1
|
Amilon A, Olsen RF, Østergaard SV. Concentration of disability in families: Intergenerational transmission or assortative mating? ADVANCES IN LIFE COURSE RESEARCH 2024; 62:100641. [PMID: 39442248 DOI: 10.1016/j.alcr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Although studies have established that health and socioeconomic disadvantages often accumulate within families, little is known about the extent to which disability is concentrated within certain families and transmitted across generations. We use retrospective information about growing up with parent(s) or sibling(s) with a disability from the 2020 wave of the representative Survey of Health, Impairment and Living Conditions in Denmark (N = 7709). Building on this data and applying a family life course perspective, we examine if growing up with parent(s) and/or sibling(s) with a disability is associated with 1) having a disability oneself, 2) the probability of having a partner with a disability and 3) the occurrence of disability in the next generation. Our findings demonstrate that the odds of having a disability are higher among individuals who grew up with parent(s) and/or sibling(s) with a disability. While the odds of being partnered are not associated with family members' disabilities, we find a positive association between having grown up with parents with a disability and having a partner with a disability. Moreover, having a child with a disability is positively associated with one's own, parents', siblings' and partner's disabilities. We thus conclude that disability is concentrated within certain families and that both intergenerational transmission and assortative mating contribute to this concentration.
Collapse
Affiliation(s)
- Anna Amilon
- The Danish Center for Social Science Research, Herluf Trolles Gade 11, Copenhagen 1052, Denmark.
| | - Rikke Fuglsang Olsen
- The Danish Center for Social Science Research, Herluf Trolles Gade 11, Copenhagen 1052, Denmark.
| | | |
Collapse
|
2
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
6
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
8
|
Hong J, Tong H, Wang X, Lv X, He L, Yang X, Wang Y, Xu K, Liang Q, Feng Q, Niu T, Niu X, Lu Y. Embryonic diapause due to high glucose is related to changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1135837. [PMID: 38170036 PMCID: PMC10759208 DOI: 10.3389/fendo.2023.1135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction The adverse effects of high glucose on embryos can be traced to the preimplantation stage. This study aimed to observe the effect of high glucose on early-stage embryos. Methods and results Seven-week-old ICR female mice were superovulated and mated, and the zygotes were collected. The zygotes were randomly cultured in 5 different glucose concentrations (control, 20mM, 40mM, 60mM and 80mM glucose). The cleavage rate, blastocyst rate and total cell number of blastocyst were used to assess the embryo quality. 40 mM glucose was selected to model high glucose levels in this study. 40mM glucose arrested early embryonic development, and the blastocyst rate and total cell number of the blastocyst decreased significantly as glucose concentration was increased. The reduction in the total cell number of blastocysts in the high glucose group was attributed to decreased proliferation and increased cell apoptosis, which is associated with the diminished expression of GLUTs (GLUT1, GLUT2, GLUT3). Furthermore, the metabolic characterization of blastocyst culture was observed in the high-glucose environment. Discussion The balance of glycolysis and oxidative phosphorylation at the blastocyst stage was disrupted. And embryo development arrest due to high glucose is associated with changes in glycolysis and oxidative phosphorylation, as well as abnormalities in the TCA cycle and amino acid metabolism.
Collapse
Affiliation(s)
- Jiewei Hong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Wang
- Party Committee Office, Shanxi Health Vocational College, Shanxi, China
| | - Xiaoyan Lv
- Library Collection and Editing Department, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan He
- Rehabilitation Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhi Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Wang
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Kaixia Xu
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Qianjin Feng
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Tingli Niu
- Medical Insurance Office, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xin Niu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Lu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Capobianco E, Pirrone I. Paternal programming of fetoplacental and offspring metabolic disorders. Placenta 2023; 141:71-77. [PMID: 37355440 DOI: 10.1016/j.placenta.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
The alarming increase in the prevalence of metabolic pathologies is of worldwide concern and has been linked not only to genetic factors but also to a large number of non-genetic factors. In recent years, there has been increasing interest in the study of the programming of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity, by paternal exposure, a paradigm termed "Paternal Origins of Health and Disease" (POHaD). This term derives from the better known "Developmental Origins of Health and Disease" (DOHaD), which focuses on the involvement of the maternal intrauterine environment and complications during pregnancy associated with the health and disease of the offspring. Studies on paternal programming have documented environmentally induced epigenetic modifications in the male germline and in seminal plasma, which lead to intergenerational and transgenerational phenotypes, evident already during fetoplacental development. Studies with animal models at both ends of the nutritional spectrum (undernutrition or overnutrition) have been performed to understand the possible mechanisms and signaling pathways leading to the programming of metabolic disorders by exploring epigenetic changes throughout the life of the offspring. The aim of this review was to address the evidence of the programming of fetoplacental developmental alterations and metabolic pathologies in the offspring of males with metabolic disorders and unhealthy exposures, highlighting the mechanisms involved in such programming and looking for paternal interventions to reduce negative health outcomes in the offspring.
Collapse
Affiliation(s)
- Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| | - Irune Pirrone
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| |
Collapse
|
10
|
Shrivastava K, Swaminathan T, Barlotta A, Athreya V, Choudhry H, Rossi MA. Maternal overnutrition is associated with altered synaptic input to lateral hypothalamic area. Mol Metab 2023; 71:101702. [PMID: 36898526 PMCID: PMC10025284 DOI: 10.1016/j.molmet.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Maternal overnutrition is associated with adverse outcomes in offspring, including increased risk for obesity and diabetes. Here, we aim to test the effects of maternal obesity on lateral hypothalamic feeding circuit function and determine the relationship with body weight regulation. METHODS Using a mouse model of maternal obesity, we assessed how perinatal overnutrition affected food intake and body weight regulation in adult offspring. We then used channelrhodopsin-assisted circuit mapping and electrophysiological recordings to assess the synaptic connectivity within an extended amygdala-lateral hypothalamic pathway. RESULTS We show that maternal overnutrition during gestation and throughout lactation produces offspring that are heavier than controls prior to weaning. When weaned onto chow, the body weights of over-nourished offspring normalize to control levels. However, when presented with highly palatable food as adults, both male and female maternally over-nourished offspring are highly susceptible to diet-induced obesity. This is associated with altered synaptic strength in an extended amygdala-lateral hypothalamic pathway, which is predicted by developmental growth rate. Additionally, lateral hypothalamic neurons receiving synaptic input from the bed nucleus of the stria terminalis have enhanced excitatory input following maternal overnutrition which is predicted by early life growth rate. CONCLUSIONS Together, these results demonstrate one way in which maternal obesity rewires hypothalamic feeding circuits to predispose offspring to metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A Rossi
