1
|
Xie D, Pan Y, Chen J, Mao C, Li Z, Qiu F, Yang L, Deng Y, Lu J. Association of genetic variants in soy isoflavones metabolism-related genes with decreased lung cancer risk. Gene 2024; 927:148732. [PMID: 38945312 DOI: 10.1016/j.gene.2024.148732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Soy isoflavones have been reported to exhibit anti-tumor effects. We hypothesize that genetic variants in soy isoflavone metabolism-related genes are associated with the risk of lung cancer. METHODS A two-stage case-control study design was conducted in this study. The discovery stage included 300 lung cancer cases and 600 healthy controls to evaluate the association of candidate genetic variants with lung cancer risk. The validation stage involved 1200 cases and 1200 controls to validate the associations found. Furthermore, qPCR was performed to assess the mRNA expression levels of different genotypes of the SNP. ELISA was used to explore the association between genotype and soy isoflavone levels, as well as the association between soy isoflavone levels and lung cancer risk. RESULTS A nonlinear association was observed between plasma soy isoflavone levels and lung cancer risk, with higher soy isoflavone levels associated with lower lung cancer risk (P < 0.001). The two-stage case-control study identified that UGT1A1 rs3755319 A > C was associated with decreased lung cancer risk (Recessive model: adjusted OR = 0.69, 95 %CI = 0.57-0.84, P < 0.001). Moreover, eQTL analysis showed that the expression level of UGT1A1 in the rs3755319 CC genotype was lower than in the AA + AC genotype (P < 0.05). The plasma concentration of soy isoflavones in the rs3755319 CC genotype was higher than in the AA + AC genotype (P = 0.008). CONCLUSIONS We identified a potentially functional SNP, UGT1A1 rs3755319 A > C, as being associated with decreased lung cancer risk. Further experiments will be needed to explore the mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Dongming Xie
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yujie Pan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Chun Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Zhi Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Lei Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yibin Deng
- Centre for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China.
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
5
|
Hu YC, Huang TC, Huang LW, Cheng HL, Hsieh BS, Chang KL. S-Equol Ameliorates Menopausal Osteoarthritis in Rats through Reducing Oxidative Stress and Cartilage Degradation. Nutrients 2024; 16:2364. [PMID: 39064807 PMCID: PMC11280421 DOI: 10.3390/nu16142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease leading to articular cartilage destruction. Menopausal and postmenopausal women are susceptible to both OA and osteoporosis. S-equol, a soy isoflavone-derived molecule, is known to reduce osteoporosis in estrogen-deficient mice, but its role in OA remains unknown. This study aimed to explore the effect of S-equol on different degrees of menopausal OA in female Sprague-Dawley (SD) rats induced by estrogen deficiency caused by bilateral ovariectomy (OVX) combined with intra-articular injection of mono-iodoacetate (MIA). Knee joint histopathological change; serum biomarkers of bone turnover, including N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX-I) and N-terminal telopeptide of type I collagen (NTX-I); the cartilage degradation biomarkers hyaluronic acid (HA) and N-terminal propeptide of type II procollagen (PIINP); and the matrix-degrading enzymes matrix metalloproteinases (MMP)-1, MMP-3 and MMP-13, as well as the oxidative stress-inducing molecules nitric oxide (NO) and hydrogen peroxide (H2O2), were assessed for evaluation of OA progression after S-equol supplementation for 8 weeks. The results showed that OVX without or with MIA injection induced various severity levels of menopausal OA by increasing pathological damage, oxidative stress, and cartilage matrix degradation to various degrees. Moreover, S-equol supplementation could significantly reduce these increased biomarkers in different severity levels of OA. This indicates that S-equol can lessen menopausal OA progression by reducing oxidative stress and the matrix-degrading enzymes involved in cartilage degradation.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Hsiao-Ling Cheng
- Department of Pharmacy, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung 802511, Taiwan;
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
6
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
7
|
Kaufman-Szymczyk A, Jalmuzna J, Lubecka-Gajewska K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br J Pharmacol 2024. [PMID: 38528688 DOI: 10.1111/bph.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The chemopreventive and chemotherapeutic properties of soy and soy-derived compounds, especially isoflavones, have been extensively studied in recent years. However, in contrast to their anticancer effects, such as cell growth inhibition, cell cycle arrest and apoptosis induction, isoflavones have also been found to promote the growth of cancer cells. Therefore, the aim of this comprehensive review article is to present the current state of knowledge regarding the molecular mechanisms by which soy-derived isoflavones target multiple cellular signalling pathways in cancer cells. Our findings indicate that soy-derived isoflavones act as, among other things, potent modulators of HOX transcript antisense RNA (HOTAIR)/SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), vascular endothelial growth factor (VEGF)/C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor type 4 (CXCR4), 17-β-oestradiol (E2)/oestrogen receptor-α (ERα)/neuroglobin (NGB) and sonic hedgehog signalling pathways, epigenetic modulatory agents (i.a. miR-155, miR-34a and miR-10a-5p) and cancer stem cells and epithelial-to-mesenchymal transition inhibitors. The paper also discusses the latest epidemiological studies and clinical trials and provides an insight into recent extensive research on the chemo-preventive and therapeutic potential of soy-derived isoflavones.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Justyna Jalmuzna
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Katarzyna Lubecka-Gajewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Balan A, Moga MA, Neculau AE, Mitrica M, Rogozea L, Ifteni P, Dima L. Royal Jelly and Fermented Soy Extracts-A Holistic Approach to Menopausal Symptoms That Increase the Quality of Life in Pre- and Post-menopausal Women: An Observational Study. Nutrients 2024; 16:649. [PMID: 38474777 DOI: 10.3390/nu16050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The objective of this study was to determine the effects of royal jelly and fermented soy extracts on menopausal symptoms and on quality of life in pre- and post-menopausal women. MATERIALS AND METHOD This prospective observational study was carried out in a Clinical Hospital of Brasov, Romania, during June 2020 and December 2021. Eighty pre- and post-menopausal women, aged between 45 and 60 years, were included in two groups. The first group (40 women) received a dietary supplement with fermented soy extract twice a day for eight weeks and the second group (40 women) received the same dietary supplement with fermented soy extracts and 1500 mg of royal jelly capsules for eight weeks. After the treatment, the MENQOL score, DASS-21 score, and the mean number and intensity of daily hot flushes were recorded and compared with baseline values. RESULTS After eight weeks of treatment, the score of the MENQOL questionnaire and all its domains' scores decreased in comparison with the baseline in both groups (p < 0.001). Also, the DASS-21 score (p < 0.001), depression score (p < 0.001), anxiety score (p < 0.001), and stress score (p < 0.001) improved. The mean number and the intensity of hot flushes decreased in both groups (p < 0.001). Comparing these variables after the treatment in both groups, we observed that the women who received dietary supplements with fermented soy extracts and royal jelly capsules recorded better scores for MENQOL (vasomotor, physical, and psychosocial domains) and a more reduced mean number of daily hot flushes. CONCLUSIONS This observational study suggests that both dietary fermented soy supplements and royal jelly capsules possess beneficial effects against menopausal symptoms, increase the quality of life in pre- and post-menopausal women, and that the effects might be significantly improved if those dietary supplements are administered in association.
