1
|
Schulte T, Magdaong NCM, Di Valentin M, Agostini A, Tait CE, Niedzwiedzki DM, Carbonera D, Hofmann E. Structural and spectroscopic characterization of the peridinin-chlorophyll a-protein (PCP) complex from Heterocapsa pygmaea (HPPCP). BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149510. [PMID: 39321862 DOI: 10.1016/j.bbabio.2024.149510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll a protein (PCP) from the free living dinoflagellate Heterocapsa pygmaea. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from Amphidinium carterae to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer. Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6-2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.
Collapse
Affiliation(s)
- Tim Schulte
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17121 Solna, Sweden
| | | | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
2
|
Wang P, Li Z, Zhu L, Mo F, Li F, Lv R, Meng F, Zhang H, Zou Y, Qi H, Yu L, Yu T, Ran S, Xu Y, Cheng M, Liu Y, Chen X, Zhang X, Wang A. Four-Dimensional Data-Independent Acquisition-Based Proteomic Profiling Combined with Transcriptomic Analysis Reveals the Involvement of the Slym1-SlFHY3-CAB3C Module in Regulating Tomato Leaf Color. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39688468 DOI: 10.1021/acs.jafc.4c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In green plants, the chloroplast is responsible for light energy transition and organic assimilation. However, the molecular mechanisms underlying chloroplast development in horticultural crops remain unclear. Here, four-dimensional data-independent acquisition-based proteomic profiling identified 1,727 differentially expressed proteins between "Zhongshu 4" (ZS4) and yellowing mutant (ym) leaves, a considerable proportion of which were down-regulated chloroplast proteins. Functional analysis revealed that light harvesting and chlorophyll biosynthesis were correlated with ym leaf yellowing, validated by RNA sequencing. Quantitative PCR confirmed that chlorophyll a/b-binding protein 3C (CAB3C) related to light harvesting and NADPH:protochlorophyllide oxidoreductase 3 (POR3) involved in chlorophyll biosynthesis were repressed in ym leaves. Virus-induced gene silencing showed that suppressing CAB3C and POR3 decreased the net photosynthetic rate and chlorophyll content. Additionally, the F-box protein Slym1 negatively regulated the expression of CAB3C by depressing transcription factor SlFHY3 levels. Our findings offer insights into the regulatory mechanisms of chloroplast development in tomato.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fanyue Meng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huixin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Zou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Haonan Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Tianyue Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Hashimoto Y, Takeda T, Ogasawara S, Tamiaki H. Self-aggregation of 13 2,13 2-disubstituted bacteriochlorophyll-d analog. Photochem Photobiol Sci 2024; 23:2227-2236. [PMID: 39604785 DOI: 10.1007/s43630-024-00662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Zinc methyl 132,132-disubstituted 3-hydroxymethyl-pyropheophorbides-a were prepared as models of bacteriochlorophyll-d, which self-aggregated in the main light-harvesting antenna (chlorosome) of photosynthetic green bacteria. The synthetic zinc 31-hydroxy-131-oxo-chlorins possessing methyl and methoxycarbonyl groups at the 132-position could not self-aggregate in an aqueous Triton X-100 solution. However, another model compound bearing an ethane-1,2-diyl group at the 132-position did self-aggregate under the same conditions to give red-shifted and broadened Qy and Soret absorption bands. The spiro-cyclopropane condensation slightly suppressed the chlorosome-like self-aggregation due to an increase in the steric hindrance around the 13-carbonyl group. The red-shifted and broadened values of these bands by the self-aggregation were dependent on the 132-substituents. The 132-substitution substantially controlled the aqueous J-aggregation.
Collapse
Affiliation(s)
- Yamato Hashimoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toyoho Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
5
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
7
|
Chitnavis S, Gray C, Rousouli I, Gillen E, Mullineaux CW, Haworth TJ, Duffy CDP. Optimizing photosynthetic light-harvesting under stars: simple and general antenna models. PHOTOSYNTHESIS RESEARCH 2024; 162:75-92. [PMID: 39256265 DOI: 10.1007/s11120-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, 400 < λ < 700 nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle. Here, we hypothesize that this is partly due to the different ways they harvest light, reflecting some general rule that determines how photosynthetic antenna structures may evolve under different stars. We construct a simple thermodynamic model of an oxygenic antenna-reaction centre supercomplex and determine the optimum structure, size and absorption spectrum under light from several star types. For the hotter G (e.g. the Sun) and K-stars, a small modular antenna is optimal and qualitatively resembles the PSII-LHCII supercomplex of higher plants. For the cooler M-dwarfs, a very large antenna with a steep 'energy funnel' is required, resembling the cyanobacterial phycobilisome. For the coolest M-dwarfs an upper limit is reached, where increasing antenna size further is subject to steep diminishing returns in photosynthetic output. We conclude that G- and K-stars could support a range of niches for oxygenic photo-autotrophs, including high-light adapted canopy vegetation that may generate detectable bio-signatures. M-dwarfs may only be able to support low light-adapted organisms that have to invest considerable resources in maintaining a large antenna. This may negatively impact global coverage and therefore detectability.
Collapse
Affiliation(s)
- Samir Chitnavis
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Callum Gray
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK
| | - Ifigeneia Rousouli
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Edward Gillen
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Thomas J Haworth
- Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher D P Duffy
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK.
- Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK.
| |
Collapse
|
8
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Rys M, Stachurska J, Rudolphi-Szydło E, Dziurka M, Waligórski P, Filek M, Janeczko A. Does deacclimation reverse the changes in structural/physicochemical properties of the chloroplast membranes that are induced by cold acclimation in oilseed rape? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108961. [PMID: 39067102 DOI: 10.1016/j.plaphy.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Winter crops acquire frost tolerance during the process of cold acclimation when plants are exposed to low but non-freezing temperatures that is connected to specific metabolic adjustments. Warm breaks during/after cold acclimation disturb the natural process of acclimation, thereby decreasing frost tolerance and can even result in a resumption of growth. This phenomenon is called deacclimation. In the last few years, studies that are devoted to deacclimation have become more important (due to climate changes) and necessary to be able to understand the mechanisms that occur during this phenomenon. In the acclimation of plants to low temperatures, the importance of plant membranes is indisputable; that is why the main aim of our studies was to answer the question of whether (and to what extent) deacclimation alters the physicochemical properties of the plant membranes. The studies were focused on chloroplast membranes from non-acclimated, cold-acclimated and deacclimated cultivars of winter oilseed rape. The analysis of the membranes (formed from chloroplast lipid fractions) using the Langmuir technique revealed that cold acclimation increased membrane fluidity (expressed as the Alim values), while deacclimation generally decreased the values that were induced by cold. Moreover, because the chloroplast membranes were penetrated by lipophilic molecules such as carotenoids or tocopherols, the relationships between the structure of the lipids and the content of these antioxidants in the chloroplast membranes during the process of the cold acclimation and deacclimation of oilseed rape are discussed.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Julia Stachurska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Maria Filek
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
10
|
Likkei K, Moldenhauer M, Tavraz NN, Egorkin NA, Slonimskiy YB, Maksimov EG, Sluchanko NN, Friedrich T. Elements of the C-terminal tail of a C-terminal domain homolog of the Orange Carotenoid Protein determining xanthophyll uptake from liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149043. [PMID: 38522658 DOI: 10.1016/j.bbabio.2024.149043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Carotenoids perform multifaceted roles in life ranging from coloration over light harvesting to photoprotection. The Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, accommodates a ketocarotenoid vital for its function. OCP extracts its ketocarotenoid directly from membranes, or accepts it from homologs of its C-terminal domain (CTDH). The CTDH from Anabaena (AnaCTDH) was shown to be important for carotenoid transfer and delivery from/to membranes. The C-terminal tail of AnaCTDH is a critical structural element likely serving as a gatekeeper and facilitator of carotenoid uptake from membranes. We investigated the impact of amino acid substitutions within the AnaCTDH-CTT on echinenone and canthaxanthin uptake from DOPC and DMPG liposomes. The transfer rate was uniformly reduced for substitutions of Arg-137 and Arg-138 to Gln or Ala, and depended on the lipid type, indicating a weaker interaction particularly with the lipid head group. Our results further suggest that Glu-132 has a membrane-anchoring effect on the PC lipids, specifically at the choline motif as inferred from the strongly different effects of the CTT variants on the extraction from the two liposome types. The substitution of Pro-130 by Gly suggests that the CTT is perpendicular to both the membrane and the main AnaCTDH protein during carotenoid extraction. Finally, the simultaneous mutation of Leu-133, Leu-134 and Leu-136 for alanines showed that the hydrophobicity of the CTT is crucial for carotenoid uptake. Since some substitutions accelerated carotenoid transfer into AnaCTDH while others slowed it down, carotenoprotein properties can be engineered toward the requirements of applications.
Collapse
Affiliation(s)
- Kristina Likkei
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikita A Egorkin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation; Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Yury B Slonimskiy
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
11
|
Oh E, Krogmeier TJ, Schlimgen AW, Head-Marsden K. Singular Value Decomposition Quantum Algorithm for Quantum Biology. ACS PHYSICAL CHEMISTRY AU 2024; 4:393-399. [PMID: 39069975 PMCID: PMC11274286 DOI: 10.1021/acsphyschemau.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/30/2024]
Abstract
There has been a recent interest in quantum algorithms for the modeling and prediction of nonunitary quantum dynamics using current quantum computers. The field of quantum biology is one area where these algorithms could prove to be useful as biological systems are generally intractable to treat in their complete form but amenable to an open quantum systems approach. Here, we present the application of a recently developed singular value decomposition (SVD) algorithm to two systems in quantum biology: excitonic energy transport through the Fenna-Matthews-Olson complex and the radical pair mechanism for avian navigation. We demonstrate that the SVD algorithm is capable of capturing accurate short- and long-time dynamics for these systems through implementation on a quantum simulator and conclude that while the implementation of this algorithm is beyond the reach of current quantum computers, it has the potential to be an effective tool for the future study of systems relevant to quantum biology.
Collapse
Affiliation(s)
- Emily
K. Oh
- Department of Chemistry, Washington
University in St. Louis, St. Louis, Missouri 61630, United States
| | - Timothy J. Krogmeier
- Department of Chemistry, Washington
University in St. Louis, St. Louis, Missouri 61630, United States
| | - Anthony W. Schlimgen
- Department of Chemistry, Washington
University in St. Louis, St. Louis, Missouri 61630, United States
| | - Kade Head-Marsden
- Department of Chemistry, Washington
University in St. Louis, St. Louis, Missouri 61630, United States
| |
Collapse
|
12
|
Amombo E, Gbibar M, Ashilenje DS, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, El Gharous M, Nilahyane A. Screening for genetic variability in photosynthetic regulation provides insights into salt performance traits in forage sorghum under salt stress. BMC PLANT BIOLOGY 2024; 24:690. [PMID: 39030485 PMCID: PMC11264756 DOI: 10.1186/s12870-024-05406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.