- Child Health Institute of New Jersey, USA; Department of Psychiatry, Robert Wood Johnson Medical School, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Lin Y, Chen Z, Qian Q, Wang Y, Xiu X, Ou P, Fang J, Li G. Effects of paternal obesity on maternal-neonatal outcomes and long-term prognosis in adolescents. Front Endocrinol (Lausanne) 2023; 14:1114250. [PMID: 37082119 PMCID: PMC10111374 DOI: 10.3389/fendo.2023.1114250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveThis study evaluated whether paternal body mass index (BMI) before pregnancy was a risk factor for maternal-neonatal outcomes and long-term prognosis in offspring.MethodsThis study included 29,518 participants from eight cities in Fujian, China using a stratified cluster random sampling method from May to September 2019. They were divided into four groups based on paternal BMI. Univariate and multivariate logistic regression were used to explore the relationship between paternal BMI groups, maternal-neonatal outcomes, and long-term prognosis in offspring. Further subgroup analysis was conducted to examine the stability of the risk. ResultsThe incidences of hypertensive disorder complicating pregnancy (HDCP), cesarean delivery, gestational weight gain (GWG) over guideline, and macrosomia were significantly higher in the paternal overweight and obesity group. Importantly, this study demonstrated that the incidence of asthma, hand-foot-and-mouth disease (HFMD), anemia, dental caries, and obesity of adolescents in paternal obesity increased. Furthermore, logistic regression and subgroup analysis confirm paternal obesity is a risk factor for HDCP, cesarean delivery, and macrosomia. It caused poor long-term prognosis in adolescents, including asthma, dental caries, and HFMD.ConclusionsPaternal obesity is a risk factor for adverse maternal-neonatal outcomes and poor long-term prognosis in adolescents. In addition to focusing on maternal weight, expectant fathers should pay more attention to weight management since BMI is a modifiable risk factor. Preventing paternal obesity can lead to better maternal and child outcomes. It would provide new opportunities for chronic diseases.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Healthcare, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhiwei Chen
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qinfang Qian
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yanxia Wang
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Xiu
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Ping Ou
- Department of Healthcare, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| | - Jiaoning Fang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| | - Guobo Li
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Guobo Li, ; Jiaoning Fang, ; Ping Ou,
| |
Collapse
|
12
|
Yao WY, Li L, Jiang HR, Yu YF, Xu WH. Transgenerational associations of parental famine exposure in early life with offspring risk of adult obesity in China. Obesity (Silver Spring) 2023; 31:279-289. [PMID: 36507560 DOI: 10.1002/oby.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the transgenerational associations between exposure to famine in early life and obesity. METHODS This study used the longitudinal data from the China Health and Nutrition Survey from 1989 to 2015. A total of 1113 fathers and 1207 mothers (946 mother-father pairs) born in 1955 to 1966 and 1895 adult offspring were included. Offspring were classified into subgroups according to the famine exposure of their parents (unexposed, maternal exposed, paternal exposed, parental exposed) and exposure timing (during fetal development, childhood). RESULTS Maternal exposure to famine in early life was associated with elevated levels of BMI, waist circumference, overweight, and central obesity of their children, whereas paternal exposure was inversely associated with these measurements. Compared with children of unexposed parents (P0M0), the maternal exposed group (P0M1) had higher mean BMI, by 1.3 kg/m2 (95% CI: 0.3 to 2.4); waist circumference, by 1.5 cm (-1.0 to 3.9); overweight (odds ratio [OR] [95% CI]: 3.1 [1.6 to 6.1]); and central obesity (OR [95% CI]: 1.9 [1.02 to 3.7]). No significant heterogeneity was observed in the associations by sex of offspring. CONCLUSIONS Fetal and early childhood exposure to famine in parents may be associated with their children's risk of obesity during adulthood. A better understanding of the transgenerational associations is important for developing strategies to reduce obesity risk in future generations.
Collapse
Affiliation(s)
- Wei-Yuan Yao
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institite, Fudan University, Yiwu, China
| | - Leah Li
- Population, Policy and Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hui-Ru Jiang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yong-Fu Yu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Wang-Hong Xu
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institite, Fudan University, Yiwu, China
| |
Collapse
|
13
|
Liu CA, Liu T, Ruan GT, Ge YZ, Song MM, Xie HL, Lin SQ, Deng L, Zhang HY, Zhang Q, Shi HP. The relationship between fat distribution in central region and comorbidities in obese people: Based on NHANES 2011-2018. Front Endocrinol (Lausanne) 2023; 14:1114963. [PMID: 36843589 PMCID: PMC9945539 DOI: 10.3389/fendo.2023.1114963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Central obesity is closely related to comorbidity, while the relationship between fat accumulation pattern and abnormal distribution in different parts of the central region of obese people and comorbidity is not clear. This study aimed to explore the relationship between fat distribution in central region and comorbidity among obese participants. METHODS We used observational data of NHANES 2011-2018 to identify 12 obesity-related comorbidities in 7 categories based on questionnaire responses from participants. Fat distribution is expressed by fat ratio, including Android, Gynoid, visceral, subcutaneous, visceral/subcutaneous (V/S), and total abdominal fat ratio. Logistic regression analysis were utilized to elucidate the association between fat distribution and comorbidity. RESULTS The comorbidity rate was about 54.1% among 4899 obese participants (weighted 60,180,984, 41.35 ± 11.16 years, 57.5% female). There were differences in fat distribution across the sexes and ages. Among men, Android fat ratio (OR, 4.21, 95% CI, 1.54-11.50, Ptrend=0.007), visceral fat ratio (OR, 2.16, 95% CI, 1.42-3.29, Ptrend<0.001) and V/S (OR, 2.07, 95% CI, 1.43-2.99, Ptrend<0.001) were independent risk factors for comorbidity. Among these, there was a "J" shape correlation between Android fat ratio and comorbidity risk, while visceral fat ratio and V/S exhibited linear relationships with comorbidity risk. The Gynoid fat ratio (OR, 0.87, 95%CI, 0.80-0.95, Ptrend=0.001) and subcutaneous fat ratio (OR, 0.81, 95%CI, 0.67-0.98, Ptrend=0.016) both performed a protective role in the risk of comorbidity. In women, Android fat ratio (OR, 4.65, 95% CI, 2.11-10.24, Ptrend=0.020), visceral fat ratio (OR, 1.83, 95% CI, 1.31-2.56, Ptrend=0.001), and V/S (OR, 1.80, 95% CI, 1.32-2.45, Ptrend=0.020) were also independent risk factors for comorbidity, with a dose-response relationship similar to that of men. Only the Gynoid fat ratio (OR, 0.93, 95% CI, 0.87-0.99, Ptrend=0.016) had a protective effect on female comorbidity. This association was also seen in obese participants of different age groups, comorbidity numbers, and comorbidity types, although it was more statistically significant in older, complex comorbidity, cardiovascular, cerebrovascular, and metabolic diseases. CONCLUSIONS In the obese population, there were strong correlation between fat distribution in central region and comorbidity, which was affected by sex, age, number of comorbidities, and type of comorbidity.
Collapse
Affiliation(s)
- Chen-An Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Tong Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Guo-Tian Ruan
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Li Deng
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
| | - Qi Zhang
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
- Department of Colorectal Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Capital Medical University, Beijing, China
- *Correspondence: Han-Ping Shi,
| |
Collapse
|
14
|
Ajackson M, Nagagata BA, Marcondes-de-Castro IA, Mandarim-de-Lacerda CA, Aguila MB. Adult mice offspring of obese mothers supplemented with melatonin show lessened liver steatosis, inflammation, oxidative stress, and endoplasmic reticulum stress. Life Sci 2023; 312:121253. [PMID: 36481166 DOI: 10.1016/j.lfs.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
AIMS To investigate, in the liver of adult offspring, the possible effects of melatonin supplementation in the obese mother during pregnancy and lactation. MAIN METHODS C57BL/6 females were fed with a control (C) or a high-fat (HF) diet and supplemented with melatonin (Mel) during the pregnancy and lactation, forming the groups: C, CMel, HF, and HFMel. After weaning until three months old, the offspring only received the C diet. KEY FINDINGS The HF mothers and their offspring showed higher body weight (BW) than the C mothers and offspring. However, at 3-mo-old, BW was reduced in HFMel vs. HF offspring. Also, plasmatic and liver lipid markers increased in HF vs. C offspring but were reduced in HFMel vs. HF offspring. Liver lipid content was lessened in HFMel vs. HF offspring by 50 %. Also, lipid metabolism, pro-inflammatory and endoplasmic reticulum (ER) stress genes were higher expressed in HF vs. C offspring but reduced in HFMel vs. HF offspring. Contrarily, beta-oxidation and antioxidant enzyme genes were less expressed in HF vs. C offspring but improved in HFMel vs. HF offspring. Finally, AMPK/mTOR pathway genes, initially dysregulated in the HF, were restored in the HFMel offspring. SIGNIFICANCE The obese mother leads to liver alterations in the offspring. Current findings demonstrated the maternal melatonin supplementation during pregnancy and lactation in adult offspring's liver. Consequently, the effects were seen in mitigating the liver's AMPK/mTOR pathway genes, lipogenesis, beta-oxidation, inflammation, oxidative stress, and ER stress, preventing liver disease progression in the offspring.
