun
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
23
|
Cao GY, Geng SX, Luo Y, Tian S, Ning B, Zhuang XS, Meng ZQ. The rapid identification of chemical constituents in Fufang Xiling Jiedu capsule, a modern Chinese medicine, by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry and data mining strategy. J Sep Sci 2021; 44:1815-1823. [PMID: 33576573 DOI: 10.1002/jssc.202001093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/06/2022]
Abstract
Fufang Xiling Jiedu capsule is an effective Chinese medicine widely used for the treatment of cold and influenza. However, its chemical constituents had not been determined, which entailed a huge obstacle to further pharmacological studies, clinical-safe medication administration, and quality evaluation. To identify the chemical constituents in Fufang Xiling Jiedu capsule, an efficient and systematic approach using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry in conjunction with a data mining strategy was adopted in this study. As a result, 145 compounds were qualitatively identified, including 26 phenolic acids, 46 flavonoids, 39 triterpenes, and 34 other compounds, among which 6 were potentially new and 144 were being reported from Fufang Xiling Jiedu capsule for the first time. This research not only provides useful information for quality control of Fufang Xiling Jiedu capsule and its involved single herbs but also serve as basis data for further study of Fufang Xiling Jiedu capsule in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other Chinese medicine preparations.
Collapse
Affiliation(s)
- Gui-Yun Cao
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shao-Xuan Geng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Yi Luo
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shuo Tian
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Bo Ning
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Xue-Song Zhuang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Zhao-Qing Meng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| |
Collapse
|
24
|
Zhang X, Song L, Huang Y, Han S, Hou M, Li H. Downregulation of MST4 Underlies a Novel Inhibitory Role of MicroRNA Let-7a in the Progression of Retinoblastoma. Invest Ophthalmol Vis Sci 2021; 61:28. [PMID: 32539131 PMCID: PMC7415300 DOI: 10.1167/iovs.61.6.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Retinoblastoma (RB) is the most common intraocular malignancy in children. Deregulation of several microRNAs (miRNAs) has been identified in RB. However, the specific effect of let-7a on RB remains unclear. The present study aims to explore the effect of let-7a on malignant biological behaviors of RB cells and angiogenesis in RB. Methods The expressions of let-7a and mammalian sterile-20 like kinase 4 (MST4) in RB were determined with the use of real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Next, in order to explore effects of let-7a and MST4 on RB cellular functions, RB cells were transfected with let-7a-mimic, let-7a inhibitor, si-MST4, or co-transfected with let-7a-mimic and oe-MST4 plasmids. Subsequently, the interaction among let-7a, MST4, and the MAPK signaling pathway was evaluated by RT-qPCR, dual-luciferase reporter gene assay, and Western blot analysis. Finally, the effects of let-7a and MST4 were further confirmed in vivo by injecting nude mice with RB cells stably expressing let-7a agomir or sh-MST4. Results Rb tissues and cells presented with downregulated Let-7a and upregulated MST4. Let-7a negatively targeted MST4 to block the activation of the MAPK signaling pathway. Upregulation of let-7a promoted apoptosis, and facilitated proliferation, angiogenesis, migration, and invasion of RB cells by decreasing MST4. Elevation of let-7a or silencing MST4 restricted angiogenesis and tumorigenesis in RB mice. Conclusions Taken together, let-7a inhibits angiogenesis in RB by silencing MST4 and inhibiting the MAPK signaling pathway.