Collapse
Affiliation(s)
- Andreea Balan
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brașov, Romania
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania
| | - Maria Mitrica
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brașov, Romania
| | - Liliana Rogozea
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania
| | - Petru Ifteni
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania
| |
Collapse
|
9
|
Jiang L, Yang X, Gao X, Yang H, Ma S, Huang S, Zhu J, Zhou H, Li X, Gu X, Zhou H, Liang Z, Yang A, Huang Y, Xiao M. Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3231-3243. [PMID: 38303105 DOI: 10.1021/acs.jafc.3c08202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The color of the seed coat has great diversity and is regarded as a biomarker of metabolic variations. Here we isolated a soybean variant (BLK) from a population of recombinant inbred lines with a black seed coat, while its sibling plants have yellow seed coats (YL). The BLK and YL plants showed no obvious differences in vegetative growth and seed weight. However, the BLK seeds had higher anthocyanins and flavonoids level and showed tolerance to various abiotic stresses including herbicide, oxidation, salt, and alkalinity during germination. Integrated metabolomic and transcriptomic analyses revealed that the upregulation of biosynthetic genes probably contributed to the overaccumulation of flavonoids in BLK seeds. The transient expression of those biosynthetic genes in soybean root hairs increased the levels of total flavonoids or anthocyanins. Our study revealed the molecular basis of flavonoid accumulation in soybean seeds, leveraging genetic engineering for both nutritious and stress-tolerant soybean germplasm.
Collapse
Affiliation(s)
- Ling Jiang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
| | - Xiaofeng Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiewang Gao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Hui Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Shumei Ma
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Shan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Jianyu Zhu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hong Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaohong Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaoyan Gu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hongming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Zeya Liang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Antong Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yong Huang
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mu Xiao
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
10
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
11
|
Kang JH, Dong Z, Shin SH. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J Microbiol Biotechnol 2023; 33:1552-1562. [PMID: 37674385 PMCID: PMC10774093 DOI: 10.4014/jmb.2308.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Soybean (Glycine max) is an important ingredient of cuisines worldwide. While there is a wealth of evidence that soybean could be a good source of macronutrients and phytochemicals with health-promoting effects, concerns regarding adverse effects have been raised. In this work, we reviewed the current clinical evidence focusing on the benefits and risks of soybean ingredients. In breast, prostate, colorectal, ovarian, and lung cancer, epidemiological studies showed an inverse association between soybean food intake and cancer risks. Soybean intake was inversely correlated with risks of type 2 diabetes mellitus (T2DM), and soy isoflavones ameliorated osteoporosis and hot flashes. Notably, soybean was one of the dietary protein sources that may reduce the risk of breast cancer and T2DM. However, soybean had adverse effects on certain types of drug treatment and caused allergies. In sum, this work provides useful considerations for planning clinical soybean research and selecting dietary protein sources for human health.
Collapse
Affiliation(s)
- Jung Hyun Kang
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou 450008, Henan, P.R. China
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Sultan I, Taha I, El Tarhouny S, Mohammed RA, Allah AMA, Al Nozha O, Desouky M, Ghonimy A, Elmehallawy Y, Aldeeb N, Iskandarani YA. Determinants of Z-Score of Bone Mineral Density among Premenopausal Saudi Females in Different Age Groups: A Cross Sectional Study. Nutrients 2023; 15:4280. [PMID: 37836564 PMCID: PMC10574730 DOI: 10.3390/nu15194280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
This is a comparative multicenter cross-sectional study that evaluated the potential determinants of Z-scores among premenopausal Saudi women before and after the age of peak bone density. The Study concluded that for better BMD among premenopausal women, attention should be paid to early physical activity and healthy nutrition, especially vitamin D, during the childbearing period. OBJECTIVE To explore the potential determinants of Z-scores among premenopausal Saudi females in different age groups before and after the expected age of peak bone density (PBD). METHODS This multicenter comparative cross-sectional study was conducted in Madinah and Jeddah, Saudi Arabia, between August 2021 and March 2022. We recruited 886 premenopausal females (605 (68.3%) below and 281 (31.7%) at or above the age of 30). The structured pre-coded Arabic questionnaire included sociodemographic data, a BMD questionnaire, menstrual history, an Arab Teen Lifestyle Study questionnaire, and food frequency data. Metabolic Equivalents (METs) were calculated from physical activity. Analysis of serum PTH, 25(OH) vitamin D (VD) was performed with chemiluminescent immunoassay. BMD was measured with a calcaneal qualitative ultrasound. RESULTS Most women had age-matched Z-scores, with very few (24 (2.7%)) being non-age-matched with no identified secondary causes. Significant Z-score determinants before PBD were BMI (OR: 0.167, p = 0.003) and total METs (OR: 0.160, p < 0.005). After the age of PBD, significant predictors were parity (OR: 0.340, p = 0.042), history of vitamin D deficiency (OR: 0.352, p = 0.048), and BMI (OR: 0.497, p = 0.019). CONCLUSIONS Early determinants of Z-scores among premenopausal women were the nutritional status and physical activity. After the age of PBD, parity and vitamin D status offer additional determinants. For better BMD, attention should be paid to early physical activity and healthy nutrition, especially for vitamin D, with intensification of efforts during the childbearing period.
Collapse
Affiliation(s)
- Intessar Sultan
- Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Inass Taha
- College of Medicine, Taibah University, Medina 41477, Saudi Arabia; (I.T.); (O.A.N.); (M.D.)
| | - Shereen El Tarhouny
- Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
- College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Rehab A. Mohammed
- Faculty of Medicine for Girls, Al-Azhar University, Cairo 11765, Egypt;
| | - Azza M. Abdu Allah
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
- Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Omar Al Nozha
- College of Medicine, Taibah University, Medina 41477, Saudi Arabia; (I.T.); (O.A.N.); (M.D.)
| | - Maha Desouky
- College of Medicine, Taibah University, Medina 41477, Saudi Arabia; (I.T.); (O.A.N.); (M.D.)
- College of Medicine, Menia University, Menia 61519, Egypt
| | | | - Yara Elmehallawy
- College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Nawaf Aldeeb
- Department of Medicine, King Salman Medical City, Medina 42316, Saudi Arabia;
| | | |
Collapse
|
13
|
Gholami A, Darudi F, Baradaran HR, Hariri M. Effect of soy isoflavones on C-reactive protein in chronic inflammatory disorders. INT J VITAM NUTR RES 2023; 93:447-458. [PMID: 35291882 DOI: 10.1024/0300-9831/a000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New evidence suggests that soy products might reduce chronic systemic inflammation. Therefore, we aimed to summarize the effect of soy isoflavones on serum concentration of C-reactive protein (CRP) among participants with chronic inflammatory disorders by conducting this study. Cochrane Library, Scopus, ISI Web of Science, clinicaltrials.gov, and PubMed were searched to identify randomized clinical trials (RCTs) published up to December 2020. The effect size was calculated by the mean change from baseline in concentrations of CRP and its standard deviation for both intervention and comparison groups. DerSimonian and Laird random-effects model was used when the heterogeneity test was statistically significant. In total, thirteen RCTs involving 1213 participants and ten RCTs involving 1052 participants were eligible for our systematic review and meta-analysis respectively. Study duration ranged from 4 to 96 weeks and soy isoflavones dose varied from 33 to 132 mg/day. Overall effect size indicated a non-significant effect on serum concentration of CRP following soy isoflavones intake (weighted mean differences (WMD)=-0.15 mg/L, 95% confidence interval (CI): -0.54, 0.23; p=0.430). Subgroup analysis revealed that soy isoflavones significantly reduced serum concentration of CRP in studies among participants with age >57 years and baseline CRP levels >3.75 mg/L. The present study proposed that soy isoflavones could not significantly reduce serum CRP levels. It seems more RCTs on participants with age more than 57 years and higher levels of CRP is necessary.
