1
|
Hassan M, Ikram M, Haider A, Shahzadi I, Moeen S, Ul-Hamid A, Ali G, Ullah H, Ebaid MS, Graeff CFO. Doping dependency of chitosan and PAA controlled CdSe quantum dots for catalytic and bactericidal behavior by inhibiting DNA gyrase and DHFR through molecular docking. Int J Biol Macromol 2024; 288:138690. [PMID: 39672445 DOI: 10.1016/j.ijbiomac.2024.138690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach. CdSe quantum dots (QDs) exhibit a narrow band gap energy, high solubility, and tunable properties, which are appropriate for redox reactions but show less adsorption and catalytic behavior. In this work, catalytic and antibacterial activities of CdSe QDs enhanced upon the integration of PAA due to increment in surface area confirmed by BET analysis. Furthermore, the addition of CS escalates the dye degradation and microbes evolve to the interaction of CdSe surface with the functional groups of CS. Highly doped CdSe shows significant inhibitory zones (8.65 to 9.30 mm) against gram-positive bacteria Staphylococcus aureus (S. aureus). In addition, the inhibitory activity of CS/PAA-CdSe nanostructures against DNA gyrase and dihydrofolate reductase (DHFR) in S. aureus was elucidated using molecular docking investigations, providing a rationale for their bactericidal action.
Collapse
Affiliation(s)
- Mudassir Hassan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan.
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology, Lahore 54770, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Hameed Ullah
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border university, Arar, Saudi Arabia
| | - Carlos F O Graeff
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| |
Collapse
|
2
|
Fang R, Wang X, Han Z, Pang R, Wu D, Tai J, Ouyang C, Zhan M, Kim H, Xie B, Su Y. Dynamic responses of the inter-microbial synergism and thermodynamic conditions attribute to the inhibition-and-relief effects of chitosan towards anaerobic digestion. WATER RESEARCH 2024; 267:122569. [PMID: 39369510 DOI: 10.1016/j.watres.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Wide commercial applications of chitosan in food preservation and green packaging fields inevitably lead to the universal existence in food, as well as the food waste (FW) processing system. However, whether and how the chitosan, a class of biomacromolecule substances, lead to dysfunction of anaerobic digestion (AD) process of FW remains less understood. Herein, chitosan exhibited an inhibition-and-relief effect with the AD process proceeding, and 80 mg/g-FW of chitosan decreased the net methane yield of FW by 24.7 %. The dynamic effect was ascribed to the varied fates of chitosan and the coupling biotic/abiotic influencing on multi-steps. Chitosan enhanced substrate flocs agglomeration, restraining the release of organics to liquid phase and reducing the binding affinity to enzymes. Among the various microorganisms involved in different steps, chitosan severely inhibited aceticlastic and hydrogenotrophic methanogen at the levels of microbial abundance, activity and function. Genome-centric metagenomics analyses revealed that transient chitosan decreased the coenzyme-based synergism of various microbial taxa involved in acetic acid generation/consumption metabolisms, including syntrophic propionate-oxidizing bacteria, syntrophic butyrate-oxidizing bacteria and methanogen. With the elimination of chitosan, these inhibitions were relieved, and the accumulated acetic acid and the more favorable thermodynamic conditions finally attributed to the recovery of AD performance.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Chuang Ouyang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Civil, Environmental & Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Varshan GSA, Namasivayam SKR. A Green Chemistry Principle for the Biotransformation of Fungal Biomass Derived Chitosan Into Versatile Nano Scale Materials with High Biocompatibility and Potential Biological Activities—A Review. BIONANOSCIENCE 2024; 14:4145-4166. [DOI: 10.1007/s12668-024-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
4
|
Mahmoud M, Allam AF, Essawy AE, Shalaby TI, El-Sherif SS. Therapeutic efficacy of praziquantel loaded-chitosan nanoparticles on juvenile Schistosoma mansoni worms in murine model. Exp Parasitol 2024; 266:108843. [PMID: 39369770 DOI: 10.1016/j.exppara.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Praziquantel (PZQ) is the standard treatment for schistosomiasis; however, it is poorly effective on immature and juvenile worms. The present study aimed to evaluate the therapeutic efficacy of praziquantel loaded-chitosan nanoparticles (PZQ-CSNPs) on the 25 days old juvenile Schistosoma mansoni worms compared to PZQ and chitosan nanoparticles (CSNPs). It was conducted on 60 Swiss albino mice, including 20 control and 40 experimental mice. The control groups included healthy uninfected and infected non-treated mice. The experimental groups included mice infected treated on the 25th day with 400 mg/kg PZQ, 30 mg/kg CSNPs, 100 mg/kg, and 400 mg/kg PZQ-CSNPs. The results revealed that PZQ-CSNPs (100, 400 mg/kg) gave the best results substantiated by a remarkable decrease in worm burden, egg count, granuloma count and size compared to the other treatments. Moreover, it induced severe deformations of worm morphology regarding oral and ventral suckers, tegument, spines distribution, and male gynaecophoric canal. Liver enzymes and oxidative stress markers were significantly decreased while antioxidant activities were increased compared to control and other treated groups. In conclusion, a single dose of PZQ-CSNPs had significant antischistosomal therapeutic effects during the early maturation phase.
Collapse
Affiliation(s)
- Mai Mahmoud
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Amal Farahat Allam
- Parasitology Department, Medical Research Institute, Alexandria University, Egypt.
