1
|
Paparella A, Schirone M, López CC. The Health Impact of Cocoa from Cultivation to the Formation of Biogenic Amines: An Updated Review. Foods 2025; 14:255. [PMID: 39856922 PMCID: PMC11764846 DOI: 10.3390/foods14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cocoa and chocolate are known for their health benefits, which depend on factors like cocoa variety, post-harvest practices, and manufacturing processes, including fermentation, drying, roasting, grinding, and refining. These processing methods can influence the concentration and bioavailability of bioactive compounds, such as polyphenols that are linked to cardiovascular health and antioxidant effects. Recent scientific research has led to the development of cocoa-based products marketed as functional foods. However, despite the growing interest in the functional potential of cocoa, the literature lacks crucial information about the properties of different varieties of cocoa and their possible implications for human health. Moreover, climate change is affecting global cocoa production, potentially altering product composition and health-related characteristics. In addition to polyphenols, other compounds of interest are biogenic amines, due to their role and potential toxic effects on human health. Based on toxicological data and recent research on the complex relationship between biogenic amines and cocoa fermentation, setting limits or standards for biogenic amines in cocoa and chocolate could help ensure product safety. Finally, new trends in research on biogenic amines in chocolate suggest that these compounds might also be used as quality markers, and that product formulation and process conditions could change content and diversity of the different amines.
Collapse
Affiliation(s)
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (C.C.L.)
| | | |
Collapse
|
2
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Gumienna M, Lasik-Kurdyś M, Szymandera-Buszka K, Górna-Szweda B, Walkowiak-Tomczak D, Jędrusek-Golińska A. Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity. Foods 2025; 14:88. [PMID: 39796380 PMCID: PMC11719576 DOI: 10.3390/foods14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Legumes are an interesting matrix for food production. The aim of this study was to develop functional plant-based snacks using fermented red bean (RBB) seeds enriched with the following additives: marjoram-RBM (2%); carrot-RBC (30%); and red beetroot-RBRB (15%). In the process of constructing the snacks, the focus was on the maximum use of the raw material, including aquafaba, to improve nutritional properties, sensory acceptability, and biological activity. The chemical composition, protein digestibility, antioxidant activity, and phenolic content were analyzed. In addition, the effect of the in vitro digestion process on biologically active compounds and their interactions with intestinal microflora was analyzed. Sensory analysis and consumer evaluation were performed. It was found that fermentation with lactic acid bacteria increased the content of total protein (by 2%), reducing the presence of substances (by 8%) and phenolic compounds (by 13%) in red bean seeds. Snacks with marjoram (RBM) showed the highest antioxidant activity (increase by 42%) and content of polyphenolic compounds (increase by 25%) compared to the basic variant (RBB). During digestion, the content of phenolic compounds and antioxidant activity reached the highest values in the last section of the digestive tract, i.e., in the large intestine, with RBM achieving the best results (5.61 mg GAE/g and 28.82 mg TE/g). The snack variants with red beetroot (RBRB) and marjoram (RBM) were rated the best by consumers. The results obtained confirm that the obtained snacks can be innovative products with health-promoting properties, and marjoram turned out to improve their properties, including antibacterial ones.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.L.-K.); (B.G.-S.); (D.W.-T.)
| | - Małgorzata Lasik-Kurdyś
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.L.-K.); (B.G.-S.); (D.W.-T.)
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 61-624 Poznan, Poland; (K.S.-B.); (A.J.-G.)
| | - Barbara Górna-Szweda
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.L.-K.); (B.G.-S.); (D.W.-T.)
| | - Dorota Walkowiak-Tomczak
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.L.-K.); (B.G.-S.); (D.W.-T.)
| | - Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 61-624 Poznan, Poland; (K.S.-B.); (A.J.-G.)