Collapse
Affiliation(s)
- Erick Amombo
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Maryam Gbibar
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Dennis S Ashilenje
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdallah Oukarroum
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Cherki Ghoulam
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Center of Agrobiotechnology and Bioengineering, Labeled Research Unit CNRST, Cadi Ayyad University (UCA), Marrakech, Morocco
| | - Mohamed El Gharous
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelaziz Nilahyane
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| |
Collapse
|
13
|
Zhu Y, Wang H, Xiang X, Hayat K, Wu R, Tian J, Zheng H, Xie M, Li B, Du S. A dose-dependent effect of UV-328 on photosynthesis: Exploring light harvesting and UV-B sensing mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134670. [PMID: 38781858 DOI: 10.1016/j.jhazmat.2024.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis. This study investigated the effects of UV-328 (2-(2-hydroxy-4',6'-di-tert-amylphenyl) benzotriazole) on plant growth indices and photosynthesis processes, employing conventional physiological experiments, RNA sequencing (RNA-seq) analysis, and computational methods. Results demonstrated a biphasic response in plant biomass and the maximum quantum yield of PS II (Fv/Fm), showing improvement at a 50 μM UV-328 treatment but reduction under 150 μM UV-328 exposure. Additionally, disruption in thylakoid morphology was observed at the higher concentration. RNA-seq and qRT-PCR analysis identified key differentially expressed genes (light-harvesting chlorophyll-protein complex Ⅰ subunit A4, light-harvesting chlorophyll b-binding protein 3, UVR8, and curvature thylakoid 1 A) related to photosynthetic light harvesting, UV-B sensing, and chloroplast structure pathways, suggesting they may contribute to the observed alterations in photosynthesis activity induced by UV-328 exposure. Molecular docking analyses further supported the binding affinity between these proteins and UV-328. Overall, this study provided comprehensive physiological and molecular insights, contributing valuable information to the evaluation of the potential risks posed by UV-328 to critical plant physiological processes.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
14
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
15
|
Frederiksen A, Gerhards L, Reinholdt P, Kongsted J, Solov’yov IA. Importance of Polarizable Embedding for Absorption Spectrum Calculations of Arabidopsis thaliana Cryptochrome 1. J Phys Chem B 2024; 128:6283-6290. [PMID: 38913544 PMCID: PMC11228989 DOI: 10.1021/acs.jpcb.4c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Cryptochromes are essential flavoproteins for circadian rhythms and avian magnetoreception. Flavin adenine dinucleotide (FAD), a chromophore within cryptochromes, absorbs blue light, initiating electron transfer processes that lead to a biological signaling cascade. A key step in this cascade is the formation of the FAD semiquinone radical (FADH•), characterized through a specific red-light absorption. The absorption spectra of FADH• in cryptochromes are, however, significantly different from those recorded for the cofactor in solution, primarily due to protein-induced shifts in the absorption peaks. This study employs a multiscale approach, combining molecular dynamics (MD) simulations with quantum mechanical/molecular mechanical (QM/MM) methodologies, to investigate the influence of protein dynamics on embedded FADH• absorption. We emphasize the role of the protein's polarizable environment in the shaping of the absorption spectrum, crucial for accurate spectral predictions in cryptochromes. Our findings provide valuable insights into the absorption process, advancing our understanding of cryptochrome functioning.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Peter Reinholdt
- Department
of Physics, Chemistry, and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department
of Physics, Chemistry, and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26111 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
16
|
Maroudas-Sklare N, Goren N, Yochelis S, Jung G, Keren N, Paltiel Y. Probing the design principles of photosynthetic systems through fluorescence noise measurement. Sci Rep 2024; 14:13877. [PMID: 38880795 PMCID: PMC11637105 DOI: 10.1038/s41598-024-64068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Elucidating the energetic processes which govern photosynthesis, the engine of life on earth, are an essential goal both for fundamental research and for cutting-edge biotechnological applications. Fluorescent signal of photosynthetic markers has long been utilised in this endeavour. In this research we demonstrate the use of fluorescent noise analysis to reveal further layers of intricacy in photosynthetic energy transfer. While noise is a common tool analysing dynamics in physics and engineering, its application in biology has thus far been limited. Here, a distinct behaviour in photosynthetic pigments across various chemical and biological environments is measured. These changes seem to elucidate quantum effects governing the generation of oxidative radicals. Although our method offers insights, it is important to note that the interpretation should be further validated expertly to support as conclusive theory. This innovative method is simple, non-invasive, and immediate, making it a promising tool to uncover further, more complex energetic events in photosynthesis, with potential uses in environmental monitoring, agriculture, and food-tech.
