1
|
Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha-Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int J Mol Sci 2024; 25:10085. [PMID: 39337572 PMCID: PMC11432568 DOI: 10.3390/ijms251810085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8'-dihydroxy-2,2'-binaphthalene-1,1',4,4'-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Andrey S. Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
2
|
Rondán-Flores LM, Gundu Rao TK, Villavicencio ALCH, Cano NF. Effect of gamma radiation on freeze-dried red pitaya (Hylocereus costaricensis) skin powder: An EPR study to assess the original dose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125144. [PMID: 39461185 DOI: 10.1016/j.saa.2024.125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
The integral use of some fruits is an alternative for sustainable production from an environmental, social, and economic point of view, so activities that promote the sustainability of the food production chain, such as fruits waste irradiation, are being carried out. For control and safety purposes with irradiated products, it is necessary to use precise and adequate techniques that allow the marking and unequivocal identification of these products. Among these techniques, electron paramagnetic resonance (EPR) spectroscopy has stood out for its high sensitivity in detecting paramagnetic species generated during irradiation. The pitaya fruit has as its processing residue its skin, which represents 33 % of its total weight. In addition, studies carried out with pitaya reveal the presence of bioactive compounds, including phenolic compounds, that contribute to its antioxidant capacity. With this perspective, in the present work, we investigated the paramagnetic centers induced by gamma irradiation in powdered red pitaya skin products by means of the EPR technique, with the purpose of using them as indicators and/or dosimetric material for the determination of the absorbed dose in irradiated pitaya skin products. EPR experiments indicate the presence of at least three paramagnetic species. One of the centers (center I) exhibits six hyperfine lines with g = 2.0050 and is attributed to the Mn2+ ion. Center II has contributions from at least two radicals, and the dominant radical displays hyperfine interaction with one α-type and two nearly equivalent β-type protons with g = 2.0042. Center III has g = 2.0029 and results from the cellulosic part of the pitaya fruit. The intensity of centers II and III increases linearly with increasing gamma irradiation doses in the dose range from 500 Gy to 30 kGy. In addition, the fading results with storage time at room temperature of centers II and III show a 20 % decay in the first 21 days and then stabilize. Also, complementary studies of the morphology and degree of crystallinity of the pitaya skin powder were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively.
Collapse
Affiliation(s)
- Luz M Rondán-Flores
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, São Paulo, SP, Brazil.
| | - T K Gundu Rao
- Universidad Nacional de San Agustín de Arequipa, UNSA, Arequipa, Peru
| | | | - Nilo F Cano
- Universidade Federal de São Paulo, UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
3
|
Tripathi M, Diwan D, Shukla AC, Gaffey J, Pathak N, Dashora K, Pandey A, Sharma M, Guleria S, Varjani S, Nguyen QD, Gupta VK. Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. Crit Rev Biotechnol 2024; 44:1061-1079. [PMID: 37743323 DOI: 10.1080/07388551.2023.2254930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO, USA
| | | | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sanjay Guleria
- Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, Union Territory of Jammu and Kashmir, India
| | - Sunita Varjani
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- School of Energy and Environment, City University of Hon Kong, Kowloon, Hong Kong
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Dumfries, UK
| |
Collapse
|
4
|
Ochoa-Alejo N, Gómez-Jiménez MC, Martínez O. Editorial: Transcriptomics of fruit growth, development and ripening. FRONTIERS IN PLANT SCIENCE 2024; 15:1399376. [PMID: 38645390 PMCID: PMC11026863 DOI: 10.3389/fpls.2024.1399376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Neftali Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Octavio Martínez
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Ferreira VC, Sganzerla WG, Barroso TLCT, Castro LEN, Colpini LMS, Forster-Carneiro T. Sustainable valorization of pitaya (Hylocereus spp.) peel in a semi-continuous high-pressure hydrothermal process to recover value-added products. Food Res Int 2023; 173:113332. [PMID: 37803643 DOI: 10.1016/j.foodres.2023.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
This study evaluated the use of a semi-continuous high-pressure hydrothermal process for the recovery of value-added products from pitaya peel. The process was carried out at 15 MPa, a water flow rate of 2 mL/min, a solvent-to-feed ratio of 60 g water/g pitaya peel, and temperatures ranging from 40 to 210 °C. The results show that extraction temperatures (between 40 and 80 °C) promoted the recovery of betacyanin (1.52 mg/g), malic acid (25.6 mg/g), and citric acid (25.98 mg/g). The major phenolic compounds obtained were p-coumaric acid (144.63 ± 0.42 µg/g), protocatechuic acid (91.43 ± 0.32 µg/g), and piperonylic acid (74.2 ± 0.31 µg/g). The hydrolysis temperatures (between 150 and 210 °C) could produce sugars (18.09 mg/g). However, the hydrolysis process at temperatures above 180 °C generated Maillard reaction products, which increased the total phenolic compounds and antioxidant activity of the hydrolysates. Finally, the use of semi-continuous high-pressure hydrothermal process can be a sustainable and promising approach for the recovery of value-added compounds from pitaya peel, advocating a circular economy approach in the agri-food industry.
Collapse
Affiliation(s)
- Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
6
|
Okhlopkova ZM, Razgonova MP, Rozhina ZG, Egorova PS, Golokhvast KS. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023; 28:molecules28114402. [PMID: 37298879 DOI: 10.3390/molecules28114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.