| | | | | | | |
Collapse
|
5
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Chitosan Derivatives: Preparation, Properties and Applications in Pharmacy and Medicine. Gels 2024; 10:701. [PMID: 39590057 PMCID: PMC11593520 DOI: 10.3390/gels10110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan (CS) derivatives have been extensively investigated to enhance the physicochemical and biological properties of CS, such as its solubility, biocompatibility, and bioactivity, which are required in various areas of pharmacy and medicine. The present work emphasizes the ongoing research and development in this field, suggesting that the further exploration of CS derivatives could lead to innovative solutions that benefit society. The physicochemical properties, biological activities, methods of preparation, advantages, limitations, intended application areas, and realized practical implementations of particular CS derivatives are summarized and discussed herein. Despite the numerous promising attributes of CS derivatives as reported in this paper, however, challenges like target selectivity, standardization (purity, chitosan structural variability), and cost-effectiveness still need addressing for widespread implementation, especially in drug delivery. Therefore, basic research studies still prevail in CS drug delivery systems. However, for specific applications such as wound healing and tissue engineering, implementations of CS derivatives in practice are found to be more frequent. To obtain a more complex view of the topic, information from the scientific papers reviewed is supplemented with information from actual patents and clinical studies. Both basic research advances and the most successful and important medical implementations of CS derivatives are discussed concerning further challenges and future perspectives.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
6
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
7
|
Dacrory S, D'Amora U, Longo A, Hasanin MS, Soriente A, Fasolino I, Kamel S, Al-Shemy MT, Ambrosio L, Scialla S. Chitosan/cellulose nanocrystals/graphene oxide scaffolds as a potential pH-responsive wound dressing: Tuning physico-chemical, pro-regenerative and antimicrobial properties. Int J Biol Macromol 2024; 278:134643. [PMID: 39128733 DOI: 10.1016/j.ijbiomac.2024.134643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Chronic wounds (CWs) treatment still represents a demanding medical challenge. Several intrinsic physiological signals (i.e., pH) help to stimulate and support wound healing. CWs, in fact, are characterized by a predominantly alkaline pH of the exudate, which acidifies as the wound heals. Therefore, pH-responsive wound dressings hold great potential owing to their capability of tuning their functions according to the wound conditions. Herein, porous chitosan (CS)-based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene oxide (GO) were successfully fabricated using a freeze-drying method. CNCs were extracted from bagasse pulps fibers through acid hydrolysis. GO was synthesised by Hummer's method. The scaffolds were then ionically cross-linked using the amino acid L-Arginine (Arg), as a bioactive agent, and tested as potential pH-responsive wound dressing. Notably, the effect of CNCs and GO singly and simultaneously loaded within the CS-Arg scaffolds was investigated. The modulation of CNCs and GO content within CS-Arg scaffolds facilitated the development of scaffolds with an optimal pH-dependent swelling ratio capability and extended degradation time. Furthermore, CS/CNC/GO-Arg scaffolds exhibited tuned biological features, in terms of antimicrobial activity, cellular proliferation/migration ability, and the expression of extracellular matrix specific markers (i.e., elastin and collagen I) related to wound healing in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Angela Longo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
8
|
Wang K, Yang X, Liang J, Rong Y, Zhao W, Ding J, Liu Y, Liu Q. Preparation, characterization, antimicrobial evaluation, and grape preservation applications of polyvinyl alcohol/gelatin composite films containing zinc oxide@quaternized chitosan nanoparticles. Int J Biol Macromol 2024; 277:134527. [PMID: 39111507 DOI: 10.1016/j.ijbiomac.2024.134527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
This study employed a precipitation method to synthesize zinc oxide@quaternised chitosan nanoparticles (ZnO@QAC NPs) containing different concentrations of zinc oxide, namely ZnO@QAC-2, ZnO@QAC-4, and ZnO@QAC-6. Subsequently, these nanoparticles were incorporated into matrices consisting of gelatine (Gn) and polyvinyl alcohol (PVA) separately, which were prepared by casting to form a biodegradable film. We assessed the physicochemical properties of ZnO@QAC NPs and physicochemical characteristics, antioxidant properties, antimicrobial activity and grape preservation efficacy of the film. Compared to the control group, the films showed a reduction in water vapor permeability by >9.38 %, an increase in tensile strength by over 51.95 %, over 70 % scavenging of ABTS free radicals, and good biocompatibility. Additionally, the antimicrobial activity of the films containing ZnO@QAC-6 increased by 37.6 %. In the grape preservation experiment, the weight loss of grapes wrapped in ZnO@QAC-2 film was reduced by 40.13 % on day 15 compared to unwrapped grapes. These results demonstrate that ZnO@QAC/PVA/Gn films have considerable potential for food packaging applications.
Collapse
Affiliation(s)
- Kehui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Xiangjun Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Junjun Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yan Rong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Weijie Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Jiahao Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yiming Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
10
|
El-Naggar ME, Wael K, Hemdan BA, Abdelgawad AM, Elsabee MZ, El-Zayat EM, Hady MA, Hashem MM. Chitosan microflower-embedded gelatin sponges for advanced wound management and hemostatic applications. Int J Biol Macromol 2024; 276:133749. [PMID: 38986976 DOI: 10.1016/j.ijbiomac.2024.133749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The study explored the antimicrobial, antibiofilm, and hemostatic properties of chitosan microflowers (CMF) in sponge form. The main objective was to enhance the preparation of CMF by employing varying quantities of calcium chloride (CaCl2) and tripolyphosphate (TPP). CMF was then combined with gelatin (GE) in different proportions to produce three sponge samples: CMF0@GE, CMF1@GE, and CMF2@GE. The CMF had a morphology like that of a flower and produced surfaces with a porous sponge-like structure. The antibacterial activity, as determined by the zone of inhibition (ZOI), increased with greater doses of CMF. Among the tested samples, CMF2@GE had the greatest activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium. CMF2@GE successfully suppressed biofilm formation, decreased clotting time to an average of 212.67 s, and exhibited excellent biocompatibility by preserving over 90 % viability of human skin fibroblast cells at dosages below 100 μg/mL. The results indicated that gelatin sponges filled with CMF have considerable promise as flexible medical instruments for wound healing and infection control.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - K Wael
- Biotechnology Department, Faculty of Science, Cairo University, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Textile Engineering Chemistry and Science Department, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - M Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Emad M El-Zayat
- Molecular Physiology and Biotechnology, Zoology Department, Faculty of Sciences, Cairo University, Egypt
| | - Mayssa Abdel Hady
- Pharmaceutical Technology Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - M M Hashem
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
Hamed AA, Ali EA, Abdelhamid IA, Saad GR, Elsabee MZ. Synthesis of novel chitosan-Schiff bases nanoparticles for high efficiency Helicobacter pylori inhibition. Int J Biol Macromol 2024; 274:133499. [PMID: 38944085 DOI: 10.1016/j.ijbiomac.2024.133499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Two chitosan Schiff bases were synthesized by condensation of chitosan with 2-(4-formylphenoxy)-N-phenylacetamide and N-(4-bromophenyl)-2-(4-formylphenoxy) acetamide denoted as Cs-SBA and Cs-SBBr, respectively. The molecular structures of the resulting chitosan derivatives were characterized using FTIR and 1HNMR and their thermal properties were investigated by TGA. These derivatives were treated with sodium tripolyphosphate (TPP) to produce Cs Schiff base nanoparticles. The nanoparticles physicochemical properties were determined by FTIR, XRD, TEM, and zeta potential analysis. The antimicrobial action against Helicobacter pylori (H. pylori) was evaluated and the results indicated that the anti-H. pylori activity had minimal inhibitory concentration MIC values of 15.62 ± 0.05 and 3.9 ± 0.03 μg/mL for Cs-SBA and Cs-SBBr nanoparticles (Cs-SBA NPs and Cs-SBBr NPs), respectively. The better biologically active nanoparticles, Cs-SBBr NPs, were tested for their cyclooxygenases (COX-1 and COX-2) inhibitory potential. Cs-SBBr NPs demonstrated COX enzyme inhibition activity against COX-2 (IC50 4.5 ± 0.165 μg/mL) higher than the conventional Indomethacin (IC50 0.08 ± 0.003 μg/mL), and Celecoxib (IC50 0.79 ± 0.029 μg/mL). Additionally, the cytotoxicity test of Cs-SBBr NPs showed cytotoxic effect on Vero cells (CCL-81) with IC50 = 17.95 ± 0.12 μg/mL which is regarded as a safe compound. Therefore, Cs-SBBr NPs may become an alternative to cure H. pylori and prevent gastric cancer.