Collapse
Affiliation(s)
- Naama Maroudas-Sklare
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Goren
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Shira Yochelis
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Grzegorz Jung
- Department of Physics, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
- Instytut Fizyki PAN, 02668, Warszawa, Poland
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
17
|
Lo Presti D, Cimini S, De Tommasi F, Massaroni C, Cinti S, De Gara L, Schena E. Flexible Matrices for the Encapsulation of Plant Wearable Sensors: Influence of Geometric and Color Features on Photosynthesis and Transpiration. SENSORS (BASEL, SWITZERLAND) 2024; 24:1611. [PMID: 38475147 DOI: 10.3390/s24051611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The safeguarding of plant health is vital for optimizing crop growth practices, especially in the face of the biggest challenges of our generation, namely the environmental crisis and the dramatic changes in the climate. Among the many innovative tools developed to address these issues, wearable sensors have recently been proposed for monitoring plant growth and microclimates in a sustainable manner. These systems are composed of flexible matrices with embedded sensing elements, showing promise in revolutionizing plant monitoring without being intrusive. Despite their potential benefits, concerns arise regarding the effects of the long-term coexistence of these devices with the plant surface. Surprisingly, a systematic analysis of their influence on plant physiology is lacking. This study aims to investigate the effect of the color and geometric features of flexible matrices on two key plant physiological functions: photosynthesis and transpiration. Our findings indicate that the negative effects associated with colored substrates, as identified in recent research, can be minimized by holing the matrix surface with a percentage of voids of 15.7%. This approach mitigates interference with light absorption and reduces water loss to a negligible extent, making our work one of the first pioneering efforts in understanding the intricate relationship between plant wearables' features and plant health.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Vial Alvaro del Portillo 21, 00128 Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Sara Cimini
- Unit of Food and Nutrition Science, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Vial Alvaro del Portillo 21, 00128 Roma, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Vial Alvaro del Portillo 21, 00128 Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Stefano Cinti
- The Nano(bio)sensors Lab, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Laura De Gara
- Unit of Food and Nutrition Science, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Vial Alvaro del Portillo 21, 00128 Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
18
|
Hajizadeh M, Golub M, Moldenhauer M, Matsarskaia O, Martel A, Porcar L, Maksimov E, Friedrich T, Pieper J. Solution Structures of Two Different FRP-OCP Complexes as Revealed via SEC-SANS. Int J Mol Sci 2024; 25:2781. [PMID: 38474026 DOI: 10.3390/ijms25052781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.
Collapse
Affiliation(s)
- Mina Hajizadeh
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Eugene Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| |
Collapse
|
19
|
Kim M, Kim J, Lee S, Khanh N, Li Z, Polle JEW, Jin E. Deciphering the β-carotene hyperaccumulation in Dunaliella by the comprehensive analysis of Dunaliella salina and Dunaliella tertiolecta under high light conditions. PLANT, CELL & ENVIRONMENT 2024; 47:213-229. [PMID: 37727131 DOI: 10.1111/pce.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The green microalga Dunaliella salina hyperaccumulates β-carotene in the chloroplast, which turns its cells orange. This does not occur in the sister species Dunaliella tertiolecta. However, the molecular mechanisms of β-carotene hyperaccumulation were still unclear. Here, we discovered the reasons for β-carotene hyperaccumulation by comparing the morphology, physiology, genome, and transcriptome between the carotenogenic D. salina and the noncarotenogenic D. tertiolecta after transfer to high light. The differences in photosynthetic capacity, cell growth, and the concentration of stored carbon suggest that these species regulate the supply and utilization of carbon differently. The number of β-carotene-containing plastid lipid globules increased in both species, but much faster and to a greater extent in D. salina than in D. tertiolecta. Consistent with the accumulation of plastid lipid globules, the expression of the methyl-erythritol-phosphate and carotenoid biosynthetic pathways increased only in D. salina, which explains the de novo synthesis of β-carotene. In D. salina, the concomitantly upregulated expression of the carotene globule proteins suggests that hyperaccumulation of β-carotene also requires a simultaneous increase in its sink capacity. Based on genomic analysis, we propose that D. salina has genetic advantages for routing carbon from growth to carotenoid metabolism.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sangmuk Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Nguyen Khanh
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Juergen E W Polle
- Department of Biology, Brooklyn College of the City University of New York, New York, Brooklyn, USA
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
21
|
Galicia-Campos E, García-Villaraco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Bacillus G7 improves adaptation to salt stress in Olea europaea L. plantlets, enhancing water use efficiency and preventing oxidative stress. Sci Rep 2023; 13:22507. [PMID: 38110443 PMCID: PMC10728083 DOI: 10.1038/s41598-023-49533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress. On the other hand, despite the decrease in effective PSII quantum yield (ΦPSII), net carbon fixation was significantly improved, resulting in significant increases in osmolytes and antioxidants, suggesting an improvement in the use of absorbed energy. Water use efficiency (WUE) was significantly improved. Strong genetic reprogramming was evidenced by the transcriptome that revealed involvement of the ABA-mediated pathway based on upregulation of ABA synthesis- and ABA-sensing-related genes together with a strong downregulation of the PLC2 phosphatase family, repressors of ABA-response elements and upregulation of ion homeostasis-related genes. The ion homeostasis response was activated faster in G7-treated plants, as suggested by qPCR data. All these results reveal the multitargeted improvement of plant metabolism under salt stress by Bacillus G7, which allows growth under water limitation conditions, an excellent trait to develop biofertilizers for agriculture under harsh conditions supporting the use of biofertilizers among the new farming practices to meet the increasing demand for food.
Collapse
Affiliation(s)
- Estrella Galicia-Campos
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ana García-Villaraco
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Ma Belén Montero-Palmero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - F Javier Gutiérrez-Mañero
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Beatriz Ramos-Solano
- Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
22
|
Lozano JI, Panduro MA, Méndez-Alonzo R, Alonso-Arevalo MA, Conte R, Reyna A. Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics (Basel) 2023; 8:531. [PMID: 37999172 PMCID: PMC10669502 DOI: 10.3390/biomimetics8070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Plant diversity includes over 300,000 species, and leaf structure is one of the main targets of selection, being highly variable in shape and size. On the other hand, the optimization of antenna design has no unique solution to satisfy the current range of applications. We analyzed the foliar geometries of 100 plant species and applied them as a biomimetic design template for microstrip patch antenna systems. From this set, a subset of seven species were further analyzed, including species from tropical and temperate forests across the phylogeny of the Angiosperms. Foliar geometry per species was processed by image processing analyses, and the resultant geometries were used in simulations of the reflection coefficients and the radiation patterns via finite differences methods. A value below -10 dB is set for the reflection coefficient to determine the operation frequencies of all antenna elements. All species showed between 3 and 15 operational frequencies, and four species had operational frequencies that included the 2.4 and 5 GHz bands. The reflection coefficients and the radiation patterns in most of the designs were equal or superior to those of conventional antennas, with several species showing multiband effects and omnidirectional radiation. We demonstrate that plant structures can be used as a biomimetic tool in designing microstrip antenna for a wide range of applications.