Collapse
Affiliation(s)
- Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Fatemeh Darudi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid Reza Baradaran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Ageing Clinical and Experimental Research Team, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, UK
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Rizzo J, Min M, Adnan S, Afzal N, Maloh J, Chambers CJ, Fam V, Sivamani RK. Soy Protein Containing Isoflavones Improves Facial Signs of Photoaging and Skin Hydration in Postmenopausal Women: Results of a Prospective Randomized Double-Blind Controlled Trial. Nutrients 2023; 15:4113. [PMID: 37836398 PMCID: PMC10574417 DOI: 10.3390/nu15194113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Preliminary findings from multiple studies indicate that dietary intake of soy-derived isoflavones exert beneficial effects on the skin including defense against oxidant damage, stimulation of collagen synthesis, and increased hydration. This study aims to investigate how oral supplementation of a soy protein isolate with added isoflavones (SPII) affects components of photoaging such as facial wrinkles and dyspigmentation, and skin biophysical measures such as skin hydration and sebum excretion in postmenopausal women. This 6-month prospective, randomized double-blind controlled study was conducted on 44 postmenopausal women with Fitzpatrick skin types I, II, and III who were randomized to receive either casein protein or SPII. A high-resolution facial photography system was used to measure wrinkle severity and pigmentation at 0, 8, 16, and 24 weeks. Skin biophysical measurements included skin hydration and sebum production. The average wrinkle severity was decreased in the SPII intervention group at week 16 and week 24 by 5.9% and 7.1%, respectively, compared to the baseline. Compared to the casein group, average wrinkle severity was significantly decreased at week 16 (p < 0.05) and week 24 (p < 0.0001). Facial pigment intensity was decreased by -2.5% (p < 0.05) at week 24, whereas there was no significant change in the casein group. Compared to baseline, skin hydration in the SPII group was significantly increased by 39% and 68% on the left and right cheeks (p < 0.05), respectively, at 24 weeks. There were no significant differences in sebum production. Dietary soy protein supplementation with isoflavones may improve skin photoaging, including wrinkles and dyspigmentation, and increase skin hydration in postmenopausal women with Fitzpatrick skin types I, II, and III.
Collapse
Affiliation(s)
- Julianne Rizzo
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Mildred Min
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Zen Dermatology, Sacramento, CA 95819, USA
| | - Sarah Adnan
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Nasima Afzal
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Jessica Maloh
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Cindy J. Chambers
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Zen Dermatology, Sacramento, CA 95819, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Vivien Fam
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
| | - Raja K. Sivamani
- Integrative Skin Science and Research, Sacramento, CA 95815, USA
- Zen Dermatology, Sacramento, CA 95819, USA
- Pacific Skin Institute, Sacramento, CA 95815, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- Department of Dermatology, University of California-Davis, Sacramento, CA 95616, USA
| |
Collapse
|
15
|
Wojciechowicz-Budzisz A, Pejcz E, Spychaj R, Harasym J. Mixed Psyllium Fiber Improves the Quality, Nutritional Value, Polyphenols and Antioxidant Activity of Rye Bread. Foods 2023; 12:3534. [PMID: 37835187 PMCID: PMC10572817 DOI: 10.3390/foods12193534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of the study was to determine the influence of the different shares (0/100, 5/95, 10/90 and 15/85 ratios) of a ground psyllium fiber (PF) mixture of 80% psyllium seeds (Plantago psyllium) and 20% psyllium husk (Plantago ovata Forsk) on the quality characteristics, chemical composition, total polyphenolic content (TPC), and antioxidant activity of rye bread (RB). The study was conducted with rye flour (RF) type 580 and 720 and two dough preparation methods (single-phase-1F, two-phase-2F). The inclusion of psyllium fiber in rye bread resulted in an increase in the overbaking of bread by 12.4%, total protein by 1.7%, ash by almost twofold, and TDF content by more than twofold. Psyllium fiber addition also led to a twofold improvement in antioxidant activity and an increase in TPC from 35.5 to 109.1 mg GAE/100 g d.m., as well as enhanced porosity of the crumb from 7.1 to 7.6 points on the Mohs scale. However, it caused a decrease in specific loaf volume by 10%, springiness by 3.5%, chewiness by almost 12%, and gumminess of the crumb by 8.1%. A darkening of the crust (reduction in the L* value by 10.7%) and crumb (reduction in the L* value by 37.6%) was observed as well. Notably, the results indicated that a 10% share of PF can be considered a potentially beneficial and functional ingredient, promoting health benefits without negatively affecting the physical and sensory qualities of rye bread. This suggests the potential use of PF for enhancing the nutritional value of RB without compromising its overall quality.
Collapse
Affiliation(s)
- Agata Wojciechowicz-Budzisz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120 Street, 53-345 Wrocław, Poland; (E.P.); (J.H.)
| | - Ewa Pejcz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120 Street, 53-345 Wrocław, Poland; (E.P.); (J.H.)
| | - Radosław Spychaj
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 37 Street, 51-630 Wrocław, Poland;
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120 Street, 53-345 Wrocław, Poland; (E.P.); (J.H.)
| |
Collapse
|
16
|
Rashid F, Ghimire S, Mangalam AK, Giri S. A UPLC-MS/MS Based Rapid, Sensitive, and Non-Enzymatic Methodology for Quantitation of Dietary Isoflavones in Biological Fluids. Molecules 2023; 28:6729. [PMID: 37764503 PMCID: PMC10534480 DOI: 10.3390/molecules28186729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary isoflavones, a type of phytoestrogens, have gained importance owing to their health-promoting benefits. However, the beneficial effects of isoflavones are mediated by smaller metabolites produced with the help of gut bacteria that are known to metabolize these phytoestrogenic compounds into Daidzein and Genistein and biologically active molecules such as S-Equol. Identifying and measuring these phytoestrogens and their metabolites is an important step towards understanding the significance of diet and gut microbiota in human health and diseases. We have overcome the reported difficulties in quantitation of these isoflavones and developed a simplified, sensitive, non-enzymatic, and sulfatases-free extraction methodology. We have subsequently used this method to quantify these metabolites in the urine of mice using UPLC-MS/MS. The extraction and quantitation method was validated for precision, linearity, accuracy, recoveries, limit of detection (LOD), and limit of quantification (LOQ). Linear calibration curves for Daidzein, Genistein, and S-Equol were set up by performing linear regression analysis and checked using the correlation coefficient (r2 > 0.995). LOQs for Daidzein, Genistein, and S-Equol were 2, 4, and 2 ng/mL, respectively. This UPLC-MS/MS swift method is suitable for quantifying isoflavones and the microbial-derived metabolite S-Equol in mice urine and is particularly useful for large numbers of samples.
Collapse
Affiliation(s)
- Faraz Rashid
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA;
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | | | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA;
| |
Collapse
|
17
|
Iman MN, Irdiani R, Rahmawati D, Fukusaki E, Putri SP. Improvement of the functional value of green soybean (edamame) using germination and tempe fermentation: A comparative metabolomics study. J Biosci Bioeng 2023; 136:205-212. [PMID: 37331843 DOI: 10.1016/j.jbiosc.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
Green soybean, also known as edamame, is a legume with high nutritional and functional value. Despite its growing popularity and potential health benefits, the functionality of green soybean has not been thoroughly studied. Previous research on the functionality of green soybean has largely focused on a limited number of specific, well-studied, bioactive metabolites, without comprehensively investigating the metabolome of this legume. Additionally, very few studies have explored the improvement of the functional value of green soybean. This study aimed to investigate the metabolome profile of green soybean, identify bioactive metabolites, and to further explore the potential improvement of the identified bioactive metabolites using germination and tempe fermentation. A total of 80 metabolites were annotated from green soybean using GC-MS and HPLC-PDA-MS. Among them, 16 important bioactive metabolites were identified: soy isoflavones daidzin, glycitin, genistin, malonyl daidzin, malonyl genistin, malonyl glycitin, acetyl daidzin, acetyl genistin, acetyl glycitin, daidzein, glycitein, and genistein, as well as other metabolites including 3,4-dihydroxybenzoic acid, 3-hydroxyanthranillic acid, 3-hydroxy-3-methylglutaric acid (meglutol), and 4-aminobutyric acid (GABA). Germination and tempe fermentation techniques were employed to potentially improve the concentrations of these bioactive metabolites. While showing improvements in amino acid contents, germination process did not improve bioactive metabolites significantly. In contrast, tempe fermentation was found to significantly increase the concentrations of daidzein, genistein, glycitein, acetyl genistin, acetyl daidzin, 3-hydroxyanthranillic acid, and meglutol (>2-fold increase with p < 0.05) while also improving amino acid levels. This study highlights the potentials of germination and fermentation to improve the functionality of legumes, particularly green soybean.