| |
Collapse
|
4
|
Martinez RM, Melo CPB, Pinto IC, Mendes-Pierotti S, Vignoli JA, Verri WA, Casagrande R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods 2024; 13:3909. [PMID: 39682981 DOI: 10.3390/foods13233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible for the red, purple, and yellow plant tissues, predominantly in the order Caryophyllales. They are grouped into betacyanins, with reddish-violet hues, and betaxanthins, yellow to orange. Examples include beetroot stems for betacyanins and yellow pitaya pulp for betaxanthins. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In this review, we focused on the main and latest studies on the pharmacological effects and mechanisms of betalains, including antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, antidiabetic, hepatoprotective, neuroprotective, anticancer, and antimicrobial properties, in both in vitro and in vivo studies. Overall, betalain consumption is considered safe, with no major adverse effects or allergic reactions reported. We also approached topics such as the pharmacokinetics, bioavailability, stability, and enhanced stabilization of betalains. This article provides a comprehensive overview of bioactive potential of betalains, highlighting the biochemical mechanisms involved. The current knowledge broadens the clinical applicability of betalains, making them potential sources of nutraceutical compounds that can be used to develop functional foods.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Cristina P B Melo
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Soraia Mendes-Pierotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, Biological Sciences Center, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| |
Collapse
|
5
|
Atanassova M, Martorell M, Sharopov F, Atanassov L, Kumar P, Sharifi-Rad J, Tejada-Gavela S, Iriti M, Pezzani R, Varoni EM. Cocoa as immunomodulatory agent: an update. Nat Prod Res 2024; 38:4196-4207. [PMID: 37909175 DOI: 10.1080/14786419.2023.2272025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cocoa is rich in polyphenols, mainly flavonoids, which correlate with several health benefits mediated by their antioxidant, anti-inflammatory and immunomodulatory properties. Cocoa and chocolate consumption have been reported to impact the regulation of the immune system, both in preclinical studies and in human trials. The mechanisms for immunomodulation can involve different effects of cocoa polyphenols on the immune system, acting as anti-inflammatory, antioxidant and anti-allergic agents, as well as the direct influence of cocoa on innate and acquired immunity, with cytokines production and activation of both lymphocyte-dependent and -independent pathways. Cocoa intake has been also correlated to changes in gut microbiota ecology and composition, also affecting the intestinal immune system. This review summarises the updates of the last two decades on cocoa as immunomodulatory agent and explores the health-related benefits of cocoa and chocolate intake.
Collapse
Affiliation(s)
- Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, Unidad de Desarrollo Tecnológico, UDT, University of Concepción, Concepción, Chile
| | - Farukh Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Lyubomir Atanassov
- Faculty of International Relations, St. Petersburg State University, St. Petersburg, Russia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Silvia Tejada-Gavela
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands (IdISBa), IdISBa, Palma, España
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Raffaele Pezzani
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| |
Collapse
|
6
|
Gholipour F, Entezar M, Amini M, Vandghanooni S, Baradaran B, Eskandani M, Mokhtarzadeh AA. In vitro effects of crocin on the possible anticancer properties of Lactococcus lactis against colorectal adenocarcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03636-0. [PMID: 39607550 DOI: 10.1007/s00210-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Probiotics have been suggested to contribute to cancer prevention through various mechanisms. Additionally, recent studies have established a connection between diet, microbiota, and overall health. In this respect, the current study aims to understand the impact of crocin on possible anti-cancer and antibacterial effects of Lactococcus lactis (L. lactis) in colorectal cancer cells and pathogenic bacteria. The study involved collecting cell-free supernatants (CFSs) from untreated bacteria as a control group and bacteria treated with crocin, and then examining their ability to prevent the growth of HCT-116 colon cancer cells. It was demonstrated that L. lactis, when treated with crocin, can effectively combat against various types of pathogenic bacteria and can survive in acidic conditions. Both CFS and cro-CFS exhibited a dose-dependent inhibition of HCT-116 cell growth but crocin-treated bacteria showed more significant effects. The half-maximal inhibitory concentration (IC50) for cell growth inhibition was 97.41 µL/mL in CSF group and 72.07 µL/mL in cro-CFS group. The results of flow cytometry tests confirmed the MTT assay findings, showing that cro-CFS group had a significantly higher rate of apoptosis compared to CFS of control group. The results obtained from qPCR also showed that the Caspase 9 and BAX genes were upregulated, and the BCL-2 expression level was reduced in cells treated with cro-CFS compared to the CFS group. Overall, these findings suggest that crocin may alter the composition of CFS from probiotics that are present in the gut, potentially impacting their ability to combat cancer.