Collapse
Affiliation(s)
- Amira A Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Gamal R Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Maher Z Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
12
|
Flesińska J, Szklarska M, Matuła I, Barylski A, Golba S, Zając J, Gawlikowski M, Kurtyka P, Ilnicka B, Dercz G. Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. J Funct Biomater 2024; 15:190. [PMID: 39057310 PMCID: PMC11277708 DOI: 10.3390/jfb15070190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Medicine is looking for solutions to help implant patients recover more smoothly. The porous implants promote osteointegration, thereby providing better stabilization. Introducing porosity into metallic implants enhances their biocompatibility and facilitates osteointegration. The introduction of porosity is also associated with a reduction in Young's modulus, which reduces the risk of tissue outgrowth around the implant. However, the risk of chronic inflammation remains a concern, necessitating the development of coatings to mitigate adverse reactions. An interesting biomaterial for such modifications is chitosan, which has antimicrobial, antifungal, and osteointegration properties. In the present work, a porous titanium biomaterial was obtained by powder metallurgy, and electrophoretic deposition of chitosan coatings was used to modify its surface. This study investigated the influence of ethanol content in the deposition solution on the quality of chitosan coatings. The EPD process facilitates the control of coating thickness and morphology, with higher voltages resulting in thicker coatings and increased pore formation. Ethanol concentration in the solution affects coating quality, with higher concentrations leading to cracking and peeling. Optimal coating conditions (30 min/10 V) yield high-quality coatings, demonstrating excellent cell viability and negligible cytotoxicity. The GIXD and ATR-FTIR analysis confirmed the presence of deposited chitosan coatings on Ti substrates. The microstructure of the chitosan coatings was examined by scanning electron microscopy. Biological tests showed no cytotoxicity of the obtained materials, which allows for further research and the possibility of their use in medicine. In conclusion, EPD offers a viable method for producing chitosan-based coatings with controlled properties for biomedical applications, ensuring enhanced patient outcomes and implant performance.
Collapse
Affiliation(s)
- Julia Flesińska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Magdalena Szklarska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Izabela Matuła
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Julia Zając
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Maciej Gawlikowski
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt’s Str. 40, 41-800 Zabrze, Poland
| | - Przemysław Kurtyka
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
| | - Barbara Ilnicka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 St., 44-100 Gliwice, Poland;
| | - Grzegorz Dercz
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| |
Collapse
|
13
|
Tayel AA, Ebaid AM, Otian AM, Mahrous H, El Rabey HA, Salem MF. Application of edible nanocomposites from chitosan/fenugreek seed mucilage/selenium nanoparticles for protecting lemon from green mold. Int J Biol Macromol 2024; 273:133109. [PMID: 38871099 DOI: 10.1016/j.ijbiomac.2024.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Green (Penicillium digitatum) mold can severely endanger the citrus fruits production and quality. Targeting the protection of lemon fruits from green mold infestations with nanobiotechnology approach, the fenugreek seed mucilage (FM) was extracted and exploited for biosynthesis of selenium (SeNPs) nanoparticles; their nanocomposites (NCs) with chitosan (CT) was constructed and employed as antifungal materials and edible coating (ECs) to protect lemon fruits against green mold. The nanoparticles formation and conjugations were verified by infrared (FTIR) analysis and electron microscopy. The FM-synthesized SeNPs had particles average of 8.35 nm, were the NCs of them with CT had size mean of 49.33 nm and charged with +22.8 mV. The CT/FM/SeNPs composite exhibited superior antifungal actions toward P. digitatum isolates, up to 32.2 mm inhibition diameter and 12.5 mg/mL inhibitory concentration, which exceeded the actions of imazilil. The microscopic screening of exposed P. digitatum to NCs clarified their mycelial destructive action within 30 h. The coating of infected lemons with fabricated NCs led to complete elimination of green mold development after 10 days of coating, without any infestation remarks. The innovative fabrication of NCs from CT/FM/SeNPs is strongly suggested to protect citrus crops from green mold and preserve fruits quality.
Collapse
Affiliation(s)
- Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh City 33516, Egypt.
| | - Aya M Ebaid
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt
| | - Asmaa M Otian
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh City 33516, Egypt
| | - Hoda Mahrous
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt
| | - Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Mohamed F Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City 32897, Egypt
| |
Collapse
|
14
|
de Azevedo MIG, Souza PFN, Monteiro Júnior JE, Grangeiro TB. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chem Biodivers 2024; 21:e202400044. [PMID: 38591818 DOI: 10.1002/cbdv.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.
Collapse
Affiliation(s)
| | - Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Foratelza, Ceará, Brazil
| | - José Edvar Monteiro Júnior
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
15
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
16
|
Imam SS, Alshammari SO, Alshehri S, Mahdi WA, Al-Agamy MH. Formulation of silymarin surface modified vesicles: In vitro characterization to cell viability assessment. Saudi Pharm J 2024; 32:102072. [PMID: 38726227 PMCID: PMC11079526 DOI: 10.1016/j.jsps.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Silymarin (SLR) is a poorly water-soluble bioactive compound with a wide range of therapeutic activities. Nanosized silymarin vesicles (F1-F6) were prepared by the solvent evaporation rehydration method. The silymarin vesicles were evaluated for vesicle size, surface charge, entrapment efficiency, and drug release studies. The optimized SLR lipid vesicle (F3) was further modified with the addition of the cationic polymer chitosan. After that, the modified vesicle (F3C1) was assessed for permeation flux, antimicrobial activity, cell viability, and molecular docking studies. The silymarin vesicles showed nanometric size (<250 nm), low polydispersibility index (<0.05), negative surface charge, and high SLR entrapment (85-95 %). The drug release study result demonstrated a maximum drug release of 91.2 ± 2.8 %. After adding chitosan to the surface, there was a significant change in the size, polydispersibility index, surface charge (positive), and encapsulation efficiency. The drug release was found to be prolonged, and the permeation flux was also increased in comparison to free SLR. A comparative antimicrobial result was observed in comparison to the free SLR and standard drug. The cell viability assay also demonstrated a low IC50 value for F3C1 against the cell line.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Owaid Alshammari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Kaloper S, Plohl O, Smole Možina S, Vesel A, Šimat V, Fras Zemljič L. Exploring chitosan-plant extract bilayer coatings: Advancements in active food packaging via polypropylene modification. Int J Biol Macromol 2024; 270:132308. [PMID: 38740163 DOI: 10.1016/j.ijbiomac.2024.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.
Collapse
Affiliation(s)
- Saša Kaloper
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sonja Smole Možina
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova ulica 30, 1000 Ljubljana, Slovenia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
18
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Erica K, Thabitha A, Ebenezar KK, Kumar SSA, Abishek V, Priya NM, Pazhani GP, Ramachandran S. Improved antioxidant and anti-tubercular potential of liquiritigenin grafted on low molecular weight chitosan from gladius of Sepioteuthis lessoniana. Int J Biol Macromol 2024; 268:131728. [PMID: 38649074 DOI: 10.1016/j.ijbiomac.2024.131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chitosan (CH) is natural abundant biopolymer present on earth after cellulose. CH can be functionalized by numerous functional groups such as amino and carboxyl groups, potential biologically active compounds. The functionalization of CH with polyphenols had a greater biological than non-grafted CH. In the present study, the polyphenolic compound liquiritigenin (LTG) is chemically functionalized on the low molecular weight chitosan (LMW-CH) (693.09 Da). This was extracted and irradiated with gamma radiation from the gladius of Sepioteuthis lessoniana. The grafted compound was to in vitro anti-oxidant employing physicochemical methods and characterization was made by spectroscopic methods. The degree of deacetylation (DDA) of the LMW-CH was detected in 74 % of the samples, and at higher concentrations (100 g/mL). LMW-CH grafted with LTG had improved water solubility (5 mg/mL), and was thermally stable upto 143.58 °C. Its molecular weight was 855.1 Da. In conclusion the in vitro antioxidant and the anti-tuberculosis (anti-TB) properties of the grafted samples were significantly (P < 0.001) increased compared to the unconjugated LMW-CH and LTG. Overall, functionalization of LTG with LMW-CH improved the anti-tuberculosis activity. Further studies are needed to explore the possibilities of its use in vivo models.
