1
|
Pandey P, Verma M, Lakhanpal S, Pandey S, Kumar MR, Bhat M, Sharma S, Alam MW, Khan F. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. Biopolymers 2025; 116:e23637. [PMID: 39417679 DOI: 10.1002/bip.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The utilization of nanoformulations derived from natural products for the treatment of many human diseases, including cancer, is a rapidly developing field. Conventional therapies used for cancer treatment have limited efficacy and a greater number of adverse effects. Hence, it is imperative to develop innovative anticancer drugs with superior effectiveness. Among the diverse array of natural anticancer compounds, resveratrol, curcumin, and epigallocatechin gallate (EGCG) have gained considerable attention in recent years. Despite their strong anticancer properties, medicinally significant phytochemicals such as resveratrol, curcumin, and EGCG have certain disadvantages, such as limited solubility in water, stability, and bioavailability problems. Encapsulating these phytochemicals in poly(lactic-co-glycolic acid) (PLGA), a polymer that is nontoxic, biodegradable, and biocompatible, is an effective method for delivering medication to the tumor location. In addition, PLGA nanoparticles can be modified with targeting molecules to specifically target cancer cells, thereby improving the effectiveness of phytochemicals in fighting tumors. Combining plant-based medicine (phytotherapy) with nanotechnology in a clinical environment has the potential to enhance the effectiveness of drugs and improve the overall health outcomes of patients. Therefore, it is crucial to have a comprehensive understanding of the different aspects and recent advancements in using PLGA-based nanocarriers for delivering anticancer phytochemicals. This review addresses the most recent advancements in PLGA-based delivery systems for resveratrol, EGCG, and curcumin, emphasizing the possibility of resolving issues related to the therapeutic efficacy and bioavailability of these compounds.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Mussagy CU, Caicedo-Paz AV, Farias FO, de Souza Mesquita LM, Giuffrida D, Dufossé L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol 2024; 124:104623. [PMID: 39244374 DOI: 10.1016/j.fm.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile.
| | - Angie V Caicedo-Paz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350, Limeira, SP, Brazil
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France
| |
Collapse
|
3
|
Balbuena E, Milhem F, Kiremitci BZ, Williams TI, Collins L, Shu Q, Eroglu A. The biochemical effects of carotenoids in orange carrots on the colonic proteome in a mouse model of diet-induced obesity. Front Nutr 2024; 11:1492380. [PMID: 39588046 PMCID: PMC11587903 DOI: 10.3389/fnut.2024.1492380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine. The gastrointestinal barrier acts as a line of defense against the systemic invasion of pathogenic bacteria, especially at the colonic level. Methods To test whether carotenoids in orange carrots can alleviate obesity-associated gut inflammation and strengthen the intestinal barrier function, male C57BL/6J mice were randomized to one of four experimental diets for 20 weeks (n = 20 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 45% calories from fat), HFD with white carrot powder (HFD+WC), or HFD with orange carrot powder (HFD + OC). Colon tissues were harvested to analyze the biochemical effects of carotenoids in carrots. The distal sections were subjected to isobaric labeling-based quantitative proteomics in which tryptic peptides were labeled with tandem mass tags, followed by fractionation and LC-MS/MS analysis in an Orbitrap Eclipse Tribrid instrument. Results High-performance liquid chromatography results revealed that the HFD+WC pellets were carotenoid-deficient, and the HFD+OC pellets contained high concentrations of provitamin A carotenoids, specifically α-carotene and β-carotene. As a result of the quantitative proteomics, a total of 4410 differentially expressed proteins were identified. Intestinal barrier-associated proteins were highly upregulated in the HFD+OC group, particularly mucin-2 (MUC-2). Upon closer investigation into mucosal activity, other proteins related to MUC-2 functionality and tight junction management were upregulated by the HFD+OC dietary intervention. Discussion Collectively, our findings suggest that carotenoid-rich foods can prevent high-fat diet-induced intestinal barrier disruption by promoting colonic mucus synthesis and secretion in mammalian organisms. Data are available via ProteomeXchange with identifier PXD054150.
Collapse
Affiliation(s)
- Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Buse Zeren Kiremitci
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Qingbo Shu
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
4
|
Huang R, Deng X, Wu J, Luo W. Genetic and metabolic factors influencing skin yellowness in yellow-feathered broilers. Poult Sci 2024; 104:104534. [PMID: 39561557 PMCID: PMC11617219 DOI: 10.1016/j.psj.2024.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The degree of yellowness of the skin is an important factor affecting the market popularity and sales price of yellow-feathered broilers. Despite its commercial importance, the specific pigments and genetic mechanisms involved remain unclear. This study identified lutein as the primary carotenoid in the skin and established serum lutein concentration as a molecular marker for predicting skin yellowness in carcasses. Through RNA sequencing of broilers with varying yellowness, we identified key genes like CYP26A1, CYP1B1, CYP2C18, CYP2W1, HSD17B2, AOX1, KMO, PLIN1, and RET, which may regulate carotenoid absorption and deposition. Additionally, a single nucleotide polymorphism in the CYP1A1 gene was significantly associated with skin yellowness in Ma-Huang chickens. Overall, this study examined the primary pigment types that influence the skin yellowness of yellow-feathered broilers, emphasizing that lutein can serve as a molecular marker for skin yellowness and providing insights into the regulatory factors that regulate skin yellowness. These findings provide essential theoretical support for the breeding of skin color traits in yellow-feathered broilers.