Collapse
Affiliation(s)
- Faranak Gholipour
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahdi Entezar
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
7
|
Cañas S, Tosi N, Núñez-Gómez V, Del Rio D, Mena P, Aguilera Y, Martín-Cabrejas MA. Transformations of phenolic compounds in cocoa shell during in vitro colonic fermentation. Curr Res Food Sci 2024; 9:100930. [PMID: 39687420 PMCID: PMC11647107 DOI: 10.1016/j.crfs.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Cocoa shell is a by-product generated by the cocoa processing industry, notable for its high content of phenolic compounds and methylxanthines, and recognized for their biological properties. The majority of cocoa phenolic compounds are not absorbed in the small intestine and reach the colon, where they can be catabolized by the gut microbiota, influencing their bioavailability and bioactivity. This research aimed to study the changes that phenolic compounds from cocoa shell flour (CSF) and extract (CSE) undergo during colonic fermentation after gastrointestinal digestion, using an in vitro model and a targeted metabolomics approach. A decrease in the concentration of most parental phenolic compounds was observed, with a simultaneous increase in phenyl-γ-valerolactones, phenylvaleric acids, and phenylpropanoic acids. Benzoic acids, phenylpropanoic acids, phenylacetic acids, and benzaldehydes were the compounds found in the highest concentrations. Additionally, phenolic compounds in CSF were metabolized more slowly than those in CSE. This may be due to the matrix effect that protects the compounds from degradation during colonic fermentation. These findings further support the potential of cocoa shells as a food ingredient rich in phenolic compounds and bioavailable metabolites, which may exert beneficial effects in the colon and at the systemic level.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Vanesa Núñez-Gómez
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain
| |
Collapse
|
8
|
Beeler N, Hühn T, Rohn S, Colombi R. Concentrating Cocoa Polyphenols-Clarification of an Aqueous Cocoa Extract by Protein Precipitation and Filtration. MEMBRANES 2024; 14:242. [PMID: 39590628 PMCID: PMC11596179 DOI: 10.3390/membranes14110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
The seeds of Theobroma cacao L. are rich in antioxidant flavonoids such as flavan-3-ols, which are valued for their health benefits. In this context, it is of interest to improve flavanol content in cocoa extracts. The present study aimed at improving the clarification process of an aqueous cocoa extract using protein precipitation and filtration. Five pH modifications and two bentonite amounts were tested for their effects on protein precipitation and flavanol content. Micro- and ultrafiltration as a subsequent step was done by testing three different ceramic membranes (30, 80, and 200 nm). Lower pH in pre-treatment reduced protein content and kept flavanols constant, while at higher pH, flavanols were reduced up to 40%. Larger membrane pores enhanced polyphenol permeation, while smaller pores limited protein permeation. Adjusting pH to the isoelectric point increased protein adsorption, improving filtration quality despite decreased permeate flux. However, membrane fouling results in higher permeate quality due to increased selectivity. Furthermore, the addition of bentonite during filtration reduced both protein and flavanol content in the permeate, similar to the effects seen in the pre-treatment of the supernatant. Optimizing pH and membrane pore size enhances the recovery and quality of polyphenols during filtration, balancing protein removal and flavanol retention.