Collapse
|
25
|
Afifi W, Hegazy M, Metwaly A, Mostafa A, Radwan M, M. Mehany A, Ahmed E, Enany S, Magdeldin S, ElSohly M. Biological and chemical evaluation of some African plants belonging to Kalanchoe species: Antitrypanosomal, cytotoxic, antitopoisomerase I activities and chemical profiling using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_232_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Li C, Zhao J, Sun W. microRNA-222-Mediated VHL Downregulation Facilitates Retinoblastoma Chemoresistance by Increasing HIF1α Expression. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 32756923 PMCID: PMC7441340 DOI: 10.1167/iovs.61.10.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Retinoblastoma (RB) is the most common primary intraocular tumor in children. Chemoresistance is the major obstacle for treatment of these tumors. This study aims to determine whether or not downregulating microRNA-222 (miR-222) could serve as a potential therapeutic target for preventing chemoresistance in RB treatment. Methods Differentially expressed miR-222 in RB samples and its downstream target genes were predicted using bioinformatics methods. The expression of miR-222 was altered by mimic or inhibitor to examine its role in RB cell in response to the chemotherapeutic agent vincristine (VCR). Further bioinformatic analysis predicted involvement of the stability of hypoxia-inducible factor 1α (HIF1α) protein in regulation of the von Hippel–Lindau (VHL) tumor suppressor, followed by characterization of the effect of VHL on the ubiquitin–proteasome degradation of HIF1α. Next, VHL or HIF1α was overexpressed to determine their effects on RB cell activities after VCR treatment. In vivo assays were performed on nude mice to further verify the in vitro results. Results miR-222 is highly expressed in RB tissues and cells and was found to facilitate resistance of RB cells to VCR. Of note, miR-222 specifically bound to and negatively regulated VHL. VHL could inhibit the stability of HIF1α and promote the degradation of ubiquitin–proteasome, thus reducing HIF1α expression to attenuate VCR resistance in RB cells. Moreover, inhibition of miR-222 in combination with VCR suppressed tumor formation in nude mice. Conclusions miR-222 promotes the expression of HIF1α by targeting VHL, thus accelerating the resistance of RB cells to the chemotherapeutic agent VCR.
Collapse
Affiliation(s)
- Chunzhi Li
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| | - Jun Zhao
- Department of Ophthalmology, Linyi People's Hospital, Linyi, China
| | - Weiying Sun
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| |
Collapse
|
27
|
Liu XM, Li XF, Li JC. MiR-146a functions as a potential tumor suppressor in retinoblastoma by negatively regulate neuro-oncological ventral antigen-1. Kaohsiung J Med Sci 2020; 37:286-293. [PMID: 33340248 DOI: 10.1002/kjm2.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many tumors and have been found to play crucial roles in cancer biology. Retinoblastoma is a rare tumor that develops rapidly from a malignant tumor of immature cells in the retina known as photoreceptor progenitors. Our study aimed to explore the role of miR-146a in the pathology of retinoblastoma. Potential target gene of miR-146a was predicted by Targetscan. Reverse transcription quantitative polymerase chain reaction (RT-PCR) showed that miR-146a was downregulated and ventral nerve tumor antigen 1 (Neuro - oncological ventral antigen 1, NOVA1) was upregulated in retinoblastoma. Luciferase assay confirmed that miR-146a directly target NOVA1. MiR-146a knockdown and overexpression experiments were performed and found that miR-146a could regulate the expression of NOVA1. The miR-146a knockdown and overexpression experiments were conducted to investigate the biological function of miR-146a. MiR-146a was found inhibited the viability, proliferation and invasion of retinoblastoma cell by MTT, EdU, and transwell assays. Flow cytometry was performed for the apoptosis analysis and miR-146a increased the apoptosis of retinoblastoma cell was found. Above phenomenon can be rescued by overexpression of NOVA1. In conclusion, these results suggest that miR-146a acts as a tumor suppressor and can act as a potential therapeutic target for retinoblastoma in the future.
Collapse
Affiliation(s)
- Xiu-Ming Liu
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| | - Xiao-Feng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| | - Jian-Chang Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| |
Collapse
|
28
|
Protective effects of Coreopsis tinctoria buds extract against cognitive impairment and brain aging induced by d-galactose. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
29
|
Constituents of Coreopsis lanceolata Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects. Molecules 2020; 25:molecules25194370. [PMID: 32977609 PMCID: PMC7582822 DOI: 10.3390/molecules25194370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-β-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,2'-dihydroxy-4-3'-dimethoxychalcone-4'-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data. All compounds were tested for their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and compounds 2-4, 6 and 7 inhibited DPP-IV activity in a concentration-dependent manner, with IC50 values from 9.6 to 64.9 μM. These results suggest that C. lanceolata flower and its active constituents show potential as therapeutic agents for diseases associated with type 2 diabetes mellitus.