Collapse
Affiliation(s)
- Katriel Erica
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences
| | - Aavula Thabitha
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences
| | | | - Swastik Satyapal Ankit Kumar
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Vijayakumar Abishek
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Narayanasami Mohana Priya
- Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education, Kelambakkam 603 103, Tamil Nadu, India
| | - Gururaja Perumal Pazhani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | |
Collapse
|
20
|
El-araby A, Janati W, Ullah R, Uddin N, Bari A. Antifungal efficacy of chitosan extracted from shrimp shell on strawberry ( Fragaria × ananassa) postharvest spoilage fungi. Heliyon 2024; 10:e29286. [PMID: 38617969 PMCID: PMC11015463 DOI: 10.1016/j.heliyon.2024.e29286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
The strong demand for biological materials in the food industry places chitosan at the forefront of other biopolymers. The present study aims to evaluate the antifungal properties of chitosan extracted from shrimp shell waste (Parapenaeus longirostris) against post-harvest strawberry (Fragaria × ananassa) spoilage fungi. The physicochemical characteristics (DD, Mw, and solubility) of extracted chitosan were determined. In addition, functional characteristics were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antifungal effect of chitosan on mycelial growth and spore germination of Aspergillus niger, Botrytis cinerea, Fusarium oxysporum, and Rhizopus stolonifer was evaluated. Yield, degree of deacetylation, molecular weight, and solubility were 21.86%, 83.50%, 180 kDa, and 80.10%, respectively. A degree of deacetylation of 81.27% was calculated from the FTIR spectrum and a crystallinity index of 79.83% was determined from the X-ray diffraction pattern. SEM images of extracted chitosan showed a combination of fibrous and porous structure. At 3% chitosan, mycelial growth inhibition rates of A. niger, B. cinerea, F. oxysporum, and R. stolonifer ranged from 81.37% to 92.70%. At the same chitosan concentration, the percentages of spore germination inhibition of the isolated fungi ranged from 65.47% to 71.48%. The antifungal activity was highly dose-dependent. As a natural polymer, chitosan offers a convincing alternative to synthetic antimicrobials for the post-harvest preservation of strawberries. Its potential lies in its ability to inhibit the growth of spoilage fungi.
Collapse
Affiliation(s)
- Abir El-araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, 30050, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, 30050, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
de Oliveira CSF, Tavaria FK. Therapeutic textiles: A promising approach for human skin dysbiosis? Exp Dermatol 2024; 33:e15081. [PMID: 38628046 DOI: 10.1111/exd.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
The close interaction between skin and clothing has become an attractive cornerstone for the development of therapeutic textiles able to alleviate skin disorders, namely those correlated to microbiota dysregulation. Skin microbiota imbalance is known in several skin diseases, including atopic dermatitis (AD), psoriasis, seborrheic dermatitis, rosacea, acne and hidradenitis suppurative (HS). Such microbiota dysregulation is usually correlated with inflammation, discomfort and pruritus. Although conventional treatments, that is, the administration of steroids and antibiotics, have shown some efficacy in treating and alleviating these symptoms, there are still disadvantages that need to be overcome. These include their long-term usage with side effects negatively impacting resident microbiota members, antibiotic resistance and the elevated rate of recurrence. Remarkably, therapeutic textiles as a non-pharmacological measure have emerged as a promising strategy to treat, alleviate the symptoms and control the severity of many skin diseases. This systematic review showcases for the first time the effects of therapeutic textiles on patients with skin dysbiosis, focusing on efficacy, safety, adverse effects and antimicrobial, antioxidant and anti-inflammatory properties. The main inclusion criteria were clinical trials performed in patients with skin dysbiosis who received treatment involving the use of therapeutic textiles. Although there are promising outcomes regarding clinical parameters, safety and adverse effects, there is still a lack of information about the impact of therapeutic textiles on the skin microbiota of such patients. Intensive investigation and corroboration with clinical trials are needed to strengthen, define and drive the real benefit and the ideal biomedical application of therapeutic textiles.
Collapse
Affiliation(s)
- Cláudia Suellen Ferro de Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Freni Kekhasharú Tavaria
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
22
|
Elsayed Mahmoud D, Billa N. Physicochemical modifications in microwave-irradiated chitosan: biopharmaceutical and medical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:898-915. [PMID: 38284331 DOI: 10.1080/09205063.2024.2306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Biopharmaceutical and biomedical applications of chitosan has evolved exponentially in the past decade, owing to its unique physicochemical properties. However, further applications can be garnered from modified chitosan, specifically, depolymerized chitosan, with potentially useful applications in drug delivery or biomedicine. The use of microwave irradiation in depolymerization of chitosan appears to be more consequential than other methods, and results in modification of key physicochemical properties of chitosan, including molecular weight, viscosity and degree of deacetylation. In-depth review of such microwave-depolymerized chitosan and subsequent potential biopharmaceutical or biomedical applications has not been presented before. Herein, we present a detailed review of key physicochemical changes in chitosan following various depolymerization approaches, with focus on microwave irradiation and how these changes impact relevant biopharmaceutical or biomedical applications.