Collapse
Affiliation(s)
- Nicole Beeler
- Research Group Food Process Development, School of Life Sciences and Facility Management, Institute of Food and Beverage Innovation, ZHAW—Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, 13355 Berlin, Germany;
- Oro de Cacao AG, Chocolate Manufacturer, 8807 Freienbach, Switzerland;
| | - Tilo Hühn
- Research Group Food Process Development, School of Life Sciences and Facility Management, Institute of Food and Beverage Innovation, ZHAW—Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, 13355 Berlin, Germany;
| | - Renato Colombi
- Oro de Cacao AG, Chocolate Manufacturer, 8807 Freienbach, Switzerland;
| |
Collapse
|
9
|
Pannunzio A, Baratta F, Maggio E, Palumbo IM, Magna A, Trivigno C, Carnevale R, Simona B, Cammisotto V, Vidili G, Pignatelli P, Ben MD, Violi F, Loffredo L. Dark chocolate's impact on low-grade endotoxemia in metabolic dysfunction-associated steatohepatitis. Nutrition 2024; 131:112643. [PMID: 39693929 DOI: 10.1016/j.nut.2024.112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Cocoa may have prebiotic effects and improve gut barrier function. However, it remains unclear whether dark chocolate can reduce lipopolysaccharide (LPS) levels in patients with metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the effect of dark chocolate compared to milk chocolate on endotoxemia in patients with MASH. METHODS AND RESULTS Nineteen patients with MASH were randomly assigned in a crossover design to consume either 40 g/d of dark chocolate (>85% cocoa) or 40 g/d of milk chocolate (<35% cocoa) for 2 weeks to evaluate circulating levels of LPS and zonulin. A significant difference between treatments was observed in LPS (P = 0.04) and zonulin (P = 0.02) levels based on the ANOVA conducted on the crossover study data. Pairwise comparisons revealed that, compared to baseline, after 14 days of dark chocolate consumption, LPS levels decreased from 22 ± 4 to 19 ± 4 pg/dL (-15%), and zonulin levels decreased from 3.2 ± 0.9 to 2.5 ± 0.8 pg/mL (-20%). Linear correlation analysis indicated that the change (Δ) in LPS values before and after chocolate intake correlated with the change (Δ) in zonulin levels (R = 0.340, P = 0.03). CONCLUSIONS This study demonstrates that dark chocolate reduces circulating levels of LPS and zonulin in patients with MASH.
Collapse
Affiliation(s)
- Arianna Pannunzio
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Baratta
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrico Maggio
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Maria Palumbo
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Magna
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Trivigno
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Bartimoccia Simona
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Del Ben
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Mediterranea Cardiocentro, Napoli, Italy; Sapienza University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Mancin L, Rollo I, Golzato D, Segata N, Petri C, Pengue L, Vergani L, Cassone N, Corsini A, Mota JF, Sut S, Dall'Acqua S, Paoli A. Short-Term Cocoa Supplementation Influences Microbiota Composition and Serum Markers of Lipid Metabolism in Elite Male Soccer Players. Int J Sport Nutr Exerc Metab 2024; 34:349-361. [PMID: 39117304 DOI: 10.1123/ijsnem.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Dietary strategies to improve arachidonic acid:eicosapentaenoic acid (AA:EPA) ratios are of interest due to potential reductions in inflammation and oxidative stress following exercise. The aim of this study was to investigate the impact of a novel dietary intervention, that is, the ingestion of 30 g of dark chocolate, on blood lipid profiles and gut microbiota composition in elite male soccer players. METHODS Professional male soccer players were randomly assigned to the experimental group (DC) provided with 30 g of dark chocolate or to the control group (WC), provided with 30 g of white chocolate, for 30 days. Before and after intervention, blood, fecal sample, and anthropometry data were collected. For each outcome, two-way repeated-measure analysis of variance was used to identify differences between baseline and endpoint (Week 4), considering treatment (dark chocolate, white chocolate) as intersubjects' factors. Metagenomic analysis was performed following the general guidelines, which relies on the bioBakery computational environment. RESULTS DC group showed increased plasma polyphenols (from 154.7 ± 18.6 μg gallic acid equivalents/ml to 185.11 ± 57.6 μg gallic acid equivalents/ml, Δ pre vs. post = +30.41 ± 21.50) and significant improvements in lipid profiles: total cholesterol (Δ -32.47 ± 17.18 mg/dl DC vs. Δ -2.84 ± 6.25 mg/dl WC, Time × Treatment interaction p < .001), triglycerides (Δ -6.32 ± 4.96 mg/dl DC vs. Δ -0.42 ± 6.47 