1
|
Antunes DR, Forini MMLH, Coqueiro YA, Pontes MS, Lima PHC, Cavalcante LAF, Sanches AO, Caires ARL, Santiago EF, Grillo R. Effect of hyaluronic acid-stabilized silver nanoparticles on lettuce (Lactuca sativa L.) seed germination. CHEMOSPHERE 2024; 364:143080. [PMID: 39146989 DOI: 10.1016/j.chemosphere.2024.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Yasmin A Coqueiro
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Montcharles S Pontes
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil; Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Alex O Sanches
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo F Santiago
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil.
| |
Collapse
|
2
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
4
|
Stałanowska K, Szablińska-Piernik J, Pszczółkowska A, Railean V, Wasicki M, Pomastowski P, Lahuta LB, Okorski A. Antifungal Properties of Bio-AgNPs against D. pinodes and F. avenaceum Infection of Pea ( Pisum sativum L.) Seedlings. Int J Mol Sci 2024; 25:4525. [PMID: 38674112 PMCID: PMC11050071 DOI: 10.3390/ijms25084525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Ascochyta blight and Fusarium root rot are the most serious fungal diseases of pea, caused by D. pinodes and F. avenaceum, respectively. Due to the lack of fully resistant cultivars, we proposed the use of biologically synthesized silver nanoparticles (bio-AgNPs) as a novel protecting agent. In this study, we evaluated the antifungal properties and effectiveness of bio-AgNPs, in in vitro (poisoned food technique; resazurin assay) and in vivo (seedlings infection) experiments, against D. pinodes and F. avenaceum. Moreover, the effects of diseases on changes in the seedlings' metabolic profiles were analyzed. The MIC for spores of both fungi was 125 mg/L, and bio-AgNPs at 200 mg/L most effectively inhibited the mycelium growth of D. pinodes and F. avenaceum (by 45 and 26%, respectively, measured on the 14th day of incubation). The treatment of seedlings with bio-AgNPs or fungicides before inoculation prevented the development of infection. Bio-AgNPs at concentrations of 200 mg/L for D. pinodes and 100 mg/L for F. avenaceum effectively inhibited infections' spread. The comparison of changes in polar metabolites' profiles revealed disturbances in carbon and nitrogen metabolism in pea seedlings by both pathogenic fungi. The involvement of bio-AgNPs in the mobilization of plant metabolism in response to fungal infection is also discussed.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Joanna Szablińska-Piernik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-719 Olsztyn, Poland;
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Miłosz Wasicki
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| |
Collapse
|
5
|
Stałanowska K, Szablińska-Piernik J, Okorski A, Lahuta LB. Zinc Oxide Nanoparticles Affect Early Seedlings' Growth and Polar Metabolite Profiles of Pea ( Pisum sativum L.) and Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:14992. [PMID: 37834440 PMCID: PMC10573449 DOI: 10.3390/ijms241914992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The growing interest in the use of zinc oxide nanoparticles (ZnO NPs) in agriculture creates a risk of soil contamination with ZnO NPs, which can lead to phytotoxic effects on germinating seeds and seedlings. In the present study, the susceptibility of germinating seeds/seedlings of pea and wheat to ZnO NPs of various sizes (≤50 and ≤100 nm) applied at concentrations in the range of 100-1000 mg/L was compared. Changes in metabolic profiles in seedlings were analyzed by GC and GC-MS methods. The size-dependent harmful effect of ZnO NPs on the seedling's growth was revealed. The more toxic ZnO NPs (50 nm) at the lowest concentration (100 mg/L) caused a 2-fold decrease in the length of the wheat roots. In peas, the root elongation was slowed down by 20-30% only at 1000 mg/L ZnO NPs. The metabolic response to ZnO NPs, common for all tested cultivars of pea and wheat, was a significant increase in sucrose (in roots and shoots) and GABA (in roots). In pea seedlings, an increased content of metabolites involved in the aspartate-glutamate pathway and the TCA cycle (citrate, malate) was found, while in wheat, the content of total amino acids (in all tissues) and malate (in roots) decreased. Moreover, a decrease in products of starch hydrolysis (maltose and glucose) in wheat endosperm indicates the disturbances in starch mobilization.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland
| | - Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (J.S.-P.)