Collapse
Affiliation(s)
- Jose Ignacio Lozano
- Departamento de Electrónica y Telecomunicaciones, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico; (J.I.L.); (M.A.A.-A.); (R.C.)
| | - Marco A. Panduro
- Departamento de Electrónica y Telecomunicaciones, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico; (J.I.L.); (M.A.A.-A.); (R.C.)
| | - Rodrigo Méndez-Alonzo
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico;
| | - Miguel A. Alonso-Arevalo
- Departamento de Electrónica y Telecomunicaciones, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico; (J.I.L.); (M.A.A.-A.); (R.C.)
| | - Roberto Conte
- Departamento de Electrónica y Telecomunicaciones, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico; (J.I.L.); (M.A.A.-A.); (R.C.)
| | - Alberto Reyna
- Electrical and Electronic Engineering Department, Universidad Autónoma de Tamaulipas, UAMRR-R, Carretera Reynosa-San Fernando, Reynosa 88779, Tamaulipas, Mexico;
| |
Collapse
|
23
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
24
|
Petry S, Tremblay JC, Götze JP. Impact of Structure, Coupling Scheme, and State of Interest on the Energy Transfer in CP29. J Phys Chem B 2023; 127:7207-7219. [PMID: 37581578 DOI: 10.1021/acs.jpcb.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The Qy and Bx excitation energy transfer (EET) in the minor light-harvesting complex CP29 (LHCII B4.1) antenna complex of Pisum sativum was characterized using a computational approach. We applied Förster resonance energy transfer (FRET) and the transition density cube (TDC) method to estimate the Coulombic coupling, based on a combination of classical molecular dynamics and quantum mechanics/molecular mechanics calculations. Employing TDC instead of FRET mostly affects the EET between chlorophylls (Chls) and carotenoids (Crts), as expected due to the Crts being spatially more challenging for FRET. Only between Chls, effects are found to be small (about only 0.1 EET efficiency change when introducing TDC instead of FRET). Effects of structural sampling were found to be small, illustrated by a small average standard deviation for the Qy state coupling elements (FRET/TDC: 0.97/0.94 cm-1). Due to the higher flexibility of the Bx state, the corresponding deviations are larger (FRET/TDC between Chl-Chl pairs: 17.58/22.67 cm-1, between Crt-Chl pairs: 62.58/31.63 cm-1). In summary, it was found for the Q band that the coupling between Chls varies only slightly depending on FRET or TDC, resulting in a minute effect on EET acceptor preference. In contrast, the coupling in the B band spectral region is found to be more affected. Here, the S2 (1Bu) states of the spatially challenging Crts may act as acceptors in addition to the B states of the Chls. Depending on FRET or TDC, several Chls show different Chl-to-Crt couplings. Interestingly, the EET between Chls or Crts in the B band is found to often outcompete the corresponding decay processes. The individual efficiencies for B band EET to Crts vary however strongly with the chosen coupling scheme (e.g., up to 0.29/0.99 FRET/TDC efficiency for the Chl a604/neoxanthin pair). Thus, the choice of the coupling scheme must involve a consideration of the state of interest.
Collapse
Affiliation(s)
- S Petry
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - J C Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, 57070 Metz, France
| | - J P Götze
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
25
|
Rosas-Saavedra C, Quiroz LF, Parra S, Gonzalez-Calquin C, Arias D, Ocarez N, Lopez F, Stange C. Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2788. [PMID: 37570943 PMCID: PMC10421225 DOI: 10.3390/plants12152788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.
Collapse
Affiliation(s)
- Carolina Rosas-Saavedra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Luis Felipe Quiroz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Samuel Parra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Christian Gonzalez-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Nallat Ocarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Instituto de Investigaciones Agropecuarias (INIA), La Platina, Research Centre, Av. Santa Rosa 11610, Santiago 8820000, Chile
| | - Franco Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| |
Collapse
|
26
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
27
|
Majewski MA, Stawski W, Van Raden JM, Clarke M, Hart J, O'Shea JN, Saywell A, Anderson HL. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring. Angew Chem Int Ed Engl 2023; 62:e202302114. [PMID: 36877745 PMCID: PMC10947019 DOI: 10.1002/anie.202302114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/07/2023]
Abstract
Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesis of a macrocycle consisting entirely of 5,15-linked porphyrins. This porphyrin octadecamer was constructed using a covalent six-armed template, made by cobalt-catalyzed cyclotrimerization of an H-shaped tolan with porphyrin trimer ends. The porphyrins around the circumference of the nanoring were linked together by intramolecular oxidative meso-meso coupling and partial β-β fusion, to give a nanoring consisting of six edge-fused zinc(II) porphyrin dimer units and six un-fused nickel(II) porphyrins. STM imaging on a gold surface confirms the size and shape of the spoked 18-porphyrin nanoring (calculated diameter: 4.7 nm).