mg/dl WC, Time × Treatment interaction p < .001), low-density lipoprotein (Δ -18.42 ± 17.13 mg/dl vs. Δ -2.05 ± 5.19 mg/dl WC, Time × Treatment interaction p < .001), AA/EPA ratio (Δ -5.26 ± 2.35; -54.1% DC vs. Δ -0.47 ± 0.73, -6.41% WC, Time × Treatment interaction p < .001) compared with WC group. In addition, 4 weeks of intervention showed a significant increase in high-density lipoprotein concentration in DC group (Δ + 3.26 ± 4.49 mg/dl DC vs. Δ -0.79 ± 5.12 mg/dl WC). Microbial communities in the DC group maintained a slightly higher microbial stability over time (exhibiting lower within-subject community dissimilarity). CONCLUSION Ingesting 30 g of dark chocolate over 4 weeks positively improved AA:EPA ratio and maintained gut microbial stability. Dark chocolate ingestion represents an effective nutritional strategy to improve blood lipid profiles in professional soccer players. What Are the Findings? Ingesting 30 g of dark chocolate for 4 weeks positively influences blood lipid AA: EPA ratio while maintaining gut microbial stability. What This Study Adds? Dietary intake of specific foods such as dark chocolate represents an alternative strategy to support the health and recovery of elite soccer players. What Impact Might This Have on Clinical Practice in the Future? From a clinical and translational perspective, dark chocolate ingestion positively modulates favorable blood lipid profiles and polyunsaturated fatty acid metabolism while maintaining gut microbial stability. Dark chocolate ingestion may be considered as an effective nutritional strategy in elite sport environments during periods of high-intensity training and congested competitions. Further research is required to determine functional outcomes associated with the observed improvements in blood lipid profiles.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Cristian Petri
- Department of Sport and Informatics, Section of Physical Education and Sport, Pablo de Olavide University, Sevilla, Spain
- A.C.F. Fiorentina S.r.l., Florence, Italy
| | | | | | | | | | - Joao Felipe Mota
- Faculty of Nutrition, Federal University of Goias, Setor Leste Universitário, Goiânia, GO, Brazil
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Glinski JA, Gleńsk M, Silverman B, Glinski VB, Dudek MK. Conformational preferences of cocoa oligomeric proanthocyanidins and their influence on polarity. J Chromatogr A 2024; 1734:465294. [PMID: 39216283 DOI: 10.1016/j.chroma.2024.465294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Proanthocyanidins (OPACs) are the second largest class of plant metabolites after lignans. Although knowledge of their 3D conformations would add greatly to our understanding of their biological properties, very little has been published on the conformations of OPACs with a degree of polymerization (DP) above 4. We investigated the conformations of the linear epicatechin oligomers, prominent representatives of OPACs prevalent in apples and cocoa, where the epicatechin units are interconnected through the 4β-8 bonds. For DP-2 to DP-10 oligomers, conformational preferences reflected in the arrangement of consecutive flavan-3-ol units, are characterized by the φ torsion. For dimers, there are two energy wells corresponding to two preferred φ torsions, designated as compact and extended form. This behaviour is preserved in OPACs with higher DPs, but the most energetically favoured conformations are a combination of both, with compact-only or extended-only conformations being very unlikely. Thus, oligomers with DP ≥ 7 tend to assume an overall conformation approximating a spherical shape. This shape has a significant influence on the polarity of the OPAC oligomers expressed as 3D polar surface area, calculated using Spartan software for geometry-optimized 3D models, and possibly on other physicochemical properties. The results of polarity calculations provide a molecular-level rationale for the polarity-based chromatographic separation of the cocoa B-type procyanidins with DP range 4 to 10. In our experiments, using centrifugal partition chromatography (CPC) (a solvent system consisting of EtOAc-EtOH-water (6:1:5) v/v/v with aqueous phase stationary and upper phase mobile) we found that an enriched mixture of proanthocyanidins eluted first DP-1 (epicatechin) followed by consecutive elution of the DP-2 to DP-10 in the linear 4β-8 form. We demonstrated that such separation would not be possible if compact-only or extended-only conformations were present in solution. However, for the energy-favoured, spherically shaped conformations, the observed CPC elution order is fully justified.
Collapse
Affiliation(s)
- Jan A Glinski
- Planta Analytica LLC, New Milford, CT 06776, United States
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | | | | | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.