Collapse
Affiliation(s)
- Rongqin Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xianqi Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024; 23:e13426. [PMID: 39169551 PMCID: PMC11605278 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Marta Florio
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| |
Collapse
|
6
|
Haładyn K, Wojdyło A, Nowicka P. Shaping the bioactive potential, health-promoting properties, and bioavailability of o/w nanoemulsions by modulating the dose of a carotenoid preparation isolated from Calendula officinalis L. Food Chem 2024; 456:139990. [PMID: 38852448 DOI: 10.1016/j.foodchem.2024.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The use of nanotechnology in food production (in particular protein base nanoemulsion) is a solution that is gaining popularity, which allows to design of smart food with targeted health-promoting properties. This study aimed to assess the impact of the dose of the phytochemical extract (1%; 3%; 5% w/w) comprising isolated lipophilic compounds from Calendula officinalis L. on selected physicochemical properties of the emulsion, antioxidant, antidiabetic and antiaging effects, and its impact on carotenoids content and their in vitro bioavailability. The results showed that the use of a 3% extract dosage appears to be optimal for obtaining a nanoemulsion. This variant was characterized by the highest antidiabetic activity and there was no overloading of the nanostructure. Additionally, the use of a pea protein - lipophilic compounds - sunflower/hemp oil matrix to create nanoforms seems to be a promising solution in the context of pro-health properties and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Kamil Haładyn
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| |
Collapse
|
7
|
Jin Y, Li K, Vik JO, Hillestad M, Olsen RE. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. AQUACULTURE NUTRITION 2024; 2024:8265746. [PMID: 39555545 PMCID: PMC11496587 DOI: 10.1155/2024/8265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024]
Abstract
Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet. The present study explored the effect of three lipids, cholesterol (CH), phytosterol (PS), and docosahexaenoic acid (DHA) on Ax absorption, transport, and retention in rainbow trout. Dietary CH significantly improved Ax absorption by elevating plasma Ax levels (p < 0.05); however, it had no effect on the whole body Ax or flesh color. Dietary PS appears to inhibit Ax absorption since fish had significantly (p < 0.05) reduced whole body Ax. Dietary DHA appeared to have no effect on Ax absorption or retention. By comparing intestinal transcriptomes, a low density lipoprotein receptor (ldlr) gene was significantly downregulated in fish fed the CH diet as compared to the control diet. Since LDLR protein plays a major role in plasma lipoprotein turnover, we hypothesized that the inhibition of ldlr gene by high dietary CH resulted in higher retention of plasma Ax. The elevation of plasma Ax was not reflected in higher flesh coloration, which suggested other limiting factors governing Ax retention in the muscle. On the other hand, the transcriptomic and proteomic analyses found no changes of genes or proteins involved in Ax absorption, transport, or excretion in fish fed PS or DHA diets as compared to the control diet. In conclusion, this study has suggested that CH promotes Ax absorption by regulating lipoprotein retention and provide evidence for improving Ax absorption via dietary modulation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Pasenkiewicz-Gierula M, Hryc J, Markiewicz M. Dynamic and Energetic Aspects of Carotenoids In-and-Around Model Lipid Membranes Revealed in Molecular Modelling. Int J Mol Sci 2024; 25:8217. [PMID: 39125791 PMCID: PMC11312187 DOI: 10.3390/ijms25158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (J.H.); (M.M.)
| | | | | |
Collapse
|
9
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
10
|
Kim B, Kim DS, Shin JG, Leem S, Cho M, Kim H, Gu KN, Seo JY, You SW, Martin AR, Park SG, Kim Y, Jeong C, Kang NG, Won HH. Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nat Commun 2024; 15:4874. [PMID: 38849341 PMCID: PMC11161515 DOI: 10.1038/s41467-024-49031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Evidence for adaptation of human skin color to regional ultraviolet radiation suggests shared and distinct genetic variants across populations. However, skin color evolution and genetics in East Asians are understudied. We quantified skin color in 48,433 East Asians using image analysis and identified associated genetic variants and potential causal genes for skin color as well as their polygenic interplay with sun exposure. This genome-wide association study (GWAS) identified 12 known and 11 previously unreported loci and SNP-based heritability was 23-24%. Potential causal genes were determined through the identification of nonsynonymous variants, colocalization with gene expression in skin tissues, and expression levels in melanocytes. Genomic loci associated with pigmentation in East Asians substantially diverged from European populations, and we detected signatures of polygenic adaptation. This large GWAS for objectively quantified skin color in an East Asian population improves understanding of the genetic architecture and polygenic adaptation of skin color and prioritizes potential causal genes.
Collapse
Affiliation(s)
- Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Dan Say Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Joong-Gon Shin
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Sangseob Leem
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Minyoung Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hanji Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Ki-Nam Gu
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Jung Yeon Seo
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Seung Won You
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02141, USA
| | - Sun Gyoo Park
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Yunkwan Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nae Gyu Kang
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea.
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
11
|
Matsumoto W, Takemura M, Nanaura H, Ami Y, Maoka T, Shindo K, Kurihara S, Misawa N. Carotenoid productivity in human intestinal bacteria Eubacterium limosum and Leuconostoc mesenteroides with functional analysis of their carotenoid biosynthesis genes. ENGINEERING MICROBIOLOGY 2024; 4:100147. [PMID: 39629323 PMCID: PMC11611032 DOI: 10.1016/j.engmic.2024.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 12/07/2024]
Abstract
The human intestinal microbiota that comprise over 1,000 species thrive in dark and anaerobic environments. They are recognized for the production of diverse low-molecular-weight metabolites crucial to human health and diseases. Carotenoids, low-molecular-weight pigments known for their antioxidative activity, are delivered to humans through oral intake. However, it remains unclear whether human intestinal bacteria biosynthesize carotenoids as part of the in-situ microbiota. In this study, we investigated carotenoid synthesis genes in various human gut and probiotic bacteria. As a result, novel candidates, the crtM and crtN genes, were identified in the carbon monoxide-utilizing gut anaerobe Eubacterium limosum and the lactic acid bacterium Leuconostoc mesenteroides subsp. mesenteroides. These gene candidates were isolated, introduced into Escherichia coli, which synthesized a carotenoid substrate, and cultured aerobically. Structural analysis of the resulting carotenoids revealed that the crtM and crtN gene candidates of E. limosum and L. mesenteroides mediate the production of 4,4'-diaponeurosporene through 15-cis-4,4'-diapophytoene. Evaluation of the crtE-homologous genes in these bacteria indicated their non-functionality for C40-carotenoid production. E. limosum and L. mesenteroides, along with the known carotenogenic lactic acid bacterium Lactiplantibacillus plantarum, were observed to produce no carotenoids under strictly anaerobic conditions. The two lactic acid bacteria synthesized detectable levels of 4,4'-diaponeurosporene under semi-aerobic conditions. The findings highlight that the obligate anaerobe E. limosum retains aerobically functional C30-carotenoid biosynthesis genes, potentially with no immediate self-utility, suggesting an evolutionary direction in carotenoid biosynthesis. (229 words).