Collapse
Affiliation(s)
- Marvin Nathanael Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Rafidha Irdiani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Della Rahmawati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Food Technology, Faculty of Life Science and Technology, Swiss German University, Tangerang, Banten, Indonesia
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Hao Y, Fu J, Zhang J, Du N, Ta H, Zhu TT, Wang H, Lou HX, Cheng AX. Identification and Functional Characterization of UDP-Glycosyltransferases Involved in Isoflavone Biosynthesis in Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12775-12784. [PMID: 37604680 DOI: 10.1021/acs.jafc.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Isoflavones are rich natural compounds present in legumes and are essential for plant growth and development. Moreover, they are beneficial for animals and humans. Isoflavones are primarily found as glycoconjugates, including calycosin-7-O-β-d-glucoside (CG) in Astragalus membranaceus, a legume. However, the glycosylation mechanism of isoflavones in A. membranaceus remains unclear. In the present study, three uridine diphosphate (UDP)-glycosyltransferases (UGTs) that may be involved in the biosynthesis of isoflavone were identified in the transcriptome of A. membranaceus. Enzymatic analysis revealed that AmUGT88E29 and AmUGT88E30 had high catalytic activity toward isoflavones in vitro. In addition, AmUGT88E29 and AmUGT88E30 could accept various flavones, flavanones, flavonols, dihydroflavonols, and dihydrochalcones as substrates. AmUGT71G10 was only active against phloretin and dihydroresveratrol. Overexpression of AmUGT88E29 significantly increased the contents of CG, an isoflavone glucoside, in the hairy roots of A. membranaceus. This study provided candidate AmUGT genes for the potential metabolic engineering of flavonoid compounds in plants and a valuable resource for studying the calycosin glycosides biosynthesis pathway.
Collapse
Affiliation(s)
- Yue Hao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jiaozhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Nihong Du
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - He Ta
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
19
|
Arora J, Kanthaliya B, Joshi A, Meena M, Meena S, Siddiqui MH, Alamri S, Devkota HP. Evaluation of Total Isoflavones in Chickpea ( Cicer arietinum L.) Sprouts Germinated under Precursors ( p-Coumaric Acid and L-Phenylalanine) Supplementation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2823. [PMID: 37570977 PMCID: PMC10421377 DOI: 10.3390/plants12152823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Cicer arietinum L. (Bengal gram, chickpea) is one of the major pulse crops and an important part of traditional diets in Asia, Africa, and South America. The present study was conducted to determine the changes in total isoflavones during sprouting (0, 3, and 7 days) along with the effect of two precursor supplementations, p-coumaric acid (p-CA) and L-phenylalanine (Phe), in C. arietinum. It was observed that increasing sprouting time up to the seventh day resulted in ≈1282 mg 100 g-1 isoflavones, which is approximately eight times higher than chickpea seeds. The supplementation of Phe did not affect the total length of sprouts, whereas the supplementation of p-CA resulted in stunted sprouts. On the third day of supplementation with p-CA (250 mg L-1), the increase in the total phenolic content (TPC) (80%), daidzein (152%), and genistin (158%) contents were observed, and further extending the supplementation reduced the growth of sprouts. On the seventh day of supplementation with Phe (500 mg L-1), the increase in TPC by 43% and genistin content by 74% was observed compared with non-treated sprouts; however, the total isoflavones content was found to be 1212 mg 100 g-1. The increased TPC was positively correlated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (r = 0.787) and ferric-reducing antioxidant potential (FRAP) (r = 0.676) activity. This study suggests that chickpea sprouts enriched in TPC and antioxidants can be produced by the appropriate quantity of precursor supplementation on a particular day. The results indicated major changes in the phytochemical content, especially daidzein and genistin. It was also concluded that the consumption of 100 g of seventh-day sprouts provided eight times higher amounts of isoflavones in comparison to chickpea seeds.
Collapse
Affiliation(s)
- Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Bhanupriya Kanthaliya
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Supriya Meena
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| |
Collapse
|
20
|
Craig WJ, Messina V, Rowland I, Frankowska A, Bradbury J, Smetana S, Medici E. Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet. Nutrients 2023; 15:3393. [PMID: 37571331 PMCID: PMC10421454 DOI: 10.3390/nu15153393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plant-based foods are increasing in popularity as more and more people are concerned about personal and planetary health. The consumption of plant-based dairy alternatives (PBDAs) has assumed a more significant dietary role in populations shifting to more sustainable eating habits. Plant-based drinks (PBDs) made from soya and other legumes have ample protein levels. PBDs that are appropriately fortified have adequate levels of important vitamins and minerals comparable to dairy milk. For the PBDs examined, the greenhouse gas emissions were diminished by 59-71% per 250 mL, and the land use and eutrophication impact was markedly less than the levels displayed by dairy milk. The water usage for the oat and soya drinks, but not rice drinks, was substantially lower compared to dairy milk. When one substitutes the 250 mL serving of dairy milk allowed within the EAT Lancet Planetary Health Diet for a fortified plant-based drink, we found that the nutritional status is not compromised but the environmental footprint is reduced. Combining a nutrient density score with an environmental index can easily lead to a misclassification of food when the full nutrition profile is not utilized or only a selection of environmental factors is used. Many PBDAs have been categorized as ultra-processed foods (UPFs). Such a classification, with the implied adverse nutritional and health associations, is inconsistent with current findings regarding the nutritional quality of such products and may discourage people from transitioning to a plant-based diet with its health and environmental advantages.
Collapse
Affiliation(s)
- Winston J. Craig
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 93254, USA
| | - Virginia Messina
- Nutrition Consultant, Nutrition Matters, Inc., Pittsfield, MA 01201, USA;
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DH, UK;
| | - Angelina Frankowska
- Independent Research Consultant, Environmental Sustainability Assessment, Bedford MK45 4BX, UK;
| | - Jane Bradbury
- School of Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.v.), 49610 Quakenbrueck, Germany;
| | - Elphee Medici
- Nutrition & Sustainable Diets Consultant, Nutrilicious Ltd., London N2 0EF, UK;
| |
Collapse
|
21
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
22
|
Bartel I, Koszarska M, Strzałkowska N, Tzvetkov NT, Wang D, Horbańczuk JO, Wierzbicka A, Atanasov AG, Jóźwik A. Cyanidin-3-O-glucoside as a Nutrigenomic Factor in Type 2 Diabetes and Its Prominent Impact on Health. Int J Mol Sci 2023; 24:ijms24119765. [PMID: 37298715 DOI: 10.3390/ijms24119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes (T2D) accounts for a global health problem. It is a complex disease as a result of the combination of environmental as well as genetic factors. Morbidity is still increasing across the world. One of the possibilities for the prevention and mitigation of the negative consequences of type 2 diabetes is a nutritional diet rich in bioactive compounds such as polyphenols. This review is focused on cyanidin-3-O-glucosidase (C3G), which belongs to the anthocyanins subclass, and its anti-diabetic properties. There are numerous pieces of evidence that C3G exerts positive effects on diabetic parameters, including in vitro and in vivo studies. It is involved in alleviating inflammation, reducing blood glucose, controlling postprandial hyperglycemia, and gene expression related to the development of T2D. C3G is one of the beneficial polyphenolic compounds that may help to overcome the public health problems associated with T2D.