Collapse
Affiliation(s)
- Zhanna M Okhlopkova
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Mayya P Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Zoya G Rozhina
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Polina S Egorova
- Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone Siberian Branch of Russian Academy Sciences, Lenina pr. 41, 677000 Yakutsk, Russia
| | - Kirill S Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Centralnaya 2b, 630501 Krasnoobsk, Russia
| |
Collapse
|
7
|
Younis IY, Ibrahim RM, El-Halawany A, Hegazy MEF, Efferth T, Mohsen E. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chem 2023; 404:134650. [DOI: 10.1016/j.foodchem.2022.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
8
|
Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RDA, Nicolau CCT, Fiorini AMR, Sinatora RV, Barbalho SM. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023; 15:159. [PMID: 36678789 PMCID: PMC9861186 DOI: 10.3390/pharmaceutics15010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Dragon fruit (Hylocereus genus) has the potential for the prevention of diseases associated with inflammatory and oxidative processes. We aimed to comprehensively review dragon fruit health effects, economic importance, and possible use in delivery systems. Pubmed, Embase, and Google Scholar were searched, and PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) guidelines were followed. Studies have shown that pitaya can exert several benefits in conditions such as diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and cancer due to the presence of bioactive compounds that may include vitamins, potassium, betacyanin, p-coumaric acid, vanillic acid, and gallic acid. Moreover, pitaya has the potential to be used in food and nutraceutical products as functional ingredients, natural colorants, ecologically correct and active packaging, edible films, preparation of photoprotective products, and additives. Besides the importance of dragon fruit as a source of bioactive compounds, the bioavailability is low. The development of delivery systems such as gold nanoparticles with these compounds can be an alternative to reach target tissues.
Collapse
Affiliation(s)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra M. Barbalho
- School of Food and Technology of Marilia (FATEC), São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| |
Collapse
|
9
|
Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, Olmedilla-Alonso B. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chem 2023; 398:133908. [DOI: 10.1016/j.foodchem.2022.133908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
10
|
Razgonova MP, Zinchenko YN, Kozak DK, Kuznetsova VA, Zakharenko AM, Ercisli S, Golokhvast KS. Autofluorescence-Based Investigation of Spatial Distribution of Phenolic Compounds in Soybeans Using Confocal Laser Microscopy and a High-Resolution Mass Spectrometric Approach. Molecules 2022; 27:molecules27238228. [PMID: 36500322 PMCID: PMC9735898 DOI: 10.3390/molecules27238228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, we present a detailed comparative analysis of the bioactive substances of soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia) using an LSM 800 confocal laser microscope and an amaZon ion trap SL mass spectrometer. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Our results revealed that the phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. High-performance liquid chromatography (HPLC) was used in combination with an amaZon SL BRUKER DALTONIKS ion trap (tandem mass spectrometry) to identify target analytes in soybean extracts. The results of initial studies revealed the presence of 63 compounds, and 45 of the target analytes were identified as polyphenolic compounds.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Yulia N. Zinchenko
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Darya K. Kozak
- Laboratory of Biochemistry, Blagoveshchensk State Pedagogical University, 675000 Blagoveshchensk, Russia
| | - Victoria A. Kuznetsova
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Laboratory of Biochemistry, Blagoveshchensk State Pedagogical University, 675000 Blagoveshchensk, Russia
| | - Alexander M. Zakharenko
- Laboratory of Pesticide Toxicology, Siberian Federal Scientific Center of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Kirill S. Golokhvast
- Far Eastern Experimental Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- SEC Nanotechnology, Polytechnic Institute, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Pesticide Toxicology, Siberian Federal Scientific Center of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Correspondence:
| |
Collapse
|
11
|
Santos ALD, Morais RA, Soares CMDS, Vellano PO, Martins GADS, Damiani C, Souza ARMD. Effect of gamma irradiation on the physicochemical, functional and bioactive properties of red pitaya (Hylocereus costaricensis) bark flour. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Razgonova MP, Burlyaeva MO, Zinchenko YN, Krylova EA, Chunikhina OA, Ivanova NM, Zakharenko AM, Golokhvast KS. Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. PLANTS 2022; 11:plants11162147. [PMID: 36015450 PMCID: PMC9412441 DOI: 10.3390/plants11162147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The research presents a comparative metabolomic study of extracts of Vigna unguiculata seed samples from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources. Analyzed samples related to different areas of use in agricultural production, belonging to different cultivar groups sesquipedalis (vegetable accessions) and unguiculata (grain accessions). Metabolome analysis was performed by liquid chromatography combined with ion trap mass spectrometry. Substances were localized in seeds using confocal and laser microscopy. As a result, 49 bioactive compounds were identified: flavonols, flavones, flavan-3-ols, anthocyanidin, phenolic acids, amino acids, monocarboxylic acids, aminobenzoic acids, fatty acids, lignans, carotenoid, sapogenins, steroids, etc. Steroidal alkaloids were identified in V. unguiculata seeds for the first time. The seed coat (palisade epidermis and parenchyma) is the richest in phenolic compounds. Comparison of seeds of varieties of different directions of use in terms of the number of bioactive substances identified revealed a significant superiority of vegetable accessions over grain ones in this indicator, 36 compounds were found in samples from cultivar group sesquipedalis, and 24 in unguiculata. The greatest variety of bioactive compounds was found in the vegetable accession k-640 from China.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Correspondence: (M.P.R.); (K.S.G.)
| | - Marina O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Yulia N. Zinchenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Ekaterina A. Krylova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Olga A. Chunikhina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
| | - Natalia M. Ivanova
- Department of Botany, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Alexander M. Zakharenko
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, 634050 Tomsk, Russia
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 633501 Krasnoobsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.P.R.); (K.S.G.)