Collapse
Affiliation(s)
- Wataru Matsumoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Haruka Nanaura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Yuta Ami
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Shimogamo-morimotocho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Shin Kurihara
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| |
Collapse
|
12
|
Sant' Ana CT, Verediano TA, Grancieri M, Lopes Toledo RC, Costa NMB, Martino HSD, Barros FARD. Macauba ( Acrocomia aculeata) pulp oil has the potential to enhance the intestinal barrier morphology, goblet cell proliferation and gut microbiota composition in mice fed a high-fat diet. Br J Nutr 2024; 131:987-996. [PMID: 37955051 DOI: 10.1017/s0007114523002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Macauba (Acrocomia aculeata) is a palm tree native from Brazil, whose pulp is rich in oil that has a high content of oleic acid and carotenoids. Macauba pulp oil can bring health benefits due to its bioactive compounds; however, its effects on gut health are unknown. Thus, the objective of this study was to evaluate the effect of macauba pulp oil on the intestinal health in mice fed a high-fat (HF) diet. Male C57BL1/6 mice were randomly divided into three groups (10 animals/group): control diet, HF diet and HF diet with 4 % of macauba pulp oil (HFM). Concentration of short-chain fatty acids (SCFA), faecal pH and histomorphometric analysis of the colon were performed. Content of colon samples was used on microbiome analysis using 16S rRNA amplicon sequencing. Animals from the HFM group had higher butyric acid content and goblet cells number, greater circular and longitudinal muscle layer and higher α-diversity compared with the HF group. Moreover, consumption of MPO reduced Desulfobacterota phylum, Ruminococcaceae, Oscillospiraceae, Prevotellaceae, Bifidobacteriaceae family, Faecalibacterium, Prevotella, Ruminococcus and Enterorhabdus genus. Therefore, macauba pulp oil was able to modulate the gut microbiota and enhance intestinal barrier morphology, showing preventive effects on gut dysbiosis in mice fed a HF diet.
Collapse
Affiliation(s)
- Cíntia Tomaz Sant' Ana
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG36570-000, Brazil
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
13
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-Carotene accelerates the resolution of atherosclerosis in mice. eLife 2024; 12:RP87430. [PMID: 38319073 PMCID: PMC10945528 DOI: 10.7554/elife.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical CenterNew YorkUnited States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| |
Collapse
|
14
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-carotene accelerates the resolution of atherosclerosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.07.531563. [PMID: 36945561 PMCID: PMC10028884 DOI: 10.1101/2023.03.07.531563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
β-carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical Center, NY
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| |
Collapse
|
15
|
Bordat C, Cuerq C, Halimi C, Vairo D, Blond E, Restier L, Poinsot P, Duclaux-Loras R, Peretti N, Reboul E. Carotenoids in familial hypobetalipoproteinemia disorders: Malabsorption in Caco2 cell models and severe deficiency in patients. J Clin Lipidol 2024; 18:e105-e115. [PMID: 37989694 DOI: 10.1016/j.jacl.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS In vitro results showed a significant decrease in basolateral secretion of α- and β-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.
Collapse
Affiliation(s)
- Claire Bordat
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul); Univ-Lyon, CarMeN laboratory, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon-1, Pierre Benite 69495, France (Drs Bordat, Peretti)
| | - Charlotte Cuerq
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite 69495, France (Drs Cuerq, Blond)
| | - Charlotte Halimi
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul)
| | - Donato Vairo
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul)
| | - Emilie Blond
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite 69495, France (Drs Cuerq, Blond)
| | - Liora Restier
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Pierre Poinsot
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Rémi Duclaux-Loras
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Noël Peretti
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon-1, Pierre Benite 69495, France (Drs Bordat, Peretti); Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti); CENS ELI-2D, 165 Chemin du Grand Revoyet, Pierre Bénite F - 69310, France (Dr Peretti)
| | - Emmanuelle Reboul
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul).
| |
Collapse
|
16
|
Shi E, Nie M, Wang X, Jing H, Feng L, Xu Y, Zhang Z, Zhang G, Li D, Dai Z. Polysaccharides affect the utilization of β-carotene through gut microbiota investigated by in vitro and in vivo experiments. Food Res Int 2023; 174:113592. [PMID: 37986456 DOI: 10.1016/j.foodres.2023.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of six polysaccharides on the utilization of β-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in β-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to β-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum β-carotene content compared to the group treated with β-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of β-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to β-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and β-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve β-carotene utilization by modulating the gut microbiota.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd., Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Wu X, Zhu C, Zhang M, Wang S, Yu J, Tian J, Hu Z. Effects of different processed tomatoes on carotenoid release and microbiota composition during in vitro gastrointestinal digestion and colonic fermentation. Food Funct 2023; 14:10177-10187. [PMID: 37902310 DOI: 10.1039/d3fo02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Carotenoids in tomatoes confer significant health benefits to humans but with the disadvantage of the carotenoids from raw tomatoes not being easily absorbed for utilization. Thus, this study aimed to investigate the effects of different cooking processes on carotenoid release and human gut microbiota composition during in vitro simulated gastrointestinal digestion of tomatoes. The results showed that stir-frying significantly increased the release of lycopene and β-carotene during gastrointestinal digestion, with boiling being the second most effective treatment. The boiling-treated tomatoes enhanced the carotenoid release during in vitro fermentation. Gut microbiota analysis revealed that the digestion of the raw and boiled tomatoes promoted the growth of potentially beneficial microbiota while reducing the ratio of Firmicutes/Bacteroides, which potentially helps prevent obesity. Boiling treatment significantly reduced the growth of Peptostreptococcus and was negatively correlated with carotenoid release. Overall, the boiling-treated tomatoes were more effective than the raw or stir-fried tomatoes in terms of both colon health benefits and carotenoid release.