Collapse
Affiliation(s)
- Matheus Ajackson
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilitch A Marcondes-de-Castro
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Freitas RGBON, Vasques ACJ, Fernandes GR, Ribeiro FB, Solar I, Barbosa MG, Almeida-Pititto B, Geloneze B, Ferreira SRG. Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus? Eur J Clin Nutr 2022; 76:1705-1712. [PMID: 35906333 DOI: 10.1038/s41430-022-01182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Intrauterine environment can influence the offspring's body adiposity whose distribution affect the cardiometabolic risk. Underlying mechanisms may involve the gut microbiome. We investigated associations of gestational weight gain with the adult offspring's gut microbiota, body adiposity and related parameters in participants of the Nutritionists' Health Study. METHODS This cross-sectional analysis included 114 women who had early life and clinical data, body composition, and biological samples collected. The structure of fecal microbiota was analyzed targeting the V4 region of the 16 S rRNA gene. Beta diversity was calculated by PCoA and PERMANOVA used to test the impact of categorical variables into the diversity. Bacterial clusters were identified based on the Jensen-Shannon divergence matrix and Calinski-Harabasz index. Correlations were tested by Spearman coefficient. RESULTS Median age was 28 (IQR 24-31) years and BMI 24.5 (IQR 21.4-28.0) kg/m2. Fifty-eight participants were assigned to a profile driven by Prevotella and 56 to another driven by Blautia. Visceral adipose tissue was correlated to abundance of Acidaminococcus genus considering the entire sample (r = 0.37; p < 0.001) and the profiles (Blautia: r = 0.35, p = 0.009, and Prevotella: r = 0.38, p = 0.006). In Blautia-driven profile, the same genus was also correlated to maternal gestational weight gain (r = 0.38, p = 0.006). CONCLUSIONS Association of Acidaminococcus with gestational weight gain could reinforce the relevance with mothers' nutritional status for gut colonization at the beginning of life. Whether Acidaminococcus abundance could be a marker for central distribution of adiposity in young women requires further investigation.
Collapse
Affiliation(s)
- R G B O N Freitas
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - A C J Vasques
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - G R Fernandes
- Oswaldo Cruz Foundation, Belo Horizonte, São Paulo, Brazil
| | - F B Ribeiro
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - I Solar
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - M G Barbosa
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - B Almeida-Pititto
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - B Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| | - S R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Billah MM, Khatiwada S, Morris MJ, Maloney CA. Effects of paternal overnutrition and interventions on future generations. Int J Obes (Lond) 2022; 46:901-917. [PMID: 35022547 PMCID: PMC9050512 DOI: 10.1038/s41366-021-01042-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
In the last two decades, evidence from human and animal studies suggests that paternal obesity around the time of conception can have adverse effects on offspring health through developmental programming. This may make significant contributions to the current epidemic of obesity and related metabolic and reproductive complications like diabetes, cardiovascular disease, and subfertility/infertility. To date, changes in seminal fluid composition, sperm DNA methylation, histone composition, small non-coding RNAs, and sperm DNA damage have been proposed as potential underpinning mechanism to program offspring health. In this review, we discuss current human and rodent evidence on the impact of paternal obesity/overnutrition on offspring health, followed by the proposed mechanisms, with a focus on sperm DNA damage underpinning paternal programming. We also summarize the different intervention strategies implemented to minimize effects of paternal obesity. Upon critical review of literature, we find that obesity-induced altered sperm quality in father is linked with compromised offspring health. Paternal exercise intervention before conception has been shown to improve metabolic health. Further work to explore the mechanisms underlying benefits of paternal exercise on offspring are warranted. Conversion to healthy diets and micronutrient supplementation during pre-conception have shown some positive impacts towards minimizing the impact of paternal obesity on offspring. Pharmacological approaches e.g., metformin are also being applied. Thus, interventions in the obese father may ameliorate the potential detrimental impacts of paternal obesity on offspring.
Collapse
Affiliation(s)
| | - Saroj Khatiwada
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Margaret J Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | | |
Collapse
|
17
|
Rachakatla A, Kalashikam RR. Calorie Restriction-Regulated Molecular Pathways and Its Impact on Various Age Groups: An Overview. DNA Cell Biol 2022; 41:459-468. [PMID: 35451872 DOI: 10.1089/dna.2021.0922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calorie restriction (CR) if planned properly with regular exercise at different ages can result in healthy weight loss. CR can also have different beneficial effects on improving lifespan and decreasing the age-associated diseases by regulating physiological, biochemical, and molecular markers. The different pathways regulated by CR include:(1) AMP-activated protein kinase (AMPK), which involves PGC-1α, SIRT1, and SIRT3. AMPK also effects myocyte enhancer factor 2 (MEF2), peroxisome proliferator-activated receptor delta, and peroxisome proliferator-activated receptor alpha, which are involved in mitochondrial biogenesis and lipid oxidation; (2) Forkhead box transcription factor's signaling is related to the DNA repair, lipid metabolism, protection of protein structure, autophagy, and resistance to oxidative stress; (3) Mammalian target of rapamycin (mTOR) signaling, which involves key factors, such as S6 protein kinase-1 (S6K1), mTOR complex-1 (mTORC1), and 4E-binding protein (4E-BP). Under CR conditions, AMPK activation and mTOR inhibition helps in the activation of Ulk1 complex along with the acetyltransferase Mec-17, which is necessary for autophagy; (4) Insulin-like growth factor-1 (IGF-1) pathway downregulation protects against cancer and slows the aging process; (5) Nuclear factor kappa B pathway downregulation decreases the inflammation; and (6) c-Jun N-terminal kinase and p38 kinase regulation as a response to the stress. The acute and chronic CR both shows antidepression and anxiolytic action by effecting ghrelin/GHS-R1a signaling. CR also regulates GSK3β kinase and protects against age-related brain atrophy. CR at young age may show many deleterious effects by effecting different mechanisms. Parental CR before or during conception will also affect the health and development of the offspring by causing many epigenetic modifications that show transgenerational transmission. Maternal CR is associated with intrauterine growth retardation effecting the offspring in their adulthood by developing different metabolic syndromes. The epigenetic changes with response to paternal food supply also linked to offspring health. CR at middle and old age provides a significant preventive impact against the development of age-associated diseases.
Collapse
|
18
|
Lin J, Gu W, Huang H. Effects of Paternal Obesity on Fetal Development and Pregnancy Complications: A Prospective Clinical Cohort Study. Front Endocrinol (Lausanne) 2022; 13:826665. [PMID: 35360083 PMCID: PMC8963983 DOI: 10.3389/fendo.2022.826665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the association between paternal obesity and fetal development and pregnancy complications. Study Design This prospective cohort clinical trial analyzed data from 7683 women with singleton pregnancies. All study subjects were sequentially divided into four groups based on paternal BMI. We compared the differences in fetal growth and pregnancy complications between different paternal BMI groups by univariate logistic regression and independent t-test. Finally, the independent predictors of SGA and macrosomia were determined. Results The incidences of preeclampsia, cesarean section, SGA, macrosomia, and postpartum hemorrhage in the paternal obesity group were significantly higher than the normal BMI group. With the increase of paternal BMI, fetal ultrasound measurement parameter, neonatal and placental weight showed an increasing trend (trend P < 0.05). However, these differences disappeared in the obese group. The test for interaction showed the effect of paternal obesity on SGA and macrosomia was significantly affected by maternal obesity. We also found paternal obesity was an independent predictor of both SGA and macrosomia. Based on the above results, we plotted the Nomograms for clinical prediction. Conclusion Paternal obesity can affect fetal growth parameters and placental development, which has an adverse impact on pregnancy outcomes. Optimizing the paternal BMI will help improve the health of the next generation.