| |
Collapse
|
13
|
Li X, Tang Y, Li L, Liang G, Li J, Liu C, He X, Sun J. Comparative transcriptomic profiling in the pulp and peel of pitaya fruit uncovers the gene networks regulating pulp color formation. FRONTIERS IN PLANT SCIENCE 2022; 13:968925. [PMID: 35991450 PMCID: PMC9382024 DOI: 10.3389/fpls.2022.968925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Pitaya (genus Hylocereus) is a popular fruit. To develop pitaya fruit with greater marketability and high nutritional value, it is important to elucidate the roles of candidate genes and key metabolites that contribute to the coloration of the pitaya pulp and peel. By combining transcriptome and biochemical analyses, we compared and analyzed the dynamic changes in the peel and pulp of H. undatus (white pulp) and H. polyrhizus (red pulp) fruits at four key time points during ripening. Differential expression analysis and temporal analysis revealed the difference regulation in pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and betalain biosynthesis. Our results suggest that color formation of purple-red peel and pulp of pitaya is influenced by betalains. Increased tyrosine content and fluctuation in acylated betalain content may be responsible for pulp color formation, while some of the key genes in this network showed differential expression patterns during ripening between white pulp and red pulp fruits. The data and analysis results of this study provide theoretical basis for the red color formation mechanism of pitaya, which will facilitate future work to improve pitaya fruit physical appearance and marketability.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Guidong Liang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jing Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Chaoan Liu
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
14
|
Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. SEPARATIONS 2022. [DOI: 10.3390/separations9070182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Three types of Zostera marina L. collection were extracted using the supercritical CO2-extraction method. For the purposes of supercritical CO2-extraction, old seagrass ejection on the surf edge, fresh seagrass ejection on the surf edge and seagrass collected in water were used. Several experimental conditions were investigated in the pressure range 50–350 bar, with the used volume of co-solvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are: pressure 250 Bar and temperature 60 °C for Z. marina collected in sea water. Z. marina contain various phenolic compounds and sulfated polyphenols with valuable biological activity. Tandem mass-spectrometry (HPLC-ESI–ion trap) was applied to detect target analytes. 77 different biologically active components have been identified in Z. marina supercritical CO2-extracts. 38 polyphenols were identified for the first time in Z. marina.
Collapse
|
15
|
Ramírez-Rodríguez Y, Ramírez V, Robledo-Márquez K, García-Rojas N, Rojas-Morales P, Arango N, Pedraza-Chaverri J, Medina-Campos O, Pérez-Rojas J, Flores-Ramírez R, Winkler R, Riego-Ruiz L, Trujillo J. Stenocereus huastecorum-fruit juice concentrate protects against cisplatin-induced nephrotoxicity by nitric oxide pathway activity and antioxidant and antiapoptotic effects. Food Res Int 2022; 160:111337. [DOI: 10.1016/j.foodres.2022.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
|
16
|
Metabolic Profiling of Sugars and Organic Acids, and Expression Analyses of Metabolism-Associated Genes in Two Yellow-Peel Pitaya Species. PLANTS 2022; 11:plants11050694. [PMID: 35270164 PMCID: PMC8912497 DOI: 10.3390/plants11050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Sugar and organic acids are important factors determining pitaya fruit quality. However, changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses in pulps of different fruit developmental stages of ‘Wucihuanglong’ (‘WCHL’, Hylocereus undatus) and ‘Youcihuanglong’ pitaya (‘YCHL’, Hylocereus megalanthus) were used to explore the sugar and organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya pulps. Ascorbic acid contents of ‘WCHL’ pitaya were higher than that of ‘YCHL’ pitaya during fruit maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of ‘YCHL’ pitaya while glucose was dominant in ‘WCHL’ pitaya. Malic and citric acids were the main organic acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. Based on the transcriptome analyses, 118 genes involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation analyses between the expression profiling of candidate genes and the contents of sugar and organic acid showed that 51 genes had a significant correlation relationship and probably perform key role in pitaya sugar and organic acid metabolism processes. The finding of the present study provides new information for quality regulation of pitayas.
Collapse
|
17
|
Razgonova M, Zinchenko Y, Pikula K, Tekutyeva L, Son O, Zakharenko A, Kalenik T, Golokhvast K. Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry. PLANTS 2022; 11:plants11050630. [PMID: 35270099 PMCID: PMC8912282 DOI: 10.3390/plants11050630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Desirable changes in the biochemical composition of food plants is a key outcome of breeding strategies. The subsequent localization of nutritional phytochemicals in plant tissues gives important information regarding the extent of their synthesis across a tissue. We performed a detailed metabolomic analysis of phytochemical substances of grains from Zea mays L. (var. Pioneer) by tandem mass spectrometry and localization by confocal microscopy. We found that anthocyanins are located mainly in the aleurone layer of the grain. High-performance liquid chromatography in combination with ion trap tandem mass spectrometry revealed the presence of 56 compounds, including 30 polyphenols. This method allows for effective and rapid analysis of anthocyanins by plotting their distribution in seeds and grains of different plants. This approach will permit a more efficient screening of phenotypic varieties during food plant breeding.
Collapse
Affiliation(s)
- Mayya Razgonova
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia;
- Correspondence:
| | - Yulia Zinchenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia;
| | - Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (K.P.); (K.G.)
- Federal Research Center the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
| | - Lyudmila Tekutyeva
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Oksana Son
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Alexander Zakharenko
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tatiana Kalenik
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (K.P.); (K.G.)