Collapse
Affiliation(s)
- Doaa Elsayed Mahmoud
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Taha M, Rahim F, Uddin I, Amir M, Iqbal N, Wadood A, Khan KM, Uddin N, Rehman AU, Farooq RK. Discovering phenoxy acetohydrazide derivatives as urease inhibitors and molecular docking studies. J Biomol Struct Dyn 2024; 42:3118-3127. [PMID: 37211867 DOI: 10.1080/07391102.2023.2212794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Helicobacter pylori causes severe stomach disorders and the use of enzyme inhibitors for treatment is one of the possible therapies. The great biological potential of imine analogs as urease inhibitors has been the focus of researchers in past years. In this regard, we have synthesized twenty-one derivatives of dichlorophenyl hydrazide. These compounds were characterized by different spectroscopic techniques i.e. NMR and HREI-MS. Compounds 2 and 10 were found to be the most active in the series. Structure-activity relationship has been established for all compounds based on different substituents attached to the phenyl ring that play a vital role in enzyme inhibition. From the structure-activity relationship, it has been observed that these analogs showed excellent potential for urease and can be an alternate therapy in the future. The molecular docking study was performed to further explore the binding interactions of synthesized analogs with enzyme active sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Imad Uddin
- Department of Chemistry, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Mohd Amir
- Department of Natural Products & Alternative Medicine College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
24
|
Abdollahy A, Salehi M, Mahami S, Bernkop-Schnürch A, Vahedi H, Gharravi AM, Mehrabi M. Therapeutic effect of 5-ASA and hesperidin-loaded chitosan/Eudragit® S100 nanoparticles as a pH-sensitive carrier for local targeted drug delivery in a rat model of ulcerative colitis. Int J Pharm 2024; 652:123838. [PMID: 38266937 DOI: 10.1016/j.ijpharm.2024.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic disease characterized by colonic mucosal tissue destruction secondary to an excessive immune response. We synthesized pH-sensitive cross-linked chitosan/Eudragit® S100 nanoparticles (EU S100/CS NPs) as carriers for 5-aminosalicylic acid (5-ASA) and hesperidin (HSP), then conducted in-vitro and in-vivo studies and evaluated the therapeutic effects. In-vitro analysis revealed that the 5-ASA-loaded EU S100/CS NPs and the HSP-loaded EU S100/CS NPs had smooth and curved surfaces and ranged in size between 250 and 300 nm, with a zeta potential of 32 to 34 mV. FTIR analysis demonstrated that the drugs were loaded on the nanoparticles without significant alterations. The loading capacity and encapsulation efficiency of loading 5-ASA onto EU S100/CS NPs were 25.13 % and 60.81 %, respectively. Regarding HSP, these values were 38.34 % and 77.84 %, respectively. Drug release did not occur in simulated gastric fluid (SGF), while a slow-release pattern was recorded for both drugs in simulated intestinal fluid (SIF). In-vivo macroscopic and histopathological examinations revealed that both NPs containing drugs significantly relieved the symptoms of acetic acid (AA)-induced UC in Wistar rats. We conclude that the synthesized pH-sensitive 5-ASA/EU S100/CS NPs and HSP/EU S100/CS NPs offer promise in treating UC.
Collapse
Affiliation(s)
- Armana Abdollahy
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
25
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
26
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
27
|
Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and Antimicrobial Polymer Nanocomplexes to Enhance Biocidal Effects. Int J Mol Sci 2024; 25:1256. [PMID: 38279254 PMCID: PMC10815966 DOI: 10.3390/ijms25021256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Antimicrobial resistance has become a major problem over the years and threatens to remain in the future, at least until a solution is found. Silver nanoparticles (Ag-NPs) and antimicrobial polymers (APs) are known for their antimicrobial properties and can be considered an alternative approach to fighting resistant microorganisms. Hence, the main goal of this research is to shed some light on the antimicrobial properties of Ag-NPs and APs (chitosan (CH), poly-L-lysine (PLL), ε-poly-L-lysine (ε-PLL), and dopamine (DA)) when used alone and complexed to explore the potential enhancement of the antimicrobial effect of the combination Ag-NPs + Aps. The resultant nanocomplexes were chemically and morphologically characterized by UV-visible spectra, zeta potential, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Moreover, the Ag-NPs, APs, and Ag-NPs + APs nanocomplexes were tested against Gram-positive Staphylococcus aureus (S. aureus) and the Gram-negative Escherichia coli (E. coli) bacteria, as well as the fungi Candida albicans (C. albicans). Overall, the antimicrobial results showed potentiation of the activity of the nanocomplexes with a focus on C. albicans. For the biofilm eradication ability, Ag-NPs and Ag-NPs + DA were able to significantly remove S. aureus preformed biofilm, and Ag-NPs + CH were able to significantly destroy C. albicans biofilm, with both performing better than Ag-NPs alone. Overall, we have proven the successful conjugation of Ag-NPs and APs, with some of these formulations showing potential to be further investigated for the treatment of microbial infections.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Gloria Belén Ramírez-Rodríguez
- Department of Inorganic Chemistry (BioNanoMetals Group), Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva, s/n, 18071 Granada, Spain;
| | - Nuno Alves
- CDRSP-PL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (S.F.)
| | - Joana F. A. Valente
- CDRSP-PL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
28
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
29
|
Almeida CL, Figueiredo LRF, Ribeiro DVM, Santos AMC, Souza EL, Oliveira KAR, Oliveira JE, Medeiros ES. Antifungal edible coatings for fruits based on zein and chitosan nanowhiskers. J Food Sci 2024; 89:404-418. [PMID: 38010738 DOI: 10.1111/1750-3841.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Fresh produce have a more limited shelf life than processed ones. Their sensory attributes such as appearance and surface texture are important features in consumer perception and liking. The decomposition of fresh produce, which is caused by enzymes, chemical reactions, and microbial infections, often caused by Colletotrichum species, is inevitable. However, it can be slowed down. Several materials have been developed for this purpose, with an emphasis on active coatings using nanomaterials. In this study, the protective effects of a zein coating containing chitosan nanowhiskers (CSW) for the maintenance of fruit quality were investigated using guava (Psidium guajava L.) as a model fruit. CSW were previously characterized, and their antifungal effects against distinct Colletotrichum species (Colletotrichum asianum, Colletotrichum tropicale, Colletotrichum gloeosporioides, and Colletotrichum brevisporum) were proven. Coatings were characterized by thermogravimetric analysis, optical profilometry, and mechanical properties. Total soluble solids, pH, mass loss, and visual inspection of uncoated and coated guava fruits were also verified during 9 days. Results show that CSW length and aspect ratio decreased for longer extraction times. A similar behavior was found for x-ray diffraction in which peak intensity decreases under the same conditions. CSW degradation (ca. 250-400°C) also depends on extraction time in which more crystalline whiskers are the most thermally stable ones. The addition of CSW did not significantly (p < 0.05) modify the homogeneity and continuity of coating but prevented microbial growth assuring fruit quality during storage. In summary, coatings protected guava fruits from post-harvest spoilage while preserving quality and extending shelf life. PRACTICAL APPLICATION: Fresh foods such as fruits and vegetables have a more limited shelf life than processed ones.
