1
|
Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, Song Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci (China) 2025; 151:200-210. [PMID: 39481933 DOI: 10.1016/j.jes.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024]
Abstract
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
Collapse
Affiliation(s)
- Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
3
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
4
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
6
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
7
|
Al-Waeel M, Lukkari J, Kivelä H, Salomäki M. Heterogenous Copper(0)-Assisted Dopamine Oxidation: A New Pathway to Controllable and Scalable Polydopamine Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39248575 DOI: 10.1021/acs.langmuir.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In this study, we introduce an approach for synthesizing polydopamine (PDA) through the controlled oxidation of dopamine using metallic copper. Traditional methods of PDA synthesis often encounter challenges such as scalability, reproducibility, and control over polymerization. Our approach utilizes the catalytic properties of metallic copper in the presence of dissolved oxygen to generate reactive oxygen species (ROS) without additional chemicals. This process allows for precise control over dopamine oxidation, leading to reliable, materials and cost-effective upscalable PDA production. We investigated the reaction kinetics and the role of copper and ROS in dopamine oxidation, using several different experimental techniques. Our results demonstrate that, even at low pH, the copper-assisted method produces PDA with properties comparable to those synthesized through conventional means. We propose a mechanism for PDA synthesis that is initiated by oxygen adsorption onto copper surface, leading to the generation of various ROS which act as oxidizing agents in PDA synthesis. This method presents an advancement in the scalable and controlled production of PDA, with potential applications in various scientific and industrial fields.
Collapse
Affiliation(s)
- Majid Al-Waeel
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Henri Kivelä
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Mikko Salomäki
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
8
|
Azarkin M, Kirakosyan M, Ryabov V. Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy. Int J Mol Sci 2024; 25:9525. [PMID: 39273472 PMCID: PMC11395083 DOI: 10.3390/ijms25179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments.
Collapse
Affiliation(s)
- Maxim Azarkin
- P.N. Lebedev Physical Institute, 119991 Moscow, Russia
| | | | | |
Collapse
|
9
|
Rangam N, Sudagar A, Koronkiewicz R, Borowicz P, Tóth J, Kövér L, Michałowska D, Roszko M, Pilz M, Kwapiszewska K, Lesiak-Orłowska B. Surface and composition effects on the biphasic cytotoxicity of nanocomposites synthesized using leaf extracts. Int J Biol Macromol 2024; 276:133723. [PMID: 38981556 DOI: 10.1016/j.ijbiomac.2024.133723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The Malus sylvestris L. (LE1), Pinus sylvestris L. (LE2), and Sorbus aucuparia L. (LE3) leaves` extracts were used for the synthesis of silver (Ag) nanocomposites containing different amounts of silver chloride (AgCl), silver metal (Agmet), and silver phosphate (Ag3PO4). These nanocomposites were capped with the organic functional groups in the leaf extract. Notably, the nanocomposites caused biphasic cytotoxic response on cells; first attributed to the inhibition of cell growth and second to cell death. The nanocomposites were biocompatible with normal embryonic kidney (HEK293) cells in the cytotoxic range for cancer cells. [25(±1) °C synthesis] nanocomposites exhibited the highest cytotoxicity towards HeLa (lethal concentration- LC50 value of 11.4 μg mL-1) and A549 (LC50 value of 14.7 μg mL-1) after 24-h incubation and its efficiency was shown also for the more resistant MCF-7 and MDA-MB-231, however, their respective LC50 values were larger. For the HeLa cell line, this designed nanocomposite exhibited an LC50 value similar to the effective concentration (EC50) value of Cisplatin and about 3 times larger than Doxorubicin. nanocomposite contained Ag3PO4 in the composite and P on the surface, higher AgCl content, smaller crystallite size of all nanoparticle phases, and carbon-rich oxygen-deficient surface compared to all other nanocomposites.
Collapse
Affiliation(s)
- Neha Rangam
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Alcina Sudagar
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA.
| | - Roksana Koronkiewicz
- The Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Paweł Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - József Tóth
- HUN-REN Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - László Kövér
- HUN-REN Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - Dorota Michałowska
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Marek Roszko
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Marta Pilz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Beata Lesiak-Orłowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Ortega-Nieto C, Salta M, Noël-Hermes N, Palomo JM. Metal Bionanohybrids against Microbiologically Influenced Corrosion (MIC) Consortia. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1376. [PMID: 39269038 PMCID: PMC11397077 DOI: 10.3390/nano14171376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
In search of new materials that would help to prevent microbiologically influenced corrosion (MIC), we have designed and synthetized six different copper and copper-silver nanoparticle-enzyme hybrids using a mild-conditions method carried out in water and r.t. Characterization analyses exhibited the presence of small crystalline nanoparticles with diameters from 2 to 20 nm. X-ray diffraction determined that the Cu hybrids were composed of different copper species, depending on the synthetic protocol used, while the Cu-Ag hybrids were mainly composed of copper and silver phosphate metallic species. Then, the bacterial viability of three MIC-relevant enrichments, sulfate-reducing bacteria (SRB), slime-forming bacteria (SFB), and acid-producing bacteria (APB), was studied in the presence of the bionanohybrids. The results demonstrated a notable effect of all bionanohybrids against SRB, one of the most prominent bacteria associated with MIC. In particular, Cu-2 and Cu-Ag-2 showed a reduction in bacterial cells of 94% and 98% after 48 h, respectively, at a concentration of 100 ppm. They also exhibited high efficiencies against SFB, with Cu-Ag-1 and Cu-Ag-2 hybrids being the best, with bacterial reduction percentages of 98% after 45 h of exposition at a concentration of 100 ppm. However, in the case of APB, the effect of the hybrids was lost due to the low pH level generated during the experiment. Finally, the capacity of Cu-2 and Cu-Ag-2 to inhibit the adhesion of SRB to the surface of carbon steel coupons was evaluated. Fluorescence imaging of the surface of the coupons at 24 h demonstrated that the presence of the hybrids inhibited the growth of SRB, obtaining a maximum reduction of 98% with Cu-2. Overall, the results of this study demonstrate that these novel nanomaterials have a wide-range antibacterial effect and may have a promising future in the prevention and treatment of MIC.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain