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
18
|
He Y, Hou XY, Li CX, Wang Y, Ma XR. Soil Microbial Communities Altered by Titanium Ions in Different Agroecosystems of Pitaya and Grape. Microbiol Spectr 2022; 10:e0090721. [PMID: 35107347 PMCID: PMC8809342 DOI: 10.1128/spectrum.00907-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Titanium (Ti) is an element beneficial to plant growth. Application of titanium to roots or leaves at low concentrations can improve crop yield and performance. However, the effect of titanium ions on the bulk soil microbial community of planted crops remains unclear. This study aimed to explore the effects of titanium on soil bacterial and fungal communities. Field surveys were conducted to determine the effect of titanium ions on bulk soil microbial communities in pitaya and grape plantations of Panzhihua and Xichang areas, respectively. Full-length 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing were performed using PacBio Sequel to further explore the composition and structure of soil microbiota. The application of titanium ions significantly altered the composition and structure of soil microbiota. Root irrigation with titanium ions in pitaya gardens reduced the diversity of soil fungi and bacteria. However, the decline in bacterial diversity was not statistically significant. Meanwhile, foliar spray of titanium ions on grapes greatly reduced the soil microbial diversity. The bulk soil microbiota had a core of conserved taxa, and titanium ions significantly altered their relative abundances. Furthermore, the application of titanium increased the interaction network of soil fungi and bacteria compared with the control group. Thus, titanium ions potentially improve the stability of the soil microbial community. IMPORTANCE Pitaya and grape are important cash crops in the Panzhihua and Xichang areas, respectively, where they are well adapted. Titanium is a plant growth-promoting element, but the interaction between titanium and soil microorganisms is poorly understood. Titanium ions are still not widely used for growing pitaya and grape in the two regions. Thus, we investigated the effects of titanium ions on soil microbial communities of the two fruit crops in these two regions. Microbial diversity decreased, and the community structure changed; however, the addition of titanium ions enhanced cooccurrence relationships and improved the stability of the community. This study provides a basis for the importance of titanium ion application in crop cultivation.
Collapse
Affiliation(s)
- Yuan He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yi Hou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
19
|
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. contain a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with an ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum S. and D. ruyschiana L. originating from Yakutia. The results of initial studies revealed the presence of 114 compounds, of which 92 were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletium alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. It was shown that extracts of D. palmatum are richer in the spectrum of polyphenolic compounds compared with extracts of D. ruyschiana, according to a study of the presence of these compounds in extracts, based on the results of mass spectrometric studies.
Collapse
|
20
|
Putri SP, Ikram MMM, Sato A, Dahlan HA, Rahmawati D, Ohto Y, Fukusaki E. Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. J Biosci Bioeng 2022; 133:425-435. [DOI: 10.1016/j.jbiosc.2022.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/23/2022]
|
21
|
Xie GR, Chen HJ. Comprehensive Betalain Profiling of Djulis ( Chenopodium formosanum) Cultivars Using HPLC-Q-Orbitrap High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15699-15715. [PMID: 34910494 DOI: 10.1021/acs.jafc.1c06596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Betalains are water-soluble pigments that may be used as alternatives to artificial colorants in the food industry. In addition, the betalain profile may be of taxonomic significance to some higher plants. Djulis (Chenopodium formosanum) is an emerging crop grown by Taiwan aboriginal communities, and its various cultivars contain different betalain compositions. To develop an authenticity method for evaluating djulis cultivars, we performed comprehensive betalain profiling with HPLC-Q-Orbitrap high-resolution mass spectrometry (HRMS). An HRMS method for betalain annotation was developed and used to identify 68 betalains, including 10 betacyanins, 24 betacyanin derivatives, and 34 betaxanthins. The profile of betacyanins and their derivatives could be utilized to classify different cultivars of djulis, while betaxanthins were less informative. Furthermore, the betalain profiles were indicative of the geographic origin of djulis. This HRMS method and analytical platform for betalains may be helpful to guide further investigations of natural pigments in other plants.
Collapse
Affiliation(s)
- Gui-Ru Xie
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Jhang Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
23
|
Maturation Process, Nutritional Profile, Bioactivities and Utilisation in Food Products of Red Pitaya Fruits: A Review. Foods 2021; 10:foods10112862. [PMID: 34829143 PMCID: PMC8618204 DOI: 10.3390/foods10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya’s maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.
Collapse
|
24
|
Zheng Q, Wang X, Qi Y, Ma Y. Selection and validation of reference genes for qRT-PCR analysis during fruit ripening of red pitaya (Hylocereus polyrhizus). FEBS Open Bio 2021; 11:3142-3152. [PMID: 33269508 PMCID: PMC8564333 DOI: 10.1002/2211-5463.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus) is widely cultivated in southern and southwestern China. To provide a basis for studying the molecular mechanisms of the ripening of this fruit, we carried out RNA sequencing (RNA-seq) analysis to identify differentially and stably expressed unigenes. The latter may serve as a resource of potential reference genes for normalization of target gene expression determined using quantitative real-time PCR (qRT-PCR). We selected 11 candidate reference genes from our RNA-seq analysis of red pitaya fruit ripening (ACT7, EF-1α, IF-4α, PTBP, PP2A, EF2, Hsp70, GAPDH, DNAJ, TUB and CYP), as well as β-ACT, which has been used as a reference gene for pitayas in previous studies. We then comprehensively evaluated their expression stability during fruit ripening using four statistical methods (GeNorm, NormFinder, BestKeeper and DeltaCt) and merged the four outputs using the online tool RefFinder for the final ranking. We report that PTBP and DNAJ showed the most stable expression patterns, whereas CYP and ACT7 showed the least stable expression patterns. The relative gene expression of red pitaya sucrose synthase and 4, 5-dihydroxyphenylalanine-extradiol-dioxygenase as determined by quantitative real-time PCR and normalized to PTBP and DNAJ was consistent with the RNA-seq results, suggesting that PTBP and DNAJ are suitable reference genes for studies of red pitaya fruit ripening.