Collapse
Affiliation(s)
- Carolina L Almeida
- Postgraduate Program in Materials Science and Engineering, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Lucas R F Figueiredo
- Materials and Biosystems laboratory (LAMAB), Center of Technology (CT), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Diego V M Ribeiro
- Postgraduate Program in Materials Science and Engineering, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adillys M C Santos
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana-BA, Brazil
| | - Evandro L Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center (CCS), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Kataryne A R Oliveira
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center (CCS), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| | - Juliano E Oliveira
- Materials and Biosystems laboratory (LAMAB), Department of Engineering, Federal University of Lavras, Lavras-MG, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems laboratory (LAMAB), Center of Technology (CT), Federal University of Paraíba (UFPB), João Pessoa-PB, Brazil
| |
Collapse
|
30
|
Córdova-González D, Alfonseca-Silva E, Gutiérrez L, Tapia-Pérez G, Sumano H. Intramammary preparation of enrofloxacin hydrochloride-dihydrate for bovine mastitis (biofilm-forming Staphylococcus aureus). J Vet Sci 2024; 25:e6. [PMID: 38311321 PMCID: PMC10839182 DOI: 10.4142/jvs.23245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Chronic bovine mastitis is linked to biofilm-producing Staphylococcus aureus (bp-Sa) or Staphylococcus coagulase-negative (bp-Scn). OBJECTIVES Bp-Sa and bp-Scn were treated with intramammary preparations of either enrofloxacin HCl·2H2O-dimethyl-sulfoxide-chitosan (enro-C/DMSO/chitosan) or enro-C alone. Their potential to inhibit and degrade biofilm formation in vitro was also assessed. METHODS Milk samples were obtained from the affected quarters in a herd. Phenotypical and genotypical identifications as biofilm-producing Staphylococcus species were carried out. Enro-C/DMSO/chitosan and enro-C alone were assessed to determine their in vitro efficacy in interfering with biofilm formation and their bactericidal effects. A prolonged eight-day treatment with a twice-daily intramammary insertion of 10 mL of enro-C/DMSO/chitosan or enro-C alone was set to evaluate the clinical and bacteriological cures on day 10 in 15 cows per group and the biofilm-inhibiting ability. RESULTS Fifty-seven percent of the isolates were identified as Staphylococcus spp., of which 50% were bp-Sa, 46% bp-Scn, and 4% Staphylococcus pseudintermedius. One hundred percent of the S. aureus isolated and 77% of Staphylococcus coagulase-negative were biofilm producers. In both groups, the icaA and icaD biofilm-producing genes were identified. The experimental preparation could inhibit biofilm formation, degrade mature biofilms, and have well-defined microbicidal effects on planktonic and biofilm bacteria. The respective clinical and bacteriological cure rates were 100% and 80% for enro-C/DMSO/chitosan and 41.7% and 25% for enro-C alone. CONCLUSIONS Enro-C/DMSO/chitosan eliminates bp-Sa and bp-Scn from cases of chronic bovine mastitis.
Collapse
Affiliation(s)
- Diana Córdova-González
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
| | - Edgar Alfonseca-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
| | - Lilia Gutiérrez
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
| | - Graciela Tapia-Pérez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
| | - Héctor Sumano
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
31
|
Mohtashami M, Rezagholizade-Shirvan A, Bonab ZH, Amiryousefi MR, Darroudi M, Ahmadi Solimani MS, Yaghoobi S, Dolatabadi S, Ghasemi A, Momtazi-Borojeni AA. Green Synthesis of Silver Nanoparticles using Cirsium congestum Extract Modified by Chitosan/Alginate: Bactericidal Activity against Pathogenic Bacteria and Cytotoxicity Analysis in Normal Cell Line. Curr Pharm Des 2024; 30:1610-1623. [PMID: 38661036 DOI: 10.2174/0113816128304460240408085736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/26/2024]
Abstract
AIM The study aimed to determine in vitro pharmacological effects of modified Ag nanoparticles (AgNPs). BACKGROUND AgNPs are considered antimicrobial agents. However, the cytotoxicity of chemically synthesized AgNPs (cAgNPs) has raised challenges that limit their use. OBJECTIVE The purpose of the study was to examine the antimicrobial and cytotoxicity effects of AgNPs synthesized using Cirsium congestum extract modified by chitosan/alginate AgNPS (Ch/ALG-gAgNPs). METHODS Nanoparticles were characterized using TEM, DLS, XRD, and FTIR. Resistant strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used for the antimicrobial analysis of Ch/ALG-gAgNPs using disc diffusion and microdilution methods. The effects of NPs on cell viability and apoptosis in L929 normal cells were determined using MTT assay and annexin/PI staining, respectively. RESULTS Physicochemical characterizations confirmed Ch/ALG-gAgNPs to be spherical and uniformly dispersed, and their size ranged from 50 to 500 nm. Ch/ALG-gAgNPs inhibited the growth of microbial strains in a dose-dependent manner. The antibacterial effect of Ch/ALG-gAgNPs was significantly higher than cAgNPs. The Ch/ALG-gAgNPs showed little cytotoxicity against normal cells at concentrations less than 50 μg/ml. Cytotoxicity effects of Ch/ALG-gAgNP were less than cAgNPs. Flow cytometry and real-time PCR results showed a decrease in apoptosis percentage and BAX marker in the presence of Ch/ALG-gAgNPs relative to when the cell was treated with cAgNPs. CONCLUSION Current findings introduce novel gAgNPs modified with chitosan/alginate for use in medicine.
Collapse
Affiliation(s)
- Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | | | - Zahra Hojati Bonab
- Department of Microbiology, School of Basic Science, Islamic Azad University, Bonab Branch, Bonab, Iran
| | - Mohammad Reza Amiryousefi
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sajad Yaghoobi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Samaneh Dolatabadi
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
32
|
Hilițanu LN, Mititelu-Tarțău L, Popa EG, Bucă BR, Gurzu IL, Fotache PA, Pelin AM, Pricop DA, Pavel LL. Chitosan Soft Matter Vesicles Loaded with Acetaminophen as Promising Systems for Modified Drug Release. Molecules 2023; 29:57. [PMID: 38202640 PMCID: PMC10780230 DOI: 10.3390/molecules29010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Our study was designed to acquire, characterize and evaluate the biocompatibility of novel lipid vesicles loaded with acetaminophen (APAP) and coated with chitosan (CS). We investigated the in vitro and in vivo drug release kinetics from these systems, and we conducted assessments for both in vitro hemocompatibility and in vivo biocompatibility. For the in vivo biocompatibility evaluation, the mice were randomly divided into four groups of six animals and were treated orally as follows: control group: 0.1 mL/10 g body weight of double-distilled water; CS group: 0.1 mL/10 g body weight 1% CS solution; APAP group: 150 mg/kg body weight APAP; APAP-v group: 150 mg/kg body weight APAP-loaded lipid vesicles. The impact of APAP-v on various hematological, biochemical, and immune parameters in mice were assessed, and the harvested tissues were subjected to histopathological examination. The innovative formulations effectively encapsulating APAP within soft vesicles exhibited reasonable stability in solution and prolonged drug release in both in vitro and in vivo studies. The in vitro hemolysis test involving APAP-loaded vesicles revealed no signs of damage to red blood cells. The mice treated with APAP-v showed neither significant variances in hematological, biochemical, and immune parameters, nor structural changes in the examined organ samples, compared to the control group. APAP-v administration led to prolonged drug release. We can conclude that the APAP-v are innovative carrier systems for modifying drug release, making them promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Loredana Nicoleta Hilițanu
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Liliana Mititelu-Tarțău
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Eliza Grațiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Beatrice Rozalina Bucă
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Paula Alina Fotache
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.N.H.); (B.R.B.); (P.A.F.)