Collapse
Affiliation(s)
- Jing Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wei Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Eneanya ND, Boulware LE, Tsai J, Bruce MA, Ford CL, Harris C, Morales LS, Ryan MJ, Reese PP, Thorpe RJ, Morse M, Walker V, Arogundade FA, Lopes AA, Norris KC. Health inequities and the inappropriate use of race in nephrology. Nat Rev Nephrol 2022; 18:84-94. [PMID: 34750551 PMCID: PMC8574929 DOI: 10.1038/s41581-021-00501-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease is an important clinical condition beset with racial and ethnic disparities that are associated with social inequities. Many medical schools and health centres across the USA have raised concerns about the use of race - a socio-political construct that mediates the effect of structural racism - as a fixed, measurable biological variable in the assessment of kidney disease. We discuss the role of race and racism in medicine and outline many of the concerns that have been raised by the medical and social justice communities regarding the use of race in estimated glomerular filtration rate equations, including its relationship with structural racism and racial inequities. Although race can be used to identify populations who experience racism and subsequent differential treatment, ignoring the biological and social heterogeneity within any racial group and inferring innate individual-level attributes is methodologically flawed. Therefore, although more accurate measures for estimating kidney function are under investigation, we support the use of biomarkers for determining estimated glomerular filtration rate without adjustments for race. Clinicians have a duty to recognize and elucidate the nuances of racism and its effects on health and disease. Otherwise, we risk perpetuating historical racist concepts in medicine that exacerbate health inequities and impact marginalized patient populations.
Collapse
Affiliation(s)
- Nwamaka D Eneanya
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - L Ebony Boulware
- Division of General Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer Tsai
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Marino A Bruce
- Program for Research on Faith, Justice, and Health, Department of Behavioral and Social Sciences, University of Houston College of Medicine, Houston, TX, USA
| | - Chandra L Ford
- Center for the Study of Racism, Social Justice & Health, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Christina Harris
- VA Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Leo S Morales
- Division of General Internal Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Ryan
- Division of General Internal Medicine, University of Washington, Seattle, WA, USA
| | - Peter P Reese
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland J Thorpe
- Program for Research on Men's Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michelle Morse
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valencia Walker
- Department of Paediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Antonio A Lopes
- Clinical Epidemiology and Evidence-Based Medicine Unit of the Edgard Santos University Hospital and Department of Internal Medicine, Federal University of Bahia, Salvador, Brazil
| | - Keith C Norris
- VA Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
McPherson NO, Vincent AD, Zander-Fox D, Grieger JA. Birthweight associations with parental obesity: retrospective analysis of 1,778 singleton term births following assisted reproductive treatment. F S Rep 2021; 2:405-412. [PMID: 34934980 PMCID: PMC8655430 DOI: 10.1016/j.xfre.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/24/2021] [Accepted: 04/24/2021] [Indexed: 11/06/2022] Open
Abstract
Objective To determine the association of combined parental preconception overweight and obesity on infant birthweight. Design Retrospective study of fresh in vitro fertilization or intracytoplasmic sperm injection cycles (2009–2017). Setting Repromed, South Australia, assisted reproductive technology clinic. Patients Couples undergoing in vitro fertilization/intracytoplasmic sperm injection insemination with their own gametes and transfer of a fresh single blastocyst (N = 1,778). Intervention(s) None. Main Outcome Measures Parental body mass index (BMI) was recorded prior to cycle initiation. Infant birthweight was recorded at delivery. The impact of parental obesity and their interaction on first singleton term (≥37 weeks’ gestation) birthweight was assessed using linear regressions assessing nonlinearity and a pairwise linear interactions. Results In the base model where parental BMI is assumed linear, there was strong evidence for higher birthweight with increasing maternal BMI (11.2 g per maternal kg/m2; 95% confidence interval, 7.2, 15.1) but not paternal BMI. The inclusion of a pairwise linear interaction indicated that paternal BMI attenuates the positive association between maternal BMI and infant birthweight (interaction −0.88; 95% confidence interval, −1.49, −0.27). The inclusion of nonlinear maternal BMI terms did not change the conclusions. Conclusions Increases in the mean infant birthweight associated with maternal obesity are attenuated when the father is obese. While maternal BMI contributed more to the mean infant birthweight than paternal BMI, a couple-centered approach to preconception health advice is recommended, given the documented relationships between parental obesity and childhood weight beyond infancy. Further studies in both assisted reproductive technology and general population cohorts assessing the parental BMI interaction on infant birthweight are warranted.
Collapse
Affiliation(s)
- Nicole O McPherson
- Freemasons Center for Male Health and Wellbeing, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, South Australia, Australia.,Repromed, Dulwich, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Freemasons Center for Male Health and Wellbeing, University of Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, South Australia, Australia
| | - Deirdre Zander-Fox
- Robinson Research Institute, University of Adelaide, South Australia, Australia.,Repromed, Dulwich, South Australia, Australia.,Monash IVF Group, Clayton, Victoria, Australia.,Faculty of Science, Monash University, Clayton, Victoria, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Jessica A Grieger
- Robinson Research Institute, University of Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Tang L, Chen P, Yang L, Liu J, Zheng Y, Lin J, Chen S, Luo Y, Chen Y, Ma X, Zhang L. Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1551. [PMID: 34790757 PMCID: PMC8576681 DOI: 10.21037/atm-21-4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the influence of extrauterine growth restriction (EUGR) on pulmonary arterial pressure (PAP) and the transgenerational inheritance of promoter methylation changes in pulmonary vascular endothelial cells (PVECs) of 2 consecutive generations under EUGR stress. Methods After modeling, PAP values of F1 and F2 pups were investigated at 9-week-old. The methyl-DNA immune precipitation chip was used to analyze DNA methylation profiling. Differential enrichment peaks (DEPs) and regions of interest (ROIs) were identified, based on which Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and reactome pathway enrichments were analyzed. Results The F1 male rats in the EUGR group had significantly increased PAP levels compared to the control group; however, this increase was not observed in female rats. Interestingly, in F2 female rats, the EUGR group had decreased PAP. In the X chromosome of the F1 males, there were 16 differential ROI genes in the F1 generation, while in F2 females, there were 86 differential ROI genes. Similarly, there were 105 DEPs in the F1 generation and 38 DEPs in the F2 generation. In combination with the 5 common ROIs and 14 common DEPs, 18 genes were regarded as the key candidate genes associated with hereditable PAP variation in the EUGR model. Enrichment analysis showed that synaptic and neurotransmitter relative pathways might be involved in the process of EUGR-induced PAH development. Among common DEPs, Smad1 and Serpine1 were also found in 102 PAH-associated genes in the MalaCards database. Conclusions Together, there is a transgenerational inheritance of promoter methylation changes in the X chromosome in EUGR-induced PAP disorders, which involves the participation of synaptic and neurotransmitter relative pathways. Also, attenuated methylation of Smad1 and Serpine1 in the promoter region may be a partial driver of PAH in later life.