Collapse
Affiliation(s)
- Qianming Zheng
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Xiaoke Wang
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Yong Qi
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Yuhua Ma
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| |
Collapse
|
25
|
Jiang H, Zhang W, Li X, Shu C, Jiang W, Cao J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Pucker B, Singh HB, Kumari M, Khan MI, Brockington SF. The report of anthocyanins in the betalain-pigmented genus Hylocereus is not well evidenced and is not a strong basis to refute the mutual exclusion paradigm. BMC PLANT BIOLOGY 2021; 21:297. [PMID: 34187352 PMCID: PMC8240293 DOI: 10.1186/s12870-021-03080-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Here we respond to the paper entitled "Contribution of anthocyanin pathways to fruit flesh coloration in pitayas" (Fan et al., BMC Plant Biol 20:361, 2020). In this paper Fan et al. 2020 propose that the anthocyanins can be detected in the betalain-pigmented genus Hylocereus, and suggest they are responsible for the colouration of the fruit flesh. We are open to the idea that, given the evolutionary maintenance of fully functional anthocyanin synthesis genes in betalain-pigmented species, anthocyanin pigmentation might co-occur with betalain pigments, as yet undetected, in some species. However, in absence of the LC-MS/MS spectra and co-elution/fragmentation of the authentic standard comparison, the findings of Fan et al. 2020 are not credible. Furthermore, our close examination of the paper, and re-analysis of datasets that have been made available, indicate numerous additional problems. Namely, the failure to detect betalains in an untargeted metabolite analysis, accumulation of reported anthocyanins that does not correlate with the colour of the fruit, absence of key anthocyanin synthesis genes from qPCR data, likely mis-identification of key anthocyanin genes, unreproducible patterns of correlated RNAseq data, lack of gene expression correlation with pigmentation accumulation, and putative transcription factors that are weak candidates for transcriptional up-regulation of the anthocyanin pathway.
Collapse
Affiliation(s)
- Boas Pucker
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Hidam Bishworjit Singh
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India
| | - Monika Kumari
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India.
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK.
| |
Collapse
|
28
|
Yu Z, Li J, He S, Zhou X, Wu J, Wang Q, Huang M, Liu X, Liu X, Gong X, Tang W, Xu C, Jiang X, Hardie WJ. Winemaking Characteristics of Red-Fleshed Dragon Fruit from Three Locations in Guizhou Province, China. Food Sci Nutr 2021; 9:2508-2516. [PMID: 34026067 PMCID: PMC8116872 DOI: 10.1002/fsn3.2196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to identify the locations and harvest months in Guizhou province, China, producing the most suitable red dragon fruit (Hylocereus polyrhizus) for winemaking. Fruit from Guanling, Luodian and Zhenfeng counties was harvested separately from successive fruit cycles in August, September and October, respectively. The key traits measured were fruit weight, pulp yield, soluble solids content, and titratable acid. Wine characteristics measured were alcohol content, total carbohydrates, titratable acidity, volatile acidity, and betacyanin content. The overall suitability of fruit from each location for winemaking was evaluated using a multi-factor, unweighted, scorecard. On that basis, fruit from Guanling county harvested in August was the most suitable. Fruit from Luodian, and Zhenfeng was most suitable when harvested in August and September, and September, respectively. These results provide a preliminary guide for the sourcing of red dragon fruit from Guizhou for wine production.
Collapse
Affiliation(s)
- Zhi‐Hai Yu
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Jin‐Qiang Li
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Shu‐Cheng He
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Xian‐Can Zhou
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Jia‐Sheng Wu
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Qing Wang
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Ming‐Zheng Huang
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Xiao‐Zhu Liu
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Xiao‐Hui Liu
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Xun Gong
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Wei‐Yuan Tang
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Cun‐Bin Xu
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | - Xiao‐Lin Jiang
- College of Food & Pharmaceutical EngineeringGuizhou Institute of TechnologyGuiyangChina
| | | |
Collapse
|
29
|
Bioactivity and cytotoxicity of different species of pitaya fruits – A comparative study with advanced chemometric analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Comparative Metabolic Profiling in Pulp and Peel of Green and Red Pitayas ( Hylocereus polyrhizus and Hylocereus undatus) Reveals Potential Valorization in the Pharmaceutical and Food Industries. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6546170. [PMID: 33778068 PMCID: PMC7980772 DOI: 10.1155/2021/6546170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
Pitaya (Hylocereus genus) is a popular plant with exotic and nutritious fruit, which has widespread uses as a source of nutrients and raw materials in the pharmaceutical industry. However, the potential of pitaya peel as a natural source of bioactive compounds has not yet fully been explored. Recent advances in metabolomics have paved the way for understanding and evaluating the presence of diverse sets of metabolites in different plant parts. This study is aimed at exploring the diversity of primary and secondary metabolites in two commercial varieties of pitaya, i.e., green pitaya (Hylocereus undatus) and red pitaya (Hylocereus polyrhizus). A total of 433 metabolites were identified using a widely targeted metabolomic approach and classified into nine known diverse classes of metabolites, including flavonoids, amino acids and its derivatives, alkaloids, tannins, phenolic acids, organic acids, nucleotides and derivatives, lipids, and lignans. Red pitaya peel and pulp showed relatively high accumulation of metabolites viz. alkaloids, amino acids and its derivatives, and lipids. Differential metabolite landscape of pitaya fruit indicated the presence of key bioactive compounds, i.e., L-tyrosine, L-valine, DL-norvaline, tryptophan, γ-linolenic acid, and isorhamnetin 3-O-neohesperidoside. The findings in this study provide new insight into the broad spectrum of bioactive compounds of red and green pitaya, emphasizing the valorization of the biowaste pitaya peel as raw material for the pharmaceutical and food industries.
