1
|
Kodagoda GK, Hong HT, O’Hare TJ, Topp B, Sultanbawa Y, Netzel ME. Storage Effects on the Physicochemical Properties, Phytochemical Composition, and Sugars in Red-Fleshed Cultivars, 'Rubycot' Plumcot, and 'Queen Garnet' Plum. Molecules 2024; 29:4641. [PMID: 39407571 PMCID: PMC11477952 DOI: 10.3390/molecules29194641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Domestic storage conditions can have a significant impact on the composition of phytochemicals and sugars in stone fruits. This study aimed to evaluate the effect of two domestic storage temperatures (4 and 23 °C) on the physicochemical properties, phytochemical composition, and sugars of 'Rubycot' (RC) plumcot, a novel stone fruit variety, and 'Queen Garnet' (QG) plum. Initially, RC had a lower total anthocyanin concentration (TAC) than QG, but TAC in RC increased significantly (p < 0.05) during storage, peaking at +95% after 7 days at 23 °C, while QG reached +60% after 14 days. At 4 °C, TAC increased for both varieties (RC +30%, QG +27%). RC had a higher initial total phenolic content (TPC), which also increased for both fruits. QG had a significantly higher initial total quercetin concentration (TQC), increasing by 40% (p < 0.05) at 23 °C. The initial total carotenoid concentration in QG was higher than that in RC, but after 10 days at 23 °C, RC had a higher carotenoid concentration than QG. Both varieties showed similar sugar profiles, with QG starting higher but decreasing over time at both storage temperatures. Results from this study showed that ambient storage significantly increases total anthocyanins, total quercetins, and TPC in RC and QG. However, it is important to evaluate the textural and sensory properties of stored RC and QG in terms of consumer acceptability of the stored fruits.
Collapse
Affiliation(s)
- Gethmini Kavindya Kodagoda
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia; (G.K.K.); (Y.S.)
- Biosecurity Queensland, Department of Agriculture and Fisheries, Health and Food Science Precinct, Coopers Plains, QLD 4108, Australia
| | - Hung Trieu Hong
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Tim J. O’Hare
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Nambour, QLD 4560, Australia;
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia; (G.K.K.); (Y.S.)
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Michael Erich Netzel
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia; (G.K.K.); (Y.S.)
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
2
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
3
|
Wang S, Lee HC, Lee S. Predicting herb-disease associations using network-based measures in human protein interactome. BMC Complement Med Ther 2024; 24:218. [PMID: 38845010 PMCID: PMC11157705 DOI: 10.1186/s12906-024-04503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Natural herbs are frequently used to treat diseases or to relieve symptoms in many countries. Moreover, as their safety has been proven for a long time, they are considered as main sources of new drug development. However, in many cases, the herbs are still prescribed relying on ancient records and/or traditional practices without scientific evidences. More importantly, the medicinal efficacy of the herbs has to be evaluated in the perspective of MCMT (multi-compound multi-target) effects, but most efforts focus on identifying and analyzing a single compound experimentally. To overcome these hurdles, computational approaches which are based on the scientific evidences and are able to handle the MCMT effects are needed to predict the herb-disease associations. RESULTS In this study, we proposed a network-based in silico method to predict the herb-disease associations. To this end, we devised a new network-based measure, WACP (weighted average closest path length), which not only quantifies proximity between herb-related genes and disease-related genes but also considers compound compositions of each herb. As a result, we confirmed that our method successfully predicts the herb-disease associations in the human protein interactome (AUROC = 0.777). In addition, we observed that our method is superior than the other simple network-based proximity measures (e.g. average shortest and closest path length). Additionally, we analyzed the associations between Brassica oleracea var. italica and its known associated diseases more specifically as case studies. Finally, based on the prediction results of the WACP, we suggested novel herb-disease pairs which are expected to have potential relations and their literature evidences. CONCLUSIONS This method could be a promising solution to modernize the use of the natural herbs by providing the scientific evidences about the molecular associations between the herb-related genes targeted by multiple compounds and the disease-related genes in the human protein interactome.
Collapse
Affiliation(s)
- Seunghyun Wang
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Chang Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seungbuk-gu, Seoul, 02841, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, GIST, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Reyes-Becerril M, Maldonado-García M, López MG, Calvo-Gómez O, Díaz SM. Cyrtocarpa edulis fruit and its immunostimulant effect on Almaco Jack Seriola rivoliana: in vitro, in vivo and ex vivo studies. Vet Res Commun 2024; 48:1393-1407. [PMID: 38285242 DOI: 10.1007/s11259-024-10309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
The present study investigates for the first time chemical, proximate analyses and immunostimulant effect of Cyrtocarpa edulis fruit (CeF). Three design experiments were carried out to evaluate immunostimulant effect of C. edulis fruit: in vitro, in vivo and ex vivo studies in juveniles Almaco jack Seriola rivoliana. In general, nutraceutical studies performed by gas chromatography/mass spectrometry (GC-MS) in CeF revealed a major quantity of the carbohydrate groups and phytosterols such as β-sitosterol. Their phytochemical and antioxidant values exposed a significant content of total phenols, flavonoids, and tannins, showing an antioxidant capacity against hydroxyl and superoxide radical. The in vitro results confirm that CeF is edible and enhanced the innate immune response in head-kidney leukocytes after 24 h of immunostimulation. The in vivo results showed that myeloperoxidase, nitric oxide production, as well as antioxidant enzymes were enhanced in skin mucus of those fish fed with CeF. Interestingly in the intestine, IL-β, TNF-α, MARCO and Piscidin gene expression were up-regulated in fish fed with C. edulis after 4 weeks. Finally, ex vivo experiments showed an important enhancement on cellular parameters (phagocytosis, respiratory burst, myeloperoxidase, and nitric oxide production) in head-kidney leukocytes of fish fed CeF and intraperitoneally infected with A. hydrophila. The results demonstrate that C. edulis fruit (0.5%) represents an available phytochemical and antioxidant rich alternative with great potential as fish immunostimulant additive.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur , La Paz, B.C.S., 23096, México.