Collapse
Affiliation(s)
- Lili Tang
- Department of Neonatology, Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc., Wuxi, China
| | - Jiyuan Liu
- Fujian Medical University, Fuzhou, China
| | - Yuanfang Zheng
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Jincai Lin
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Senhua Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yinzhu Luo
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yanyan Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoying Ma
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liyan Zhang
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Fauste E, Panadero MI, Donis C, Otero P, Bocos C. Pregnancy Is Enough to Provoke Deleterious Effects in Descendants of Fructose-Fed Mothers and Their Fetuses. Nutrients 2021; 13:3667. [PMID: 34684668 PMCID: PMC8539712 DOI: 10.3390/nu13103667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
The role of fructose in the global obesity and metabolic syndrome epidemic is widely recognized. However, its consumption is allowed during pregnancy. We have previously demonstrated that maternal fructose intake in rats induces detrimental effects in fetuses. However, these effects only appeared in adult descendants after a re-exposure to fructose. Pregnancy is a physiological state that leads to profound changes in metabolism and hormone response. Therefore, we wanted to establish if pregnancy in the progeny of fructose-fed mothers was also able to provoke an unhealthy situation. Pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). An OGTT was performed on the 20th day of gestation, and they were sacrificed on the 21st day. Plasma and tissues from mothers and fetuses were analyzed. Although FF mothers showed higher AUC insulin values after OGTT in comparison to FC and CC rats, ISI was lower and leptinemia was higher in FC and FF rats than in the CC group. Accordingly, lipid accretion was observed both in liver and placenta in the FC and FF groups. Interestingly, fetuses from FC and FF mothers also showed the same profile observed in their mothers on lipid accumulation, leptinemia, and ISI. Moreover, hepatic lipid peroxidation was even more augmented in fetuses from FC dams than those of FF mothers. Maternal fructose intake produces in female progeny changes that alter their own pregnancy, leading to deleterious effects in their fetuses.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; (E.F.); (M.I.P.); (C.D.); (P.O.)
| |
Collapse
|
23
|
Retnakaran R, Wen SW, Tan H, Zhou S, Ye C, Shen M, Smith GN, Walker MC. Paternal weight prior to conception and infant birthweight: a prospective cohort study. Nutr Diabetes 2021; 11:28. [PMID: 34521807 PMCID: PMC8440552 DOI: 10.1038/s41387-021-00172-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVE Previous studies have consistently demonstrated that maternal weight status both before and during pregnancy is associated with infant birthweight. However, a fundamental limitation across this literature remains that previous studies have not evaluated the concomitant impact of paternal weight at conception, owing to the paucity of studies in which fathers were assessed prior to pregnancy. Thus, we established a cohort of preconception couples to prospectively evaluate the associations of maternal and paternal weight prior to pregnancy with infant birthweight at delivery. METHODS In this prospective observational cohort study, 1292 newly-married women and their partners in Liuyang, China, were assessed at median of 23.3 weeks before a singleton pregnancy, thereby enabling concomitant assessment of preconception maternal and paternal body mass index (BMI) in relation to infant birthweight. RESULTS Mean birthweight was 3294 ± 450 g with 147 neonates (11.4%) born large-for-gestational-age (LGA) and 94 (7.3%) small-for-gestational-age (SGA). After adjustment for maternal and paternal factors prior to conception (age, education, smoking, BMI, household income), length of gestation, total gestational weight gain, gestational diabetes, preeclampsia, and infant sex, it was noted that infant birthweight increased by 42.2 g (95% CI 29.5-54.8; p < 0.0001) per unit increase in maternal pregravid BMI and 10.7 g (95% CI 0.5-20.9; p = 0.04) per unit increase in paternal pregravid BMI. Maternal pregravid BMI explained 6.2% of the variance in birthweight whereas paternal BMI explained only 0.7%. Independent predictors of LGA delivery were maternal pregravid BMI (aOR = 1.91, 95% CI 1.50-2.44), maternal age (aOR = 1.48, 95% CI 1.09-2.00), and gestational weight gain (aOR = 1.80, 95% CI 1.40-2.30). Paternal pregravid BMI was not independently associated with LGA or SGA. CONCLUSION Paternal BMI prior to conception is associated with infant birthweight but only modestly so, in contrast to the dominant impact of maternal weight.
Collapse
Affiliation(s)
- Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada. .,Division of Endocrinology, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - Shi Wu Wen
- OMNI Research Group, Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, ON, Ottawa, Canada.,Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Public Health, Central South University, Changsha, China
| | - Hongzhuan Tan
- School of Public Health, Central South University, Changsha, China
| | - Shujin Zhou
- Liuyang Municipal Hospital of Maternal and Child Health, Beizheng, Liuyang, China
| | - Chang Ye
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada
| | - Minxue Shen
- OMNI Research Group, Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, ON, Ottawa, Canada.,Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Public Health, Central South University, Changsha, China
| | - Graeme N Smith
- Queen's Perinatal Research Unit, Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Mark C Walker
- OMNI Research Group, Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, ON, Ottawa, Canada.,Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients 2021; 13:nu13082818. [PMID: 34444978 PMCID: PMC8400857 DOI: 10.3390/nu13082818] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
It is well established that the maternal diet during the periconceptional period affects the progeny’s health. A growing body of evidence suggests that the paternal diet also influences disease onset in offspring. For many years, sperm was considered only to contribute half of the progeny’s genome. It now appears that it also plays a crucial role in health and disease in offspring’s adult life. The nutritional status and environmental exposure of fathers during their childhood and/or the periconceptional period have significant transgenerational consequences. This review aims to describe the effects of various human and rodent paternal feeding patterns on progeny’s metabolism and health, including fasting or intermittent fasting, low-protein and folic acid deficient food, and overnutrition in high-fat and high-sugar diets. The impact on pregnancy outcome, metabolic pathways, and chronic disease onset will be described. The biological and epigenetic mechanisms underlying the transmission from fathers to their progeny will be discussed. All these data provide evidence of the impact of paternal nutrition on progeny health which could lead to preventive diet recommendations for future fathers.
Collapse
|
25
|
Machado MPR, Gama LA, Beckmann APS, Hauschildt AT, Dall'Agnol DJR, Miranda JRA, Corá LA, Américo MF. Paternal obesity and its transgenerational effects on gastrointestinal function in male rat offspring. ACTA ACUST UNITED AC 2021; 54:e11116. [PMID: 34076145 PMCID: PMC8186378 DOI: 10.1590/1414-431x2020e11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
The interplay between obesity and gastrointestinal (GI) motility is contradictory, and the transgenerational influence on this parameter is unknown. We aimed to evaluate the GI function in a model of paternal obesity and two subsequent generations of their male offspring. Newborn male rats were treated with monosodium glutamate (MSG) and composed the F1 generation, while control rats (CONT) received saline. At 90 days, male F1 were mated with non-obese females to obtain male offspring (F2), which later mated with non-obese females for obtaining male offspring of F3 generation. Lee Index analysis was adopted to set up the obesity groups. Alternating current biosusceptometry (ACB) technique was employed to calculate GI transit parameters: mean gastric emptying time (MGET), mean cecum arrival time (MCAT), mean small intestinal transit time (MSITT), and gastric frequency and amplitude of contractions. Glucose, insulin, and leptin levels and duodenal morphometry were measured. F1 obese rats showed a decrease in the frequency and amplitude of gastric contractions, while obese rats from the F2 generation showed accelerated MGET and delayed MCAT and MSITT. Glucose and leptin levels were increased in F1 and F2 generations. Insulin levels decreased in F1, F2, and F3 generations. Duodenal morphometry was altered in all three generations. Obesity may have paternal transgenerational transmission, and it provoked disturbances in the gastrointestinal function of three generations.