Collapse
|
31
|
Al-Mekhlafi NA, Mediani A, Ismail NH, Abas F, Dymerski T, Lubinska-Szczygeł M, Vearasilp S, Gorinstein S. Metabolomic and antioxidant properties of different varieties and origins of Dragon fruit. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Thaiudom S, Oonsivilai R, Thaiwong N. Production of colorant powder from dragon fruit (
Hylocerecus polyrhizus
) peel: Bioactivity, heavy metal contamination, antimutagenicity, and antioxidation aspects. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siwatt Thaiudom
- School of Food Technology Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Ratchadaporn Oonsivilai
- School of Food Technology Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Numphon Thaiwong
- Department of Agricultural Technology and Environment Faculty of Sciences and Liberal Arts Rajamangala University of Technology Isan Nakhon Ratchasima Thailand
| |
Collapse
|
33
|
Zhou Z, Gao H, Ming J, Ding Z, Lin X, Zhan R. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 2020; 21:734. [PMID: 33092530 PMCID: PMC7579827 DOI: 10.1186/s12864-020-07133-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Elucidating the candidate genes and key metabolites responsible for pulp and peel coloration is essential for breeding pitaya fruit with new and improved appeal and high nutritional value. Here, we used transcriptome (RNA-Seq) and metabolome analysis (UPLC-MS/MS) to identify structural and regulatory genes and key metabolites associated with peel and pulp colors in three pitaya fruit types belonging to two different Hylocereus species. RESULT Our combined transcriptome and metabolome analyses suggest that the main strategy for obtaining red color is to increase tyrosine content for downstream steps in the betalain pathway. The upregulation of CYP76ADs is proposed as the color-breaking step leading to red or colorless pulp under the regulation by WRKY44 transcription factor. Supported by the differential accumulation of anthocyanin metabolites in red pulped pitaya fruit, our results showed the regulation of anthocyanin biosynthesis pathway in addition to betalain biosynthesis. However, no color-breaking step for the development of anthocyanins in red pulp was observed and no biosynthesis of anthocyanins in white pulp was found. Together, we propose that red pitaya pulp color is under the strict regulation of CYP76ADs by WRKYs and the anthocyanin coexistence with betalains is unneglectable. We ruled out the possibility of yellow peel color formation due to anthocyanins because of no differential regulation of chalcone synthase genes between yellow and green and no detection of naringenin chalcone in the metabolome. Similarly, the no differential regulation of key genes in the carotenoid pathway controlling yellow pigments proposed that the carotenoid pathway is not involved in yellow peel color formation. CONCLUSIONS Together, our results propose several candidate genes and metabolites controlling a single horticultural attribute i.e. color formation for further functional characterization. This study presents useful genomic resources and information for breeding pitaya fruit with commercially attractive peel and pulp colors. These findings will greatly complement the existing knowledge on the biosynthesis of natural pigments for their applications in food and health industry.
Collapse
Affiliation(s)
- Zhaoxi Zhou
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Hongmao Gao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianhong Ming
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xing'e Lin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| |
Collapse
|
34
|
Das G, Lim KJ, Tantengco OAG, Carag HM, Gonçalves S, Romano A, Das SK, Coy-Barrera E, Shin HS, Gutiérrez-Grijalva EP, Heredia JB, Patra JK. Cactus: Chemical, nutraceutical composition and potential bio-pharmacological properties. Phytother Res 2020; 35:1248-1283. [PMID: 33025610 DOI: 10.1002/ptr.6889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Cactus species are plants that grow in the arid and semiarid regions of the world. They have long fascinated the attention of the scientific community due to their unusual biology. Cactus species are used for a variety of purposes, such as food, fodder, ornamental, and as medicinal plants. In the last regard, they have been used in traditional medicine for eras by the ancient people to cure several diseases. Recent scientific investigations suggest that cactus materials may be used as a source of naturally-occurring products, such as mucilage, fiber, pigments, and antioxidants. For this reason, numerous species under this family are becoming endangered and extinct. This review provides an overview of the habitat, classification, phytochemistry, chemical constituents, extraction and isolation of bioactive compounds, nutritional and pharmacological potential with pre-clinical and clinical studies of different Cactus species. Furthermore, conservation strategies for the ornamental and endangered species have also been discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Kyung Jik Lim
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | | | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Sandra Gonçalves
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Faro, Portugal
| | - Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Erick Paul Gutiérrez-Grijalva
- Department of Nutraceuticals and Functional Foods, Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - J Basilio Heredia
- Department of Nutraceuticals and Functional Foods, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea
| |
Collapse
|
35
|
Fan R, Sun Q, Zeng J, Zhang X. Contribution of anthocyanin pathways to fruit flesh coloration in pitayas. BMC PLANT BIOLOGY 2020; 20:361. [PMID: 32736527 PMCID: PMC7394676 DOI: 10.1186/s12870-020-02566-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Color formation in Hylocereus spp. (pitayas) has been ascribed to the accumulation of betalains. However, several studies have reported the presence of anthocyanins in pitaya fruit and their potential role in color formation has not yet been explored. In this study, we profiled metabolome and transcriptome in fruit of three cultivars with contrasting flesh colors (red, pink and white) to investigate their nutritional quality and the mechanism of color formation involving anthocyanins. RESULTS Results revealed that pitaya fruit is enriched in amino acid, lipid, carbohydrate, polyphenols, vitamin and other bioactive components with significant variation among the three cultivars. Anthocyanins were detected in the fruit flesh and accumulation levels of Cyanidin 3-glucoside, Cyanidin 3-rutinoside, Delphinidin 3-O-(6-O-malonyl)-beta-glucoside-3-O-beta-glucoside and Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) positively correlated with the reddish coloration. Transcriptome data showed that the white cultivar tends to repress the anthocyanin biosynthetic pathway and divert substrates to other competing pathways. This perfectly contrasted with observations in the red cultivar. The pink cultivar however seems to keep a balance between the anthocyanin biosynthetic pathway and the competing pathways. We identified several active transcription factors of the MYB and bHLH families which can be further investigated as potential regulators of the anthocyanin biosynthetic genes. CONCLUSIONS Collectively, our results suggest that anthocyanins partly contribute to color formation in pitaya fruit. Future studies aiming at manipulating the biosynthetic pathways of anthocyanins and betalains will better clarify the exact contribution of each pathway in color formation in pitayas. This will facilitate efforts to improve pitaya fruit quality and appeal.