Collapse
|
30
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
31
|
Composition and Antioxidant Activities of Volatile Organic Compounds in Radiation-Bred Coreopsis Cultivars. PLANTS 2020; 9:plants9060717. [PMID: 32512839 PMCID: PMC7356690 DOI: 10.3390/plants9060717] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 01/22/2023]
Abstract
Coreopsis is a flowering plant belonging to the Asteraceae family. It is an ornamental plant native to the Americas, Asia and Oceania and its flower is used as a raw material for tea and food manufacture in China. In this study, new cultivars of C. rosea (“golden ring”) were developed via radiation-induced mutation of the original cultivar, “pumpkin pie”. The chemical composition and antioxidant activities of flowers belonging to three different Coreopsis cultivars were evaluated: “golden ring”, “pumpkin pie” and “snow chrysanthemum” (coreopsis tea; C. tinctoria). The volatile compounds were characterized via gas chromatography-mass spectrometry (GC-MS) and 50–59 oils representing 95.3–96.8% of the total volatile compounds in these flower materials were identified. ”Golden ring” contained a high amount of fatty acids (38.13%), while “pumpkin pie” and “snow chrysanthemum” teas were rich in aliphatic amides (43.01%) and esters (67.22%), respectively. The antioxidant activities of the volatile oils of these cultivars were evaluated using 1,1-diphenyl-2-picrylhydraxyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays. The volatile extract of “golden ring” showed higher antioxidant activities compared with the extracts of the other cultivars. Therefore, “golden ring” can be used for further development as a raw material for tea manufacture or as a dietary supplement.
Collapse
|
32
|
Li Y, Huang C, Fu W, Zhang H, Lao Y, Zhou H, Tan H, Xu H. Screening of the active fractions from the Coreopsis tinctoria Nutt. Flower on diabetic endothelial protection and determination of the underlying mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112645. [PMID: 32045684 DOI: 10.1016/j.jep.2020.112645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Coreopsis tinctoria Nutt. flower (CTF) has been used traditionally in China for treating hypertension and diabetes as well as reducing body weight and blood fat. However, the vascular protection effect of the CTF has not been studied to date. AIM OF THE STUDY This study aimed to screen and identify bioactive fractions from the CTF with a diabetic endothelial protection effect and to clarify the underlying mechanism. MATERIALS AND METHODS The vascular protection effect of Fraction A was studied in high-fat diet and streptozocin-induced diabetic models. The endothelial protection effect of Fraction A-2 was further studied in an in vitro vascular endothelial dysfunction model induced by high glucose. In a high glucose-induced human umbilical vein endothelial cell (HUVEC) model, Fractions A-2-2 and A-2-3 were screened, and their detailed mechanisms of endothelial protection were studied. Liquid chromatography mass spectrometry (LC-MS) was used to identify the main components in Fractions A-2-2 and A-2-3. RESULTS Fraction A treatment significantly improved the endothelium-dependent vasodilation of the mesenteric artery induced by acetylcholine in diabetic rats. The maximum relaxation was 79.82 ± 2.45% in the control group, 64.36 ± 9.81% in the model group, and 91.87 ± 7.38% in the Fraction A treatment group (P < 0.01). Fraction A treatment also decreased rat tail pressure compared with the model group at the 12th week. The systolic blood pressure was 152.7 5 ± 16.99 mmHg in the control group, 188.50 ± 5.94 mmHg in the model group, and 172.60 ± 14.31 mmHg in the Fraction A treatment group (P < 0.05). The mean blood pressure was 128.50 ± 13.79 mmHg in the control group, 157.00 ± 6.06 mmHg in the model group, and 144.80 ± 11.97 mmHg in the Fraction A treatment group (P < 0.05). In an in vitro vascular endothelium-dependent vasodilation dysfunction model induced by high glucose, Fraction A-2 improved the vasodilation of the mesenteric artery. The maximum relaxation was 82.15 ± 16.24% in the control group, 73.29 ± 14.25% in the model group, and 79.62 ± 13.89% in the Fraction A-2 treatment group (P < 0.05). In a high glucose-induced HUVEC model, Fraction A-2-2 and Fraction A-2-3 upregulated the expression of IRS-1, Akt, and eNOS and increased the levels of p-IRS-1Ser307, p-Akt Ser473, and p-eNOSSer1177 and also decreased the expression of NOX4, TNF-α, IL-6, sVCAM, sICAM, and NF-κB (P < 0.01). With the intervention of AG490 and LY294002, the above effects of Fraction A-2-2 and Fraction A-2-3 were inhibited (P < 0.01). LC-MS data showed that in Fraction A-2-2 and Fraction A-2-3, there were 10 main components: flavanocorepsin; polyphenolic; flavanomarein; isochlorogenic acid A; dicaffeoylquinic acid; coreopsin; marein; coreopsin; luteolin-7-O-glucoside; and 3',5,5',7-tetrahydroxyflavanone-O-hexoside. CONCLUSION The protective effect of the CTF on diabetic endothelial dysfunction may be due to its effect on the JAK2/IRS-1/PI3K/Akt/eNOS pathway and the related oxidative stress and inflammation. The results strongly suggested that Fraction A-2-2 and Fraction A-2-3 were the active fractions from the CTF, and the CTF might be a potential option for the prevention of vascular complications in diabetes.