Collapse
Affiliation(s)
- Iga Bartel
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Magdalena Koszarska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Nina Strzałkowska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
23
|
Wei PL, Prince GMSH, Batzorig U, Huang CY, Chang YJ. ALDH2 promotes cancer stemness and metastasis in colorectal cancer through activating β-catenin signaling. J Cell Biochem 2023. [PMID: 37183314 DOI: 10.1002/jcb.30418] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is the primary cause of death from gastrointestinal cancers. Aldehyde dehydrogenase 2 (ALDH2), a crucial mitochondrial enzyme for the oxidative pathway of alcohol metabolism, plays a dual role in cancer progression. In some cancers, it is tumor suppressive; in others, it drives cancer progression. However, whether targeting ALDH2 has any therapeutic implications or prognostic value in CRC is still unclear. Here, we investigated the role of ALDH2 in CRC progression by targeting its enzymatic activity rather than gene expression. We found that inhibiting ALDH2 by CVT-10216 and daidzein significantly decrease migration and stemness properties of both DLD-1 and HCT 116 cells, whereas activating ALDH2 by Alda-1 enhances migration rate. Concomitantly, ALDH2 inhibition by both CVT-10216 and daidzein downregulates the mRNA levels of fibronectin, snail, twist, MMP7, CD44, c-Myc, SOX2, and OCT-4, which are oncogenic in the advanced stage of CRC. Furthermore, Gene Set Enrichment Analysis (GSEA) on ALDH2 co-expressed genes from The Cancer Genome Atlas (TCGA) revealed that MYC target gene sets are upregulated. We found that ALDH2 inhibition decreased the nuclear protein levels of pGSK3β serine 9 and c-Myc. This suggests that ALDH2 probably targets β-catenin signaling in CRC cells. Together, our results demonstrate the prognostic value of ALDH2 in CRC as it regulates both CRC stemness and migration. Our findings also propose that the plant-derived isoflavone daidzein could be a potential chemotherapeutic drug targeting ALDH2 in CRC.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - G M Shazzad Hossain Prince
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Urrego-Pava F, Coy-Barrera E. Isoflavone Content and Nutritional-Related Properties of Debittered Seeds from Two Andean Lupin ( Lupinus mutabilis Sweet) Ecotypes Propagated in Two Soils. Foods 2023; 12:foods12091841. [PMID: 37174379 PMCID: PMC10178703 DOI: 10.3390/foods12091841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lupinus mutabilis Sweet is a fabaceous plant native to the Andean highlands and produces seeds with valuable nutritional properties. Thus, as part of our research on native emerging food, the present study aimed at determining some nutritional and functional-related features of seeds from two L. mutabilis ecotypes after propagation in two different substrates commonly found in the Bogotá plateau. Propagated plants produced seeds that, after conventional debittering, exhibited attractive contents of soluble protein (24-39 g/100 g dry seed powder (dsp)), phenolic (787-1003 g/100 g dsp), isoflavone (1-104 g/100 g dsp), and iron (5.3-6.4 g/100 g dsp), as well as antioxidant capacity (39-78 µM/100 g dsp). Higher pH, humidity saturation, organic matter, and total nitrogen of silty loam soil promoted isoflavone accumulation and better antioxidant capacity at pH 4-7, and no soil effect was observed for total phenolic and iron contents. The profiles based on isoflavone aglycones were also recorded by liquid chromatography-mass spectrometry, detecting eleven main compounds with mutabilein as the most abundant isoflavone (38.3-104.3 g/100 g dsp). Finally, a formulation was developed to fabricate an emulsion-type drink based on the debittered, pulverized L. mutabilis seeds, resulting in different emulsifying capacities (19-100%) depending on the biopolymer stabilizer, being xanthan gum the best additive. The findings revealed an attractive Andean lupin profile to be used as a raw food material.
Collapse
Affiliation(s)
- Francisco Urrego-Pava
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
25
|
Langa S, Peirotén Á, Curiel JA, de la Bastida AR, Landete JM. Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods 2023; 12:1293. [PMID: 36981219 PMCID: PMC10048179 DOI: 10.3390/foods12061293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work.
Collapse
Affiliation(s)
| | | | | | | | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
26
|
Saleem M, Tahir A, Ahmed M, Khan A, Burak LC, Hussain S, Song L. Development of functional yogurt by using freeze-drying on soybean and mung bean peel powders. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1083389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
IntroductionPlant-based yogurt has earned much interest in current times due to the rising demand for milk substitutes, which is tied to ethical and health needs.MethodsFreeze-drying impact on soybean peel powder (SPP) and mung bean peel powder (MPP) and their use in creating functional yogurt at various concentrations was checked. In functional yogurt, total flavonoid content (TFC), total phenolic content (TPC), antioxidant activity and chemical profile are checked.ResultsThe maximum concentration of TPC was 4.65±0.05 (mg GAE/g), TFC was 1.74±0.05 (CE mg/g) and 82.99 ± 0.02 % antioxidant activity was calculated in sample T6, having the highest concentration of SPP, which was substantially more significant than the treatment samples containing MPP. Sensory attributes of the yogurt samples were analyzed, which indicated a decrease when SPP and MPP values increased when introduced at 3 or 6 % of an optimum level. There was no notable loss of the sensory profile compared to the control group. The results were found to be significant at p < 0.05. The freeze-dried SPP had the complete chemical composition compared to MPP except for ash and fiber content.DiscussionThe physicochemical profile of the treatments of functional yogurt had a linear proportional connection in the percentage of both powders in the meantime. When both the dry level of powders increased, the protein and fat levels decreased. In the food industry, the freeze-dried soybean peel and the peel of mung bean can be utilized in functional yogurt as a source of bioactive components.
Collapse
|
27
|
[Antigenotoxicity of the soy isoflavone genistein in mice exposed to carcinogenic hexavalent chromium compounds]. NUTR HOSP 2023; 40:151-159. [PMID: 36134584 DOI: 10.20960/nh.04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: the consumption of antioxidant-rich foods such as soy isoflavones may be an alternative in the protection and modulation against metal-induced genotoxicity with carcinogenic potential associated with oxidative stress. Objective: to evaluate the antigenotoxic effects of soy isoflavone genistein in mice exposed to carcinogenic compounds of hexavalent chromium (Cr[VI]). Material and method: twenty-five male Hsd:ICR mice were divided into five groups treated as follows: a) vehicle 1 (sterile distilled water, intraperitoneally); b) vehicle 2 (corn oil for fat-soluble compounds, orally); c) 15 mg/kg of genistein, orally; d) 20 mg/kg of CrO3, intraperitoneally; and e) 15 mg/kg of genistein four hours before the application of 20 mg/kg of CrO3. Evaluations of micronuclei (MN), apoptosis, ratio of polychromatic/normochromatic erythrocytes (EPC/ENC) and cell viability in peripheral blood obtained at 0, 24, 48 and 72 hours were performed. Results: the treatment with genistein reduced MN when administered prior to treatment with CrO3, the effect being greater at 48 hours (reduction of 84 %). Cell viability was reduced with genistein and CrO3 treatments alone, the effect being greater in the latter. Conclusions: genistein effectively blocked the genotoxic action of CrO3. The fact that MN and apoptosis were reduced in the group treated with genistein and CrO3 suggests that genistein could have inhibited the oxidative damage of Cr(VI) since, as there were no cells with damage, the apoptotic pathways were not activated.