Collapse
Affiliation(s)
- Ruiyi Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA); Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Qingming Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA); Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA); Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Xinxin Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA); Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| |
Collapse
|
36
|
Comparative Transcriptome Analysis Combining SMRT- and Illumina-Based RNA-Seq Identifies Potential Candidate Genes Involved in Betalain Biosynthesis in Pitaya Fruit. Int J Mol Sci 2020; 21:ijms21093288. [PMID: 32384685 PMCID: PMC7246777 DOI: 10.3390/ijms21093288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
To gain more valuable genomic information about betalain biosynthesis, the full-length transcriptome of pitaya pulp from ‘Zihonglong’ (red pulp) and ‘Jinghonglong’ (white pulp) in four fruit developmental stages was analyzed using Single-Molecule Real-Time (SMRT) sequencing corrected by Illumina RNA-sequence (Illumina RNA-Seq). A total of 65,317 and 91,638 genes were identified in ‘Zihonglong’ and ‘Jinghonglong’, respectively. A total of 11,377 and 15,551 genes with more than two isoforms were investigated from ‘Zihonglong’ and ‘Jinghonglong’, respectively. In total, 156,955 genes were acquired after elimination of redundancy, of which, 120,604 genes (79.63%) were annotated, and 30,875 (20.37%) sequences without hits to reference database were probably novel genes in pitaya. A total of 31,169 and 53,024 simple sequence repeats (SSRs) were uncovered from the genes of ‘Zihonglong’ and ‘Jinghonglong’, and 11,650 long non-coding RNAs (lncRNAs) in ‘Zihonglong’ and 11,113 lncRNAs in ‘Jinghonglong’ were obtained herein. qRT-PCR was conducted on ten candidate genes, the expression level of six novel genes were consistent with the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. In conclusion, we firstly undertook SMRT sequencing of the full-length transcriptome of pitaya, and the valuable resource that was acquired through this sequencing facilitated the identification of additional betalain-related genes. Notably, a list of novel putative genes related to the synthesis of betalain in pitaya fruits was assembled. This may provide new insights into betalain synthesis in pitaya.
Collapse
|
37
|
Xie F, Hua Q, Chen C, Zhang L, Zhang Z, Chen J, Zhang R, Zhao J, Hu G, Zhao J, Qin Y. Transcriptomics-based identification and characterization of glucosyltransferases involved in betalain biosynthesis in Hylocereus megalanthus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:112-124. [PMID: 32413806 DOI: 10.1016/j.plaphy.2020.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 05/19/2023]
Abstract
Pitaya (Hylocereus spp.) is the only commercial cultivation of fruit containing abundant betalains for consumer. Betalains are water-soluble nitrogen-containing pigments with high nutritional value and bioactivities. In this study, contents of betaxanthins and betacyanins were compared between 'Guanhuabai' (H. undatus) and 'Huanglong' (H. megalanthus) pitayas and key genes involved in betalain biosynthesis were screened from 'Huanglong' pitaya by RNA-Seq technology. Twenty-nine candidate genes related to betalain biosynthesis were obtained from the transcriptome data. Based on expression characteristics and sequence analyses, HmB5GT1 and HmHCGT2 were further analyzed. HmB5GT1 and HmHCGT2 were both conserved in 'PSPG-box' and localized in nucleus. Silencing of HmB5GT1 and HmHCGT2 resulted in a significant reduction in betacyanin and betaxanthin contents. Those results suggested that HmB5GT1 and HmHCGT2 are possibly involved in betalain biosynthesis in H. megalanthus. The present work provides new information on betalain biosynthesis in Hylocereus at the transcriptional level.
Collapse
Affiliation(s)
- Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junsheng Zhao
- Institute of Fruit Science in Maoming, Maoming, 525000, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
38
|
Wu Y, Xu J, Shi M, Han X, Li W, Zhang X, Wen X. Pitaya: a potential plant resource of citramalic acid. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1738557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yawei Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiumei Han
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Wenyun Li
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xingwu Zhang
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
39
|
Qiu X, Cao L, Han R. Analysis of Volatile Components in Different Ophiocordyceps sinensis and Insect Host Products. Molecules 2020; 25:E1603. [PMID: 32244487 PMCID: PMC7181253 DOI: 10.3390/molecules25071603] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
The artificial production of Ophiocordyceps sinensis mycelia and fruiting bodies and the Chinese cordyceps has been established. However, the volatile components from these O. sinensis products are not fully identified. An efficient, convenient, and widely used approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography and quadrupole time-of-flight mass spectrometry (GC×GC-QTOFMS) was developed for the extraction and the analysis of volatile compounds from three categories of 16 products, including O. sinensis fungus, Thitarodes hosts of O. sinensis, and the Chinese cordyceps. A total of 120 volatile components including 36 alkanes, 25 terpenes, 17 aromatic hydrocarbons, 10 ketones, 5 olefines, 5 alcohols, 3 phenols, and 19 other compounds were identified. The contents of these components varied greatly among the products but alkanes, especially 2,5,6-trimethyldecane, 2,3-dimethylundecane and 2,2,4,4-tetramethyloctane, are the dominant compounds in general. Three categories of volatile compounds were confirmed by partial least squares-discriminant analysis (PLS-DA). This study provided an ideal method for characterizing and distinguishing different O. sinensis and insect hosts-based products.