| | - Minerva Maldonado-García
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur , La Paz, B.C.S., 23096, México
| | - Mercedes G López
- Chemistry of Natural Products Laboratory, Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Gto., Mexico
| | - Octavio Calvo-Gómez
- Food Products Technology Department, Food Products Technology Faculty, Tashkent Institute of Chemical Technology, Tashkent City, Uzbekistan
| | - Sean Michael Díaz
- Tecnologico Nacional de Mexico/Instituto Tecnologico de La Paz, Boulevard Forjadores 4720, 8 de Octubre Segunda Seccion, 23080, La Paz, B.C.S., Mexico
| |
Collapse
|
5
|
Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:523. [PMID: 38498532 PMCID: PMC10892216 DOI: 10.3390/plants13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inflammation is the immune system's first biological response to infection, injury, or irritation. Evidence suggests that the anti-inflammatory effect is mediated by the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ, as well as the non-cytokine mediator, prostaglandin E2. Currently, the mechanism of action and clinical usefulness of phytochemicals is known; their action on the activity of cytokines, free radicals, and oxidative stress. The latter are of great relevance in the development of diseases, such that the evidence collected demonstrates the beneficial effects of phytochemicals in maintaining health. Epidemiological evidence indicates that regular consumption of fruits and vegetables is related to a low risk of developing cancer and other chronic diseases.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional ”A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - German Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico;
| | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
6
|
Lamenza FF, Upadhaya P, Roth P, Shrestha S, Jagadeesha S, Horn N, Pracha H, Oghumu S. Berries vs. Disease: Revenge of the Phytochemicals. Pharmaceuticals (Basel) 2024; 17:84. [PMID: 38256917 PMCID: PMC10818490 DOI: 10.3390/ph17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Secondary metabolites and phytochemicals in plant-based diets are known to possess properties that inhibit the development of several diseases including a variety of cancers of the aerodigestive tract. Berries are currently of high interest to researchers due to their high dietary source of phytochemicals. Black raspberries (BRB), Rubus occidentalis, are of special interest due to their rich and diverse composition of phytochemicals. In this review, we present the most up-to-date preclinical and clinical data involving berries and their phytochemicals in the chemoprevention of a variety of cancers and diseases. BRBs possess a variety of health benefits including anti-proliferative properties, anti-inflammatory activity, activation of pro-cell-death pathways, modulation of the immune response, microbiome modulation, reduction in oxidative stress, and many more. However, little has been done in both preclinical and clinical settings on the effects of BRB administration in combination with other cancer therapies currently available for patients. With the high potential for BRBs as chemopreventive agents, there is a need to investigate their potential in combination with other treatments to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Natalie Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| |
Collapse
|
7
|
Rajpal VR, Koul HK, Raina SN, Kumar HMS, Qazi GN. Phytochemicals for Human Health: The Emerging Trends and Prospects. Curr Top Med Chem 2024; 24:v-vi. [PMID: 38745435 DOI: 10.2174/156802662404240226094145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College University of Delhi Delhi, 110007, India
| | - Hari K Koul
- Departments of Interdisciplinary Oncology Biochemistry & Molecular Biology and Urology, LSU-LCMC Cancer Center LSU Health Sciences Center, 1700 Tulane Avenue, 9th Floor New Orleans, LA 70112, United States
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, UP, India
| | | | - G N Qazi
- Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi India
| |
Collapse
|
8
|
Ogunsuyi OB, Aro OP, Oboh G, Olagoke OC. Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and cnc/Nrf2-redox systems. Drug Chem Toxicol 2023; 46:1035-1043. [PMID: 36069210 DOI: 10.1080/01480545.2022.2119995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
One of the well-established models for examining neurodegeneration and neurotoxicity is the Drosophila melanogaster model of aluminum-induced toxicity. Anti-cholinesterase drugs have been combined with other neuroprotective agents to improve Alzheimer's disease management, but there is not much information on the combination of anti-cholinesterases with dietary polyphenols to combat memory impairment. Here, we assess how curcumin influences some of the critical therapeutic effects of donepezil (a cholinesterase inhibitor) in AlCl3-treated Drosophila melanogaster. Harwich strain flies were exposed to 40 mM AlCl3 - alone or in combination with curcumin (1 mg/g) and/or donepezil (12.5 µg/g and 25 µg/g) - for seven days. The flies' behavioral evaluations (memory index and locomotor performance) were analyzed. Thereafter, the flies were processed into homogenates for the quantification of acetylcholinesterase (AChE), catalase, total thiol, and rate of lipid peroxidation, as well as the mRNA levels of acetylcholinesterase (ACE1) and cnc/NRF2. Results showed that AlCl3-treated flies presented impaired memory and increased activities of acetylcholinesterase and lipid peroxidation, while there were decrease in total thiol levels and catalase activity when compared to the control. Also, the expression of ACE1 was significantly increased while that of cnc/NRF2 was significantly decreased. However, combinations of curcumin and donepezil, especially at lower dose of donepezil, significantly improved the memory index and biochemical parameters compared to donepezil alone. Thus, curcumin plus donepezil offers unique therapeutic effects during memory impairment in the D. melanogaster model of neurotoxicity.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olawande Chinedu Olagoke
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Bellows AC, Raj S, Pitstick E, Potteiger MR, Diemont SAW. Foraging Wild Edibles: Dietary Diversity in Expanded Food Systems. Nutrients 2023; 15:4630. [PMID: 37960283 PMCID: PMC10647252 DOI: 10.3390/nu15214630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Human food foraging in community forests offers extensive and expandable sources of food and high-quality nutrition that support chronic disease prevention and management and are underrepresented in US diets. Despite severe gaps in non-commercial "wild food" data, research in Syracuse, NY, identified substantial amounts of five key antioxidant phytochemicals in locally available, forageable foods with the potential to augment local dietary diversity and quality. Findings endorse the need for micro- and macro-nutrient research on an expanded range of forageable foods, community nutrition education on those foods, an expanded study on antioxidant phytochemical function, and the inclusion of forageables in the food system definition.