| |
Collapse
|
12
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
13
|
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024; 13:2708. [PMID: 39272474 PMCID: PMC11394233 DOI: 10.3390/foods13172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, and I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Jelena Tošović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
14
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
15
|
Liu X, Zhang F, Li M, Li R, Zhang Z, Xu J, Wen L, Li R. Supplementation of Ampelopsis grossedentata extract contributes to the improvement of intestinal health in swine. Front Vet Sci 2024; 11:1417309. [PMID: 39234174 PMCID: PMC11373254 DOI: 10.3389/fvets.2024.1417309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Ampelopsis grossedentata (vine tea), a high polyphenol content antioxidant plant resource, is renowned for its medicinal benefits. This study aimed to investigate the effects of Ampelopsis grossedentata extract (AGE) on anti-inflammatory and antioxidant ability, enhancement of intestinal immunity, improvement of intestinal structure, and regulation of gut microbiota in swine. Methods A total of 135 weaned piglets were randomly divided into three groups: a control group, a low-dose group, and a high-dose group. Pigs were weighed and blood was collected on days 36, 85, and 154. The feed intake was recorded daily to calculate growth performance parameters. On day 154, five to six pigs in each group were randomly selected and euthanized to obtain a small intestine to investigate the effects of AGE on anti-inflammatory and antioxidant abilities and gut microbiota. Results The results showed that 500 mg/kg AGE increased the expression of anti-inflammatory and immune cytokines (IL-10, IgG, and IgA) (p < 0.05, p < 0.01) and decreased the expression of proinflammatory cytokines (IL-1β) (p < 0.05) in serum. Additionally, 500 mg/kg AGE enhanced the antioxidant capacity by increasing the GSH-Px, CAT, and SOD (p < 0.05, p < 0.01). Discussion A total of 500 mg/kg AGE significantly increased the abundance of gut microbiota, enhanced the gut barrier, and modulated gut immunity. During the piglet phase, 500 mg/kg AGE increased the relative abundance of Prevotella (p < 0.05). During the growing-finishing phase, 500 mg/kg AGE increased the relative abundance of unclassified_f__Lachnospiraceae and Bacteroides (p < 0.05, p < 0.01). Overall, we recommended 500 mg/kg AGE as a routine addition dose for swine to improve porcine growth performance and intestinal health.
Collapse
Affiliation(s)
- Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Fusheng Zhang
- Changsha Lvye Biotechnology Co., Ltd., Changsha, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rong Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhen Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Juan Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Changsha Lvye Biotechnology Co., Ltd., Changsha, China
| |
Collapse
|
16
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Stepaniak U, Grosso G, Polak M, Gradowicz-Prajsnar B, Kozela M, Bobak M, Sanchez-Niubo A, Stefler D, Haro JM, Pająk A. Association between dietary (poly)phenol intake and the ATHLOS Healthy Ageing Scale in the Polish arm of the HAPIEE study. GeroScience 2024:10.1007/s11357-024-01275-0. [PMID: 38985401 DOI: 10.1007/s11357-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Inverse association between (poly)phenol intake and age-related disorders has been demonstrated; however, little is known whether they affect comprehensively assessed healthy aging. The aim of this study was to evaluate the associations between the intake of (poly)phenol (including selected classes and subclasses) and healthy aging scores related to biopsychosocial aspects of health and functioning. A cross-sectional study was performed using data on 9774 randomly selected citizens of Krakow (Poland) who were 45-69 years of age. Dietary (poly)phenol intake was evaluated using a food frequency questionnaire and matching food consumption data with the Phenol-Explorer database. The healthy aging scores were estimated from the ATHLOS Healthy Ageing Scale (HAS) developed by the Ageing Trajectories of Health-Longitudinal Opportunities and Synergies (ATHLOS) consortium. Beta coefficients were calculated using multivariable linear regression models. In multivariable adjusted models, there were significant positive associations between the ATHLOS HAS score and intake of total (poly)phenols (b per increase of 100 mg/day = 0.081; 95% CI, 0.050; 0.112) and among main classes of (poly)phenols with phenolic acids (b = 0.139; 95% CI, 0.098; 0.180). Intake of remaining classes of (poly)phenols (flavonoids, lignans, stilbenes, and others) was not related to the ATHLOS HAS score. Among individual classes studied, hydroxycinnamic acids, flavonols, flavones, and dihydrochalcones were associated with better healthy aging. The findings suggest the beneficial effect of total dietary (poly)phenol and some classes and subclasses of (poly)phenol intake in terms of healthy aging in Poland. These findings should be confirmed in other settings and with prospective data.
Collapse
Affiliation(s)
- Urszula Stepaniak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland.