Collapse
Affiliation(s)
- Xinyi Wu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Shuwen Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya 572000, China
| |
Collapse
|
18
|
Luo M, Yuan Q, Liu M, Song X, Xu Y, Zhang T, Zeng X, Wu Z, Pan D, Guo Y. Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier. Food Funct 2023; 14:9567-9579. [PMID: 37800998 DOI: 10.1039/d3fo03331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
Collapse
Affiliation(s)
- Mengfan Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Qiaoyue Yuan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Xingye Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yingjie Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
19
|
Sánchez-Martínez JD, Cifuentes A, Valdés A. Omics approaches to investigate the neuroprotective capacity of a Citrus sinensis (sweet orange) extract in a Caenorhabditis elegans Alzheimer's model. Food Res Int 2023; 172:113128. [PMID: 37689893 DOI: 10.1016/j.foodres.2023.113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Citrus sinensis by-products are a promising source of neuroprotective molecules. In this study, a pressurized liquid extract of Citrus by-products (PLE100) has been extensively characterized, and its neuroprotective capacity tested in the Caenorhabditis elegans strain CL4176, a validated in vivo model of Alzheimer's disease (AD). More than 450 compounds have been annotated in the extract, being triacylglycerols (TGs), stigmastanes, fatty acids (FAs) and carbohydrates the most abundant. The results demonstrate that worms PLE100-treated are significantly protected in a dose-dependent manner against the Aβ-peptide paralysis toxicity. The RNA-Seq data showed an alteration of 294 genes mainly related to the stress response defense along with genes involved in the lipid transport and metabolism. Moreover, the comprehensive metabolomics study allowed the identification of 818 intracellular metabolites, of which 54 were significantly altered (mainly lipids). The integration of these and previous results provides with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Ahmed RO, Ali A, Leeds T, Salem M. RNA-Seq analysis of the pyloric caecum, liver, and muscle reveals molecular mechanisms regulating fillet color in rainbow trout. BMC Genomics 2023; 24:579. [PMID: 37770878 PMCID: PMC10537910 DOI: 10.1186/s12864-023-09688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The characteristic pink-reddish color in the salmonids fillet is an important, appealing quality trait for consumers and producers. The color results from diet supplementation with carotenoids, which accounts for up to 20-30% of the feed cost. Pigment retention in the muscle is a highly variable phenotype. In this study, we aimed to understand the molecular basis for the variation in fillet color when rainbow trout (Oncorhynchus mykiss) fish families were fed an Astaxanthin-supplemented diet. We used RNA-Seq to study the transcriptome profile in the pyloric caecum, liver, and muscle from fish families with pink-reddish fillet coloration (red) versus those with lighter pale coloration (white). RESULTS More DEGs were identified in the muscle (5,148) and liver (3,180) than in the pyloric caecum (272). Genes involved in lipid/carotenoid metabolism and transport, ribosomal activities, mitochondrial functions, and stress homeostasis were uniquely enriched in the muscle and liver. For instance, the two beta carotene genes (BCO1 and BCO2) were significantly under-represented in the muscle of the red fillet group favoring more carotenoid retention. Enriched genes in the pyloric caecum were involved in intestinal absorption and transport of carotenoids and lipids. In addition, the analysis revealed the modulation of several genes with immune functions in the pyloric caecum, liver, and muscle. CONCLUSION The results from this study deepen our understanding of carotenoid dynamics in rainbow trout and can guide us on strategies to improve Astaxanthin retention in the rainbow trout fillet.
Collapse
Affiliation(s)
- Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Tim Leeds
- Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, United States, Agricultural Research Service, Kearneysville, WV, 25430, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
21
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
22
|
Dansou DM, Zhang H, Yu Y, Wang H, Tang C, Zhao Q, Qin Y, Zhang J. Carotenoid enrichment in eggs: From biochemistry perspective. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:315-333. [PMID: 37635928 PMCID: PMC10448277 DOI: 10.1016/j.aninu.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 08/29/2023]
Abstract
The emergence of safe and functional eggs for consumer acceptance has gained focus. The production of carotenoid-enriched eggs has received attention due to its multifunctional biological properties. Nutritional modification of laying hens' diet can be a strategy to produce such eggs. This review presents the chemistry of carotenoids in nature and eggs, the accumulation process of carotenoids into eggs, and the functions of carotenoids in eggs. Our findings showed that carotenoids can be deposited into the egg and contribute to improving its nutritive value. The biosynthesis, chemical structure, and metabolism pathways of carotenoids lead to the deposition of carotenoids into eggs in their original or metabolized forms. Also, some factors modulate the efficiency of carotenoids in fowls before accumulation into eggs. Carotenoid-enriched eggs may be promising, ensuring the availability of highly nutritive eggs. However, further studies are still needed to comprehend the full metabolism process and the extensive functions of carotenoids in eggs.
Collapse
Affiliation(s)
- Dieudonné M. Dansou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Sekiya M, Suzuki S, Ushida Y, Sato I, Suganuma H. Neoxanthin is undetectable in human blood after ingestion of fresh young spinach leaf. PLoS One 2023; 18:e0288143. [PMID: 37467249 DOI: 10.1371/journal.pone.0288143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
In a previous study, we demonstrated that the carotenoid neoxanthin was contained in young leafy vegetables including spinach and showed a fat accumulation inhibitory effect in vitro. To evaluate the bioavailability of neoxanthin, a raw young spinach leaf (100 g day-1 for 4 weeks) intake test was performed on 14 participants (36.5 ± 8.0 years; male:female ratio = 9:5). Neoxanthin, neochrome, β-carotene, and lutein concentration in the spinach and blood of participants (before and after the test) was measured using high performance liquid chromatography. Neither neoxanthin nor neochrome was detected in the blood samples, whereas β-carotene and lutein concentration significantly increased (1.4- and 1.9-fold, respectively) during testing. Neoxanthin bioavailability in humans is low; thus, it is unlikely to have a fat accumulation inhibitory effect in vivo, contrary to the result in vitro. Ingesting the leafy vegetables raw can help maintain high neoxanthin levels, but it is not beneficial for neoxanthin bioavailability.
Collapse
Affiliation(s)
- Mihoko Sekiya
- Innovation Division, Nature & Wellness Research Department, KAGOME CO., LTD., Tochigi, Japan
| | - Shigenori Suzuki
- Innovation Division, Nature & Wellness Research Department, KAGOME CO., LTD., Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, Nature & Wellness Research Department, KAGOME CO., LTD., Tochigi, Japan
| | - Ikuo Sato
- International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hiroyuki Suganuma
- Innovation Division, Nature & Wellness Research Department, KAGOME CO., LTD., Tochigi, Japan
| |
Collapse
|
24
|
Silva Meneguelli T, Duarte Villas Mishima M, Hermsdorff HHM, Martino HSD, Bressan J, Tako E. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit Rev Food Sci Nutr 2023; 64:11206-11221. [PMID: 37450500 DOI: 10.1080/10408398.2023.2234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Carotenoids have anti-inflammatory and antioxidant properties, being a potential bioactive compound for gut health. The objective of this systematic review was to investigate the effects of carotenoids on gut microbiota, gut barrier, and inflammation in healthy animals. The systematic search from PubMed, Scopus, and Lilacs databases were performed up to March 2023. The final screening included thirty studies, with different animal models (mice, rats, pigs, chicks, drosophila, fish, and shrimp), and different carotenoid sources (β-carotene, lycopene, astaxanthin, zeaxanthin, lutein, and fucoxanthin). The results suggested that carotenoids seem to act on gut microbiota by promoting beneficial effects on intestinal bacteria related to both inflammation and SCFA production; increase tight junction proteins expression, important for reducing intestinal permeability; increase the mucins expression, important in protecting against pathogens and toxins; improve morphological parameters important for digestion and absorption of nutrients; and reduce pro-inflammatory and increase anti-inflammatory cytokines. However, different carotenoids had distinct effects on gut health. In addition, there was heterogeneity between studies regarding animal model, duration of intervention, and doses used. This is the first systematic review to address the effects of carotenoids on gut health. Further studies are needed to better understand the effects of carotenoids on gut health.