Collapse
|
28
|
Pejčić T, Zeković M, Bumbaširević U, Kalaba M, Vovk I, Bensa M, Popović L, Tešić Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants (Basel) 2023; 12:antiox12020368. [PMID: 36829927 PMCID: PMC9952119 DOI: 10.3390/antiox12020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This narrative review summarizes epidemiological studies on breast cancer and prostate cancer with an overview of their global incidence distribution to investigate the relationship between these diseases and diet. The biological properties, mechanisms of action, and available data supporting the potential role of isoflavones in the prevention of breast cancer and prostate cancer are discussed. Studies evaluating the effects of isoflavones in tissue cultures of normal and malignant breast and prostate cells, as well as the current body of research regarding the effects of isoflavones attained through multiple modifications of cellular molecular signaling pathways and control of oxidative stress, are summarized. Furthermore, this review compiles literature sources reporting on the following: (1) levels of estrogen in breast and prostate tissue; (2) levels of isoflavones in the normal and malignant tissue of these organs in European and Asian populations; (3) average concentrations of isoflavones in the secretion of these organs (milk and semen). Finally, particular emphasis is placed on studies investigating the effect of isoflavones on tissues via estrogen receptors (ER).
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Correspondence: (T.P.); (I.V.)
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Uroš Bumbaširević
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Milica Kalaba
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Irena Vovk
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Correspondence: (T.P.); (I.V.)
| | - Maja Bensa
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Lazar Popović
- Department of Medical Oncology, Oncology Institute of Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
29
|
Ding Q, Pi A, Hao L, Xu T, Zhu Q, Shu L, Yu X, Wang W, Si C, Li S. Genistein Protects against Acetaldehyde-Induced Oxidative Stress and Hepatocyte Injury in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1930-1943. [PMID: 36653166 DOI: 10.1021/acs.jafc.2c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alcohol-related liver disease (ALD) is one of the most prevalent forms of liver disease in the world. Acetaldehyde, an intermediate product of alcohol catabolism, is a cause of liver injury caused by alcohol. This study was designed to evaluate the protective role and mechanism(s) of genistein against acetaldehyde-induced liver injury in the pathological process of ALD. We found that genistein administration significantly ameliorated alcohol-induced hepatic steatosis, injury, and inflammation in mice. Genistein supplementation markedly reversed hepatic oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and hepatocellular apoptosis in both alcohol-fed mice liver and acetaldehyde-treated hepatocytes. The mechanistic experiments revealed that the restoration of genistein administration rescued heme oxygenase-1 (HO-1) reduction at both transcriptional and protein levels in either alcohol-fed mice liver or acetaldehyde-treated hepatocytes, and the beneficial aspects derived from genistein were abolished in antioxidase heme oxygenase-1 (HO-1)-deficient hepatocytes. Moreover, we confirmed that genistein administration-restored hepatic nuclear factor erythroid 2-related factor 2 (NRF2), a key transcriptional regulator of HO-1, was involved in the protective role of genistein in ALD. This study demonstrated that genistein ameliorated acetaldehyde-induced oxidative stress and liver injury by restoring the hepatic NRF2-HO-1 signaling pathway in response to chronic alcohol consumption. Therefore, genistein may serve as a potential therapeutic choice for the treatment of ALD.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
| | - Qin Zhu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Long Shu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Xiaolong Yu
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Weiguang Wang
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Caijuan Si
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, P. R. China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou 310013, Zhejiang, P. R. China
| |
Collapse
|
30
|
Egea MB, De Sousa TL, Dos Santos DC, De Oliveira Filho JG, Guimarães RM, Yoshiara LY, Lemes AC. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
33
|
Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Res Int 2022; 162:111928. [DOI: 10.1016/j.foodres.2022.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
|
34
|
Carbonel AAF, Simões RS, Sasso GDS, Vieira RR, Lima PA, Simões MDJ, Soares JM. May isoflavones prevent breast cancer risk? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2022; 68:1487-1489. [PMID: 36449762 PMCID: PMC9720771 DOI: 10.1590/1806-9282.2editr11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Adriana Aparecida Ferraz Carbonel
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics – São Paulo (SP), Brazil
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Gynecology – São Paulo (SP), Brazil
| | - Ricardo Santos Simões
- Universidade de São Paulo, School of Medicine, Hospital das Clínicas, Department of Gynecology and Obstetrics – São Paulo (SP), Brazil
| | - Gisela da Silva Sasso
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics – São Paulo (SP), Brazil
| | - Renata Ramos Vieira
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics – São Paulo (SP), Brazil
| | | | - Manuel de Jesus Simões
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics – São Paulo (SP), Brazil
- Universidade de São Paulo, School of Medicine, Hospital das Clínicas, Department of Gynecology and Obstetrics – São Paulo (SP), Brazil
| | - José Maria Soares
- Universidade de São Paulo, School of Medicine, Hospital das Clínicas, Department of Gynecology and Obstetrics – São Paulo (SP), Brazil
| |
Collapse
|
35
|
Shrode RL, Cady N, Jensen SN, Borcherding N, Mangalam AK. Isoflavone consumption reduces inflammation through modulation of phenylalanine and lipid metabolism. Metabolomics 2022; 18:84. [PMID: 36289122 PMCID: PMC10148689 DOI: 10.1007/s11306-022-01944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.
Collapse
Affiliation(s)
- Rachel L Shrode
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicole Cady
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samantha N Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
- Division of Gastroenterology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Ashutosh K Mangalam
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
36
|
Imai H, Nishikawa H, Suzuki A, Kodama E, Iida T, Mikura K, Hashizume M, Kigawa Y, Tadokoro R, Sugisawa C, Endo K, Iizaka T, Otsuka F, Nagasaka S. Secondary Hypogonadism due to Excessive Ingestion of Isoflavone in a Man. Intern Med 2022; 61:2899-2903. [PMID: 35228414 PMCID: PMC9593161 DOI: 10.2169/internalmedicine.8578-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 54-year-old man had been drinking approximately 1.2 L of soy milk (equivalent to approximately 310 mg of isoflavones) per day for the previous 3 years. He then developed erectile dysfunction and gynecomastia. On an examination in our department in May, blood tests showed low gonadotropin and testosterone levels, indicative of secondary hypogonadism. He stopped drinking soy milk on his own in June of that year. When he was admitted in August, blood tests showed an improved gonadal function. Secondary hypogonadism caused by the excessive intake of isoflavones in soy milk was diagnosed. In men, an excessive intake of isoflavones may cause feminization and secondary hypogonadism.
Collapse
Affiliation(s)
- Hideyuki Imai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Hiroto Nishikawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Asami Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Eriko Kodama
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Tatsuya Iida
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Kentaro Mikura
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Mai Hashizume
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Yasuyoshi Kigawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Rie Tadokoro
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Kei Endo
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Toru Iizaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Fumiko Otsuka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| |
Collapse
|
37
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
38
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
40
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
41
|
Asati V, Deepa P, Sharma PK. Desert legume Prosopis cineraria as a novel source of antioxidant flavonoids / isoflavonoids: Biochemical characterization of edible pods for potential functional food development. Biochem Biophys Rep 2022; 29:101210. [PMID: 35198738 PMCID: PMC8841892 DOI: 10.1016/j.bbrep.2022.101210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Flavonoids and isoflavonoids in foods are attracting attention as they are significant antioxidant and phytoestrogenic compounds that are beneficial for human health. In this study, the edible pods of the underutilized desert legume Prosopis cineraria from Rajasthan, India were used to extract flavonoids. The pods from semi-arid zone showed the highest flavonoid content (432 mg Rutin hydrate/gm). UV spectrophotometric analysis was also done to characterize flavonoids. The flavonoids and isoflavonoids were further purified from semi-arid zone plants using column chromatography with Amberlite XAD7HP and Sephadex LH-20. LC-MS analysis revealed the presence of medicinally valuable antioxidant flavonoids and isoflavonoids in the pods, viz. vitexin, puerarin, phloridzin, and daidzein. It was seen that the flavonoids/isoflavonoids are present in the selected legume in different forms i.e. pure aglycone, C-glycoside as well as O-glycoside. This finding makes P. cineraria an attractive source candidate for extraction of these nutraceuticals with a potential for development into functional food. Phytochemical studies were carried out on Prosopis cineraria, Indian desert's edible legume. Pods from P. cineraria growing in the semi-arid zone showed maximum flavonoid content. The flavonoids were purified using Amberlite XAD7HP and Sephadex LH-20 chromatography. LC-MS indicated flavonoids (vitexin, phloridzin) and isoflavonoids (puerarin, daidzein). The study highlights the potential of P. cineraria pods as novel antioxidant-rich functional food.