| |
Collapse
|
6
|
Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122222. [PMID: 37482337 DOI: 10.1016/j.envpol.2023.122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination. In general, the effect of nanoparticles depends on several factors (dose, treatment time, application method, type of nanoparticle and plant). In addition, pH and ionic strength are relevant when applying nanoparticles to the soil. In the case of essential element nanoparticles, Fe nanoparticles show better results in improving nutrient uptake, improving germination, and the possibility of magnetic properties could favor their use in the removal of pollutants. In the case of Cu and Zn nanoparticles, they can be beneficial at low concentrations, while their excess presents toxicity and negatively affects germination. About nanoparticles of non-essential elements, both Ti and Ag nanoparticles can be helpful for nutrient uptake. However, their potential effects depend highly on the crop type, particle size and concentration. Overall, nanotechnology in agriculture is still in its early stages of development, and more research is needed to understand potential environmental and public health impacts.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain; Department of Biology, Microbial Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden.
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Andrés Rodríguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Daniel Arenas-Lago
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
7
|
Szablińska-Piernik J, Lahuta LB. Polar Metabolites Profiling of Wheat Shoots ( Triticum aestivum L.) under Repeated Short-Term Soil Drought and Rewatering. Int J Mol Sci 2023; 24:8429. [PMID: 37176136 PMCID: PMC10179269 DOI: 10.3390/ijms24098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The response of wheat (Triticum aestivum L.) plants to the soil drought at the metabolome level is still not fully explained. In addition, research focuses mainly on single periods of drought, and there is still a lack of data on the response of plants to short-term cyclical periods of drought. The key to this research was to find out whether wheat shoots are able to resume metabolism after the stress subsides and if the reaction to subsequent stress is the same. Gas chromatography coupled with mass spectrometry (GC-MS) is one of the most valuable and fast methods to discover changes in the primary metabolism of plants. The targeted GC-MS analyses of whole shoots of wheat plants exposed (at the juvenile stage of development) to short-term (five days) mild soil drought/rewatering cycles (until the start of shoot wilting) enabled us to identify 32 polar metabolites. The obtained results revealed an accumulation of sugars (sucrose, fructose, glucose, and 1-kestose), proline, and malic acid. During five days of recovery, shoots regained full turgor and continued to grow, and the levels of accumulated metabolites decreased. Similar changes in metabolic profiles were found during the second drought/rewatering cycle. However, the concentrations of glucose, proline, and malic acid were higher after the second drought than after the first one. Additionally, the concentration of total polar metabolites after each plant rewatering was elevated compared to control samples. Although our results confirm the participation of proline in wheat responses to drought, they also highlight the responsiveness of soluble carbohydrate metabolism to stress/recovery.
Collapse
Affiliation(s)
- Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Horbowicz M, Górecki RJ, Railean V, Pomastowski P, Buszewski B. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat ( Triticum aestivum L.) Seedling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1627. [PMID: 37111851 PMCID: PMC10145852 DOI: 10.3390/plants12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.