Collapse
Affiliation(s)
- Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chaoran Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
33
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
34
|
Li Z, Chen J, Gao X, Zhang T, Zheng W, Wei G, Huang Y, Qi J, Zhang Y, Ma P. Identification of components and metabolites in plasma of type 2 diabetic rat after oral administration of Jiao-Tai-Wan using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Sep Sci 2020; 43:2690-2707. [PMID: 32246812 DOI: 10.1002/jssc.201901040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Jiao-Tai-Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao-Tai-Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, 4-hydroxycinnamic acid, and 2-methoxy cinnamic acid after oral administration of Jiao-Tai-Wan. The prototypes from Jiao-Tai-Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao-Tai-Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao-Tai-Wan.
Collapse
Affiliation(s)
- Zhihui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jianhua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xing Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Ting Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Guijie Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yunfang Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jing Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Pengkai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
35
|
Fenclova M, Stranska-Zachariasova M, Benes F, Novakova A, Jonatova P, Kren V, Vitek L, Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem 2020; 412:819-832. [PMID: 31919606 DOI: 10.1007/s00216-019-02274-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic.
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine and Faculty General Hospital, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
36
|
Lu NH, Wei CY, Qi FZ, Gu JY. Hsa-let-7b Suppresses Cell Proliferation by Targeting UHRF1 in Melanoma. Cancer Invest 2020; 38:52-60. [PMID: 31873045 DOI: 10.1080/07357907.2019.1709482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UHRF1 promotes melanoma progression by inducing cell proliferation, and is correlated with poor prognosis of melanoma patients. However, the regulation mechanism has not been fully elaborated. Here, we detected hsa-let-7b expression and its role in melanoma. Through Targetscan and miRanda predication, 30 overlapped miRNAs were found; further survival analysis revealed that hsa-let-7b was the only miRNA that affected the overall survival. Overexpressed hsa-let-7b could significantly inhibit the proliferation ability of A375 and A2058 cells, and this phenomenon was reversed after co-transfection with pLenti-UHRF1. In conclusion, hsa-let-7b regulates melanoma cells proliferation in vitro by targeting UHRF1.
Collapse
Affiliation(s)
- Nan-Hang Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
37
|
Zhang NN, Kang JS, Liu SS, Gu SM, Song ZP, Li FX, Wang LF, Yao L, Li T, Li LL, Wang Y, Li XJ, Mao XM. Flavanomarein inhibits high glucose-stimulated epithelial-mesenchymal transition in HK-2 cells via targeting spleen tyrosine kinase. Sci Rep 2020; 10:439. [PMID: 31949205 PMCID: PMC6965095 DOI: 10.1038/s41598-019-57360-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Flavanomarein (FM) is a major natural compound of Coreopsis tinctoria Nutt with protective effects against diabetic nephropathy (DN). In this study, we investigated the effects of FM on epithelial-mesenchymal transition (EMT) in high glucose (HG)-stimulated human proximal tubular epithelial cells (HK-2) and the underlying mechanisms, including both direct targets and downstream signal-related proteins. The influence of FM on EMT marker proteins was evaluated via western blot. Potential target proteins of FM were searched using Discovery Studio 2017 R2. Gene Ontology (GO) analysis was conducted to enrich the proteins within the protein-protein interaction (PPI) network for biological processes. Specific binding of FM to target proteins was examined via molecular dynamics and surface plasmon resonance analyses (SPR). FM promoted the proliferation of HK-2 cells stimulated with HG and inhibited EMT through the Syk/TGF-β1/Smad signaling pathway. Spleen tyrosine kinase (Syk) was predicted to be the most likely directly interacting protein with FM. Combined therapy with a Syk inhibitor and FM presents significant potential as an effective novel therapeutic strategy for DN.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Jin-Sen Kang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shuai-Shuai Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Meng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Peng Song
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Feng-Xiang Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Li-Feng Wang
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Tian Li
- Department of Histology and Embryology, Preclinical College, XinJiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lin-Lin Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ye Wang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Xin-Min Mao
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China. .,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
38
|
Shi Y, Chen R, Xie J, Li L, Liu G, Zheng M, Zhang N. Determination and Pharmacokinetics of Okanin in Rat Plasma by UltraHigh Performance Liquid Chromatography Coupled with Triple-Quadrupole Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:4247128. [PMID: 32908778 PMCID: PMC7474779 DOI: 10.1155/2020/4247128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Okanin is a major flavonoid found in Coreopsis tinctoria Nutt., arousing huge interest recently for its considerable biological characteristics including antioxidant, antineurotoxic, and antidiabetic activities. An ultrahigh performance liquid chromatography triple-quadrupole tandem mass spectrometry (UPLC-MS) was successfully used to determine okanin in rat plasma after oral administration of okanin. Bavachalcone acted as an internal standard (IS). By gradient elution, IS and analyte were separated on a C18 column for 7 min at a flow rate of 0.25 mL/min with acetonitrile-0.1% acetic acid mobile phase. The stability, matrix effect, extraction recovery, accuracy, precision, linearity, and selectivity of the method were firstly demonstrated. The major pharmacokinetic parameters of okanin in rat plasma were then measured using the developed UPLC-MS method. An UPLC-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was finally established to obtain the specific and accurate mass of okanin in rat plasma after oral administration, and its proposed fragmentation was further elaborated.