Collapse
|
42
|
Liu C, Zhang S, Bai H, Zhang Y, Jiang Y, Yang Z, Xu X, Ding Y. Soy isoflavones alleviate periodontal destruction in ovariectomized rats. J Periodontal Res 2022; 57:519-532. [PMID: 35212419 DOI: 10.1111/jre.12981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate whether soy isoflavone supplementation is effective in preventing periodontal destruction exacerbated by estrogen deficiency (ED) and its potential mechanism. BACKGROUND The progression of periodontitis is affected by host factors, such as smoking, diabetes mellitus, and steroid use. Bone loss in periodontitis can be aggravated by ED. METHODS A rat model of experimental periodontitis (EP) with ED was established by silk ligature and inoculation with Porphyromonas gingivalis, and some EP rats were subjected to bilateral ovariectomy (OVX). The treatment groups received an intravenous injection of 17-β-estradiol (E2 B) or soy isoflavones (SI) by gavage. The rats were euthanized, and the maxillary jaws, gingiva, and serum were harvested. Tight junction protein and interleukin (IL)-17 expression, reactive oxygen species (ROS) level, and periodontal destruction were assessed. In addition, we determined whether grainyhead-like 2 (GRHL2) is required for enhancing the epithelial barrier by SI in an in vitro P. gingivalis infection model. RESULTS Estrogen deficiency impaired the expression of genes encoding tight junction proteins in the gingiva, increased IL-17 level, and accelerated alveolar bone resorption. SI treatment alleviated tight junction protein expression, decreased IL-17 and ROS levels, and prevented the absorption of alveolar bone. Furthermore, GRHL2 expression was significantly induced by SI in human oral keratinocytes-1 (HOK-1) cells; GRHL2 knockdown impaired the expression of OCLN and ZO-1 induced by SI treatment. CONCLUSION Soy isoflavones alleviates periodontitis in OVX rats, as observed by the increased expression of tight junction proteins, and reduced IL-17 level and alveolar bone loss. The in vitro studies suggested that the enhancement of oral epithelial barrier by SI treatment was partially dependent on GRHL2.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengdan Zhang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuo Yang
- General Stomatology Clinic, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Bajerska J, Łagowska K, Mori M, Reguła J, Skoczek-Rubińska A, Toda T, Mizuno N, Yamori Y. A Meta-Analysis of Randomized Controlled Trials of the Effects of Soy Intake on Inflammatory Markers in Postmenopausal Women. J Nutr 2022; 152:5-15. [PMID: 34642749 DOI: 10.1093/jn/nxab325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Elevated concentrations of serum inflammatory cytokines, specifically TNF-α and IL-6, as well as C-reactive protein (CRP), are commonly observed after menopause. OBJECTIVES Because soy isoflavones may have some anti-inflammatory potential, the aim of the present systematic review and meta-analysis of randomized controlled trials (RCTs) was to explore whether soy intake affects serum markers of inflammation in postmenopausal women. METHODS PubMed, Web of Science, and the Cochrane Library were systematically searched up to August 2020. All RCTs that met the following criteria were included: 1) studies of the effects of soy intake on inflammatory markers; 2) any date of publication; 3) conducted on postmenopausal women; 4) with sufficient quantitative data for meta-analysis. Effect sizes were expressed as weighted mean differences (WMDs) and 95% CIs. A total of 24 RCTs assessing the effects of soy intake on serum concentrations of CRP, TNF-α, and IL-6 were included in the analysis. A random-effects model was used to determine the overall effect. RESULTS Soy supplementation significantly reduced CRP by 0.11 mg/L in postmenopausal women (95% CI: -0.22, -0.004 mg/L; P = 0.0414), but did not affect IL-6 or TNF-α. Significant reductions in CRP concentration occurred when natural soy products were given (WMD: -0.23 mg/L; 95% CI: -0.29, -0.17 mg/L; P < 0.001). This is equivalent to a ∼9% reduction in CRP concentration from baseline. CONCLUSIONS Although our meta-analysis found evidence that soy products significantly reduce CRP concentrations in postmenopausal women, the mechanisms by which soy foods and their constituents affect inflammatory biomarkers still need to be clarified.This systematic review was registered at www.crd.york.ac.uk/prospero/ as CRD42020179232.
Collapse
Affiliation(s)
- Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Hiratsukashi, Kanagawa, Japan
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | | | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Naho Mizuno
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
44
|
Associations of dietary intakes of calcium, magnesium and soy isoflavones with osteoporotic fracture risk in postmenopausal women: a prospective study. J Nutr Sci 2022; 11:e62. [PMID: 35992572 PMCID: PMC9379929 DOI: 10.1017/jns.2022.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
The role of dietary factors in osteoporotic fractures (OFs) in women is not fully elucidated. We investigated the associations between incidence of OF and dietary calcium, magnesium and soy isoflavone intake in a longitudinal study of 48 584 postmenopausal women. Multivariable Cox regression was applied to derive hazard ratios (HRs) and 95 % confidence intervals (CIs) to evaluate associations between dietary intake, based on the averages of two assessments that took place with a median interval of 2⋅4 years, and fracture risk. The average age of study participants is 61⋅4 years (range 43⋅3–76⋅7 years) at study entry. During a median follow-up of 10⋅1 years, 4⋅3 % participants experienced OF. Compared with daily calcium intake ≤400 mg/d, higher calcium intake (>400 mg/d) was significantly associated with about a 40–50 % reduction of OF risk among women with a calcium/magnesium (Ca/Mg) intake ratio ≥1⋅7. Among women with prior fracture history, high soy isoflavone intake was associated with reduced OF risk; the HR was 0⋅72 (95 % CI 0⋅55, 0⋅93) for the highest (>42⋅0 mg/d) v. lowest (<18⋅7 mg/d) quartile intake. This inverse association was more evident among recently menopausal women (<10 years). No significant association between magnesium intake and OF risk was observed. Our findings provide novel information suggesting that the association of OF risk with dietary calcium intake was modified by Ca/Mg ratio, and soy isoflavone intake was modified by history of fractures and time since menopause. Our findings, if confirmed, can help to guide further dietary intervention strategies for OF prevention.