- Endures B.V., 1781 AT Den Helder, The Netherlands
| | - Maria Salta
- Endures B.V., 1781 AT Den Helder, The Netherlands
- School of Biological Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2UP, UK
| | | | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
11
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
12
|
García-Rodríguez A, Gutiérrez J, Villacorta A, Arribas Arranz J, Romero-Andrada I, Lacoma A, Marcos R, Hernández A, Rubio L. Polylactic acid nanoplastics (PLA-NPLs) induce adverse effects on an in vitro model of the human lung epithelium: The Calu-3 air-liquid interface (ALI) barrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134900. [PMID: 38878440 DOI: 10.1016/j.jhazmat.2024.134900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
13
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
14
|
Naser DM, Lafta SH, Hashim MS. Antioxidant activity and cytotoxicity of greigite nanoparticles synthesized by hydrothermal technique. Biotechnol Appl Biochem 2024; 71:960-973. [PMID: 38764255 DOI: 10.1002/bab.2590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/06/2024] [Indexed: 05/21/2024]
Abstract
The effects of 180, 210, and 230°C reaction temperatures on the structural and magnetic properties of synthesized iron sulfide nanoparticles were studied. The Rietveld refinement analysis result of the X-ray diffraction data indicated that greigite was the dominant phase in all samples. The sample was prepared at 210°C for 18 h and had a greater wt% ratio of the greigite phase. The crystallite and particle sizes increased with increasing reaction temperatures. Scanning electron microscope images confirmed the presence of aggregation of synthesized rod-shaped nanoparticles. The magnetic hysteresis curves of all samples showed ferromagnetic behavior at room temperature. The magnetic saturation of three samples increases with increased reaction temperature, but the coercive force has the opposite behavior. Antioxidant activity and cytotoxicity of the sample synthesized at 210°C were investigated. This sample killed cancer cells at relatively moderate and high concentrations with high viability of normal cells, demonstrating the sample's suitability for use in killing cancer cells while avoiding normal cells.
Collapse
Affiliation(s)
- Dalal Maseer Naser
- Physics department, Education College, Mustansiriyah University, Baghdad, Iraq
| | - Sadeq H Lafta
- Applied Sciences Department, University of Technology - Iraq, Baghdad, Iraq
| | | |
Collapse
|
15
|
El-Habib I, Maatouk H, Lemarchand A, Dine S, Roynette A, Mielcarek C, Traoré M, Azouani R. Antibacterial Size Effect of ZnO Nanoparticles and Their Role as Additives in Emulsion Waterborne Paint. J Funct Biomater 2024; 15:195. [PMID: 39057316 PMCID: PMC11278333 DOI: 10.3390/jfb15070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Imroi El-Habib
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Hassan Maatouk
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Alex Lemarchand
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Sarah Dine
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Anne Roynette
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Christine Mielcarek
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Mamadou Traoré
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Rabah Azouani
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| |
Collapse
|
16
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
17
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
18
|
Kimta N, Majdalawieh AF, Nasrallah GK, Puri S, Nepovimova E, Jomova K, Kuča K. Leprosy: Comprehensive insights into pathology, immunology, and cutting-edge treatment strategies, integrating nanoparticles and ethnomedicinal plants. Front Pharmacol 2024; 15:1361641. [PMID: 38818380 PMCID: PMC11137175 DOI: 10.3389/fphar.2024.1361641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.
Collapse
Affiliation(s)
- Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Amin F. Majdalawieh
- Department of Biology, Chemsitry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
19
|
Krumova E, Benkova D, Stoyancheva G, Dishliyska V, Miteva-Staleva J, Kostadinova A, Ivanov K, El-Sayed K, Staneva G, Elshoky HA. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO 2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. Int J Biol Macromol 2024; 268:131702. [PMID: 38643917 DOI: 10.1016/j.ijbiomac.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A. solani). Moreover, it sheds light on their underlying mechanisms of action. The NCs, CS-ZnO, CS-CuO, and CS-SiO2, were characterized using advanced methods. Dynamic and electrophoretic light scattering techniques revealed their size range (60-170 nm) and cationic nature, as indicated by the positive zeta potential values (from +16 to +22 mV). Transmission electron microscopy revealed the morphology of the NCs as agglomerates formed between the chitosan and oxide components. X-ray diffraction patterns confirmed crystalline structures with specific peaks indicating their constituents. Antifungal assessments using the agar diffusion technique demonstrated significant inhibitory effects of the NCs on both fungal strains (1.5 to 4-fold), surpassing the performance of the positive control, nystatin. Notably, the NCs exhibited superior antifungal potency, with CS-ZnO NCs being the most effective. A. solani was the most sensitive strain to the studied agents. Furthermore, the tested NCs induced oxidative stress in fungal cells, which elevated stress biomarker levels, such as superoxide dismutase (SOD) activity and protein carbonyl content (PCC), 2.5 and 6-fold for the most active CS-CuO in F. solani respectively. Additionally, they triggered membrane lipid peroxidation up to 3-fold higher compared to control, a process that potentially compromises membrane integrity. Laurdan fluorescence spectroscopy highlighted alterations in the molecular organization of fungal cell membranes induced by the NCs. CS-CuO NCs induced a membrane rigidifying effect, while CS-SiO2 and CS-ZnO could rigidify membranes in A. solani and fluidize them in F. solani. In summary, this study provides an in-depth understanding of the interactions of CS-based NCs with two fungal strains, showing their antifungal activity and offering insights into their mechanisms of action. These findings emphasize the potential of these NCs as effective and versatile antifungal agents.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Dayana Benkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galina Stoyancheva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Jeny Miteva-Staleva
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Kamen Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Kh El-Sayed
- Faculty of Engineering, Galala University, Attaka 51745, Suez, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital, Cairo 11441, Egypt.