Collapse
Affiliation(s)
- Marcin A. Majewski
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Current address: Faculty of ChemistryUniversity of Wrocławul. F. Joliot-Curie 1450-383WrocławPoland
| | - Wojciech Stawski
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Jeff M. Van Raden
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Michael Clarke
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jack Hart
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - James N. O'Shea
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Alex Saywell
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Harry L. Anderson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
28
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
29
|
Sukhova E, Sukhov V. Photosynthesis under actions of abiotic stressors: Phenomenology, mechanisms of changes, simulation, and remote sensing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:171-173. [PMID: 36716691 DOI: 10.1016/j.plaphy.2023.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
30
|
Fan S, Amombo E, Avoga S, Li Y, Yin Y. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1141295. [PMID: 36875615 PMCID: PMC9975589 DOI: 10.3389/fpls.2023.1141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Bermudagrass (Cynodon dactylon L.) is a warm-season grass with high drought and salt tolerance. However, its cultivation as a silage crop is limited by its lower forage value when compared to other C4 crops. Because of its high genetic variability in abiotic stress tolerance, bermudagrass-mediated genetic breeding offers significant promise for introducing alternative fodder crops in saline and drought-affected regions, and improved photosynthetic capacity is one way for increasing forage yield. METHODS Here, we used RNA sequencing to profile miRNAs in two bermudagrass genotypes with contrasting salt tolerance growing under saline conditions. RESULTS Putatively, 536 miRNA variants were salt-inducible, with the majority being downregulated in salt-tolerant vs sensitive varieties. Also, seven miRNAs putatively targeted 6 genes which were significantly annotated to light reaction photosynthesis. Among the microRNAs, highly abundant miRNA171f in the salt tolerant regime targeted Pentatricopeptide repeat-containing protein and dehydrogenase family 3 member F1 both annotated to electron transport and Light harvesting protein complex 1 genes annotated to light photosynthetic reaction in salt tolerant regime vs salt sensitive counterparts. To facilitate genetic breeding for photosynthetic capacity, we overexpressed miR171f in Medicago tracantula which resulted in a substantial increase in the chlorophyll transient curve, electron transport rate, quantum yield of photosystem II non photochemical quenching, NADPH and biomass accumulation under saline conditions while its targets were downregulated. At ambient light level the electron transport was negatively correlated with all parameters while the NADPH was positively associated higher dry matter in mutants. DISCUSSION These results demonstrate that miR171f improves photosynthetic performance and dry matter accumulation via transcriptional repression of genes in the electron transport pathway under saline conditions and thus a target for breeding.
Collapse
Affiliation(s)
- Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Erick Amombo
- African Sustainable Agriculture Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Sheila Avoga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Yating Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
31
|
Ishii T, Matsubara S, Tamiaki H. Ring-shaped self-assembly of a naphthalene-linked chlorophyll dimer. Chem Commun (Camb) 2023; 59:1967-1970. [PMID: 36723005 DOI: 10.1039/d2cc06368a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Light-harvesting antennas, for example the LH2 complex in purple bacteria, sophisticatedly align chlorophyll molecules in a cyclic fashion by using protein scaffolds. However, artificial preparation of the circular LH antenna model without any templates has not been reported. We demonstrated the construction of ring-shaped supramolecules by self-assembly of a semisynthetic chlorophyll dimer through a transformation from wavy fiber-like aggregates.
Collapse
Affiliation(s)
- Tatsuma Ishii
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Shogo Matsubara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan. .,Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan.
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
32
|
Slimani SL, Kostecki R, Kursunlu AN, Kee TW, Tapping PC, Mak AM, Quach JQ. Experimental and computational characterisation of an artificial light harvesting complex. Phys Chem Chem Phys 2023; 25:4743-4753. [PMID: 36691831 DOI: 10.1039/d2cp03858g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photosynthesis has been shown to be a highly efficient process for energy transfer in plants and bacteria. Like natural photosynthetic systems, the artificial light harvesting complex (LHC) BODIPY pillar[5]arene exhibits Förster resonance energy transfer (FRET). However, extensive characterisation of the BODIPY pillar[5]arene LHC to determine its suitability as an artificial LHC has yet to occur. In this paper we experimentally and computationally investigate the photophysical properties of the LHC by comparing the light absorption of the BODIPY LHC to individual BODIPY chromophores. Our results show evidence for quantum coherence, with oscillation frequencies of 100 cm-1 and 600 cm-1, which are attributable to vibronic, or exciton-phonon type coupling. Computational analysis suggests strong couplings of the molecular orbitals of the LHC resulting from the stacking of neighbouring BODIPY chromophore units. Interestingly, we find a 40% reduction in the absorbance of light for the BODIPY LHC compared to the individual chromophores which we attribute to electronic interactions between the conjugated π-systems of the BODIPY chromophores and the pillar[5]arene backbone.
Collapse
Affiliation(s)
- Sabrina L Slimani
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roman Kostecki
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ahmed Nuri Kursunlu
- Department of Chemistry, Faculty of Science, University of Selçuk, Konya, Turkey.
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Patrick C Tapping
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Adrian M Mak
- Institute of High Performance Computing, Agency of Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - James Q Quach
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| |
Collapse
|
33
|
Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 2022; 12:21139. [PMID: 36477410 PMCID: PMC9729621 DOI: 10.1038/s41598-022-25749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coriander (Coriandrum sativum L.) contains abundant antioxidants and essential oils which can provide antibacterial, antifungal, and antioxidant activities in the pharmaceutical, health and food production industry. To improve the economic values of coriander, the relationships between optimal light treatments for maximizing both plant growth and the antioxidant and essential oil content of coriander leaves need to be determined. Plants were exposed to five light-emitting diodes spectral color mixtures, high blue light (BL) intensity induced the levels of reducing power response. The light treatments were then adjusted for the analysis of secondary metabolite compounds of coriander leaves. Among 30 identified compounds, the amounts of decamethyl-cyclopentasiloxane and dodecane were significantly reduced in the R80 + G50 + B50 condition, whereas dodecamethyl-cyclohexasiloxane level was significantly reduced in R50 + G50 + B80 condition. Various light quality and intensity combinations influenced the accumulations of chlorophyll and phytochemical contents, mediated antioxidative properties, and secondary metabolites of coriander leaves, which may be useful in developing a new LED lighting apparatus optimized for coriander production in plant factories.