Collapse
Affiliation(s)
- Anne C. Bellows
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Sudha Raj
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Ellen Pitstick
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Matthew R. Potteiger
- Department of Landscape Architecture, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA;
| | - Stewart A. W. Diemont
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA;
| |
Collapse
|
10
|
Cho YR, Jo KA, Park SY, Choi JW, Kim G, Kim TY, Lee S, Lee DH, Kim SK, Lee D, Lee S, Lim S, Woo SO, Byun S, Kim JY. Combination of UHPLC-MS/MS with context-specific network and cheminformatic approaches for identifying bioactivities and active components of propolis. Food Res Int 2023; 172:113134. [PMID: 37689898 DOI: 10.1016/j.foodres.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Discovering new bioactivities and identifying active compounds of food materials are major fields of study in food science. However, the process commonly requires extensive experiments and can be technically challenging. In the current study, we employed network biology and cheminformatic approaches to predict new target diseases, active components, and related molecular mechanisms of propolis. Applying UHPLC-MS/MS analysis results of propolis to Context-Oriented Directed Associations (CODA) and Combination-Oriented Natural Product Database with Unified Terminology (COCONUT) systems indicated atopic dermatitis as a novel target disease. Experimental validation using cell- and human tissue-based models confirmed the therapeutic potential of propolis against atopic dermatitis. Moreover, we were able to find the major contributing compounds as well as their combinatorial effects responsible for the bioactivity of propolis. The CODA/COCONUT system also provided compound-associated genes explaining the underlying molecular mechanism of propolis. These results highlight the potential use of big data-driven network biological approaches to aid in analyzing the impact of food constituents at a systematic level.
Collapse
Affiliation(s)
- Ye-Ryeong Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyeong Ah Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jae-Won Choi
- Department of Physical Education, Yonsei University, Seoul 03722, Republic of Korea
| | - Gwangmin Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Tae Yeon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Soohwan Lee
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Doo-Hee Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Kuk Kim
- Department of Agrobiology, Division of Apiculture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Soon Ok Woo
- Department of Agrobiology, Division of Apiculture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
11
|
Upadhaya P, Lamenza FF, Shrestha S, Roth P, Jagadeesha S, Pracha H, Horn NA, Oghumu S. Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants (Basel) 2023; 12:1667. [PMID: 37759970 PMCID: PMC10525528 DOI: 10.3390/antiox12091667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Berries have gained widespread recognition for their abundant natural antioxidant, anti-inflammatory, and immunomodulatory properties. However, there has been limited research conducted thus far to investigate the role of the active constituents of berries in alleviating contact hypersensitivity (CHS), the most prevalent occupational dermatological disease. Our study involved an ex vivo investigation aimed at evaluating the impact of black raspberry extract (BRB-E) and various natural compounds found in berries, such as protocatechuic acid (PCA), proanthocyanidins (PANT), ellagic acid (EA), and kaempferol (KMP), on mitigating the pathogenicity of CHS. We examined the efficacy of these natural compounds on the activation of dendritic cells (DCs) triggered by 2,4-dinitrofluorobenzene (DNFB) and lipopolysaccharide (LPS). Specifically, we measured the expression of activation markers CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines, including Interleukin (IL)-12, IL-6, TNF-α, and IL-10, to gain further insights. Potential mechanisms through which these phytochemicals could alleviate CHS were also investigated by investigating the role of phospho-ERK. Subsequently, DCs were co-cultured with T-cells specific to the OVA323-339 peptide to examine the specific T-cell effector responses resulting from these interactions. Our findings demonstrated that BRB-E, PCA, PANT, and EA, but not KMP, inhibited phosphorylation of ERK in LPS-activated DCs. At higher doses, EA significantly reduced expression of all the activation markers studied in DNFB- and LPS-stimulated DCs. All compounds tested reduced the level of IL-6 in DNFB-stimulated DCs in Flt3L as well as in GM-CSF-derived DCs. However, levels of IL-12 were reduced by all the tested compounds in LPS-stimulated Flt3L-derived BMDCs. PCA, PANT, EA, and KMP inhibited the activated DC-mediated Interferon (IFN)-γ and IL-17 production by T-cells. Interestingly, PANT, EA, and KMP significantly reduced T-cell proliferation and the associated IL-2 production. Our study provides evidence for differential effects of berry extracts and natural compounds on DNFB and LPS-activated DCs revealing potential novel approaches for mitigating CHS.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Natalie A. Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| |
Collapse
|
12
|
Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00048-1. [PMID: 37380564 DOI: 10.1016/j.joim.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China; Teaching and Research Support Center, Naval Medical University, Shanghai 200433, China
| | - Yi-Cui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Meng-Yu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yin-Yin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Tao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Xia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yu-Xiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Eliaser EM, Mohd Hashim N, Rukayadi Y, Abdull Razis AF. 7-Geranyloxycinnamic Acid Isolated from Melicope lunu-ankenda Leaves Perturbs Colon Cancer and Breast Cancer Cell Lines' Growth via Induction of Apoptotic Pathway. Molecules 2023; 28:molecules28083612. [PMID: 37110846 PMCID: PMC10142869 DOI: 10.3390/molecules28083612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 04/29/2023] Open
Abstract
Globally, breast cancer is the most prevalent form of cancer in women and there is a need for alternative therapies such as plant-derived compounds with low systemic toxicity and selective toxicity to cancer cells. The aim of this study is to assess the cytotoxicity effects of 7-geranyloxycinnamic acid isolated from leaves of Melicope lunu-ankenda, a traditional medicinal plant, on the human breast cancer cell lines. Dried leaf powder was used for the preparation of different crude extracts using different solvents of increasing order of polarity. The structure of the isolated compound from the petroleum ether extract was elucidated by 1H and 13C NMR, LC-MS, and DIP-MS spectroscopy. The cytotoxic activity of the crude extract and 7-geranyloxycinnamic acid analyzed using MTT assay. Apoptotic analysis was evaluated using Annexin V-PI staining, AO/PI staining, intracellular ROS measurement, and measurement of activities of caspases 3/7, 8, and 9. Crude extracts and the isolated pure compound showed significant cytotoxicity against tested cancer cell lines. 7-geranyloxycinnamic acid was found to exert significant cytotoxic effects against breast cancer cell lines such as the MCF-7 and MDA-MB-231 cell lines. The cytotoxic effects are attributed to its ability to induce apoptosis via accumulation of ROS and activation of caspases in both breast cancer cell lines. The pure compound, 7-geranyloxycinnamic acid isolated from the leaves of M. lunu-ankenda, can exert significant cytotoxic effects against breast cancer cell lines without affecting the normal cells.