| |
Collapse
|
20
|
Hageman G, van Broekhuizen P, Nihom J. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:423-438. [PMID: 38593380 DOI: 10.1080/15459624.2024.2327348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Aerotoxic Syndrome may develop as a result of chronic, low-level exposure to organophosphates (OPs) and volatile organic compounds in the airplane cabin air, caused by engine oil leaking past wet seals. Additionally, acute high-level exposures, so-called "fume events," may occur. However, air quality monitoring studies concluded that levels of inhaled chemicals might be too low to cause adverse effects. The presence of aerosols of nanoparticles (NPs) in bleed air has often been described. The specific hypothesis is a relation between NPs acting as a vector for toxic compounds in the etiology of the Aerotoxic Syndrome. These NPs function as carriers for toxic engine oil compounds leaking into the cabin air. Inhaled by aircrew NPs carrying soluble and insoluble components deposit in the alveolar region, where they are absorbed into the bloodstream. Subsequently, they may cross the blood-brain barrier and release their toxic compounds in the central nervous system. Olfactory absorption is another route for NPs with access to the brain. To study the hypothesis, all published in-flight measurement studies (2003-2023) of airborne volatile (and low-volatile) organic pollutants in cabin air were reviewed, including NPs (10-100 nm). Twelve studies providing data for a total of 387 flights in 16 different large-passenger jet aircraft types were selected. Maximum particle number concentrations (PNC) varied from 104 to 2.8 × 106 #/cm3 and maximum mass concentrations from 9 to 29 μg/m3. NP-peaks occurred after full-power take-off, in tailwind condition, after auxiliary power unit (APU) bleed air introduction, and after air conditioning pack failure. Chemical characterization of the NPs showed aliphatic hydrocarbons, black carbon, and metallic core particles. An aerosol mass-spectrometry pattern was consistent with aircraft engine oil. It is concluded that chronic exposure of aircrew to NP-aerosols, carrying oil derivatives, maybe a significant feature in the etiology of Aerotoxic Syndrome. Mobile NP measuring equipment should be made available in the cockpit for long-term monitoring of bleed air. Consequently, risk assessment of bleed air should include monitoring and analysis of NPs, studied in a prospective cohort design.
Collapse
Affiliation(s)
- G Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - P van Broekhuizen
- Department of Environmental Studies (IVAM), University of Amsterdam, Amsterdam, The Netherlands
| | - J Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| |
Collapse
|
21
|
Sun X, Qin X, Liang G, Chang X, Zhu H, Zhang J, Zhang D, Sun Y, Feng S. Manganese dioxide nanoparticles provoke inflammatory damage in BV2 microglial cells via increasing reactive oxygen species to activate the p38 MAPK pathway. Toxicol Ind Health 2024; 40:244-253. [PMID: 38518383 DOI: 10.1177/07482337241242508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 μg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 μM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1β and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1β and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.
Collapse
Affiliation(s)
- Xingchang Sun
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Gaofeng Liang
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Dan Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| |
Collapse
|
22
|
Yang X, Shao J, Zhang Y, Wang T, Ge S, Li J. Microenvironment-Driven Fenton Nanoreactor Enabled by Metal-Phenolic Encapsulation of Calcium Peroxide for Effective Control of Dental Caries. Adv Healthc Mater 2024; 13:e2303466. [PMID: 37985941 DOI: 10.1002/adhm.202303466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Caries are one of the most common oral diseases caused by pathogenic bacterial infections, which are widespread and persistently harmful to human health. Using nanoparticles to invade biofilms and produce reactive oxygen species (ROS) in situ is a promising strategy for killing bacteria and disrupting the structure of biofilms. In this work, a biofilm-targeting Fenton nanoreactor is reported that can generate ROS responsive to the cariogenic microenvironment. The nanoreactor is constructed by metal-phenolic encapsulation of calcium peroxide (CaO2) followed by modification with a biofilm targeting ligand dextran. Within the cariogenic biofilm, the Fenton nanoreactor is activated by an acidic microenvironment to be decomposed into H2O2 and iron ions, triggering a Fenton-like reaction to generate ROS that can eliminate the biofilm by breaking down extracellular polymeric substances (EPS) and killing cariogenic bacteria. Meanwhile, the depletion of excess protons in biofilm leads to a reversal of the cariogenic microenvironment. The Fenton nanoreactor can effectively inhibit the biofilm formation of Streptococcus mutans on ex vivo human teeth and is effective in preventing caries meanwhile maintaining the oral microbial diversity in rat caries infection model. This work provides a novel and efficient modality for acid microenvironment-driven ROS therapy.