Collapse
Affiliation(s)
| | | | | | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Chen Q, Shi T, Du D, Wang B, Zhao S, Gao Y, Wang S, Zhang Z. Non-destructive diagnostic testing of cardiac myxoma by serum confocal Raman microspectroscopy combined with multivariate analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2578-2587. [PMID: 37114381 DOI: 10.1039/d3ay00180f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The symptoms of cardiac myxoma (CM) mainly occur when the tumor is growing, and the diagnosis is determined by clinical presentation. Unfortunately, there is no evidence that specific blood tests are useful in CM diagnosis. Raman spectroscopy (RS) has emerged as a promising auxiliary diagnostic tool because of its ability to simultaneously detect multiple molecular features without labelling. The objective of this study was to identify spectral markers for CM, one of the most common benign cardiac tumors with insidious onset and rapid progression. In this study, a preliminary analysis was conducted based on serum Raman spectra to obtain the spectral differences between CM patients (CM group) and healthy control subjects (normal group). Principal component analysis-linear discriminant analysis (PCA-LDA) was constructed to highlight the differences in the distribution of biochemical components among the groups according to the obtained spectral information. Principal component analysis was combined with a support vector machine model (PCA-SVM) based on three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)) to resolve spectral variations between all study groups. The results showed that CM patients had lower serum levels of phenylalanine and carotenoid than those in the normal group, and increased levels of fatty acids. The resulting Raman data was used in a multivariate analysis to determine the Raman range that could be used for CM diagnosis. Also, the chemical interpretation of the spectral results obtained is further presented in the discussion section based on the multivariate curve resolution-alternating least squares (MCR-ALS) method. These results suggest that RS can be used as an adjunct and promising tool for CM diagnosis, and that vibrations in the fingerprint region can be used as spectral markers for the disease under study.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Du
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Sha Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yang Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China
| | - Zhanqin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Li X, Holt RR, Keen CL, Morse LS, Zivkovic AM, Yiu G, Hackman RM. Potential roles of dietary zeaxanthin and lutein in macular health and function. Nutr Rev 2023; 81:670-683. [PMID: 36094616 PMCID: PMC11494239 DOI: 10.1093/nutrit/nuac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin are three xanthophyll carotenoid pigments that selectively concentrate in the center of the retina. Humans cannot synthesize lutein and zeaxanthin, so these compounds must be obtained from the diet or supplements, with meso-zeaxanthin being converted from lutein in the macula. Xanthophylls are major components of macular pigments that protect the retina through the provision of oxidant defense and filtering of blue light. The accumulation of these three xanthophylls in the central macula can be quantified with non-invasive methods, such as macular pigment optical density (MPOD). MPOD serves as a useful tool for assessing risk for, and progression of, age-related macular degeneration, the third leading cause of blindness worldwide. Dietary surveys suggest that the dietary intakes of lutein and zeaxanthin are decreasing. In addition to low dietary intake, pregnancy and lactation may compromise the lutein and zeaxanthin status of both the mother and infant. Lutein is found in modest amounts in some orange- and yellow-colored vegetables, yellow corn products, and in egg yolks, but rich sources of zeaxanthin are not commonly consumed. Goji berries contain the highest known levels of zeaxanthin of any food, and regular intake of these bright red berries may help protect against the development of age-related macular degeneration through an increase in MPOD. The purpose of this review is to summarize the protective function of macular xanthophylls in the eye, speculate on the compounds' role in maternal and infant health, suggest the establishment of recommended dietary values for lutein and zeaxanthin, and introduce goji berries as a rich food source of zeaxanthin.
Collapse
Affiliation(s)
- Xiang Li
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Roberta R Holt
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Carl L Keen
- are with the Department of Nutrition, UC Davis, Davis, California, USA
- is with the Department of Internal Medicine, UC Davis, Sacramento, California, USA
| | - Lawrence S Morse
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Angela M Zivkovic
- re with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Glenn Yiu
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Robert M Hackman
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| |
Collapse
|
27
|
Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, Muraglia M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants (Basel) 2023; 12:antiox12051069. [PMID: 37237935 DOI: 10.3390/antiox12051069] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Well-known experimental research demonstrates that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. A high concentration of reactive oxygen species (ROS) and nitrogen species leads to damage of proteins, lipids, and DNA associated with susceptibility to chronic human degenerative disorders. Biological and pharmaceutical investigations have recently focused on exploring both oxidative stress and its defense mechanisms to manage health disorders. Therefore, in recent years there has been considerable interest in bioactive food plant compounds as naturally occurring antioxidant sources able to prevent, reverse, and/or reduce susceptibility to chronic disease. To contribute to this research aim, herein, we reviewed the beneficial effects of carotenoids on human health. Carotenoids are bioactive compounds widely existing in natural fruits and vegetables. Increasing research has confirmed that carotenoids have various biological activities, such as antioxidant, anti-tumor, anti-diabetic, anti-aging, and anti-inflammatory activities. This paper presents an overview of the latest research progress on the biochemistry and preventative and therapeutic benefits of carotenoids, particularly lycopene, in promoting human health. This review could be a starting point for improving the research and investigation of carotenoids as possible ingredients of functional health foods and nutraceuticals in the fields of healthy products, cosmetics, medicine, and the chemical industry.
Collapse
Affiliation(s)
- Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, "Aldo Moro", 70124 Bari, Italy
| | - Muhammad Yasir Naeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
28
|
Rocha HR, Coelho MC, Gomes AM, Pintado ME. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023; 15:nu15102265. [PMID: 37242148 DOI: 10.3390/nu15102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Several epidemiologic studies have found that consuming fruits and vegetables lowers the risk of getting a variety of chronic illnesses, including several types of cancers, cardiovascular diseases (CVDs), and bowel diseases. Although there is still debate over the bioactive components, various secondary plant metabolites have been linked to these positive health benefits. Many of these features have recently been connected to carotenoids and their metabolites' effects on intracellular signalling cascades, which influence gene expression and protein translation. Carotenoids are the most prevalent lipid-soluble phytochemicals in the human diet, are found in micromolar amounts in human serum, and are very susceptible to multiple oxidation and isomerisation reactions. The gastrointestinal delivery system, digestion processes, stability, and functionality of carotenoids, as well as their impact on the gut microbiota and how carotenoids may be effective modulators of oxidative stress and inflammatory pathways, are still lacking research advances. Although several pathways involved in carotenoids' bioactivity have been identified, future studies should focus on the carotenoids' relationships, related metabolites, and their effects on transcription factors and metabolism.