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| | - Daniela Angelica Pricop
- Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, Laboratory of Astronomy and Astrophysics, Astronomical Observatory, Physics, ‘Al. I. Cuza’ University, 700506 Iasi, Romania;
| | - Liliana Lăcrămioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| |
Collapse
|
33
|
Predoi D, Iconaru SL, Ciobanu SC, Buton N, Predoi MV. Complex Evaluation of Nanocomposite-Based Hydroxyapatite for Biomedical Applications. Biomimetics (Basel) 2023; 8:528. [PMID: 37999169 PMCID: PMC10669721 DOI: 10.3390/biomimetics8070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
A magnesium-doped hydroxyapatite in chitosan matrix (MgHApC) sample was developed as a potential platform for numerous applications in the pharmaceutical, medical, and food industries. Magnesium-doped hydroxyapatite suspensions in the chitosan matrix were obtained by the coprecipitation technique. The surface shape and morphological features were determined by scanning electron microscopy (SEM). The hydrodynamic diameter of the suspended particles was determined by Dynamic light scattering (DLS) measurements. The stability of MgHApC suspensions was evaluated by ultrasonic measurements. The hydrodynamic diameter of the MgHApC particles in suspension was 29.5 nm. The diameter of MgHApC particles calculated from SEM was 12.5 ± 2 nm. Following the SEM observations, it was seen that the MgHApC particles have a spherical shape. The Fourier-transform infrared spectroscopy (FTIR) studies conducted on MgHApC proved the presence of chitosan and hydroxyapatite in the studied specimens. In vitro antimicrobial assays were performed on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231 microbial strains. The antimicrobial experiments showed that MgHApC exhibited very good antimicrobial properties against all the tested microorganisms. More than that, the results of the in vitro studies revealed that the antimicrobial properties of the samples depend on the incubation time. The evaluation of the sample's cytotoxicity was performed using the human colon cancer (HCT-8) cell line. Our results suggested the great potential of MgHApC to be used in future applications in the field of biomedical applications (e.g., dentistry, orthopedics, etc.).
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, MG 07, 077125 Magurele, Romania;
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, MG 07, 077125 Magurele, Romania;
| | - Steluta Carmen Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, MG 07, 077125 Magurele, Romania;
| | - Nicolas Buton
- HORIBA Jobin Yvon S.A.S., 6-18, Rue du Canal, 91165 Longjumeau, France;
| | - Mihai Valentin Predoi
- Department of Mechanics, University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania;
| |
Collapse
|
34
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
35
|
Raza H, Ashraf A, Shamim R, Manzoor S, Sohail Y, Khan MI, Raza N, Shakeel N, Gill KA, El-Marghany A, Aftab S. Synthesis and characterization of Hyaluronic Acid (HA) modified polymeric composite for effective treatment of wound healing by transdermal drug delivery system (TDDS). Sci Rep 2023; 13:13425. [PMID: 37591923 PMCID: PMC10435553 DOI: 10.1038/s41598-023-40593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
The present study aimed to fabricate a novel polymeric spongy composite to enhance skin regeneration composed of Nystatin (antifungal agent) and Silver Nanoparticles (AgNps). Different formulations (F1-F8) were developed & characterized by using various analytical techniques. AgNps synthesized by chemical reduction method showed spherical morphology 2 µm in size showed by SEM and XRD. A fine porous structure of gel embedded with AgNps having an amorphous structure with 10 % crystallinity due to AgNps was found. IR spectra revealed no chemical interaction between polymers and Nystatin. An increase in thermal stability of formulation was observed till 700 ℃ analyzed by Differential Scanning Calorimetry. Cytotoxic analysis on L929 mouse skin fibroblast cells showed a decrease in cell viability as Ag concentration increased (inactivating Fibroblast and keratinocytes) while 10 mg composition was found safest concentration (94%). Optimized formulation (F2) presented in-vitro drug release up to 90.59% ± 0.76 at pH 7.4, swelling studies (87.5% ± 0.57), water retention (26.60 ± 0.34), pH (5.31 ± 0.03). In the animal burn model, the group that received CHG/Ag/Nystatin healed the wound significantly (p < 0.05). These results suggested that optimized carrier can be used for other anti-fungal drugs facilitating the early healing of the wound.
Collapse
Affiliation(s)
- Hina Raza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Asmara Ashraf
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Rahat Shamim
- Punjab University College of Pharmacy Punjab University, Lahore, Pakistan
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Younas Sohail
- Department of Botany, Emerson University, Multan, Pakistan.
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Nadeem Raza
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nasir Shakeel
- Faculty of Chemistry, Department of Materials Technology and Chemistry, University of Łódź, Łódź, Poland
| | - Komal Aziz Gill
- Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland.
| | - Adel El-Marghany
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| |
Collapse
|
36
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
37
|
Hamodin AG, Elgammal WE, Eid AM, Ibrahim AG. Synthesis, characterization, and biological evaluation of new chitosan derivative bearing diphenyl pyrazole moiety. Int J Biol Macromol 2023:125180. [PMID: 37290547 DOI: 10.1016/j.ijbiomac.2023.125180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
This work reports the synthesis of a new pyrazole derivative by reacting 5-amino-1,3-diphenyl pyrazole with succinic anhydride and bearing the product chemically on the chitosan chains via amide linkage to achieve a new chitosan derivative (DPPS-CH). The prepared chitosan derivative was analyzed by IR, NMR, elemental analysis, XRD, TGA-DTG, and SEM. As compared with chitosan, DPPS-CH showed an amorphous and porous structure. Coats-Redfern results showed that the thermal activation energy for the first decomposition of DPPS-CH is 43.72 KJ mol-1 lower than that required for chitosan (88.32 KJ mol-1), indicating the accelerating effect of DPPS on the thermal decomposition of DPPS-CH. The DPPS-CH manifested a powerful wide spectrum antimicrobial potential against pathogenic gram-positive and gram-negative bacteria and Candida albicans at minute concentrations (MIC = 50 μg mL-1) compared to chitosan (MIC = 100 μg mL-1). The MTT assay proved the toxic properties of DPPS-CH against a cancer cell line (MCF-7) at a minute concentration (IC50 = 15.14 μg mL-1) while affecting normal cells (WI-38) at seven times this concentration (IC50 = 107.8 μg mL-1). According to the current findings, the chitosan derivative developed in this work appears to be a promising material for use in biological domains.
Collapse
Affiliation(s)
- Ahmed G Hamodin
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed G Ibrahim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
38
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
39
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
40
|
Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers (Basel) 2023; 15:polym15061392. [PMID: 36987172 PMCID: PMC10058650 DOI: 10.3390/polym15061392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings.
Collapse
|
41
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
42
|
Liu X, Liao W, Xia W. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
43
|
Yu L, Gao T, Li W, Yang J, Liu Y, Zhao Y, He P, Li X, Guo W, Fan Z, Dai H. Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway. Bioact Mater 2023; 20:598-609. [PMID: 35846837 PMCID: PMC9256840 DOI: 10.1016/j.bioactmat.2022.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
There is a continuing need for artificial bone substitutes for bone repair and reconstruction, Magnesium phosphate bone cement (MPC) has exceptional degradable properties and exhibits promising biocompatibility. However, its mechanical strength needs improved and its low osteo-inductive potential limits its therapeutic application in bone regeneration. We functionally modified MPC by using a polymeric carboxymethyl chitosan-sodium alginate (CMCS/SA) gel network. This had the advantages of: improved compressive strength, ease of handling, and an optimized interface for bioactive bone in-growth. The new composites with 2% CMCS/SA showed the most favorable physicochemical properties, including mechanical strength, wash-out resistance, setting time, injectable time and heat release. Biologically, the composite promoted the attachment and proliferation of osteoblast cells. It was also found to induce osteogenic differentiation in vitro, as verified by expression of osteogenic markers. In terms of molecular mechanisms, data showed that new bone cement activated the Wnt pathway through inhibition of the phosphorylation of β-catenin, which is dependent on focal adhesion kinase. Through micro-computed tomography and histological analysis, we found that the MPC-CMCS/SA scaffolds, compared with MPC alone, showed increased bone regeneration in a rat calvarial defect model. Overall, our study suggested that the novel composite had potential to help repair critical bone defects in clinical practice. CMCS/SA improves the mechanical strength of MPC while minimizing tissue damage. The MPC-CMCS/SA composite is easily manipulable for clinical application. MPC-CMCS/SA has good biocompatibility, and is easier for cell adhesion and proliferation. The MPC-CMCS/SA composite enhances osteogenic differentiation in vitro through the integrin-FAK-Wnt axis. The MPC-CMCS/SA composite enhances critical bone defect repair in vivo.