Collapse
|
34
|
Hancock AM, Swainsbury DJK, Meredith SA, Morigaki K, Hunter CN, Adams PG. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112585. [PMID: 36334507 DOI: 10.1016/j.jphotobiol.2022.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
35
|
Froes E, Silva Junior PF, Santana EEC, Sousa Junior CM, Silva PHF, Cruz CAM, Aquino VS, Castro LSO, Freire RCS, Pinto MSS. Monopole directional antenna bioinspired in elliptical leaf with golden ratio for WLAN and 4G applications. Sci Rep 2022; 12:18654. [PMID: 36333416 PMCID: PMC9636253 DOI: 10.1038/s41598-022-21733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, it is proposed the development a new monopole directional antenna, bioinspired in elliptical leaf, with cut by golden ratio, for 4G band application, by the use of the technique of the cut of the radiating element for the increasing of the antenna perimeter, being the first work to use this technique in a bioinspired antenna, promotes resonance frequency turned, and reconfiguring of the antenna parameters as bandwidth, radiation pattern and gain, with the use of the reflector near to the group plane, without the insertion of active devices as the pin diode or change in radiating element. The shape antenna is generated by Gielis formula, built in FR4 substrate, with cuts calculated by golden ratio. To compare the results of the bioinspired monopole on the elliptical sheet, a square-shaped monopole antenna was designed, simulated and measured, the structures were designed in the MATLAB software version 2015(b) and the simulations were performed in the Ansys software version 2016. In the results compared between the square monopole and the bioinspired antenna in the elliptical sheet, it can be seen that the measured bioinspired antenna, compared to the square monopole, presented a bandwidth reduction of 77.27%, a more compact structure, with a reduction of 98%, covering the wireless local area network, and long-time evolution 4G at 2.5 GHz. The proposed technique uses a reflector on the ground plane, to change the parameters of the monopole planar antenna, of omnidirectional radiation pattern to a directional, maintaining the characteristics of the broadband, half-power beamwidth great than 100°, with high current density, and similar gain of a directional antenna. From the results, it has been observed that the elliptical leaf monopole antenna shows broadband characteristics, with a half-power beamwidth of 128°, wideband, the bandwidth of 500 MHz, a gain of 6.28 dBi, a current density of 13.01 A/m2, and circular polarization.
Collapse
Affiliation(s)
- Eduarda Froes
- Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil.
| | - Paulo F Silva Junior
- Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil
| | - Ewaldo E C Santana
- Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil
| | - Carlos M Sousa Junior
- Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil
| | - Paulo H F Silva
- Graduating Program in Electrical Engineering, Federal Institute of Paraiba, João Pessoa, 58135-000, Brazil
| | - Carlos A M Cruz
- Graduating Program in Electrical Engineering, Federal University of Amazonas, Amazonas, 69460-000, Brazil
| | - Vivianne S Aquino
- Graduating Program in Electrical Engineering, Federal University of Amazonas, Amazonas, 69460-000, Brazil
| | - Luis S O Castro
- Graduating Program in Electrical Engineering, Federal University of Amazonas, Amazonas, 69460-000, Brazil
| | - Raimundo C S Freire
- Graduating Program in Electrical Engineering, Federal University of Campina Grande, Paraiba, 58490-900, Brazil
| | - Mauro S S Pinto
- Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil
| |
Collapse
|
36
|
Zhu Y, Gu W, Tian R, Li C, Ji Y, Li T, Wei C, Chen Z. Morphological, physiological, and secondary metabolic responses of Taraxacum officinale to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:71-82. [PMID: 36055055 DOI: 10.1016/j.plaphy.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Salt stress has a major effect on growth and secondary metabolism in medicinal plants, however, the effect of salt stress on Taraxacum officinale F. H. Wigg. is still scarce. In this study, we evaluated the effects of salt stress on the physiology, morphology, phenolic acid accumulation, and expression of genes involved in phenolic acid biosynthesis in T. officinale. We found that plants grew well at 1 g kg-1 NaCl, and the state of photosystem Ⅱ (PSⅡ) and the organization of the chloroplasts at 0.5 g kg-1 NaCl showed no significant differences compared with the control. However, 2 g kg-1 and 4 g kg-1 NaCl inhibited growth and accelerated leaf senescence. At 4 g kg-1 NaCl, the fresh and dry weights decreased to 28% and 42% of the control, while chlorosis and necrosis were observed on the leaves. Furthermore, up-regulation of the expression of ToC3'H corresponded with an increase in the levels of caffeoylquinic acids (chlorogenic acid and isochlorogenic acid A) at NaCl concentration ≤ 1 g kg-1. Expressions of four phenolic acid biosynthesis genes, ToC4H, To4CL, ToHCT, and ToHQT, were down-regulated with increasing NaCl concentrations, consistent with the observed decreases in caftaric and cichoric acids. In summary, cultivation of T. officinale under mild salt stress (NaCl ≤ 1 g kg-1) is feasible and facilitates the accumulation of caffeoylquinic acids; thus this species may be recommended for saline soils.