Collapse
Affiliation(s)
- Enas Mohamed Eliaser
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biology, Faculty of Science, El-Mergib University, El Khums, Libya
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center of Natural Product Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
14
|
Yehia RS, Altwaim SA. An Insight into In Vitro Antioxidant, Antimicrobial, Cytotoxic, and Apoptosis Induction Potential of Mangiferin, a Bioactive Compound Derived from Mangifera indica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1539. [PMID: 37050165 PMCID: PMC10096949 DOI: 10.3390/plants12071539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Due to their low cost, toxicity, and health risks, medicinal plants have come to be seen as useful products and sources of biologically active compounds. Mangifera indica L., a medicinal plant with a long history, has a high bioactive metabolites content. Mangiferin (C19H18O11) is primary isolated from M. indica's leaves, which has many pharmacological benefits. In this investigation, ultrasonic-assisted extraction with ethanol as the extraction solvent was applied to obtain mangiferin from a local type of M. indica leaves. HPLC was performed after a dichloromethane-ethyl acetate liquid-liquid fractionation method. Further, UV-vis, FTIR, and NMR spectroscopy were utilized to elucidate the structure. Interestingly, purified mangiferin displayed promising antimicrobial efficacy against a diverse variety of fungal and bacterial pathogens with MICs of 1.95-62.5 and 1.95-31.25 µg/mL, respectively. Time-kill patterns also showed that mangiferin had both bactericidal and fungicidal action. Furthermore, it exhibited strong radical dosage-dependent scavenging activity (IC50 = 17.6 μg/mL) compared to vitamin C (Vc, IC50 = 11.9 μg/mL), suggesting it could be developed into a viable antioxidant agent. To our delight, the IC50 values of mangiferin for the MCF-7 and HeLa cell lines were 41.2 and 44.7 μg/mL, respectively, from MTT cell viability testing, and it was less harmful when tested against the noncancerous cell line. Notably, it significantly induced cell apoptosis in MCF-7 cells by 62.2-83.4% using annexin V-FITC/PI labeling. Hence, our findings suggest that mangiferin can be used in the medical industry to create therapeutic interventions and medication delivery systems for society.
Collapse
Affiliation(s)
- Ramy S. Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sarah A. Altwaim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
15
|
Liu X, Zhang H, Yan J, Li X, Li J, Hu J, Shang X, Yang H. Deciphering the Efficacy and Mechanism of Astragalus membranaceus on High Altitude Polycythemia by Integrating Network Pharmacology and In Vivo Experiments. Nutrients 2022; 14:4968. [PMID: 36500998 PMCID: PMC9740273 DOI: 10.3390/nu14234968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoxic exposure makes plateau migrators susceptible to high altitude polycythemia (HAPC). Astragalus membranaceus (AM) is an edible and medicinal plant with remarkable immunomodulatory activities. The purpose of this study was to discover if AM could be a candidate for the prevention of HAPC and its mechanism. Here, network pharmacology was applied to screen active compounds, key targets, and enriched pathways of AM in the treatment of HAPC. Molecular docking evaluated the affinity between compounds and core targets. Subsequently, the mechanisms of AM were further verified using the hypoxia exposure-induced mice model of HAPC. The network pharmacology analysis and molecular docking results identified 14 core targets of AM on HAPC, which were predominantly mainly enriched in the HIF-1 pathway. In the HAPC animal models, we found that AM inhibited the differentiation of hematopoietic stem cells into the erythroid lineage. It also suppressed the production of erythrocytes and hemoglobin in peripheral blood by reducing the expression of HIF-1α, EPO, VEGFA, and Gata-1 mRNA. Furthermore, AM downregulated the expression of IL-6, TNF-α, and IFN-γ mRNA, thereby alleviating organ inflammation. In conclusion, AM supplementation alleviates hypoxia-induced HAPC in mice, and TNF-α, AKT1, HIF-1α, VEGFA, IL-6, and IL-1B may be the key targets.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiang Li
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jie Li
- General Station for Drug & Instrument Supervision and Control, Joint Logistics Support Force, PLA, Dalian 116041, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
16
|
Lee M, Shin H, Park M, Kim A, Cha S, Lee H. Systems pharmacology approaches in herbal medicine research: a brief review. BMB Rep 2022; 55:417-428. [PMID: 35880436 PMCID: PMC9537023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 02/21/2025] Open
Abstract
Herbal medicine, a multi-component treatment, has been extensively practiced for treating various symptoms and diseases. However, its molecular mechanism of action on the human body is unknown, which impedes the development and application of herbal medicine. To address this, recent studies are increasingly adopting systems pharmacology, which interprets pharmacological effects of drugs from consequences of the interaction networks that drugs might have. Most conventional network- based approaches collect associations of herb-compound, compound-target, and target-disease from individual databases, respectively, and construct an integrated network of herb-compound- target-disease to study the complex mechanisms underlying herbal treatment. More recently, rapid advances in highthroughput omics technology have led numerous studies to exploring gene expression profiles induced by herbal treatments to elicit information on direct associations between herbs and genes at the genome-wide scale. In this review, we summarize key databases and computational methods utilized in systems pharmacology for studying herbal medicine. We also highlight recent studies that identify modes of action or novel indications of herbal medicine by harnessing drug-induced transcriptome data. [BMB Reports 2022; 55(9): 417-428].