Collapse
Affiliation(s)
- Helena R Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta C Coelho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
29
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
30
|
Kim Y, Jung S, Park G, Shin H, Heo SC, Kim Y. β-Carotene suppresses cancer cachexia by regulating the adipose tissue metabolism and gut microbiota dysregulation. J Nutr Biochem 2023; 114:109248. [PMID: 36503110 DOI: 10.1016/j.jnutbio.2022.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cancer cachexia is a metabolic disease affecting multiple organs and characterized by loss adipose and muscle tissues. Metabolic dysregulated of adipose tissue has a crucial role in cancer cachexia. β-Carotene (BC) is stored in adipose tissues and increases muscle mass and differentiation. However, its regulatory effects on adipose tissues in cancer cachexia have not been investigated yet. In this study, we found that BC supplementations could inhibit several cancer cachexia-related changes, including decreased carcass-tumor (carcass weight after tumor removal), adipose weights, and muscle weights in CT26-induced cancer cachexia mice. Moreover, BC supplementations suppressed cancer cachexia-induced lipolysis, fat browning, hepatic gluconeogenesis, and systemic inflammation. Altered diversity and composition of gut microbiota in cancer cachexia were restored by the BC supplementations. BC treatments could reverse the down-regulated adipogenesis and dysregulated mitochondrial respiration and glycolysis in adipocytes and colon cancer organoid co-culture systems. Taken together, these results suggest that BC can be a potential therapeutic strategy for cancer cachexia.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Sunil Jung
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Gwoncheol Park
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University-Seoul Metropolitan Government (SNU-SMG) Boramae Medical Center, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
32
|
Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar Drugs 2023; 21:md21030176. [PMID: 36976225 PMCID: PMC10056084 DOI: 10.3390/md21030176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Astaxanthin (3,3-dihydroxy-β, β-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.
Collapse
|
33
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
34
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
35
|
Li JX, Tian Z, Liu XF, Li B, An HM, Brent CS, Wang JL, Wang XP, Liu W. Juvenile hormone regulates the photoperiodic plasticity of elytra coloration in the ladybird Harmonia axyridis. Mol Ecol 2023; 32:2884-2897. [PMID: 36811404 DOI: 10.1111/mec.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Many animals, including insects, exhibit plasticity of body colour in response to environmental changes. Varied expression of carotenoids, major cuticle pigments, significantly contributes to body colour flexibility. However, the molecular mechanisms by which environmental cues regulate carotenoid expression remain largely unknown. In this study, we used the ladybird Harmonia axyridis as a model to investigate the photoperiodic-responsive plasticity of elytra coloration and its endocrine regulation. It was found that H. axyridis females under long-day conditions develop elytra that are much redder than those under short-day conditions, resulting from the differential accumulation of carotenoids. Exogenous hormone application and RNAi-mediated gene knockdown indicate that carotenoid deposition was directed through the juvenile hormone (JH) receptor-mediated canonical pathway. Moreover, we characterized an SR-BI/CD36 (SCRB) gene SCRB10 as the carotenoid transporter responding to JH signalling and regulating the elytra coloration plasticity. Taken together, we propose that JH signalling transcriptionally regulates the carotenoid transporter gene for the photoperiodic coloration plasticity of elytra in the beetles, which reveals a novel role of the endocrine system in the regulation of carotenoid-associated animal body coloration under environmental stimuli.
Collapse
Affiliation(s)
- Jia-Xu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing-Feng Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bei Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Colin S Brent
- United States Department of Agriculture, Agricultural Research Service, Arid Land Agricultural Centre, Maricopa, Arizona, USA
| | - Jia-Lu Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Food Res Int 2023; 164:112301. [PMID: 36737902 DOI: 10.1016/j.foodres.2022.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
β-carotene is a carotenoid with provitamin A activity and other health benefits, which needs to become bioavailable upon oral intake to exert its biological activity. A better understanding of its behaviour and stability in the gastrointestinal tract and means to increase its bioavailability are highly needed. Using an in vitro gastrointestinal digestion method coupled to an intestinal cell model, we explored the stability, gastrointestinal bioaccessibility and cellular uptake of β-carotene from microparticles containing carotenoid extracts derived from mango by-products. Three types of microparticles were tested: one with the carotenoid extract as such, one with added inulin and one with added fructooligosaccharides. Overall, β-carotene was relatively stable during the in vitro digestion, as total recoveries were above 68 %. Prebiotics in the encapsulating material, especially inulin, enhanced the bioaccessibility of β-carotene almost 2-fold compared to microparticles without prebiotics. Likewise, β-carotene bioaccessibility increased proportionally with bile salt concentrations during digestion. Yet, a bile salts level above 10 mM did not contribute markedly to β-carotene bioaccessibility of prebiotic containing microparticles. Cellular uptake experiments with non-filtered gastrointestinal digests yielded higher absolute levels of β-carotene taken up in the epithelial cells as compared to uptake assays with filtered digests. However, the proportional uptake of β-carotene was higher for filtered digests (24 - 31 %) than for non-filtered digests (2 - 8 %). Matrix-dependent carotenoid uptake was only visible in the unfiltered medium, thereby pointing to possible other cellular transport mechanisms of non-micellarized carotenoids, besides the concentration effect. Regardless of a filtration step, inulin-amended microparticles consistently resulted in a higher β-carotene uptake than regular microparticles or FOS-amended microparticles. In conclusion, encapsulation of carotenoid extracts from mango by-products displayed chemical stability and release of a bioaccessible β-carotene fraction upon gastrointestinal digestion. This indicates the potential of the microparticles to be incorporated into functional foods with provitamin A activity.