Collapse
Affiliation(s)
- Xiaoru Yang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Yandi Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Ting Wang
- Department of General Debtistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| |
Collapse
|
23
|
Jośko I, Kusiak M, Sozoniuk M, Feculak M, Wu KCW, Fitzgerald M, Alyafei MS, Sheteiwy MS. Analysis of multiple biomarkers revealed the size matters of Cu particles for barley response under foliar exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170673. [PMID: 38316301 DOI: 10.1016/j.scitotenv.2024.170673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The impact of particle size of engineered nanoparticles (ENPs) on plant response has marginally been investigated under the foliar application so far. Concerning the significance of particle diameter for their properties and interaction with plants, the effect of size should be considered in the analysis of the effect of micronutrient-based ENPs on plants. It is of particular importance for ENPs containing Cu due to plants needing a relatively low amount of this element, thus there is a risk of overdosing during application as a fertilizer or pesticide. Here, we examined the biochemical and transcriptional response of barley (Hordeum vulgare L.) to Cu nanoparticles (nano-Cu) with different diameters (25 nm, 50 nm, 70 nm), microparticles (micro-Cu), and chelated Cu (EDTA-Cu). The plants suffering from Cu deficiency were foliar sprayed with Cu compounds at 1000 mg/L during the tillering stage. 1- and 7-day plants were analyzed in terms of biomass, Cu content, the activity of enzymes involved with antioxidant response, the content of low molecular weight compounds, and the expression of genes regulated metal homeostasis, aquaporins, and defense. The results showed that the Cu leaf level was differentiated over time and after 7 days it was higher under exposure to the smallest nano-Cu than other particulate Cu. Regardless of the duration of exposure, the Cu content was highest in plants treated with Cu-EDTA. The cluster analysis of all markers revealed a clear distinct response to the smallest nano-Cu and other particulate and ionic treatments. The bigger nano-Cu, depending on the markers, caused the medium effects between the nano-Cu 25 nm and micro-Cu and Cu-EDTA. The found size thresholds at the nanoscale will be useful for the fabrication of safe-by-design agrochemicals to provide crop security and attenuate environmental impact.
Collapse
Affiliation(s)
- Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland.
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Mikołaj Feculak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan; Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Melissa Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Mohamed Salem Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
24
|
Abdallah Y, Ogunyemi SO, Bi J, Wang F, Huang X, Shi X, Jiang J, Ibrahim E, Mohany M, Al-Rejaie SS, Yan C, Li B. Nickel oxide nanoparticles: A new generation nanoparticles to combat bacteria Xanthomonas oryzae pv. oryzae and enhance rice plant growth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105807. [PMID: 38582579 DOI: 10.1016/j.pestbp.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/08/2024]
Abstract
Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 μg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 μg/mL. Adding 200 μg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 μg/mL NiONPs). When compared to the control, rice plants treated with 200 μg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Plant Pathology, Minia University, El-Minia 11432, Egypt.
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Ji''an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Fang Wang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xuan Huang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xianbo Shi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jiefeng Jiang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
26
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
27
|
Li Y, Lu Y, Li J, Li M, Gou H, Sun X, Xu X, Song B, Li Z, Ma Y. Screening of low-toxic zinc oxide nanomaterials and study the apoptosis mechanism of NSC-34 cells. Biotechnol J 2024; 19:e2300443. [PMID: 38403432 DOI: 10.1002/biot.202300443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
With the increasing application of ZnO nanomaterials (ZnO-NMts) in the biomedical field, it is crucial to assess their potential risks to humans and the environment. Therefore, this study aimed to screen for ZnO-NMts with low toxicity and establish safe exposure limits, and investigate their mechanisms of action. The study synthesized 0D ZnO nanoparticles (ZnO NPs) and 3D ZnO nanoflowers (ZnO Nfs) with different morphologies using a hydrothermal approach for comparative research. The ZnO-NMts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Mouse brain neuronal cells (NSC-34) were incubated with ZnO NMts for 6, 12, and 24 h, and the cell morphology was observed using TEM. The toxic effects of ZnO Nfs on NSC-34 cells were studied using CCK-8 cell viability detection, reactive oxygen species (ROS) measurement, caspase-3 activity detection, Annexin V-FITC/PI apoptosis assay, and mitochondrial membrane potential (Δφm) measurement. The results of the research showed that ZnO-NMts caused cytoplasmic vacuolization and nuclear pyknosis. After incubating cells with 12.5 µg mL-1 ZnO-NMts for 12 h, ZnO NRfs exhibited the least toxicity and ROS levels. Additionally, there was a significant increase in caspase-3 activity, depolarization of mitochondrial membrane potential (Δφm), and the highest rate of early apoptosis.This study successfully identified ZnO NRfs with the lowest toxicity and determined the safe exposure limit to be < 12.5 µg mL-1 (12 h). These findings will contribute to the clinical use of ZnO NRfs with low toxicity and provide a foundation for further research on their potential applications in brain disease treatment.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yan Lu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaolin Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaoli Xu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Beibei Song
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Zhiyu Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
30
|
Kessler A, Huang P, Blomberg E, Odnevall I. Unravelling the Mechanistic Understanding of Metal Nanoparticle-Induced Reactive Oxygen Species Formation: Insights from a Cu Nanoparticle Study. Chem Res Toxicol 2023; 36:1891-1900. [PMID: 37948660 PMCID: PMC10731636 DOI: 10.1021/acs.chemrestox.3c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Humans can be exposed to engineered and nonintentionally formed metal and metal oxide nanoparticles (Me NPs) in occupational settings, in public transportation areas, or by means of contact with different consumer products. A critical factor in the toxic potency of Me NPs is their ability to induce oxidative stress. It is thus essential to assess the potential reactive oxygen species (ROS) formation properties of Me NPs. A common way to assess the relative extent of ROS formation in vitro is to use fluorescence spectroscopy with the DCFH-DA (2',7'-dichlorofluorescein diacetate) probe, with and without HRP (horseradish peroxidase). However, this method does not provide any information about specific ROS species or reaction mechanisms. This study investigated the possibility of using complementary techniques to obtain more specific information about formed ROS species, both the type and reaction mechanisms. Cu NPs in PBS (phosphate buffered saline) were chosen as a test system to have the simplest (least interference from other components) aqueous solution with a physiologically relevant pH. ROS formation was assessed using fluorescence by means of the DCFH-DA method (information on relative amounts of oxygen radicals without selectivity), the Ghormley's triiodide method using UV-vis spectrophotometry (concentrations of H2O2), and electron paramagnetic resonance with DMPO as the spin-trap agent (information on specific oxygen radicals). This approach elucidates that Cu NPs undergo ROS-generating corrosion reactions, which previously have not been assessed in situ. In the presence of H2O2, and based on the type of oxygen radical formed, it was concluded that released copper participates in Haber-Weiss and/or Fenton reactions rather than in Fenton-like reactions. The new combination of techniques used to determine ROS induced by Me NPs provides a way forward to gain a mechanistic understanding of Me NP-induced ROS formation, which is important for gaining crucial insight into their ability to induce oxidative stress.