Collapse
Affiliation(s)
- Yurui Shi
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jing Xie
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Meizhu Zheng
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ning Zhang
- The College of Jiamusi, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
39
|
Wang X, Zhang X, Han Y, Wang Q, Ren Y, Wang B, Hu J. Silence of lncRNA ANRIL represses cell growth and promotes apoptosis in retinoblastoma cells through regulating miR-99a and c-Myc. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2265-2273. [PMID: 31184221 DOI: 10.1080/21691401.2019.1623229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retinoblastoma is a rare cancer of the immature retina. This study designed to see the function of the lncRNA ANRIL in retinoblastoma Y79 cells. ANRIL, miR-99a and c-Myc expression in Y79 cells was altered by transfection and then trypan blue, transwell assay and flow cytometry were carried out to evaluate the changes of cell phenotype. The connection between ANRIL, miR-99a and c-Myc was measured by luciferase reporter assay and RNA immunoprecipitation analysis. As a result, ANRIL expression was highly expressed in human retinoblastoma tissue as relative to the adjacent noncancerous tissues. ANRIL suppression inhibited Y79 cells viability, migration, invasion, while promoted apoptosis. ANRIL negatively regulated miR-99a by binding to miR-99a. Silence of miR-99a reversed the ANRIL-knockdown effects on Y79 cells. miR-99a overexpression suppressed Y79 cell viability, migration, invasion, and enhanced apoptosis through downregulating c-Myc. Meanwhile, we found that miR-99a inhibited JAK/STAT and PI3K/AKT pathways. To conclude, it seems that ANRIL suppression inhibits cell growth and metastasis in retinoblastoma Y79 cells by regulating miR-99a and c-Myc.
Collapse
Affiliation(s)
- Xiaomin Wang
- a Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| | - Xinxia Zhang
- a Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| | - Yutong Han
- b Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University , Xinxiang , China
| | - Qiuli Wang
- b Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University , Xinxiang , China
| | - Yanfan Ren
- a Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| | - Baojun Wang
- a Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| | - Junxi Hu
- a Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| |
Collapse
|
40
|
Fiedorowicz M, Choragiewicz T, Thaler S, Schuettauf F, Nowakowska D, Wojtunik K, Reibaldi M, Avitabile T, Kocki T, Turski WA, Kaminska A, Grieb P, Zrenner E, Rejdak R, Toro MD. Tryptophan and Kynurenine Pathway Metabolites in Animal Models of Retinal and Optic Nerve Damage: Different Dynamics of Changes. Front Physiol 2019; 10:1254. [PMID: 31632294 PMCID: PMC6781742 DOI: 10.3389/fphys.2019.01254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Kynurenines, products of tryptophan (TRP) metabolism, display neurotoxic (e.g., 3-hydroxykynurenine; 3-HK), or neuroprotective (e.g., kynurenic acid; KYNA) properties. Imbalance between the enzymes constituting the kynurenine pathway (KP) plays a role in several disease, including neurodegeneration. In this study, we track changes in concentrations of tryptophan and its selected metabolites after damage to retinal ganglion cells and link this data with expression of KP enzymes. Brown-Norway rats were subjected to intravitreal N-methyl-D-aspartate (NMDA) injection or partial optic nerve crush (PONC). Retinas were collected 2 and 7 days after the completion of PONC or NMDA injection. Concentrations of TRP, kynurenine (KYN), and KYNA were determined by high performance liquid chromatography (HPLC). Data on gene expression in the rat retina were extracted from GEO, public microarray experiments database. Two days after NMDA injection concentration of TRP decreased, while KYN and KYNA increased. At day 7 compared to day 2 decrease of KYN, KYNA and further reduction of TRP concentration were observed, but on day 7 KYN concentration was still elevated when compared to controls. At day 2 and 7 after NMDA injection no statistically significant alterations of 3-HK were observed. TRP and 3-HK concentration was higher in PONC group than in controls. However, both KYN and KYNA were lower. At day seven concentration of TRP, 3-HK, and KYN was higher, whereas concentration of KYNA declined. In vivo experiments showed that retinal damage or optic nerve lesion affect TRP metabolism via KP. However, the pattern of changes in metabolite concentrations was different depending on the model. In particular, in PONC KYNA and KYN levels were decreased and 3-HK elevated. These observations correspond with data on expression of genes encoding KP enzymes assessed after optic nerve crush or transection. After intraorbital optic nerve crush downregulation of KyatI and KyatIII between 24 h and 3 days after procedure was observed. Kmo expression was transiently upregulated (12 h after the procedures). After intraorbital optic nerve transsection (IONT) Kmo expression was upregulated after 48 h and 7 days, KyatI and KyatIII were downregulated after 12, 48 h, 7 days and upregulated after 15 days. Collected data point to the conclusion that development of therapeutic strategies targeting the KP could be beneficial in diseases involving retinal neurodegeneration.