Collapse
Affiliation(s)
- Myunggyo Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hyejin Shin
- Korean Medicine (KM) Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Musun Park
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Seongwon Cha
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine — comprehensive effects of phytochemicals in primary, secondary and tertiary care. EPMA J 2022; 13:461-486. [PMID: 35821883 PMCID: PMC9263437 DOI: 10.1007/s13167-022-00288-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/08/2022]
Abstract
According to the GLOBOCAN 2020, prostate cancer (PCa) is the most often diagnosed male cancer in 112 countries and the leading cancer-related death in 48 countries. Moreover, PCa incidence permanently increases in adolescents and young adults. Also, the rates of metastasising PCa continuously grow up in young populations. Corresponding socio-economic burden is enormous: PCa treatment costs increase more rapidly than for any other cancer. In order to reverse current trends in exploding PCa cases and treatment costs, pragmatic decisions should be made, in favour of advanced populational screening programmes and effective anti-PCa protection at the level of the health-to-disease transition (sub-optimal health conditions) demonstrating the highest cost-efficacy of treatments. For doing this, the paradigm change from reactive treatments of the clinically manifested PCa to the predictive approach and personalised prevention is essential. Phytochemicals are associated with potent anti-cancer activity targeting each stage of carcinogenesis including cell apoptosis and proliferation, cancer invasiveness and metastatic disease. For example, their positive effects are demonstrated for stabilising and restoring mitochondrial health quality, which if compromised is strongly associated with sub-optimal health conditions and strong predisposition to aggressive PCa sub-types. Further, phytochemicals significantly enhance response of cancer cells to anti-cancer therapies including radio- and chemotherapy. Evident plant-based mitigation of negative side-effects frequently observed for conventional anti-cancer therapies has been reported. Finally, dual anti-cancer and anti-viral effects of phytochemicals such as these of silibinin have been demonstrated as being highly relevant for improved PCa management at the level of secondary and tertiary care, for example, under pandemic conditions, since PCa-affected individuals per evidence are highly vulnerable towards COVID-19 infection. Here, we present a comprehensive data analysis towards clinically relevant anti-cancer effects of phytochemicals to be considered for personalised anti-PCa protection in primary care as well as for an advanced disease management at the level of secondary and tertiary care in the framework of predictive, preventive and personalised medicine.
Collapse
|
18
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
19
|
Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The discovery of bioactive compounds for non-invasive therapy has been the goal of research groups focused on pharmacotherapy. Phytonutrients have always been attractive for researchers because they are a significant source of bioactive phytochemicals. Still, it is challenging to determine which components show high biomedical activity and bioavailability after administration. However, based on the chemical structure of these phytochemicals, their physicochemical properties can be calculated to predict the probability of gastrointestinal (GI) absorption after oral administration. Indeed, different researchers have proposed several rules (e.g., Lipinski’s, Veber’s, Ghose’s, and Muegge’s rules) to attain these predictions, but only for synthetic compounds. Most phytochemicals do not fully comply with these rules even though they show high bioactivity and high GI absorption experimentally. Here, we propose a detailed methodology using scientifically validated web-based platforms to determine the physicochemical properties of five phytochemicals found in ginger, echinacea, and tobacco. Furthermore, we analyzed the calculated data and established a protocol based on the integration of these classical rules, plus other extended parameters, that we called the Phytochemical Rule, to obtain a more reliable prediction of the GI absorption of natural compounds. This methodology can help evaluate bioactive phytochemicals as potential drug candidates and predict their oral bioavailability in patients.
Collapse
|
20
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
21
|
Safety, toxicity and pharmacokinetic assessment of oral Withaferin-A in mice. Toxicol Rep 2022; 9:1204-1212. [DOI: 10.1016/j.toxrep.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
|
22
|
Malik N, Dhiman P. New Approaches and advancement in drug development from phenolic p-coumaric acid. Curr Top Med Chem 2022; 22:1515-1529. [PMID: 35473545 DOI: 10.2174/0929866529666220426121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
P-coumaric acid occurs as a common dietary polyphenol distributed in fruits, vegetables, and cereals in associated and free form. The toxicity profile of the drug is very low and it exhibits many pharmacological actions (antihypertensive, anti-inflammatory, anticancer, antimicrobial activity, antidiabetic, anticancer, and antioxidant effect). P-coumaric acid also acts as a free radical scavenger and inhibits various enzymes which generate free radicals. It is also used as the raw material for the preparation of preservatives, vanillin, sports foods, skin defense agents, and as a cross-linker for the formation of edible films and food gels. The current study is based upon biological effectiveness, molecular docking, SAR, sources of p-coumaric acid, and related derivatives.
Collapse
Affiliation(s)
- Neelam Malik
- Faculty, Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| | - Priyanka Dhiman
- Faculty, Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
23
|
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, Csizmár SH, Mestanova V, Pec M, Adamkov M, Al-Ishaq RK, Smejkal K, Giordano FA, Büsselberg D, Biringer K, Golubnitschaja O, Kubatka P. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J 2022; 13:315-334. [PMID: 35437454 PMCID: PMC9008621 DOI: 10.1007/s13167-022-00277-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer incidence is actually the highest one among all cancers. Overall breast cancer management is associated with challenges considering risk assessment and predictive diagnostics, targeted prevention of metastatic disease, appropriate treatment options, and cost-effectiveness of approaches applied. Accumulated research evidence indicates promising anti-cancer effects of phytochemicals protecting cells against malignant transformation, inhibiting carcinogenesis and metastatic spread, supporting immune system and increasing effectiveness of conventional anti-cancer therapies, among others. Molecular and sub-/cellular mechanisms are highly complex affecting several pathways considered potent targets for advanced diagnostics and cost-effective treatments. Demonstrated anti-cancer affects, therefore, are clinically relevant for improving individual outcomes and might be applicable to the primary (protection against initial cancer development), secondary (protection against potential metastatic disease development), and tertiary (towards cascading complications) care. However, a detailed data analysis is essential to adapt treatment algorithms to individuals’ and patients’ needs. Consequently, advanced concepts of patient stratification, predictive diagnostics, targeted prevention, and treatments tailored to the individualized patient profile are instrumental for the cost-effective application of natural anti-cancer substances to improve overall breast cancer management benefiting affected individuals and the society at large.
Collapse
|
24
|
Can Diet Prevent Urological Cancers? An Update on Carotenoids as Chemopreventive Agents. Nutrients 2022; 14:nu14071367. [PMID: 35405980 PMCID: PMC9002657 DOI: 10.3390/nu14071367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Urological cancers, namely prostate, bladder, kidney, testicular, and penile cancers, are common conditions that constitute almost one-quarter of all malignant diseases in men. Urological cancers tend to affect older individuals, and their development is influenced by modifiable metabolic, behavioral, and environmental risk factors. Phytochemicals may have cancer-fighting properties and protect against cancer development, slow its spread, and reduce the risk of cancer deaths in humans. This paper aims to review the current literature in regard to the effects of carotenoids in reducing urological cancer risk.