Collapse
Affiliation(s)
- Amanda Kessler
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Eva Blomberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES−Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institute and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden
| |
Collapse
|
31
|
Wang X, Bai R. Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv 2023; 30:2256495. [PMID: 37702067 PMCID: PMC10501169 DOI: 10.1080/10717544.2023.2256495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Magnetic Drug Targeting (MDT) is of particular interest to researchers because of its good loading efficiency, targeting accuracy, and versatile use in vivo. Cardiovascular Disease (CVD) is a global chronic disease with a high mortality rate, and the development of more precise and effective treatments is imminent. A growing number of studies have begun to explore the feasibility of MDT in CVD, but an up-to-date systematic summary is still lacking. This review discusses the current research status of MDT from guiding magnetic fields, magnetic nanocarriers, delivery channels, drug release control, and safety assessment. The current application status of MDT in CVD is also critically introduced. On this basis, new insights into the existing problems and future optimization directions of MDT are further highlighted.
Collapse
Affiliation(s)
- Xinyu Wang
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruru Bai
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Oluseun Akintunde O, Hu J, Golam Kibria M, Pogosian S, Achari G. A facile synthesis process of GCN/ZnO-Cu nanocomposite and the evaluation of the performance for the photocatalytic degradation of organic pollutants and the disinfection of wastewater under visible light. CHEMOSPHERE 2023; 344:140287. [PMID: 37820879 DOI: 10.1016/j.chemosphere.2023.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In this research, graphitic carbon nitride/zinc oxide-copper denoted as GCN/ZnO-Cu nanocomposite photocatalysts were synthesized using a novel facile synthesis process, the co-exfoliation method involving ultrasonic exfoliation of the mixture of GCN and ZnO-Cu in ethanol and then thermal exfoliation. Different characterization techniques such as X-ray diffraction (XRD), mean crystallite size (MCS), BET surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), particle size distribution (PSD), Fourier transform-infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) were conducted to study the crystallinity, morphology, elemental composition, chemical structure, and optoelectronic properties. The band gap was estimated using the UV-Vis DRS results and Tauc plots. The photocatalytic activity of the GCN/ZnO-Cu3% nanocomposites was evaluated in the degradation of 4-chlorophenol (4-CP), and the disinfection of wastewater primary influent under a narrowband visible light source, royal blue LED (λ = 450 nm). GCN/0.1ZnO-Cu3% nanocomposite showed the best performance in the degradation of 4-CP and the disinfection of municipal wastewater primary influent. For 4-CP degradation, GCN/0.1ZnO-Cu3% was 2.2 times better than GCN, 9.4 times better than ZnO-Cu3%, and 1.8 times better than the sum of the individual GCN and ZnO-Cu3%. A 5.5 log reduction was achieved for the disinfection of total coliforms in wastewater primary influent in 360 min. This enhanced photocatalytic activity of GCN/ZnO-Cu3% nanocomposite can be attributed to the synergistic of GCN and the ZnO-Cu3%, resulting in a large surface area and improved bandgap.