Collapse
Affiliation(s)
- Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Choragiewicz
- Department of General Ophthalmology and Pediatric Ophthalmology Service, Medical University of Lublin, Lublin, Poland
| | - Sebastian Thaler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Schuettauf
- Department of Ophthalmology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Dominika Nowakowska
- Department of General Ophthalmology and Pediatric Ophthalmology Service, Medical University of Lublin, Lublin, Poland
| | - Kamila Wojtunik
- Department of General Ophthalmology and Pediatric Ophthalmology Service, Medical University of Lublin, Lublin, Poland
| | | | | | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Kaminska
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Robert Rejdak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of General Ophthalmology and Pediatric Ophthalmology Service, Medical University of Lublin, Lublin, Poland
| | - Mario Damiano Toro
- Department of General Ophthalmology and Pediatric Ophthalmology Service, Medical University of Lublin, Lublin, Poland.,Eye Clinic, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Peng A, Lin L, Zhao M, Sun B. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte. Food Res Int 2019; 123:64-74. [DOI: 10.1016/j.foodres.2019.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
42
|
Tian Y, Wen Z, Lei L, Li F, Zhao J, Zhi Q, Li F, Yin R, Ming J. Coreopsis tinctoria flowers extract ameliorates D-galactose induced aging in mice via regulation of Sirt1-Nrf2 signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103464] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
He X, Chen X, Ou X, Ma L, Xu W, Huang K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Xu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Xiaoqun Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Liyan Ma
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| |
Collapse
|
44
|
Wan W, Wan W, Long Y, Li Q, Jin X, Wan G, Zhang F, Lv Y, Zheng G, Li Z, Zhu Y. MiR-25-3p promotes malignant phenotypes of retinoblastoma by regulating PTEN/Akt pathway. Biomed Pharmacother 2019; 118:109111. [PMID: 31336343 DOI: 10.1016/j.biopha.2019.109111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant expression of microRNAs plays an important role in the pathogenesis and progression of retinoblastoma. MiR-25, a member of the miR-106b˜25 cluster, has been reported to be abnormally expressed in retinoblastoma, but the exact role of it remains unclear. In our study, we found that miR-25-3p was upregulated in retinoblastoma tissues and cell lines. Enforced expression of miR-25-3p in retinoblastoma cell line WERI-RB-1 increased cell growth, colony formation, anchorage-independent growth, cell migration and invasion in vitro and tumor xenograft growth in vivo. In contrast, inhibited miR-25-3p expression in retinoblastoma cell line Y79 suppressed cell growth, colony formation, anchorage-independent growth, cell migration and invasion. Through luciferase reporter assay, we found that phosphatase and tensin homolog (PTEN) was a direct target of miR-25-3p. This was verified by western blot that miR-25-3p overexpression suppressed PTEN and activated Akt signaling. In addition, miR-25-3p was found to promote epithelial-mesenchymal transition (EMT) of WERI-RB-1 cells through PTEN/Akt pathway. Western blot analysis revealed that miR-25-3p overexpression increased Vimentin and Snail expression, and suppressed E-cadherin expression, but this could be reversed by restoring PTEN. Moreover, LY294002 treatment or restoring PTEN expression abolished the effects of miR-25-3p on cell invasion, colony formation and anchorage-independent growth in vitro and tumor xenograft growth in vivo. Taken together, our results suggested that miR-25-3p promotes malignant transformation of retinoblastoma cells by suppressing PTEN.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yong Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Zhigang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| |
Collapse
|
45
|