Collapse
|
25
|
Tienda-Vázquez MA, Morreeuw ZP, Sosa-Hernández JE, Cardador-Martínez A, Sabath E, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Nephroprotective Plants: A Review on the Use in Pre-Renal and Post-Renal Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060818. [PMID: 35336700 PMCID: PMC8955229 DOI: 10.3390/plants11060818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Kidney diseases are expected to become the fifth leading cause of death by 2040. Several physiological failures classified as pre-, intra-, and post-renal factors induce kidney damage. Diabetes, liver pathologies, rhabdomyolysis, and intestinal microbiota have been identified as pre-renal factors, and lithiasis or blood clots in the ureters, prostate cancer, urethral obstructions, prostate elongation, and urinary tract infections are post-renal factors. Additionally, the nephrotoxicity of drugs has been highlighted as a crucial factor inducing kidney injuries. Due to the adverse effects of drugs, it is necessary to point to other alternatives to complement the treatment of these diseases, such as nephroprotective agents. Plants are a wide source of nephroprotective substances and can have beneficial effects in different levels of the physiological pathways which lead to kidney damage. In traditional medicines, plants are used as antioxidants, anti-inflammatories, diuretics, and anticancer agents, among other benefits. However, the mechanism of action of some plants empirically used remains unknown and scientific data are required to support their nephroprotective effects. The present work reviewed the plants with a beneficial effect on kidney diseases. The classification of nephroprotective plants according to the clinical definition of pre-renal, intrinsic, and post-renal factors is proposed to orient their use as complementary treatments.
Collapse
Affiliation(s)
- Mario Adrián Tienda-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
| | - Zoé P. Morreeuw
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
| | - Anaberta Cardador-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
| | - Ernesto Sabath
- Departamento de Nefrología, Hospital General de Querétaro, Queretaro 76175, Mexico;
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla 76230, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
- Correspondence: (E.M.M.-M.); (H.M.N.I.); (R.P.-S.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
- Correspondence: (E.M.M.-M.); (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (M.A.T.-V.); (Z.P.M.); (J.E.S.-H.); (A.C.-M.)
- Correspondence: (E.M.M.-M.); (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
26
|
Huynh TPN, Bowater RP, Bernuzzi F, Saha S, Wormstone IM. GSH Levels Serve As a Biological Redox Switch Regulating Sulforaphane-Induced Cell Fate in Human Lens Cells. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34854886 PMCID: PMC8648057 DOI: 10.1167/iovs.62.15.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Sulforaphane (SFN) is a therapeutic phytochemical agent for many health conditions. SFN-induced cytotoxicity is shown to have promise in preventing posterior capsule opacification (PCO). In the current study, we aimed to elucidate key processes and mechanisms linking SFN treatment to lens cell death. Methods The human lens epithelial cell line FHL124 and central anterior epithelium were used as experimental models. Cell death was assessed by microscopic observation and cell damage/viability assays. Gene or protein levels were assessed by TaqMan RT-PCR or immunoblotting. Mitochondrial networks and DNA damage were assessed by immunofluorescence. Mitochondrial membrane potential, activating transcription factor 6 (ATF6) activity, ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), and glutathione reductase (GR) activity were measured using different light reporter assays. SFN metabolites were analyzed by LC-MS/MS. Results Treatment with N-acetylcysteine (NAC), a reactive oxygen species scavenger, prevented SFN-induced cell death in both models. NAC also significantly protected FHL124 cells from SFN-induced mitochondrial dysfunctions, endoplasmic reticulum stress (ERS), DNA damage and autophagy. SFN significantly depleted GSH, the major antioxidant in the eye, and reduced GR activity, despite doubling its protein levels. The most abundant SFN conjugate detected in lens cells following SFN application was SFN-GSH. The addition of GSH protected lens cells from all SFN-induced cellular events. Conclusions SFN depletes GSH levels in lens cells through conjugation and inhibition of GR activity. This leads to increased reactive oxygen species and oxidative stress that trigger mitochondrial dysfunction, ERS, autophagy, and DNA damage, leading to cell death. In summary, the work presented provides a mechanistic understanding to support the therapeutic application of SFN for PCO and other disorders.
Collapse
Affiliation(s)
| | - Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Federico Bernuzzi
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Shikha Saha
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - I. Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
27
|
Temviriyanukul P, Kittibunchakul S, Trisonthi P, Inthachat W, Siriwan D, Suttisansanee U. Analysis of Phytonutrients, Anti-Mutagenic and Chemopreventive Effects of Tropical Fruit Extracts. Foods 2021; 10:2600. [PMID: 34828882 PMCID: PMC8621897 DOI: 10.3390/foods10112600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Thailand is located in the tropics and a wide variety of fruits are grown commercially. However, studies regarding the phytonutrients, anti-mutagenic and chemopreventive effects of these fruits are limited. Thus, phytochemical profiles and inhibition of key enzymes involved in obesity and diabetes, together with anti-mutagenic and chemopreventive properties of eight tropical fruit extracts cultivated in Thailand, including Psidium guajava 'Kimju', Psidium guajava 'Keenok', Ananas comosus 'Pattavia', Ananas comosus 'Phulae', Durio zibethinus 'Chanee', Durio zibethinus 'Monthong', Carica papaya 'Khaekdum' and Mangifera indica 'Namdokmai' were investigated. Different cultivars were also compared. Results showed that M. indica 'Namdokmai' was the most antioxidant-rich extract containing abundant 4-hydroxybenzoic acid and its derivative, gallic acid, as the main phenolics. M. indica 'Namdokmai' also exhibited high inhibitory capacities (>60% inhibition under studied conditions) against lipase, α-amylase and α-glucosidase, key enzymes as drug targets for controlling obesity and type 2 diabetes. Interestingly, all fruit extracts suppressed food mutagen-induced DNA mutations assayed by the Ames test, especially M. indica 'Namdokmai' and C. papaya 'Khaekdum' (>50% inhibition at 200 µg/plate). The M. indica 'Namdokmai' was also the most potent extract for suppression of cancer promotion (>90% inhibition at 200 µg/mL) followed by P. guajava 'Kimju', P. guajava 'Keenok' and C. papaya 'Khaekdum'. Results potentially indicated that fruit intake after overcooked meat consumption might supplement nutrients and fiber and also reduce DNA mutation sources.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (W.I.)
| | - Suwapat Kittibunchakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (W.I.)