Collapse
Affiliation(s)
- Olufemi Oluseun Akintunde
- Department of Civil Engineering, University of Calgary, ENE 231, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, ENB 202, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, ENB 202, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Samuel Pogosian
- Nemalux Industrial, 1018 72 Ave NE, Calgary, AB, T2E 8V9, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, ENE 231, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
33
|
Liu M, Ye Y, Xu L, Gao T, Zhong A, Song Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2830. [PMID: 37947676 PMCID: PMC10647831 DOI: 10.3390/nano13212830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The fast rise of organic pollution has posed severe health risks to human beings and toxic issues to ecosystems. Proper disposal toward these organic contaminants is significant to maintain a green and sustainable development. Among various techniques for environmental remediation, advanced oxidation processes (AOPs) can non-selectively oxidize and mineralize organic contaminants into CO2, H2O, and inorganic salts using free radicals that are generated from the activation of oxidants, such as persulfate, H2O2, O2, peracetic acid, periodate, percarbonate, etc., while the activation of oxidants using catalysts via Fenton-type reactions is crucial for the production of reactive oxygen species (ROS), i.e., •OH, •SO4-, •O2-, •O3CCH3, •O2CCH3, •IO3, •CO3-, and 1O2. Nanoscale zero-valent iron (nZVI), with a core of Fe0 that performs a sustained activation effect in AOPs by gradually releasing ferrous ions, has been demonstrated as a cost-effective, high reactivity, easy recovery, easy recycling, and environmentally friendly heterogeneous catalyst of AOPs. The combination of nZVI and AOPs, providing an appropriate way for the complete degradation of organic pollutants via indiscriminate oxidation of ROS, is emerging as an important technique for environmental remediation and has received considerable attention in the last decade. The following review comprises a short survey of the most recent reports in the applications of nZVI participating AOPs, their mechanisms, and future prospects. It contains six sections, an introduction into the theme, applications of persulfate, hydrogen peroxide, oxygen, and other oxidants-based AOPs catalyzed with nZVI, and conclusions about the reported research with perspectives for future developments. Elucidation of the applications and mechanisms of nZVI-based AOPs with various oxidants may not only pave the way to more affordable AOP protocols, but may also promote exploration and fabrication of more effective and sustainable nZVI materials applicable in practical applications.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Ting Gao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zhenjun Song
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
34
|
Ashfaq MH, Imran M, Haider A, Shahzadi A, Mustajab M, Ul-Hamid A, Nabgan W, Medina F, Ikram M. Antimicrobial potential and rhodamine B dye degradation using graphitic carbon nitride and polyvinylpyrrolidone doped bismuth tungstate supported with in silico molecular docking studies. Sci Rep 2023; 13:17847. [PMID: 37857696 PMCID: PMC10587107 DOI: 10.1038/s41598-023-44799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The environmental-friendly hydrothermal method has been carried out to synthesize Bi2WO6 and g-C3N4/PVP doped Bi2WO6 nanorods (NRs) by incorporating different concentrations of graphitic carbon nitride (g-C3N4) as well as a specified quantity of polyvinylpyrrolidone (PVP). Bi2WO6 doped with g-C3N4 provides structural and chemical stability, reduces charge carriers, degrades dyes, and, owing to lower bandgap energy, is effective for antibacterial, catalytic activity, and molecular docking analysis. The purpose of this research is the treatment of polluted water and to investigate the bactericidal behavior of a ternary system. The catalytic degradation was performed to remove the harmful rhodamine B (RhB) dye using NaBH4 in conjunction with prepared NRs. The specimen compound demonstrated antibacterial activity against Escherichia coli (E. coli) at both high and low concentrations. Higher doped specimens of g-C3N4/PVP-doped Bi2WO6 exhibited a significant improvement in efficient bactericidal potential against E. coli (4.55 mm inhibition zone). In silico experiments were carried out on enoyl-[acylcarrier-protein] reductase (FabI) and β-lactamase enzyme for E. coli to assess the potential of Bi2WO6, PVP doped Bi2WO6, and g-C3N4/PVP-doped Bi2WO6 NRs as their inhibitors and to justify their possible mechanism of action.
Collapse
Affiliation(s)
- Muhammad Hasnain Ashfaq
- Department of Chemistry, Government College University, Sahiwal Road, Sahiwal, Faisalabad, 57000, Punjab, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Sahiwal Road, Sahiwal, Faisalabad, 57000, Punjab, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan, 66000, Punjab, Pakistan
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Muhammad Mustajab
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av Països Catalans 26, 43007, Tarragona, Spain.
| | - Francisco Medina
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| |
Collapse
|
35
|
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. Int J Mol Sci 2023; 24:14897. [PMID: 37834344 PMCID: PMC10573543 DOI: 10.3390/ijms241914897] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The misuse of antibiotics and antimycotics accelerates the emergence of antimicrobial resistance, prompting the need for novel strategies to combat this global issue. Metallic nanoparticles have emerged as effective tools for combating various resistant microbes. Numerous studies have highlighted their potential in addressing antibiotic-resistant fungi and bacterial strains. Understanding the mechanisms of action of these nanoparticles, including iron-oxide, gold, zinc oxide, and silver is a central focus of research within the life science community. Various hypotheses have been proposed regarding how nanoparticles exert their effects. Some suggest direct targeting of microbial cell membranes, while others emphasize the release of ions from nanoparticles. The most compelling proposed antimicrobial mechanism of nanoparticles involves oxidative damage caused by nanoparticles-generated reactive oxygen species. This review aims to consolidate knowledge, discuss the properties and mechanisms of action of metallic nanoparticles, and underscore their potential as alternatives to enhance the efficacy of existing medications against infections caused by antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alishba Salman
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Zaryab Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Sadia Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
36
|
Madeo LF, Schirmer C, Cirillo G, Froeschke S, Hantusch M, Curcio M, Nicoletta FP, Büchner B, Mertig M, Hampel S. Facile one-pot hydrothermal synthesis of a zinc oxide/curcumin nanocomposite with enhanced toxic activity against breast cancer cells. RSC Adv 2023; 13:27180-27189. [PMID: 37701282 PMCID: PMC10493854 DOI: 10.1039/d3ra05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Zinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared via hydrothermal treatment of Zn(NO3)2 in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO via hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction. The efficacy of Zn(CUR)O as anticancer agents was evaluated on MCF-7 and MDA-MB-231 cancer cells, obtaining a synergistic activity with a cell viability depending on the CUR amount within the nanocomposite. Finally, the determination of reactive oxygen species production in the presence of Zn(CUR)O was used as a preliminary evaluation of the mechanism of action of the nanocomposites.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Christine Schirmer
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 Waldheim 04736 Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Samuel Froeschke
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Martin Hantusch
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende 87036 CS Italy
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
- Institute of Solid State and Materials Physics, Technische Universität Dresden Dresden 01062 Germany
| | - Michael Mertig
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 Waldheim 04736 Germany
- Institute of Physical Chemistry, Technische Universität Dresden Dresden 01062 Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research Dresden Dresden 01069 Germany +49 3514659883
| |
Collapse
|
37
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
38
|
Goyal I, Agarwal M, Bamola S, Goswami G, Lakhani A. The role of chemical fractionation in risk assessment of toxic metals: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1098. [PMID: 37626242 DOI: 10.1007/s10661-023-11728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.