Collapse
Affiliation(s)
- Yu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Li
- Chinese Medicine Research Institute, Jumpcan Pharmaceutical Group Co., Ltd, 8 Baotawan, Daqing West Road, Taixing, 25441, China
| | - Yuanyuan Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chenbin Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Ziyun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
37
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
38
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
39
|
Łazicka M, Palińska-Saadi A, Piotrowska P, Paterczyk B, Mazur R, Maj-Żurawska M, Garstka M. The coupled photocycle of phenyl-p-benzoquinone and Light-Harvesting Complex II (LHCII) within the biohybrid system. Sci Rep 2022; 12:12771. [PMID: 35896789 PMCID: PMC9329374 DOI: 10.1038/s41598-022-16892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The combination of trimeric form of the light-harvesting complex II (LHCII3), a porous graphite electrode (GE), and the application of phenyl-p-benzoquinone (PPBQ), the quinone derivative, allow the construction of a new type of biohybrid photoactive system. The Chl fluorescence decay and voltammetric analyzes revealed that PPBQ impacts LHCII3 proportionally to accessible quenching sites and that PPBQ forms redox complexes with Chl in both ground and excited states. As a result, photocurrent generation is directly dependent on PPBQ-induced quenching of Chl fluorescence. Since PPBQ also undergoes photoactivation, the action of GE-LHCII3-PPBQ depends on the mutual coupling of LHCII3 and PPBQ photocycles. The GE-LHCII3-PPBQ generates a photocurrent of up to 4.5 µA and exhibits considerable stability during operation. The three-dimensional arrangement of graphite scraps in GE builds an active electrode surface and stabilizes LHCII3 in its native form in low-density multilayers. The results indicate the future usability of such designed photoactive device.
Collapse
Affiliation(s)
- Magdalena Łazicka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Adriana Palińska-Saadi
- Laboratory of Basics of Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Bioanalytical Laboratory, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Paulina Piotrowska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Magdalena Maj-Żurawska
- Laboratory of Basics of Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
40
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
41
|
Shoji S, Stepanenko V, Würthner F, Tamiaki H. Self-assembly of a zinc bacteriochlorophyll- d analog with a lipophilic tertiary amide group in the 17-substituent. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
42
|
Götze JP, Anders F, Petry S, Felix Witte J, Lokstein H. Spectral Characterization of the Main Pigments in the Plant Photosynthetic Apparatus by Theory and Experiment. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Abstract
Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides their involvement in primary charge separation in the reaction center, they serve as light-harvesting and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer. Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly, in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one would think that all has been said on these pigments. However, the opposite is true: ongoing research evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid counterparts. These introductory notes give a very brief and in part personal account of the history of chlorophyll research and applications, before concluding with a snapshot of this year's publications.
Collapse
Affiliation(s)
- Hugo Scheer
- Bereich Systematik, Biodiversität und Evolution der Pflanzen, Universität München, Menzinger Str. 67, 80638 München, Germany
| |
Collapse
|
44
|
Takeda T, Kitagawa Y, Tamiaki H. Substituted Methylenation at the 13 2 -Position of a Chlorophyll-a Derivative via Mixed Aldol Condensation, Optical Properties of the Synthetic Bacteriochlorophyll-d Analogs, and Self-aggregation of Their Zinc Complexes. Photochem Photobiol 2022; 98:1059-1067. [PMID: 35119101 DOI: 10.1111/php.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Chlorophyll-a derivatives possessing a substituted methylene group at the 132 -position were prepared by the mixed aldol condensation of methyl 3-hydroxymethyl-pyropheophorbide-a with aldehydes bearing a methyl, p-nitro/cyanophenyl, or pentafluorophenyl group. Their electronic absorption spectra were dependent on the substituents at the methylene terminal. The Soret bands were broadened with increasing the group electronegativity of the substituents, which was ascribable to the charge transfer from the core chlorin to the peripheral substituent in a molecule. Although their Qy absorption and fluorescence emission bands resembled each other, the emission intensities decreased with an increase in the electronegativity because of the intramolecular electron transfer quenching. Some of their zinc complexes self-aggregated in a less polar organic solvent to give red-shifted and broadened absorption bands with intense circular dichroism couplets, which were similar to those of bacteriochlorophyll-c/d aggregates in natural chlorosomes as the main light-harvesting antennas of green photosynthetic bacteria and their models. The J-aggregation was suppressed with an enhancement in the size of the 132 -substituents.
Collapse
Affiliation(s)
- Toyoho Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yuichi Kitagawa
- Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo Hokkaido, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
45
|
Guo B, Zeng S, Yin Y, Li L, Ma G, Wu K, Fang L. Characterization of phytohormone and transcriptome profiles during protocorm-like bodies development of Paphiopedilum. BMC Genomics 2021; 22:806. [PMID: 34749655 PMCID: PMC8576892 DOI: 10.1186/s12864-021-08087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.
Collapse
Affiliation(s)
- Beiyi Guo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Yuying Yin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
46
|
Cardoso S, Berberan-Santos MN. Reversible Electronic Energy Transfer (Homo-FRET) in Cyclic Molecular and Supramolecular Systems: Fluorescence Anisotropy Decays for the Isotropic Interaction. J Phys Chem A 2021; 125:8476-8481. [PMID: 34286990 DOI: 10.1021/acs.jpca.1c04975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible electronic energy transfer (homo-FRET) in cyclic multichromophoric systems is studied for sets of n identical fluorophores arranged in regular polygons (triangle, square, pentagon, etc.). A general analytic expression for the anisotropy decay is obtained for a regular polygon of any order, under the assumptions of isotropic interaction and nearest-neighbor FRET. A graphical way of connecting the decay form and polygon geometry based on the Frost circle is also presented. The consequences of the relaxation of these assumptions on the anisotropy decay are also discussed and analyzed in detail for the heptagon.
Collapse
Affiliation(s)
- Sofia Cardoso
- Physics Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mario N Berberan-Santos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|