Collapse
Affiliation(s)
- M P R Machado
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil
| | - L A Gama
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brasil
| | - A P S Beckmann
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brasil
| | - A T Hauschildt
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D J R Dall'Agnol
- Faculdade de Ciências Agrárias, Biológicas, Engenharia e da Saúde, Universidade do Estado de Mato Grosso, Tangará da Serra, MT, Brasil
| | - J R A Miranda
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil
| | - L A Corá
- Núcleo de Ciências Biológicas, NUCIB, Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Maceió, AL, Brasil
| | - M F Américo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brasil
| |
Collapse
|
26
|
Raad G, Serra F, Martin L, Derieppe MA, Gilleron J, Costa VL, Pisani DF, Amri EZ, Trabucchi M, Grandjean V. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. eLife 2021; 10:61736. [PMID: 33783350 PMCID: PMC8051948 DOI: 10.7554/elife.61736] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a growing societal scourge. Recent studies have uncovered that paternal excessive weight induced by an unbalanced diet affects the metabolic health of offspring. These reports mainly employed single-generation male exposure. However, the consequences of multigenerational unbalanced diet feeding on the metabolic health of progeny remain largely unknown. Here, we show that maintaining paternal Western diet feeding for five consecutive generations in mice induces an enhancement in fat mass and related metabolic diseases over generations. Strikingly, chow-diet-fed progenies from these multigenerational Western-diet-fed males develop a 'healthy' overweight phenotype characterized by normal glucose metabolism and without fatty liver that persists for four subsequent generations. Mechanistically, sperm RNA microinjection experiments into zygotes suggest that sperm RNAs are sufficient for establishment but not for long-term maintenance of epigenetic inheritance of metabolic pathologies. Progressive and permanent metabolic deregulation induced by successive paternal Western-diet-fed generations may contribute to the worldwide epidemic of metabolic diseases.
Collapse
Affiliation(s)
- Georges Raad
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Fabrizio Serra
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jérôme Gilleron
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes (7), Nice, France
| | - Vera L Costa
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | | | | | - Michele Trabucchi
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Valerie Grandjean
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| |
Collapse
|
27
|
Effect of Postnatal Nutritional Environment Due to Maternal Diabetes on Beta Cell Mass Programming and Glucose Intolerance Risk in Male and Female Offspring. Biomolecules 2021; 11:biom11020179. [PMID: 33525575 PMCID: PMC7911592 DOI: 10.3390/biom11020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Besides the fetal period, the suckling period is a critical time window in determining long-term metabolic health. We undertook the present study to elucidate the impact of a diabetic suckling environment alone or associated with an in utero diabetic environment on beta cell mass development and the risk of diabetes in the offspring in the long term. To that end, we have compared two experimental settings. In setting 1, we used Wistar (W) rat newborns resulting from W ovocytes (oW) transferred into diabetic GK rat mothers (pGK). These oW/pGK neonates were then suckled by diabetic GK foster mothers (oW/pGK/sGK model) and compared to oW/pW neonates suckled by normal W foster mothers (oW/pW/sW model). In setting 2, normal W rat newborns were suckled by diabetic GK rat foster mothers (nW/sGK model) or normal W foster mothers (nW/sW model). Our data revealed that the extent of metabolic disorders in term of glucose intolerance and beta cell mass are similar between rats which have been exposed to maternal diabetes both pre- and postnatally (oW/pGK/sGK model) and those which have been exposed only during postnatal life (nW/sW model). In other words, being nurtured by diabetic GK mothers from birth to weaning was sufficient to significantly alter the beta cell mass, glucose-induced insulin secretion and glucose homeostasis of offspring. No synergistic deleterious effects of pre-and postnatal exposure was observed in our setting.
Collapse
|
28
|
Tarevnic R, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Maternal swimming mitigates liver damage caused by paternal obesity. Nutrition 2021; 86:111168. [PMID: 33601122 DOI: 10.1016/j.nut.2021.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Parents' lifestyle and nutrition can program offspring obesity in adulthood. We hypothesized that maternal swimming has beneficial effects on the adversity caused by paternal obesity on offspring. METHODS Twelve-week-old male C57 BL/6 J mice (fed a high-fat diet, obese father [ObFa], or control diet, lean father [LFa]) were mated with female mice fed only the control diet. Mothers were trained (TMo) or untrained (UMo): swimming for 6 wk before and the first 2 wk of gestation. Pups were fed only the control diet. RESULTS Fathers showed different body mass (BM) at copulation, but not the mothers. The ObFa had 20% higher BM than the LFa. Twelve-week-old ObFa/UMo offspring showed a higher BM gain than the LFa/UMo and ObFa/TMo. There was BM sexual dimorphism in the LFa/UMo (female mice +24% than male mice). There was hyperglycemia and hyperinsulinemia in the ObFa/UMo, but low glycemia and insulin levels were seen in the ObFa/TMo. There was augmented liver steatosis in the ObFa/UMo compared with the LFa/UMo, and the ObFa/TMo compared with the LFa/TMo, but reduced steatosis in the ObFa/TMo compared with the ObFa/UMo. In addition, lipogenic markers were more expressed and beta-oxidation markers less expressed in the ObFa/UMo compared with the LFa/UMo, but the opposite was observed in the ObFa/TMo compared with the ObFa/UMo. Proinflammatory markers were higher in the liver of the ObFa/UMo compared with the LFa/UMo and lower in the ObFa/TMo compared with the ObFa/UMo. CONCLUSIONS Obese fathers produced offspring that were overweight and had altered fasting glycemia and insulin sensitivity, leading to higher liver lipogenesis and inflammation, as well as lower beta-oxidation. The swimming mother mitigated these adverse effects in mice offspring.
Collapse
Affiliation(s)
- Renata Tarevnic
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Freitas RGBDON, Vasques ACJ, Ribeiro FB, Solar I, Hanada AS, Barbosa MG, Valente AMM, Pititto BDA, Lopes TLDC, Geloneze B, Ferreira SRG. Maternal and paternal obesity are associated with offspring obestatin levels in the Nutritionists' Health Study. Nutrition 2020; 83:111067. [PMID: 33348107 DOI: 10.1016/j.nut.2020.111067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to examine whether paternal and maternal body mass indexes (BMIs) were independently associated with obestatin and visfatin levels in adult offspring. METHODS This cross-sectional analysis included 124 women who participated in the Nutritionists' Health Study (NutriHS) at baseline. Early life events, anthropometry, dual-energy x-ray absorptiometry-determined body composition and blood sample were obtained. Associations of parental BMI with outcomes (obestatin and visfatin) were tested by multiple linear regression, using minimal sufficient adjustments recommended by Directed Acyclic Graph. Participants' mean BMI was 25 ± 5 kg/m2 and 74% were metabolically healthy. Median obestatin and visfatin levels were 56.4 pg/mL (42-72) and 17.7 ng/mL (14-21.8), respectively. Eleven percent of mothers and 39% of fathers were overweight/obese. RESULTS Daughters born from overweight/obese mothers had higher BMI than those born from normal weight women (P = 0.003). In adjusted regression model, offspring obestatin levels were associated with maternal BMI (β = -0.03; P = 0.045) and paternal BMI (β = -0.02; P = 0.048) independently of maternal and paternal education, maternal age, and maternal use of tobacco, alcohol, and/or drugs. No association was detected with visfatin levels. CONCLUSION Inverse associations of maternal and paternal BMIs with offspring obestatin concentrations in women could suggest a utility of this biomarker of energy regulation determined in early adulthood. Whether obestatin could be an indicator of protection against obesity-related disorders in the life course requires investigation in studies designed to test such hypothesis.