Collapse
Affiliation(s)
- Isha Goyal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Muskan Agarwal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Simran Bamola
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Gunjan Goswami
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India.
| |
Collapse
|
39
|
Xesfyngi Y, Georgoutsou-Spyridonos M, Tripathy A, Milionis A, Poulikakos D, Mastellos DC, Tserepi A. A High-Performance Antibacterial Nanostructured ZnO Microfluidic Device for Controlled Bacterial Lysis and DNA Release. Antibiotics (Basel) 2023; 12:1276. [PMID: 37627695 PMCID: PMC10451374 DOI: 10.3390/antibiotics12081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, the antibacterial properties of nanostructured zinc oxide (ZnO) surfaces are explored by incorporating them as walls in a simple-to-fabricate microchannel device. Bacterial cell lysis is demonstrated and quantified in such a device, which functions due to the action of its nanostructured ZnO surfaces in contact with the working fluid. To shed light on the mechanism responsible for lysis, E. coli bacteria were incubated in zinc and nanostructured ZnO substrates, as well as the here-investigated ZnO-based microfluidic devices. The unprecedented killing efficiency of E. coli in nanostructured ZnO microchannels, effective after a 15 min incubation, paves the way for the implementation of such microfluidic chips in the disinfection of bacteria-containing solutions. In addition, the DNA release was confirmed by off-chip PCR and UV absorption measurements. The results indicate that the present nanostructured ZnO-based microfluidic chip can, under light, achieve partial inactivation of the released bacterial DNA via reactive oxygen species-mediated oxidative damage. The present device concept can find broader applications in cases where the presence of DNA in a sample is not desirable. Furthermore, the present microchannel device enables, in the dark, efficient release of bacterial DNA for downstream genomic DNA analysis. The demonstrated potential of this antibacterial device for tailored dual functionality in light/dark conditions is the main novel contribution of the present work.
Collapse
Affiliation(s)
- Yvonni Xesfyngi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research (NCSR) “Demokritos”, Patr. Gregoriou E’ and 27 Neapoleos Str., 15341 Aghia Paraskevi, Greece; (Y.X.); (M.G.-S.)
| | - Maria Georgoutsou-Spyridonos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research (NCSR) “Demokritos”, Patr. Gregoriou E’ and 27 Neapoleos Str., 15341 Aghia Paraskevi, Greece; (Y.X.); (M.G.-S.)
| | - Abinash Tripathy
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (A.T.); (A.M.); (D.P.)
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (A.T.); (A.M.); (D.P.)
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (A.T.); (A.M.); (D.P.)
| | - Dimitrios C. Mastellos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research (NCSR) “Demokritos”, Patr. Gregoriou E’ and 27 Neapoleos Str., 15341 Aghia Paraskevi, Greece;
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research (NCSR) “Demokritos”, Patr. Gregoriou E’ and 27 Neapoleos Str., 15341 Aghia Paraskevi, Greece; (Y.X.); (M.G.-S.)
| |
Collapse
|
40
|
Vishnu J, Kesavan P, Shankar B, Dembińska K, Swiontek Brzezinska M, Kaczmarek-Szczepańska B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J Funct Biomater 2023; 14:344. [PMID: 37504839 PMCID: PMC10381466 DOI: 10.3390/jfb14070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.
Collapse
Affiliation(s)
- Jithin Vishnu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Praveenkumar Kesavan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
41
|
Sohn YS, Jung SK, Lee SY, Kim HT. Antibacterial Effects of a Carbon Nitride (CN) Layer Formed on Non-Woven Polypropylene Fabrics Using the Modified DC-Pulsed Sputtering Method. Polymers (Basel) 2023; 15:2641. [PMID: 37376286 PMCID: PMC10301604 DOI: 10.3390/polym15122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In the present study, the surface of non-woven polypropylene (NW-PP) fabric was modified to form CN layers using a modified DC-pulsed (frequency: 60 kHz, pulse shape: square) sputtering with a roll-to-roll system. After plasma modification, structural damage in the NW-PP fabric was not observed, and the C-C/C-H bonds on the surface of the NW-PP fabric converted into C-C/C-H, C-N(CN), and C=O bonds. The CN-formed NW-PP fabrics showed strong hydrophobicity for H2O (polar liquid) and full-wetting characteristics for CH2I2 (non-polar liquid). In addition, the CN-formed NW-PP exhibited an enhanced antibacterial characteristic compared to NW-PP fabric. The reduction rate of the CN-formed NW-PP fabric was 89.0% and 91.6% for Staphylococcus aureus (ATCC 6538, Gram-positive) and Klebsiella pneumoniae (ATCC4352, Gram-negative), respectively. It was confirmed that the CN layer showed antibacterial characteristics against both Gram-positive and Gram-negative bacteria. The reason for the antibacterial effect of CN-formed NW-PP fabrics can be explained as the strong hydrophobicity due to the CH3 bond of the fabric, enhanced wetting property due to CN bonds, and antibacterial activity due to C=O bonds. Our study presents a one-step, damage-free, mass-productive, and eco-friendly method that can be applied to most weak substrates, allowing the mass production of antibacterial fabrics.