Jiang B, Lv Q, Wan W, Le L, Xu L, Hu K, Xiao P. Transcriptome analysis reveals the mechanism of the effect of flower tea Coreopsis tinctoria on hepatic insulin resistance. Food Funct 2019; 9:5607-5620. [PMID: 30370909 DOI: 10.1039/c8fo00965a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-Camellia tea and herbal medicine help prevent the development of diabetes and other metabolic diseases. Previous studies revealed that Coreopsis tinctoria (CT) flower tea increases insulin sensitivity and, in some high-fat diet (HFD)-fed rats, even prevents hepatic metabolic disorders. However, the molecular mechanisms by which CT improves insulin resistance are not known. In this study, six-week-old rats were fed a normal diet (ND), an HFD or an HFD supplemented with CT for 8 weeks. Serum samples were collected, and the livers were extracted for RNA-seq gene expression analysis. Real-time PCR and western blotting further verified the RNA-seq results. In our results, dietary CT ameliorated HFD-induced hepatosteatosis, glucose intolerance, and insulin resistance. In the HFD group, 1667 differentially expressed genes (DEGs) were identified compared with the ND group. In the CT group, 327 DEGs were identified compared with the HFD group. Some of these DEGs were related to insulin signalling, hepatic lipogenesis and glucose homeostasis. This study suggested that insulin resistance with hyperinsulinaemia, and not insulin insufficiency, is an early problem in HFD-fed rats, and CT downregulates insulin secretion genes (e.g., Rasd1, Stxbp1 and Sfxn1). Hepatic gene and protein expression analyses indicated that the regulatory effects of CT on glucose and lipid homeostasis are likely mediated via the Akt/FoxO1 signalling pathway and are regulated by the transcription factors hairy and enhancer of split 1 (HES1) and small heterodimer partner (SHP). Our study provides transcriptomic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and proves that supplementation with CT improves insulin resistance at a global scale.
Collapse
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Luo J, Pan C, Xiang G, Yin Y. A Novel Cluster-Based Computational Method to Identify miRNA Regulatory Modules. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:681-687. [PMID: 29993835 DOI: 10.1109/tcbb.2018.2824805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The identification of miRNA regulatory modules can help decipher miRNAs combinatorial regulation effects on the pathogenesis underlying complex diseases, especially in cancer. By integrating miRNA/mRNA expression profiles and sequence-based predicted target site information, we develop a novel cluster-based computational method named CoModule for identifying miRNA regulatory modules (MRMs). The ultimate goal of CoModule is to detect the MRMs, in which the miRNAs in each module are expected to present cooperative mechanisms in regulating their targets mRNAs. Here, the co-expression of miRNAs are believed to present cooperative regulatory relationship, therefore, the critical step of CoModule is first to partition the miRNAs with similar expression into a cluster by employing rough set clustering. After gaining credible miRNA clusters, the targets of regulator are naturally added into corresponding clusters to produce the final miRNA regulatory modules. We apply this present method to ovarian cancer datasets and make a comparison with the other two existing prominent approaches. The results indicate that the modules identified by CoModule perform better than the other two methods ranging from the topological aspects to the biological function. Survival analysis detects a number of prognostic modules with statistical significance, which can help reveal the potential diagnostic for ovarian cancer.
Collapse
|
47
|
Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem 2019; 286:8-16. [PMID: 30827670 DOI: 10.1016/j.foodchem.2019.02.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
Abstract
Seventeen commercial chrysanthemum teas (Chrysanthemum morifolium and Coreopsis tinctoria) were extracted with hot-H2O, and examined and compared to the 75% methanol extracts for their chemical compositions using UPLC/Q-TOF-MS analysis. For the first time, 6, 8-C,C-diglucosylapigenin and eriodicyol-7-O-glucoside were detected in the Snow chrysanthemum, and acetylmarein was detected in HangJu, GongJu and HuaiJu. The extracts were also examined for their radical scavenging and anti-inflammatory activities in vitro. The hot-H2O extract of Kunlunmiju 1 had the greatest total phenolic content, and relative DPPH and oxygen radical absorbance capacity values of 12.72 mg gallic acid equivalents/g, 105.48 and 1222.50 μmol Trolox equivalents/g, respectively. In addition, all the hot-H2O extracts suppressed the lipopolysaccharide-induced interleukin-6, IL-1β and cyclooxygenase-2 mRNA expressions, and H2O2-induced intracellular reactive oxygen species production in cultured cells. The results from this research may be used to promote the consumption of chrysanthemum as a functional tea.