Collapse
Affiliation(s)
- Renata Germano Borges de Oliveira Nascimento Freitas
- Department of Epidemiology, School of Public Health, University of São Paulo, Brazil; Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil
| | - Ana Carolina Junqueira Vasques
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, Brazil
| | - Francieli Barreiro Ribeiro
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, Brazil
| | - Isabela Solar
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, Brazil
| | - Alfredo Shigueo Hanada
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil; School of Applied Sciences, University of Campinas, Brazil
| | | | | | | | | | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences, University of Campinas, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Brazil
| | | |
Collapse
|
31
|
Schellong K, Melchior K, Ziska T, Rancourt RC, Henrich W, Plagemann A. Maternal but Not Paternal High-Fat Diet (HFD) Exposure at Conception Predisposes for 'Diabesity' in Offspring Generations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4229. [PMID: 32545776 PMCID: PMC7345576 DOI: 10.3390/ijerph17124229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
While environmental epigenetics mainly focuses on xenobiotic endocrine disruptors, dietary composition might be one of the most important environmental exposures for epigenetic modifications, perhaps even for offspring generations. We performed a large-scale rat study on key phenotypic consequences from parental (F0) high-caloric, high-fat diet (HFD) food intake, precisely and specifically at mating/conception, focusing on 'diabesity' risk in first- (F1) and second- (F2) generation offspring of both sexes. F0 rats (maternal or paternal, respectively) received HFD overfeeding, starting six weeks prior to mating with normally fed control rats. The maternal side F1 offspring of both sexes developed a 'diabesity' predisposition throughout life (obesity, hyperleptinemia, hyperglycemia, insulin resistance), while no respective alterations occurred in the paternal side F1 offspring, neither in males nor in females. Mating the maternal side F1 females with control males under standard feeding conditions led, again, to a 'diabesity' predisposition in the F2 generation, which, however, was less pronounced than in the F1 generation. Our observations speak in favor of the critical impact of maternal but not paternal metabolism around the time frame of reproduction for offspring metabolic health over generations. Such fundamental phenotypic observations should be carefully considered in front of detailed molecular epigenetic approaches on eventual mechanisms.
Collapse
Affiliation(s)
- Karen Schellong
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Kerstin Melchior
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Thomas Ziska
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Rebecca C. Rancourt
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Wolfgang Henrich
- Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany;
| | - Andreas Plagemann
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| |
Collapse
|
32
|
Abstract
This review addresses the interplay between obesity, type 2 diabetes mellitus, and cardiovascular diseases. It is proposed that obesity, generally defined by an excess of body fat causing prejudice to health, can no longer be evaluated solely by the body mass index (expressed in kg/m2) because it represents a heterogeneous entity. For instance, several cardiometabolic imaging studies have shown that some individuals who have a normal weight or who are overweight are at high risk if they have an excess of visceral adipose tissue-a condition often accompanied by accumulation of fat in normally lean tissues (ectopic fat deposition in liver, heart, skeletal muscle, etc). On the other hand, individuals who are overweight or obese can nevertheless be at much lower risk than expected when faced with excess energy intake if they have the ability to expand their subcutaneous adipose tissue mass, particularly in the gluteal-femoral area. Hence, excessive amounts of visceral adipose tissue and of ectopic fat largely define the cardiovascular disease risk of overweight and moderate obesity. There is also a rapidly expanding subgroup of patients characterized by a high accumulation of body fat (severe obesity). Severe obesity is characterized by specific additional cardiovascular health issues that should receive attention. Because of the difficulties of normalizing body fat content in patients with severe obesity, more aggressive treatments have been studied in this subgroup of individuals such as obesity surgery, also referred to as metabolic surgery. On the basis of the above, we propose that we should refer to obesities rather than obesity.
Collapse
Affiliation(s)
- Marie-Eve Piché
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine (M.-E.P.), Université Laval, Québec, QC, Canada
| | - André Tchernof
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,School of Nutrition (A.T.), Université Laval, Québec, QC, Canada
| | - Jean-Pierre Després
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,Vitam - Centre de recherche en santé durable, CIUSSS - Capitale-Nationale (J.-P.D.), Université Laval, Québec, QC, Canada.,Department of Kinesiology, Faculty of Medicine (J.-P.D.), Université Laval, Québec, QC, Canada
| |
Collapse
|
33
|
Trifonova EA, Popovich AA, Bocharova AV, Vagaitseva KV, Stepanov VA. The Role of Natural Selection in the Formation of the Genetic Structure of Populations by SNP Markers in Association with Body Mass Index and Obesity. Mol Biol 2020. [DOI: 10.1134/s0026893320030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Silverman-Retana O, Hulman A, Nielsen J, Ekstrøm CT, Carstensen B, Simmons RK, Bjerg L, Johnston LW, Witte DR. Effect of familial diabetes status and age at diagnosis on type 2 diabetes risk: a nation-wide register-based study from Denmark. Diabetologia 2020; 63:934-943. [PMID: 32076733 DOI: 10.1007/s00125-020-05113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS We assessed whether the risk of developing type 2 diabetes and the age of onset varied with the age at diabetes diagnosis of affected family members. METHODS We performed a national register-based open cohort study of individuals living in Denmark between 1995 and 2012. The population under study consisted of all individuals aged 30 years or older without diagnosed diabetes at the start date of the cohort (1 January 1995) and who had information about their parents' identity. Individuals who turned 30 years of age during the observation period and had available parental identity information were also added to the cohort from that date (open cohort design). These criteria restricted the study population mostly to people born between 1960 and 1982. Multivariable Poisson regression models adjusted for current age and highest educational attainment were used to estimate incidence rate ratios (IRRs) of type 2 diabetes. RESULTS We followed 2,000,552 individuals for a median of 14 years (24,034,059 person-years) and observed 76,633 new cases of type 2 diabetes. Compared with individuals of the same age and sex who did not have a parent or full sibling with diabetes, the highest risk of developing type 2 diabetes was observed in individuals with family members diagnosed at an early age. The IRR was progressively lower with a higher age at diabetes diagnosis in family members: 3.9 vs 1.4 for those with a parental age at diagnosis of 50 or 80 years, respectively; and 3.3 vs 2.0 for those with a full sibling's age at diagnosis of 30 or 60 years, respectively. CONCLUSIONS/INTERPRETATION People with a family member diagnosed with diabetes at an earlier age are more likely to develop diabetes and also to develop it at an earlier age than those with a family member diagnosed in later life. This finding highlights the importance of expanding our understanding of the interplay between genetic diabetes determinants and the social, behavioural and environmental diabetes determinants that track in families across generations. Accurate registration of age at diagnosis should form an integral part of recording a diabetes family history, as it provides easily obtainable and highly relevant detail that may improve identification of individuals at increased risk of younger onset of type 2 diabetes. In particular, these individuals may benefit from closer risk factor assessment and follow-up, as well as prevention strategies that may involve the family.
Collapse
Affiliation(s)
- Omar Silverman-Retana
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark.