Collapse
|
44
|
Dubashynskaya NV, Gasilova ER, Skorik YA. Nano-Sized Fucoidan Interpolyelectrolyte Complexes: Recent Advances in Design and Prospects for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032615. [PMID: 36768936 PMCID: PMC9916530 DOI: 10.3390/ijms24032615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.
Collapse
|
45
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
46
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
47
|
Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248865. [PMID: 36557998 PMCID: PMC9784460 DOI: 10.3390/molecules27248865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.
Collapse
|
48
|
A New Mediterranean Flour Moth-Derived Chitosan: Characterization and Co-electrospun Hybrid Fabrication. Appl Biochem Biotechnol 2022; 195:3047-3066. [PMID: 36508074 DOI: 10.1007/s12010-022-04246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
In this study, the chitin of adult Mediterranean flour moth (Ephestia kuheniella) (Cht) was extracted and then converted to chitosan by deacetylation process to achieve the chitosan derived from E. kuheniella (Chsfm). The new chitosan-based scaffold was produced using the polyvinyl alcohol (PVA) co-electrospinning technique. The degree of deacetylation was obtained using the distillation-titration and Fourier transform infrared spectroscopy. The surface morphology and crystallinity index of Chsfm were observed using scanning electron microscopy and X-ray diffraction analysis, respectively, and compared with the commercial chitosan (Chsc). Thermogravimetric analysis was used to estimate two chitosans' water content and thermal stability. The average molecular mass analysis was performed using viscometry. Moreover, the minimum inhibitory concentration and DPPH assay were used to study the antimicrobial activity and antioxidant potential of the Chsfm, respectively. Accordingly, Chsfm was smoother with fewer pores and flakes than Chsc, and its crystallinity index was higher than Chsc. The water content and thermal stability were lower and similar for Chsfm compared to Chsc. The average molecular mass of Chsfm was ~ 5.8 kDa, making it classified as low molecular weight chitosan. The antimicrobial activity of Chsfm against a representative Gram-negative bacteria; E. coli resulted to be the same as Chsc. However, less effective than Chsc against a representative Gram-positive bacteria is S. aureus. The Chsfm/PVA ratio scaffold was optimized at 30:70 to fabricate a uniform nanofiber scaffold.
Collapse
|
49
|
Cook KA, Martinez-Lozano E, Sheridan R, Rodriguez EK, Nazarian A, Grinstaff MW. Hydrogels for the management of second-degree burns: currently available options and future promise. BURNS & TRAUMA 2022; 10:tkac047. [PMID: 36518878 PMCID: PMC9733594 DOI: 10.1093/burnst/tkac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Burn wounds result from exposure to hot liquids, chemicals, fire, electric discharge or radiation. Wound severity ranges from first-degree injury, which is superficial, to fourth-degree injury, which exposes bone, tendons and muscles. Rapid assessment of burn depth and accurate wound management in the outpatient setting is critical to prevent injury progression into deeper layers of the dermis. Injury progression is of particular pertinence to second-degree burns, which are the most common form of thermal burn. As our understanding of wound healing advances, treatment options and technologies for second-degree burn management also evolve. Polymeric hydrogels are a class of burn wound dressings that adhere to tissue, absorb wound exudate, protect from the environment, can be transparent facilitating serial wound evaluation and, in some cases, enable facile removal for dressing changes. This review briefly describes the burn level classification and common, commercially available dressings used to treat second-degree burns, and then focuses on new polymeric hydrogel burn dressings under preclinical development analyzing their design, structure and performance. The review presents the follow key learning points: (1) introduction to the integument system and the wound-healing process; (2) classification of burns according to severity and clinical appearance; (3) available dressings currently used for second-degree burns; (4) introduction to hydrogels and their preparation and characterization techniques; and (5) pre-clinical hydrogel burn wound dressings currently being developed.
Collapse
Affiliation(s)
- Katherine A Cook
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| | - Edith Martinez-Lozano
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Robert Sheridan
- Shriners Hospitals for Children and Burns Service, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Mark W Grinstaff
- Department of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
50
|
Deyab N, Ekram B, Badr KR, Abd El-Hady BM, Allam NK. Antiviral Electrospun Polyamide Three-Layered Mask Filter Containing Metal Oxide Nanoparticles and Black Seed Oil. ACS OMEGA 2022; 7:44438-44447. [PMID: 36506173 PMCID: PMC9730509 DOI: 10.1021/acsomega.2c06611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Upon the tremendous spread of coronavirus, there is a need to develop biodegradable, multifunctional, antiviral masks that can be safely used without polluting the environment as conventional surgical masks do. In this study, a three-layered mask filter is designed and fabricated. The first two layers contain electrospun polyamide with dispersed nanoparticles (NPs) of TiO2 and ZnO prepared via breakdown anodization. The third layer is composed of Nigella sativa oil (black seed oil) electrospun with polyamide and blended with chitosan to form an effective antiviral three-layered mask filter. The morphological characterization revealed the nanoscale features of the fabricated nanofibers with the ZnO and TiO2 NPs being embedded in the polymeric matrix. The specimens showed good wettability, which is necessary for virus attachment and its subsequent decay. The assembled mask has shown very good mechanical properties. The cytotoxicity results revealed that the proposed mask filter has less cytotoxic effect on the A549 cell line than the commercial KN95 mask filter with maintaining a cell viability of 65.3%. The antiviral activity test showed a variable virucidal effect against human adenovirus on A549 cells. The proposed mask showed the highest effect on the virus followed by PA-ZnO and PA-TiO2 films, which supports the assumption that the used NPs may have broad and promising effects on viruses when combined with the electrospun films.
Collapse
Affiliation(s)
- Nourhan
M. Deyab
- Physical
Chemistry Department, Advanced Materials Technology and Mineral Resources
Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Basma Ekram
- Polymers
and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Kareem R. Badr
- Environmental
Virology Laboratory, Water 593 Pollution Research Department, Environment
and Climate Change Research Institute, National
Research Centre, Dokki, 12622Cairo, Egypt
| | - Bothaina M. Abd El-Hady
- Polymers
and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, 12622Cairo, Egypt
| | - Nageh K. Allam
- Energy
Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo11835, Egypt
| |
Collapse
|