Collapse
Affiliation(s)
| | | | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, Guangdong, China; (X.Q.); (L.C.)
| |
Collapse
|
40
|
Zheng Q, Wang X, Zhou J, Ma Y. Complete genome sequence of a new member of the genus Badnavirus from red pitaya (Hylocereus polyrhizus). Arch Virol 2020; 165:749-752. [PMID: 32034473 DOI: 10.1007/s00705-019-04503-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022]
Abstract
Here, we report a circular double-stranded DNA virus from red pitaya (Hylocereus polyrhizus). The complete genome sequence is 7,837 nt in length and shares 98.7% nucleotide sequence identity with epiphyllum mottle-associated virus (EpMoaV) and 40.4-54.6% with other members of the genus Badnavirus. It has four open reading frames (ORFs), encoding putative proteins of 19.9, 14.8, 225.7 and 14.2 kDa, respectively. The reverse transcriptase (RT)-ribonuclease H (RNase H) region exhibits less than 70.5% nucleotide sequence identity to RT-RNase H of other badnaviruses, and 99.7% to that of EpMoaV. Phylogenetic analysis revealed that the virus from this study and EpMoaV form a single group. Consequently, we propose this virus as a new member of the genus Badnavirus in the family Caulimoviridae and have named it "pitaya badnavirus 1" (PiBV1). PiBV1 and EpMoaV should be considered two isolates of a badnavirus that infects members of the family Cactaceae.
Collapse
Affiliation(s)
- Qianming Zheng
- Institute of Pomology Science, Guizhou Provincial Academy of Agricultural Sciences, Huaxi District, Jinzhu Town, Guiyang, 550006, Guizhou, China
| | - Xiaoke Wang
- Institute of Pomology Science, Guizhou Provincial Academy of Agricultural Sciences, Huaxi District, Jinzhu Town, Guiyang, 550006, Guizhou, China
| | - Junliang Zhou
- Institute of Pomology Science, Guizhou Provincial Academy of Agricultural Sciences, Huaxi District, Jinzhu Town, Guiyang, 550006, Guizhou, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Provincial Academy of Agricultural Sciences, Huaxi District, Jinzhu Town, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
41
|
Santos GBM, Dionísio AP, Magalhães HCR, Abreu FAPD, Lira SM, Lima ACVD, Silva GSD, Guedes JAC, da Silva Araujo IM, Artur AG, Pontes DF, Zocolo GJ. Effects of processing on the chemical, physicochemical, enzymatic, and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Res Int 2019; 127:108710. [PMID: 31882103 DOI: 10.1016/j.foodres.2019.108710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
The effects of processing on the chemical, physicochemical, enzymatic, and volatile metabolic composition of pitaya pulp were assessed for the first time. To this end, the following treatments to obtain pitaya pulp were evaluated: Treatment A (TA, pulp processing without ascorbic acid), Treatment B (TB, whole fruit processing with ascorbic acid), and Control (whole fruit processing without ascorbic acid). The treatment employed in TB resulted in low polyphenol oxidase and peroxidase activity, and no significant chemical or physicochemical alterations in most parameters evaluated. In addition, TB presents high yields and fiber content compared to the TA or Control. For metabolic analysis, Gas Chromatography-Mass Spectrometry (GC-MS) was effective for the simultaneous determination of 80 volatile metabolites in pitaya. Chemometric analyses was used to efficiently distinguish the volatile compounds of each treatment, and demonstrated that TB presents an interesting volatile profile due the conservation or agregation of compounds.
Collapse
Affiliation(s)
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | - Sandra Machado Lira
- Department of Nutrition, State University of Ceara, 60714-903 Fortaleza, CE, Brazil
| | | | | | | | | | - Adriana Guirado Artur
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|
42
|
Lira SM, Dionísio AP, Holanda MO, Marques CG, Silva GSD, Correa LC, Santos GBM, de Abreu FAP, Magalhães FEA, Rebouças EDL, Guedes JAC, Oliveira DFD, Guedes MIF, Zocolo GJ. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MS E and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Res Int 2019; 127:108701. [PMID: 31882110 DOI: 10.1016/j.foodres.2019.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 01/12/2023]
Abstract
Pitaya is a Cactacea with potential for economic exploitation, due to its high commercial value and its functional components - such betalains, oligosaccharides and phenolic compounds. Although the biological activities of pitaya have been studied using in vivo and in vitro models (anti-inflammatory and antiproliferative activities, as example), its anxiolytic-like effect is still unexplored. Therefore, the aim of this work was to perform a characterization of pulp and peel of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) using UPLC-QTOF-MSE, and to assess its toxicity and anxiolytic-like effect in adult zebrafish (Danio rerio). The results showed 16 and 15 compounds (in pulp and peel, respectively), including maltotriose, quercetin-3-O-hexoside, and betalains, putatively identified by UPLC-QTOF-MSE. Thus, pitaya pulp and peel showed no toxicity in both models tested (Vero cell lines and zebrafish model, LC50 ˃ 1 mg/mL); and a significant anxiolytic activity, since the treated fish reduced the permanence in the clear zone (Light & Dark Test) compared to that in the control, exhibiting anxiolytic-simile effect of diazepam. However, these effects were reduced by pre-treatment with the flumazenil suggesting that the pulp and peel of pitaya are anxiolytics agents mediated via the GABAergic system. These findings suggested that H. polyrizhus has the potential of developing an alternative plant-derived anxiolytic therapy. In addition, pitaya peel (which is a waste in the food industry) should be regarded as a valuable product, which has the potential as an economic value-added ingredient for anxiety disorders.
Collapse
Affiliation(s)
- Sandra Machado Lira
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | | | - Lia Coêlho Correa
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|