- Danish Diabetes Academy, Odense, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Adam Hulman
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jannie Nielsen
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Claus T Ekstrøm
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bendix Carstensen
- Clinical Epidemiology Department, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Rebecca K Simmons
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark
| | - Lasse Bjerg
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Luke W Johnston
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Building 1260, Barthollins Allé 2, 8000 Aarhus C, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Adams RCM, Smith C. In utero Exposure to Maternal Chronic Inflammation Transfers a Pro-Inflammatory Profile to Generation F2 via Sex-Specific Mechanisms. Front Immunol 2020; 11:48. [PMID: 32117231 PMCID: PMC7031653 DOI: 10.3389/fimmu.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Generational transfer of maladaptations in offspring have been reported to persist for multiple generations in conditions of chronic inflammation, metabolic and psychological stress. Thus, the current study aimed to expand our understanding of the nature, potential sex specificity, and transgenerational plasticity of inflammatory maladaptations resulting from maternal chronic inflammation. Briefly, F1 and F2 generations of offspring from C57/BL/6 dams exposed to a modified maternal periconception systemic inflammation (MSPI) protocol were profiled in terms of leukocyte and splenocyte counts and cytokine responses, as well as glucocorticoid sensitivity. Overall, F1 male and female LPS groups presented with glucocorticoid hypersensitivity (with elevated corticosterone and increased leukocyte glucocorticoid receptor levels) along with a pro-inflammatory phenotype, which carried over to the F2 generation. The transfer of inflammatory and glucocorticoid responsiveness from F1 to F2 is evident, with heritability of this phenotype in F2. The findings suggest that maternal (F0) perinatal chronic inflammation resulted in glucocorticoid dysregulation and a resultant pro-inflammatory phenotype, which is transferred in the maternal lineage but seems to affect male offspring to a greater extent. Of further interest, upregulation of IL-1β cytokine responses is reported in female offspring only. The cumulative maladaptation reported in F2 offspring when both F1 parents were affected by maternal LPS exposure is suggestive of immune senescence. Given the potential impact of current results and the lack of sex-specific investigations, more research in this context is urgently required.
Collapse
Affiliation(s)
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
36
|
Sex-linked changes and high cardiovascular risk markers in the mature progeny of father, mother, or both father and mother consuming a high-fructose diet. Nutrition 2019; 71:110612. [PMID: 31785517 DOI: 10.1016/j.nut.2019.110612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/08/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to observe the developmental origins of health and disease affecting offspring owing to the consumption of a diet containing high fructose by the father or mother or both, considering that progeny only received a control diet during postnatal life. METHODS Male (future father) and female (future mother) C57 BL/6 mice were fed a high-fructose diet (HFru; 45% energy) or a control diet (C) for 8 wk before mating until lactation. The offspring was termed according to sex, maternal diet (first acrostic), and paternal diet (second acrostic); and received a balanced control diet until 3-mo of age when they were sacrificed. Body mass (BM), plasmatic leptin, adiponectin, uric acid, and systolic blood pressure (BP) were measured in mature offspring. RESULTS Fasting glycemia and insulin were elevated in HFru fathers and mothers. Although there was no change in BM, fasting glycemia, or insulin of the offspring, those of HFru fathers, HFru mothers, and HFru fathers and mothers presented higher genital fat pad, leptin, uric acid, and BP, and lower adiponectin. The values of leptin and BP were maximized when both parents consumed a HFru diet. Also, there was sexual dimorphism in most of the variables, with the male offspring being affected to a greater extent than the females. CONCLUSIONS Consumption of a fructose-rich diet by the father, the mother, or both negatively affected the adipokines, BP, and uric acid concentrations of mature offspring, with males being more affected than females. It is significant to consider that high BP and plasmatic uric acid correspond to markers of elevated cardiovascular risk in the progeny.
Collapse
|
37
|
Huebschmann AG, Huxley RR, Kohrt WM, Zeitler P, Regensteiner JG, Reusch JEB. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019; 62:1761-1772. [PMID: 31451872 PMCID: PMC7008947 DOI: 10.1007/s00125-019-4939-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
By 2017 estimates, diabetes mellitus affects 425 million people globally; approximately 90-95% of these have type 2 diabetes. This narrative review highlights two domains of sex differences related to the burden of type 2 diabetes across the life span: sex differences in the prevalence and incidence of type 2 diabetes, and sex differences in the cardiovascular burden conferred by type 2 diabetes. In the presence of type 2 diabetes, the difference in the absolute rates of cardiovascular disease (CVD) between men and women lessens, albeit remaining higher in men. Large-scale observational studies suggest that type 2 diabetes confers 25-50% greater excess risk of incident CVD in women compared with men. Physiological and behavioural mechanisms that may underpin both the observed sex differences in the prevalence of type 2 diabetes and the associated cardiovascular burden are discussed in this review. Gender differences in social behavioural norms and disparities in provider-level treatment patterns are also highlighted, but not described in detail. We conclude by discussing research gaps in this area that are worthy of further investigation.
Collapse
Affiliation(s)
- Amy G Huebschmann
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel R Huxley
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Wendy M Kohrt
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of Geriatric Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Philip Zeitler
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Judith G Regensteiner
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Cardiology, University of Colorado School of Medicine (CU-SOM), Aurora, CO, USA
| | - Jane E B Reusch
- Center for Women's Health Research, University of Colorado School of Medicine, MS C263, 12348 E. Montview Boulevard, Aurora, CO, 80045, USA.
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
38
|
Bruner-Tran KL, Mokshagundam S, Barlow A, Ding T, Osteen KG. Paternal Environmental Toxicant Exposure and Risk of Adverse Pregnancy Outcomes. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019; 8:103-113. [PMID: 32953240 PMCID: PMC7500507 DOI: 10.1007/s13669-019-00265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Current clinical efforts to predict and prevent preterm birth are primarily focused on the mother and have made minimal progress in improving outcomes. However, recent data indicate that paternal factors can also influence timing of birth. Herein, we will review recent human and murine data examining the contribution of the father to pregnancy outcomes with an emphasis on environmental exposures that can negatively impact fertility and the timing of birth. RECENT FINDINGS Human epidemiology studies now clearly indicate that a variety of paternal factors (age, race, weight, smoking status) can influence sperm quality, birth timing and, in some studies, offspring health. Utilizing a mouse model, our data have 57demonstrated that developmental exposure to the environmental toxicant TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is associated with a transgenerational reduction in sperm number and quality and an increased risk of preterm birth in an unexposed partner. SUMMARY Toxicant exposure history can clearly influence sperm quality in men and mice. Murine data further indicate that exposures which negatively affect sperm quality also impair placental function, potentially leading to preterm birth and other adverse outcomes. Of particular concern, these changes have been linked to epigenetic alterations within the male germ cell which can then be transmitted across multiple generations. Since it is not possible to prevent an ancestral toxicant exposure in a human population, identifying lifestyle modifications that can be implemented during the preconception period to improve sperm quality should be explored for the therapeutic potential to reduce the incidence of PTB and its sequelae.
Collapse
Affiliation(s)
- Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Shilpa Mokshagundam
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alison Barlow
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Tianbing Ding
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville TN
| |
Collapse
|
39
|
Panchenko PE, Lacroix MC, Jouin M, Voisin S, Badonnel K, Lemaire M, Meunier N, Safi-Stibler S, Persuy MA, Jouneau L, Durieux D, Lecoutre S, Jammes H, Rousseau-Ralliard D, Breton C, Junien C, Baly C, Gabory A. Effect of Maternal Obesity and Preconceptional Weight Loss on Male and Female Offspring Metabolism and Olfactory Performance in Mice. Nutrients 2019; 11:nu11050948. [PMID: 31035463 PMCID: PMC6566604 DOI: 10.3390/nu11050948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023] Open
Abstract
According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.
Collapse
Affiliation(s)
- Polina E Panchenko
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Mélanie Jouin
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Sarah Voisin
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Karine Badonnel
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Marion Lemaire
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nicolas Meunier
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | | | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Didier Durieux
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Simon Lecoutre
- Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, EA4489, Université de Lille, 59000 Lille, France.
| | - Hélène Jammes
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Christophe Breton
- Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, EA4489, Université de Lille, 59000 Lille, France.
| | - Claudine Junien
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Christine Baly
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|