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (W.I.)
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (W.I.)
| |
Collapse
|
28
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
29
|
Yoo S, Yang HC, Lee S, Shin J, Min S, Lee E, Song M, Lee D. A Deep Learning-Based Approach for Identifying the Medicinal Uses of Plant-Derived Natural Compounds. Front Pharmacol 2020; 11:584875. [PMID: 33519445 PMCID: PMC7845697 DOI: 10.3389/fphar.2020.584875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
Medicinal plants and their extracts have been used as important sources for drug discovery. In particular, plant-derived natural compounds, including phytochemicals, antioxidants, vitamins, and minerals, are gaining attention as they promote health and prevent disease. Although several in vitro methods have been developed to confirm the biological activities of natural compounds, there is still considerable room to reduce time and cost. To overcome these limitations, several in silico methods have been proposed for conducting large-scale analysis, but they are still limited in terms of dealing with incomplete and heterogeneous natural compound data. Here, we propose a deep learning-based approach to identify the medicinal uses of natural compounds by exploiting massive and heterogeneous drug and natural compound data. The rationale behind this approach is that deep learning can effectively utilize heterogeneous features to alleviate incomplete information. Based on latent knowledge, molecular interactions, and chemical property features, we generated 686 dimensional features for 4,507 natural compounds and 2,882 approved and investigational drugs. The deep learning model was trained using the generated features and verified drug indication information. When the features of natural compounds were applied as input to the trained model, potential efficacies were successfully predicted with high accuracy, sensitivity, and specificity.
Collapse
Affiliation(s)
- Sunyong Yoo
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Hyung Chae Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Seongyeong Lee
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Jaewook Shin
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Seyoung Min
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Eunjoo Lee
- Big Data Steering Department, National Health Insurance Service, Wonju, South Korea
| | - Minkeun Song
- Department of Physical and Rehabilitation Medicine, Research Institute of Medical Science, Cardiovascular Research Institute, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Doheon Lee
- Bio-Synergy Research Center, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
30
|
Yusof WNSW, Abdullah H. Phytochemicals and Cytotoxicity of Quercus infectoria Ethyl Acetate Extracts on Human Cancer Cells. Trop Life Sci Res 2020; 31:69-84. [PMID: 32963712 PMCID: PMC7485533 DOI: 10.21315/tlsr2020.31.1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conventional and modern cancer treatment were reported to manifest adverse effects to the patients. More researches were conducted to search for selective cytotoxic agent of plant natural product on cancer cells. The presences of wide range phytochemicals in Quercus infectoria (QI) extract have been implicated with the cytotoxic effect against various types of cancer cell which remain undiscovered. This present study aimed to evaluate cytotoxic effect of QI extracts on selected human cancer cells and then, the most potent extract was further analysed for general phytochemical constituents. QI galls were extracted successively with n-hexane, ethyl acetate and methanol yielded three main extracts; n-hexane (QIH), ethyl acetate (QIEA) and methanol (QIM), respectively. The most potent extract was qualitatively analysed for the present of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. Next, the extracts were tested to determine the cytotoxic activity against cervical cancer cells (HeLa), breast cancer cells (MDA-MB-231) and liver cancer cells (Hep G2) using MTT assay. Cytotoxic activity of QI extracts against normal fibroblast (L929) cell line was also evaluated to determine the cytoselective property. Meanwhile, DMSO-treated cells served as negative control while cisplatin-treated cells served as positive control. The most potent extract then chosen to be further investigated for DNA fragmentation as hallmark of apoptosis using Hoechst staining. Qualitative phytochemical analysis revealed the presence of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. QIEA extract exhibited the most potent cytotoxic activity against HeLa cells with (IC50 value = 6.33 ± 0.33 μg/mL) and showed cytoselective property against L929 cells. DNA fragmentation revealed QIEA induced apoptosis in the treated cells. The richness of phytochemical constituents in QIEA extract might contribute to the potency of cytotoxic activity towards HeLa cells.
Collapse
Affiliation(s)
- Wan Nur Suzilla Wan Yusof
- School of Health Sciences, USM Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- School of Health Sciences, USM Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
31
|
Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020; 25:molecules25081833. [PMID: 32316274 PMCID: PMC7221665 DOI: 10.3390/molecules25081833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application.
Collapse
|
32
|
|
33
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
34
|
Thermal Analysis of Aliphatic Polyester Blends with Natural Antioxidants. Polymers (Basel) 2020; 12:polym12010074. [PMID: 31906547 PMCID: PMC7023653 DOI: 10.3390/polym12010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this research was to enhance thermal stability of aliphatic polyester blends via incorporation of selected natural antioxidants of plant origin. Thermal methods of analysis, including differential scanning calorimetry (DSC) and thermogravimetry (TGA), are significant tools for estimating the stabilization effect of polyphenols in a polymer matrix. Thermal stability was determined by analyzing thermogravimetric curves. Polymers with selected antioxidants degraded more slowly with rising temperature in comparison to reference samples without additives. This property was also confirmed by results obtained from differential scanning calorimetry (DSC), where the difference between the oxidation temperatures of pure material and polymer with natural stabilizers was observed. According to the results, the materials with selected antioxidants, including trans-chalcone, flavone and lignin have higher oxidation temperature than the pure ones, which confirms that chosen phytochemicals protect polymers from oxidation. Moreover, based on the colour change results or FT-IR spectra analysis, some of the selected antioxidants, including lignin and trans-chalcone, can be utilized as colorants or aging indicators. Taking into account the data obtained, naturally occurring antioxidants, including polyphenols, can be applied as versatile pro-ecological additives for biodegradable and bio-based aliphatic polyesters to obtain fully environmentally friendly materials dedicated for packaging industry.