Collapse
Affiliation(s)
- Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
10
|
Silva S, Dias MC, Pinto DCGA, Silva AMS. Metabolomics as a Tool to Understand Nano-Plant Interactions: The Case Study of Metal-Based Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2023; 12:491. [PMID: 36771576 PMCID: PMC9921902 DOI: 10.3390/plants12030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms against stressors, the biochemical changes and signals during plant development, and the role of specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve and revolutionize the agri-food sector and modernize agriculture. They can drive precision and sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high applicability, an in-depth understanding of NPs' impact on plants and their mechanistic action is crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review gathers the information available concerning the metabolomic tools used in studies focused on NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite reconfiguration, and the reprogramming of metabolic pathways.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
12
|
Ehsan M, Raja NI, Mashwani ZUR, Zohra E, Abasi F, Ikram M, Mustafa N, Wattoo FH, Proćków J, Pérez de la Lastra JM. Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172894. [PMID: 36079932 PMCID: PMC9457894 DOI: 10.3390/nano12172894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 05/14/2023]
Abstract
Wheat is the most important staple food worldwide, but wheat cultivation faces challenges from high food demand. Fertilizers are already in use to cope with the demand; however, more unconventional techniques may be required to enhance the efficiency of wheat cultivation. Nanotechnology offers one potential technique for improving plant growth and production by providing stimulating agents to the crop. In this study, plant-derived Ag/ZnO nanomaterials were characterized using UV-Vis spectroscopy, SEM, EDX, FTIR, and XRD methods. Various concentrations of phytogenically synthesized Ag/ZnO nanomaterials (20, 40, 60, and 80 ppm) and nitrogen-based fertilizers (urea and ammonium sulphate 50 and 100 mg/L) were applied to wheat varieties (Galaxy-13 and Pak-13). The results obtained from this research showed that application of 60 ppm Ag/ZnO nanomaterials with nitrogenous fertilizers (50 and 100 mg/L) were more effective in improving biochemistry and increasing yield of wheat plants by reducing enzymatic and non-enzymatic antioxidants (proline content, soluble sugar content, malondialdehyde, total phenolic content, total flavonoid content, superoxide dismutase, peroxidase, and catalase); and significantly increasing the protein content, number of grains per pot, spike length, 100-grain weight, grain yield per pot, and harvest index of both wheat varieties, compared to untreated plants. These findings allow us to propose Ag/ZnO nanomaterial formulation as a promising growth- and productivity-improvement strategy for wheat cultivation.
Collapse
Affiliation(s)
- Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia Ur Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Efat Zohra
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Nilofar Mustafa
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Feroza Hamid Wattoo
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA CSIC), 3-38206 San Cristóbal de la Laguna, Spain
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| |
Collapse
|
13
|
The Imbibition of Pea (Pisum sativum L.) Seeds in Silver Nitrate Reduces Seed Germination, Seedlings Development and Their Metabolic Profile. PLANTS 2022; 11:plants11141877. [PMID: 35890510 PMCID: PMC9323745 DOI: 10.3390/plants11141877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/28/2022]
Abstract
The use of silver nanoparticles (Ag NPs) on plants is accompanied by the occurrence of Ag+ ions, so the research of the effects of both on plants should be related. Therefore, in our study, the effects of Ag NPs suspension (containing Ag0 at 20 mg/L) and AgNO3 solutions (with the concentration of Ag+ ions at 20 and 50 mg/L) on the seed germination and early seedling growth (4 days) of pea (Pisum sativum L.) were compared. Both Ag NPs and AgNO3 did not decrease seed germination, and even stimulated seedling growth. In seedlings developing in the Ag NPs suspension, an increase in monosaccharides, homoserine and malate was noted. In the next experiment, the effect of short-term seed imbibition (8 h) in AgNO3 at elevated concentrations, ranging from 100 to 1000 mg/L, on the further seed germination, seedling growth (in absence of AgNO3) and their polar metabolic profiles were evaluated. The seed imbibition in AgNO3 solutions at 500 and 1000 mg/L reduced seed germination, inhibited seedlings’ growth and caused morphological deformations (twisting and folding of root). The above phytotoxic effects were accompanied by changes in amino acids and soluble carbohydrates profiles, in both sprouts and cotyledons. In deformed sprouts, the content of homoserine and asparagine (major amino acids) decreased, while alanine, glutamic acid, glutamine, proline, GABA (γ-aminobutyric acid) and sucrose increased. The increase in sucrose coincided with a decrease in glucose and fructose. Sprouts, but not cotyledons, also accumulated malic acid and phosphoric acid. Additionally, cotyledons developed from seeds imbibed with AgNO3 contained raffinose and stachyose, which were not detectable in sprouts and cotyledons of control seedlings. The obtained results suggest the possible disturbances in the mobilization of primary (oligosaccharides) and presumably major storage materials (starch, proteins) as well as in the primary metabolism of developing seedlings.
Collapse
|