Collapse
Affiliation(s)
- Young-Soo Sohn
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan 38439, Republic of Korea;
| | | | - Sung-Youp Lee
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Hong Tak Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
42
|
Stuparu-Cretu M, Braniste G, Necula GA, Stanciu S, Stoica D, Stoica M. Metal Oxide Nanoparticles in Food Packaging and Their Influence on Human Health. Foods 2023; 12:1882. [PMID: 37174420 PMCID: PMC10178527 DOI: 10.3390/foods12091882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles into the food/beverage matrix. Once dispersed into food, engineered metal oxide nanoparticles travel through the gastrointestinal tract and subsequently enter human cells, where they display various behaviors influencing human health or wellbeing. This review article provides an insight into the antimicrobial mechanisms of metal oxide nanoparticles as essential for their benefits in food/beverage packaging and provides a discussion on the oral route of these nanoparticles from nanopackages to the human body. This contribution also highlights the potential toxicity of metal oxide nanoparticles for human health. The fact that only a small number of studies address the issue of food packaging based on engineered metal oxide nanoparticles should be particularly noted.
Collapse
Affiliation(s)
- Mariana Stuparu-Cretu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania
| | - Gheorghe Braniste
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Gina-Aurora Necula
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| | - Silvius Stanciu
- Faculty of Food Science, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania;
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania;
| | - Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (G.B.); (G.-A.N.)
| |
Collapse
|
43
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
44
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
45
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
46
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
47
|
Peters AN, Weaver NA, Monahan KS, Kim K. Non-ROS-Mediated Cytotoxicity of ZnO and CuO in ML-1 and CA77 Thyroid Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24044055. [PMID: 36835463 PMCID: PMC9964803 DOI: 10.3390/ijms24044055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Metal oxide nanoparticles (MONPs) are widely used in agriculture and food development but there is little understanding of how MONPs, including ZnO, CuO, TiO2, and SnO2, impact human health and the environment. Our growth assay revealed that none of these (up to 100 µg/mL) negatively affect viability in the budding yeast, Saccharomyces cerevisiae. In contrast, both human thyroid cancer cells (ML-1) and rat medullary thyroid cancer cells (CA77) displayed a significant reduction in cell viability with the treatment of CuO and ZnO. The production of reactive oxygen species (ROS) in these cell lines, when treated with CuO and ZnO, was found to be not significantly altered. However, levels of apoptosis with ZnO and CuO were increased, which led us to conclude that the decreased cell viability is mainly caused by non-ROS-mediated cell death. Consistently, data from our RNAseq studies identified differentially regulated pathways associated with inflammation, Wnt, and cadherin signaling across both cell lines, ML-1, and CA77, after ZnO or CuO MONP treatment. Results from gene studies further support non-ROS-mediated apoptosis being the main factor behind decreased cell viability. Together, these findings provide unique evidence that the apoptosis in response to treatment of CuO and ZnO in these thyroid cancer cells was not mainly due to oxidative stress, but to the alteration of a range of signal cascades that promotes cell death.
Collapse
Affiliation(s)
- Alyse N. Peters
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Nakaja A. Weaver
- Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
| | - Kathryn S. Monahan
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440
| |
Collapse
|
48
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
49
|
Takehara Y, Fijikawa I, Watanabe A, Yonemura A, Kosaka T, Sakane K, Imada K, Sasaki K, Kajihara H, Sakai S, Mizukami Y, Haider MS, Jogaiah S, Ito SI. Molecular Analysis of MgO Nanoparticle-Induced Immunity against Fusarium Wilt in Tomato. Int J Mol Sci 2023; 24:2941. [PMID: 36769262 PMCID: PMC9918173 DOI: 10.3390/ijms24032941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a devastating soilborne disease in tomatoes. Magnesium oxide nanoparticles (MgO NPs) induce strong immunity against Fusarium wilt in tomatoes. However, the mechanisms underlying this immunity remain poorly understood. Comparative transcriptome analysis and microscopy of tomato roots were performed to determine the mechanism of MgO NP-induced immunity against FOL. Eight transcriptomes were prepared from tomato roots treated under eight different conditions. Differentially expressed genes were compared among the transcriptomes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that in tomato roots pretreated with MgO NPs, Rcr3 encoding apoplastic protease and RbohD encoding NADPH oxidase were upregulated when challenge-inoculated with FOL. The gene encoding glycine-rich protein 4 (SlGRP4) was chosen for further analysis. SlGRP4 was rapidly transcribed in roots pretreated with MgO NPs and inoculated with FOL. Immunomicroscopy analysis showed that SlGRP4 accumulated in the cell walls of epidermal and vascular vessel cells of roots pretreated with MgO NPs, but upon FOL inoculation, SlGRP4 further accumulated in the cell walls of cortical tissues within 48 h. The results provide new insights into the probable mechanisms of MgO NP-induced tomato immunity against Fusarium wilt.
Collapse
Affiliation(s)
- Yushi Takehara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Isamu Fijikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Akihiro Watanabe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Ayumi Yonemura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Tomoyuki Kosaka
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Kosei Sakane
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Tottori, Japan
| | - Kiyoshi Imada
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Tottori, Japan
| | - Kazunori Sasaki
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| | - Hiroshi Kajihara
- Yamaguchi Prefectural Agriculture and Forestry General Engineering Center, 1-1-1 Ouchi-Hikami, Yamaguchi 753-0231, Yamaguchi, Japan
| | - Shoji Sakai
- Yamaguchi TLO, 2-16-1 Tokiwadai, Ube 755-8611, Yamaguchi, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Science Research Center, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube 755-8505, Yamaguchi, Japan
| | - Muhammad Salman Haider
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Kasaragod 671316, India
| | - Shin-ichi Ito
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Yamaguchi, Japan
| |
Collapse
|
50
|
Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|