Collapse
|
37
|
Diaz CJ, Douglas KJ, Kang K, Kolarik AL, Malinovski R, Torres-Tiji Y, Molino JV, Badary A, Mayfield SP. Developing algae as a sustainable food source. Front Nutr 2023; 9:1029841. [PMID: 36742010 PMCID: PMC9892066 DOI: 10.3389/fnut.2022.1029841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Current agricultural and food production practices are facing extreme stress, posed by climate change and an ever-increasing human population. The pressure to feed nearly 8 billion people while maintaining a minimal impact on the environment has prompted a movement toward new, more sustainable food sources. For thousands of years, both the macro (seaweed and kelp) and micro (unicellular) forms of algae have been cultivated as a food source. Algae have evolved to be highly efficient at resource utilization and have proven to be a viable source of nutritious biomass that could address many of the current food production issues. Particularly for microalgae, studies of their large-scale growth and cultivation come from the biofuel industry; however, this knowledge can be reasonably translated into the production of algae-based food products. The ability of algae to sequester CO2 lends to its sustainability by helping to reduce the carbon footprint of its production. Additionally, algae can be produced on non-arable land using non-potable water (including brackish or seawater), which allows them to complement rather than compete with traditional agriculture. Algae inherently have the desired qualities of a sustainable food source because they produce highly digestible proteins, lipids, and carbohydrates, and are rich in essential fatty acids, vitamins, and minerals. Although algae have yet to be fully domesticated as food sources, a variety of cultivation and breeding tools exist that can be built upon to allow for the increased productivity and enhanced nutritional and organoleptic qualities that will be required to bring algae to mainstream utilization. Here we will focus on microalgae and cyanobacteria to highlight the current advancements that will expand the variety of algae-based nutritional sources, as well as outline various challenges between current biomass production and large-scale economic algae production for the food market.
Collapse
Affiliation(s)
- Crisandra J. Diaz
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kai J. Douglas
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Ashlynn L. Kolarik
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Rodeon Malinovski
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - João V. Molino
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Amr Badary
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States,California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Stephen P. Mayfield,
| |
Collapse
|
38
|
Duan X, Xie C, Hill DRA, Barrow CJ, Dunshea FR, Martin GJO, Suleria HA. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyu Duan
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - David R. A. Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
39
|
Qi C, Tu H, Zhao Y, Zhou J, Chen J, Hu H, Yu R, Sun J. Breast Milk-Derived Limosilactobacillus reuteri Prevents Atopic Dermatitis in Mice via Activating Retinol Absorption and Metabolism in Peyer's Patches. Mol Nutr Food Res 2023; 67:e2200444. [PMID: 36480309 DOI: 10.1002/mnfr.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Indexed: 12/13/2022]
Abstract
SCOPE Supplementing Limosilactobacillus reuteri Fn041, a breast milk-derived probiotic from agricultural and pastoral areas, to maternal mice during late pregnancy and lactation prevents atopic dermatitis (AD) in offspring. This study aims to elucidate the molecular mechanism of Fn041-mediated immune regulation. METHODS AND RESULTS Fn041 is administered prenatal and postnatal to maternal mice, and to offspring after weaning. The ears are administered with calcipotriol to induce AD. Fn041 treatment significantly alleviates ear inflammation, and reduces mast cell infiltration. Fn041 treatment upregulates and downregulates intestinal ZO-1 and Claudin-2 mRNA expression, respectively. Transcriptome analysis of Peyer's patches reveals that pathways related to DNA damage repair are activated in AD mice, which is inhibited by Fn041 treatment. Fn041 activates pathways related to retinol absorption and metabolism. Untargeted metabolomic analysis reveals that Fn041 treatment increases plasma retinol and kynurenine. Fn041 treatment does not significantly alter the overall cecal microbiota profile, only increases the relative abundances of Ligilactobacillus apodemi, Ligilactobacillus murinus, Akkermansia muciniphila, and Bacteroides thetaiotaomicron. CONCLUSIONS Fn041 induces anti-AD immune responses directly by promoting the absorption and metabolism of retinol in Peyer's patches, and plays an indirect role by strengthening the mucosal barrier and increasing the abundance of specific anti-AD bacteria in the cecum.
Collapse
Affiliation(s)
- Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Huayu Tu
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Yuning Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jingbo Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| | - Jie Chen
- Department of Pediatric Cardiology Nephrology and Rheumatism, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
| | - Haiting Hu
- Department of Neonatology, The Affiliated Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213004, China
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214022, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
40
|
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood-Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int J Mol Sci 2022; 24:ijms24010533. [PMID: 36613976 PMCID: PMC9820279 DOI: 10.3390/ijms24010533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana Rita Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| |
Collapse
|
41
|
Shwetha HJ, Arathi BP, Beto Mukherjee M, Ambedkar R, Shivaprasad S, Raichur AM, Lakshminarayana R. Zein-Alginate-Phosphatidylcholine Nanocomplex Efficiently Delivers Lycopene and Lutein over Dietary-Derived Carotenoid Mixed Micelles in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15474-15486. [PMID: 36456189 DOI: 10.1021/acs.jafc.2c05008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study evaluated the potency of zein-alginate-phosphatidylcholine nanoparticles (NPs) on bioaccessibility/intestinal uptake of encapsulated lycopene (LY) and lutein (LT) versus dietary absorption using simulated digestion and human intestinal Caco-2 cells. LY-zein-alginate-PC (LYZAP) and LT-zein-alginate-PC (LTZAP) NPs yield desired properties, which exhibit sustained release and are suitable for oral administration. Interestingly, co-treatment of LYZAP + LTZAP showed better release of carotenoids instead of individual treatment at intestinal pH. Bioaccessibility, cellular uptake, and basolateral secretion of LY and LT from NPs were significantly enhanced than micellar carotenoids (dietary mode of absorption). The increased absorption of carotenoids from NPs correlated with triglyceride levels. The intestinal cell uptake of carotenoids by nanoencapsulation may be due to endocytosis, paracellular, and SRB-1 protein-mediated transport. Overall, LYZAP and LTZAP NPs possess superior properties to control the release and cellular uptake of unique or distinct carotenoids. The inclusion of alginate and phosphatidylcholine in zein-based nanoencapsulation could be a promising strategy to improve carotenoid bioavailability.
Collapse
Affiliation(s)
- Hulikere Jagdish Shwetha
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | | | - Mousumi Beto Mukherjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru560 012, India
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | - Shilpa Shivaprasad
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru560 012, India
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bengaluru560 056, India
| |
Collapse
|
42
|
Javed MS, Amjad A, Shah FUH, Ahmad Z, Hameed A, Anwar MJ, Khan AA, Amir M, Jawad M, Abrar M. Probing the physicochemical characteristics of carrot sauce during storage. PLoS One 2022; 17:e0273857. [PMID: 36383564 PMCID: PMC9668152 DOI: 10.1371/journal.pone.0273857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, the prevalence of vit-A deficiency disorders i.e., xerophthalmia and nyctalopia is increasing especially in teenagers due to lifestyle shifts and undernutrition. This research was designed to develop carrot-supplemented tomato sauce to overcome vit-A deficiency and its related disorders. The carrot sauce was formulated with the addition of 50, 60, and 70% carrot pulp in tomato paste. The prepared sauce samples were tested for physical and biochemical changes in beta carotene (BC), lycopene, viscosity, pH, total soluble solids, titratable acidity, total plate count, and sensory parameters for 12 weeks. A non-significant effect of storage on BC, lycopene, and total soluble solids was observed. The total plate count, acidity, pH, and viscosity were influenced significantly. Sauce containing 60% of the carrot paste showed good sensory characteristics and 42.39 μg/g BC for the whole period of storage. It is concluded that carrot sauce can be used as tomato ketchup replacers to boost the overall quality of life by fighting against vit-A deficiency disorders.