Collapse
|
48
|
Kim CH, Kim MY, Lee SW, Jang KS. UPLC/FT-ICR MS-based high-resolution platform for determining the geographical origins of raw propolis samples. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
49
|
Le L, Fu H, Lv Q, Bai X, Zhao Y, Xiang J, Jiang B, Hu K, Chen S. The protective effects of the native flavanone flavanomarein on neuronal cells damaged by 6-OHDA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:193-204. [PMID: 30668399 DOI: 10.1016/j.phymed.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Flavanomarein is the main component of Coreopsis tinctoria Nutt. (C. tinctoria), which is a globally well-known flower tea that has a distinct flavor and many beneficial health effects, such as antioxidant activities. We aimed to explore the effect of flavanomarein on a 6-hydroxydopamine (6-OHDA)-lesioned cell model of oxidative stress. METHODS In this study, we used 6-OHDA-lesioned PC12 cells and primary cortical neurons to investigate the protective effects of flavanomarein and its potential mechanism. RESULTS The results indicated that pretreatment with flavanomarein (25, 50, or 100 µM for 24 h) significantly increased the cell viability, reduced the lactate dehydrogenase (LDH) release and improved the mitochondrial membrane potential (∆Ψm) and mitochondrial impairment. Additionally, flavanomarein markedly reduced the gene expression of tumor necrosis factor (TNF)-α and protein kinase C ζ (PKC-ζ), the nuclear translocation of p65, and the levels of p-AMPK-α and acetyl-p53. Flavanomarein also elevated the gene expression of P85α, PKC-β1, and Bcl-2, the protein expression of Sirt1 and ICAD, and the phosphorylation level of AKT. CONCLUSIONS Together, these results suggest that flavanomarein protects PC12 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by upregulating the PI3K/AKT signaling pathway and attenuating the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, our study provides evidence that may aid in the development of a potential compound against 6-OHDA toxicity.
Collapse
Affiliation(s)
- Liang Le
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Post-doctoral Scientific Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Fu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qiuyue Lv
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue Bai
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Zhao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jiamei Xiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baoping Jiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Keping Hu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
50
|
Guo L, Bai Y, Ji S, Ma H. MicroRNA‑98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k‑Ras/Raf/MEK/ERK signaling pathway. Int J Oncol 2019; 54:807-820. [PMID: 30664191 PMCID: PMC6365030 DOI: 10.3892/ijo.2019.4689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has indicated that the dysregulation of microRNAs (miRNAs) is involved in the pathogenesis o retinoblastoma (RB); however, the potential role of miR-98 in RB remains elusive. In the present study, it was demonstrated that miR-98 is downregulated in RB tissues and cell lines, and its expression significantly associated with clinicopathological features, including differentiation, N classification and largest tumor base; patients with low miR-98 expression levels exhibited significantly poorer overall survival. Overexpression of miR-98 was suggested to suppress RB cell growth, migration and invasion. In addition, insulin-like growth factor-1 receptor (IGF1R), a well-reported oncogene, was identified as a potential target of miR-98 via a luciferase assay, reverse transcription-quantitative polymerase chain reaction and western blotting. Correlation analysis revealed a significantly negative correlation between miR-98 and IGF1R expression in tumor tissues (n=60). In addition, the results of the present study demonstrated that IGF1R function as an oncogene by promoting RB cell viability, migration and invasion. Furthermore, restoration of IGF1R was observed to reverse the anticancer effects of miR-98 on RB cell viability, migration and invasion. Importantly, the findings of the present study indicated that miR-98 suppressed RB cell growth and metastasis by inhibiting the IGF1R/k-Ras/Raf/mitogen activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. Collectively, the present study proposed that miR-98 may serve as a novel prognostic biomarker and therapeutic target in the treatment of RB.
Collapse
Affiliation(s)
- Long Guo
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Shuzhe Ji
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Hong Ma
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|