Collapse
|
45
|
Skoracka K, Ratajczak AE, Rychter AM, Dobrowolska A, Krela-Kaźmierczak I. Female Fertility and the Nutritional Approach: The Most Essential Aspects. Adv Nutr 2021; 12:2372-2386. [PMID: 34139003 PMCID: PMC8634384 DOI: 10.1093/advances/nmab068] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Infertility is an increasing problem that affects couples attempting pregnancy. A growing body of evidence points to a link between diet and female fertility. In fact, data show that a diet high in trans fats, refined carbohydrates, and added sugars can negatively affect fertility. Conversely, a diet based on the Mediterranean dietary patterns, i.e., rich in dietary fiber, omega-3 (ɷ-3) fatty acids, plant-based protein, and vitamins and minerals, has a positive impact on female fertility. An unhealthy diet can disrupt microbiota composition, and it is worth investigating whether the composition of the gut microbiota correlates with the frequency of infertility. There is a lack of evidence to exclude gluten from the diet of every woman trying to become pregnant in the absence of celiac disease. Furthermore, there are no data concerning adverse effects of alcohol on female fertility, and caffeine consumption in the recommended amounts also does not seem to affect fertility. On the other hand, phytoestrogens presumably have a positive influence on female fertility. Nevertheless, there are many unanswered questions with regard to supplementation in order to enhance fertility. It has been established that women of childbearing age should supplement folic acid. Moreover, most people experience vitamin D and iodine deficiency; thus, it is vital to control their blood concentrations and consider supplementation if necessary. Therefore, since diet and lifestyle seem to be significant factors influencing fertility, it is valid to expand knowledge in this area.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, the Heliodor Swiecicki Hospital, Poznan, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, the Heliodor Swiecicki Hospital, Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, the Heliodor Swiecicki Hospital, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, the Heliodor Swiecicki Hospital, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, the Heliodor Swiecicki Hospital, Poznan, Poland
| |
Collapse
|
46
|
Nieto-Veloza A, Zhong Q, Kim WS, D'Souza D, Krishnan HB, Dia VP. Utilization of tofu processing wastewater as a source of the bioactive peptide lunasin. Food Chem 2021; 362:130220. [PMID: 34098437 DOI: 10.1016/j.foodchem.2021.130220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The goal of our study was to design a simple and feasible method to obtain lunasin, a naturally-occurring bioactive peptide, from tofu whey wastewater. A combination of alcoholic precipitation of high-molecular weight proteins from the whey, isoelectric precipitation of lunasin enriched material, and purification via gel filtration chromatography was selected as the best approach using tofu whey prepared at the laboratory scale. This process was applied to tofu whey produced by a local tofu factory and 773 mg of 80% purity lunasin was obtained per kg of dry tofu whey. Significant reduction of nitric oxide, and pro-inflammatory cytokines TNF-α and IL-6 over lipopolysaccharide activated murine macrophages demonstrate its biological activity. Our three-step process is not only simpler and faster than the previously reported methods to obtain lunasin but provides a sustainable approach for the valorization of a waste product, promoting the better utilization of soybean nutrients and active compounds.
Collapse
Affiliation(s)
- Andrea Nieto-Veloza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Doris D'Souza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, USDA, Columbia, MO 65211, USA.
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| |
Collapse
|
47
|
Lephart ED. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int J Mol Sci 2021; 22:11218. [PMID: 34681876 PMCID: PMC8538984 DOI: 10.3390/ijms222011218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The overarching theme for this review is perspective. Superfoods (a marketing term for fruits and vegetables, etc.) have a positive connotation, while many superfoods contain phytoestrogens, a term that is alarming to the public and has a negative connotation because phytoestrogens are endocrine-disruptors, even though they are strong antioxidants that have many health benefits. To understand phytoestrogens, this paper provides a brief summary of the characteristics of: (a) estrogens, (b) estrogen receptors (ER), (c) estrogen-deficient skin, (d) how perspective(s) get off track, (e) phytoestrogen food sources, and (f) misconceptions of phytoestrogens and food safety, in general, that influence person(s) away from what is true. Finally, a brief history of cosmetics to nutraceuticals is covered plus the characteristics of phytoestrogens, resveratrol and equol on: (g) estrogen receptor binding, (h) topical and oral dosing, and (i) in vitro, molecular mechanisms and select clinical evidence, where both phytoestrogens (resveratrol and equol) demonstrate promising applications to improve skin health is presented along with future directions of nutraceuticals. Perspective is paramount in understanding the controversies associated with superfoods, phytoestrogens, and endocrine-disruptors because they have both positive and negative connotations. Everyone is exposed to and consumes these molecules everyday regardless of age, gender, or geographic location around the world, and how we understand this is a matter of perspective.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
48
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
49
|
Živanović J, Jarić I, Ajdžanović V, Miler M, Stanković S, Milošević V, Filipović B. Genistein regulates calcium and phosphate homeostasis without activation of MEK 1/2 signalling pathway in an animal model of the andropause. Ann Anat 2021; 239:151836. [PMID: 34563672 DOI: 10.1016/j.aanat.2021.151836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023]
Abstract
Soy isoflavone genistein interplays with numerous physiological or pathophysiological processes during ageing. However, its protective role and underlying mechanisms of action in the regulation of calcium (Ca2+) and phosphate (Pi) homeostasis in an animal model of the andropause are yet to be fully clarified. Wistar male rats (16-month-old) were divided into sham-operated, orchidectomized, orchidectomized estradiol-treated (0.625 mg/kg b.m./day) and orchidectomized genistein-treated (30 mg/kg b.m./day) groups. Treatments were administered subcutaneously for 3 weeks, while the controls received vehicle alone. Estradiol treatment increased the expression level of fibroblast growth factor receptor (FGFR) and parathyroid hormone 1 receptor (PTH1R), and activated mitogen - activated protein kinase kinase 1/2 (MEK 1/2) signaling pathway in the kidneys. Genistein application induced a prominent gene and protein expression of Klotho and downregulated the expression of FGFR and PTH1R in the kidney of andropausal rats. Activation of protein kinase B (Akt) signalling pathway was observed, while MEK 1/2 signaling pathway wasn't altered after genistein treatment. The increase of 25 (OH) vitamin D in the serum and decrease in Ca2+ urine content was observed after genistein application. Our findings strongly suggest genistein as a potent biocompound with beneficial effects on the regulation of Ca2+ and Pi homeostasis, especially during aging process when the balance of mineral metabolism is impaired. These novel data provide closer insights into the physiological roles of genistein in the regulation of mineral homeostasis.
Collapse
Affiliation(s)
- Jasmina Živanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Ivana Jarić
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia; Animal Welfare Division, Vetsuisse, University of Bern, Bern, Switzerland
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Center for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Oba M, Rongduo W, Saito A, Okabayashi T, Yokota T, Yasuoka J, Sato Y, Nishifuji K, Wake H, Nibu Y, Mizutani T. Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro. Biochem Biophys Res Commun 2021; 570:21-25. [PMID: 34271432 PMCID: PMC8276596 DOI: 10.1016/j.bbrc.2021.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Natto, a traditional Japanese fermented soybean food, is well known to be nutritious and beneficial for health. In this study, we examined whether natto impairs infection by viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bovine herpesvirus 1 (BHV-1). Interestingly, our results show that both SARS-CoV-2 and BHV-1 treated with a natto extract were fully inhibited infection to the cells. We also found that the glycoprotein D of BHV-1 was shown to be degraded by Western blot analysis and that a recombinant SARS-CoV-2 receptor-binding domain (RBD) was proteolytically degraded when incubated with the natto extract. In addition, RBD protein carrying a point mutation (UK variant N501Y) was also degraded by the natto extract. When the natto extract was heated at 100 °C for 10 min, the ability of both SARS-CoV-2 and BHV-1 to infect to the cells was restored. Consistent with the results of the heat inactivation, a serine protease inhibitor inhibited anti-BHV-1 activity caused by the natto extract. Thus, our findings provide the first evidence that the natto extract contains a protease(s) that inhibits viral infection through the proteolysis of the viral proteins.
Collapse
Affiliation(s)
- Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan
| | - Wen Rongduo
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan; Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tomoko Yokota
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan
| | - Junko Yasuoka
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan
| | - Yoko Sato
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan
| | - Koji Nishifuji
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Wake
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan; National Institute of Technology (KOSEN), Tokyo, Japan
| | - Yutaka Nibu
- The University Research Administration Center (URAC), Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo, Japan; Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|