Collapse
Affiliation(s)
- Muhammad Sameem Javed
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- * E-mail:
| | - Faiz-ul-Hassan Shah
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Zulfiqar Ahmad
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Aneela Hameed
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Junaid Anwar
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Ammar Ahmad Khan
- University Institute of Diet and Nutritional Science, The University of Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Amir
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Jawad
- Institute of Food Science and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Abrar
- Post Harvest Research Centre, Ayub Agricultural Research Institute Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
43
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
44
|
Fabrication of starch/zein-based microcapsules for encapsulation and delivery of fucoxanthin. Food Chem 2022; 392:133282. [DOI: 10.1016/j.foodchem.2022.133282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 01/19/2023]
|
45
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
46
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
47
|
Nikiforov-Nikishin A, Smorodinskaya S, Kochetkov N, Nikiforov-Nikishin D, Danilenko V, Bugaev O, Vatlin A, Abrosimova N, Antipov S, Kudryavtsev A, Klimov V. Effects of Three Feed Additives on the Culturable Microbiota Composition and Histology of the Anterior and Posterior Intestines of Zebrafish ( Danio rerio). Animals (Basel) 2022; 12:2424. [PMID: 36139282 PMCID: PMC9495144 DOI: 10.3390/ani12182424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, the effect of three promising feed additives (chelated compounds of trace elements, butyric acid, lycopene) on changes in the culturable microbiota and histological parameters of two sections of the intestines of Danio rerio (zebrafish) was studied. The use of these feed additives can help to eliminate the deficiency of trace elements, modulate the composition of the microbiota due to the postbiotic properties of butyric acid, and reduce oxidative stress when using lycopene. Incorporation of the investigated supplements in the feed resulted in a significant change in the relative abundance of certain groups of microorganisms. The taxonomic diversity of cultured microorganisms did not differ in the anterior and posterior intestines, while there were differences in the relative abundance of these microorganisms. The most sensitive groups of microorganisms were the genera Bacillus and Serratia. A significant effect on the composition of the cultured microbiota was caused by lycopene (in all studied concentrations), leading to a significant increase in the relative abundance of Firmicutes in the anterior gut. Studies of the histological structure of the anterior and posterior guts have shown the relationship between the barrier and secretory functions of the gut and the composition of the microbiota while using butyric acid (1 and 2 g kg-1) and trace element chelated compounds (2 mg kg-1). This culture-dependent method of studying the microbiome makes it possible to assess changes in some representatives of the main groups of microorganisms (Firmicutes and Proteobacteria). Despite the incompleteness of the data obtained by the culture-dependent method, its application makes it possible to assess the bioactive properties of feed and feed additives and their impact on the microbiota involved in digestive processes.
Collapse
Affiliation(s)
- Alexei Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Svetlana Smorodinskaya
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Nikita Kochetkov
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Dmitry Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Valery Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Oleg Bugaev
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Aleksey Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Nina Abrosimova
- Department of Aquaculture Techniques, Don State Technical University, Gagarin Square 1, 344003 Rostov-on-Don, Russia
| | - Sergei Antipov
- Department of Biophysics and Biotechnology, Voronezh State University, University Square 1, 394063 Voronezh, Russia
| | - Alexander Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Viktor Klimov
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| |
Collapse
|
48
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
49
|
Wang Y, Yang F, Liu T, Zhao C, Gu F, Du H, Wang F, Zheng J, Xiao H. Carotenoid fates in plant foods: Chemical changes from farm to table and nutrition. Crit Rev Food Sci Nutr 2022; 64:1237-1255. [PMID: 36052655 DOI: 10.1080/10408398.2022.2115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids in plant foods are sources of pro-vitamin A and nutrients with several health benefits, including antioxidant and anticancer activities. However, humans cannot synthesize carotenoids de novo and must obtain them from the diet, typically via plant foods. We review the chemical changes of carotenoids in plant foods from farm to table and nutrition, including nutrient release and degradation during processing and metabolism in vivo. We also describe the influencing factors and proposals corresponding to enhancing the release, retention and utilization of carotenoids, thus benefiting human health. Processing methods influence the release and degradation of carotenoids, and nonthermal processing may optimize processing effects. The carotenoid profile, food matrix, and body status influence the digestion, absorption, and biotransformation of carotenoids in vivo; food design (diet and carotenoid delivery systems) can increase the bioavailability levels of carotenoids in the human body. In this review, the dynamic fate of carotenoids in plant foods is summarized systematically and deeply, focusing on changes in their chemical structure; identifying critical control points and influencing factors to facilitate carotenoid regulation; and suggesting multi-dimensional strategies based on the current state of food processing industries to achieve health benefits for consumers.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
50
|
Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14091852. [PMID: 36145601 PMCID: PMC9501598 DOI: 10.3390/pharmaceutics14091852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are natural lipid-soluble pigments that produce yellow to red colors in plants as well as providing bright coloration in vegetables and fruits. Lutein belongs to the xanthophyll subgroup of the carotenoid family, which plays an essential role in photosynthesis and photoprotection in nature. In the human body, lutein, together with its isomer zeaxanthin and its metabolite meso-zeaxanthin, accumulates in the macula of the eye retina, which is responsible for central, high-resolution, and color vision. As a bioactive phytochemical, lutein has essential physiological functions, providing photoprotection against damaging blue light, along with the neutralization of oxidants and the preservation of the structural and functional integrity of cellular membranes. As a potent antioxidant and anti-inflammatory agent, lutein unfortunately has a low bioavailability because of its lipophilicity and a low stability as a result of its conjugated double bonds. In order to enhance lutein stability and bioavailability and achieve its controlled delivery to a target, nanoscale delivery systems, which have great potential for the delivery of bioactive compounds, are starting to be employed. The current review highlights the advantages and innovations associated with incorporating lutein within promising nanoscale delivery systems, such as liposomes, nanoemulsions, polymer nanoparticles, and polymer–lipid hybrid nanoparticles, as well as their unique physiochemical properties.
Collapse
|