Collapse
|
35
|
Cingiz MÖ, Diri B. Two-tier combinatorial structure to integrate various gene co-expression networks of prostate cancer. Gene 2019; 721:144102. [PMID: 31499125 DOI: 10.1016/j.gene.2019.144102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 11/29/2022]
Abstract
Advances in DNA sequencing technologies enable researchers to integrate various biological datasets in order to reveal hidden relations at the molecular level. In this study, we present a two-tiered combinatorial structure (TTCS) to integrate gene co-expression networks (GCNs) that are inferred from microarray gene expression, RNA-Seq and miRNA-target gene data. In the initial phase of TTCS, we derive GCNs by using gene network inference (GNI) algorithms for each dataset. In the first and second integration phases, we use straightforward methods: intersection, union and simple majority voting to combine GCNs. We use overlap, topological and biological analyses in performance evaluation and investigate the integration effects of GCNs separately for all phases. Our results prove that the first integration phase has limited contribution on performance. However, combining the biological datasets in the second phase significantly enhances the overlap and topological performance analyses.
Collapse
Affiliation(s)
| | - Banu Diri
- Computer Engineering Department, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
36
|
Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2716870. [PMID: 31737167 PMCID: PMC6815645 DOI: 10.1155/2019/2716870] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
A growing awareness of the mechanisms by which phytochemicals can influence upstream endogenous cellular defence processes has led to intensified research into their potential relevance in the prevention and treatment of disease. Pharmaceutical medicine has historically looked to plants as sources of the starting materials for drug development; however, the focus of nutraceutical medicine is to retain the plant bioactive in as close to its native state as possible. As a consequence, the potency of a nutraceutical concentrate or an extract may be lower than required for significant gene expression. The molecular structure of bioactive phytochemicals to a large extent determines the molecule's bioavailability. Polyphenols are abundant in dietary phytochemicals, and extensive in vitro research has established many of the signalling mechanisms involved in favourably modulating human biochemical pathways. Such pathways are associated with core processes such as redox modulation and immune modulation for infection control and for downregulating the synthesis of inflammatory cytokines. Although the relationship between oxidative stress and chronic disease continues to be affirmed, direct-acting antioxidants such as vitamins A, C, and E, beta-carotene, and others have not yielded the expected preventive or therapeutic responses, even though several large meta-analyses have sought to evaluate the potential benefit of such supplements. Because polyphenols exhibit poor bioavailability, few of their impressive in vitro findings have been replicated in vivo. SFN, an aliphatic isothiocyanate, emerges as a phytochemical with comparatively high bioavailability. A number of clinical trials have demonstrated its ability to produce favourable outcomes in conditions for which there are few satisfactory pharmaceutical solutions, foreshadowing the potential for SFN as a clinically relevant nutraceutical. Although myrosinase-inert broccoli sprout extracts are widely available, there now exist myrosinase-active broccoli sprout supplements that yield sufficient SFN to match the doses used in clinical trials.
Collapse
|
37
|
Afolabi OK, Aderibigbe FA, Folarin DT, Arinola A, Wusu AD. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: mitigating potential of epicatechin. Heliyon 2019; 5:e02274. [PMID: 31440603 PMCID: PMC6700339 DOI: 10.1016/j.heliyon.2019.e02274] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cypermethrin (CYP), a synthetic pyrethroid is a common environmental toxicant owing to its wide usage as a broad-spectrum insecticide. Its exposure to non-target organisms, including man, elicits numerous adverse effects making it a major public health issue. Epicatechin (EC) has proven anti-oxidative and anti-inflammatory properties. The present study was undertaken to evaluate the protective efficacy of epicatechin with regards to altered oxidative and inflammatory parameters subsequent to CYP treatment in rats. Animals were divided into four groups. The first group served as the control, while groups 2, 3, and 4 were orally treated with EC (30 mg kg-1 body weight), CYP (25 mg kg-1 body weight), and CYP plus EC, respectively. Oral administration of CYP for 14 days increased the levels of oxidative stress markers such as malondialdehyde, lipid hydroperoxides, and advanced oxidized protein products in the liver and kidney. These were accompanied by a decrease in glutathione and total antioxidant capacity levels. The activity of the enzyme superoxide dismutase was increased while catalase and glutathione peroxidase activities were decreased in these organs. Moreover, CYP increased plasma levels of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor alpha. The plasma content of the nitrative nucleic acid marker, 8-nitroguanine was also markedly elevated by CYP. Administration of EC to CYP-exposed rats mitigated the induced oxidative and inflammatory effects. These data suggest that EC can attenuate the toxic effects induced by CYP exposure.
Collapse
|
38
|
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N, Sharifi-Rad J. Plants of Genus Mentha: From Farm to Food Factory. PLANTS (BASEL, SWITZERLAND) 2018; 7:E70. [PMID: 30181483 PMCID: PMC6161068 DOI: 10.3390/plants7030070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
Abstract
Genus Mentha, a member of Lamiaceae family, encompasses a series of species used on an industrial scale and with a well-described and developed culture process. Extracts of this genus are traditionally used as foods and are highly valued due to the presence of significant amounts of antioxidant phenolic compounds. Many essential oil chemotypes show distinct aromatic flavor conferred by different terpene proportions. Mint extracts and their derived essential oils exert notable effects against a broad spectrum of bacteria, fungi or yeasts, tested both in vitro or in various food matrices. Their chemical compositions are well-known, which suggest and even prompt their safe use. In this review, genus Mentha plant cultivation, phytochemical analysis and even antimicrobial activity are carefully described. Also, in consideration of its natural origin, antioxidant and antimicrobial properties, a special emphasis was given to mint-derived products as an interesting alternative to artificial preservatives towards establishing a wide range of applications for shelf-life extension of food ingredients and even foodstuffs. Mentha cultivation techniques markedly influence its phytochemical composition. Both extracts and essential oils display a broad spectrum of activity, closely related to its phytochemical composition. Therefore, industrial implementation of genus Mentha depends on its efficacy, safety and neutral taste.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Jelena Matejić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr Zorana Đinđića 81, 18000 Niš, Serbia.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Razieh Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615585, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, 4070386 VIII-Bio Bio Region, Chile.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|