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Barbara Gradowicz-Prajsnar
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Magdalena Kozela
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Martin Bobak
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Albert Sanchez-Niubo
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Denes Stefler
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Josep Maria Haro
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| |
Collapse
|
18
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
19
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
20
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
21
|
Firrman J, Narrowe A, Liu L, Mahalak K, Lemons J, Van den Abbeele P, Baudot A, Deyaert S, Li Y, Yao Y, Yu L. Tomato seed extract promotes health of the gut microbiota and demonstrates a potential new way to valorize tomato waste. PLoS One 2024; 19:e0301381. [PMID: 38625903 PMCID: PMC11020900 DOI: 10.1371/journal.pone.0301381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Adrienne Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Karley Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Johanna Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Yuanhang Yao
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Liangli Yu
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
22
|
Whitman JA, Doherty LA, Pantoja-Feliciano de Goodfellow IG, Racicot K, Anderson DJ, Kensil K, Karl JP, Gibson GR, Soares JW. In Vitro Fermentation Shows Polyphenol and Fiber Blends Have an Additive Beneficial Effect on Gut Microbiota States. Nutrients 2024; 16:1159. [PMID: 38674850 PMCID: PMC11053737 DOI: 10.3390/nu16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols and fermentable fibers have shown favorable effects on gut microbiota composition and metabolic function. However, few studies have investigated whether combining multiple fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here, an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB blends independently led to significant increases in the absolute abundance of select beneficial taxa, namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and PPFB supplementation but not PP alone while increased antioxidant capacity was only evident with both PP and PPFB supplementation. These findings demonstrated that, while the independent blends displayed selective positive impacts on gut states, the combination of both blends provided an additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive influence on gut microbial composition and function to build resiliency toward dysbiosis.
Collapse
Affiliation(s)
- Jordan A. Whitman
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Laurel A. Doherty
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Ida G. Pantoja-Feliciano de Goodfellow
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Kenneth Racicot
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Danielle J. Anderson
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - Katherine Kensil
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA;
| | - Glenn R. Gibson
- Food and Nutritional Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Jason W. Soares
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| |
Collapse
|
23
|
Mainini G, Ercolano S, De Simone R, Iavarone I, Lizza R, Passaro M. Dietary Supplementation of Myo-Inositol, Cocoa Polyphenols, and Soy Isoflavones Improves Vasomotor Symptoms and Metabolic Profile in Menopausal Women with Metabolic Syndrome: A Retrospective Clinical Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:598. [PMID: 38674244 PMCID: PMC11052504 DOI: 10.3390/medicina60040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.
Collapse
Affiliation(s)
- Giampaolo Mainini
- Società Campano Calabro Apulo Lucana di Ginecologia ed Ostetricia (S.C.C.A.L.), 80133 Naples, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol 2024; 86:103073. [PMID: 38335705 DOI: 10.1016/j.copbio.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Although probiotics have been used in food products and supplements for decades, there has been a considerable increase in their use more recently. Recent technological advances have thus led to major advances in knowledge of the gut microbiota, enabling a significant development of biotics. In this review, we discuss the uses of traditional probiotics but also the discovery of next-generation probiotics that could be used as live biotherapeutics. These novel preventive and therapeutic strategies hold promise for the treatment of numerous diseases such as inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Probiotic bacteria can be consumed alone, or in combination with prebiotics as synbiotics, or mixed with other probiotic strains to form a consortium for enhanced effects. We also discuss the benefits of using postbiotics.
Collapse
Affiliation(s)
- Anne-Emmanuelle Roux
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Rebeca Martin
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
25
|
Wang Y, Adekolurejo OO, Wang B, McDermott K, Do T, Marshall LJ, Boesch C. Bioavailability and excretion profile of betacyanins - Variability and correlations between different excretion routes. Food Chem 2024; 437:137663. [PMID: 37879158 DOI: 10.1016/j.foodchem.2023.137663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
The present study addresses the knowledge gap in betalain bioavailability, transformation and excretion. Analysis of renal and fecal excretion profiles in humans after consumption of beetroot revealed very low bioavailability (renal recovery of 0.13 %) and fast elimination of pigments (renal elimination rate constant of 0.16 h-1), while the majority of betalains underwent severe depletion during GI transit, evidenced by decarboxylation, deglucosidation and dehydrogenation. Betacyanin metabolite levels in human urine were positively associated with those in stools (p < 0.05), indicating significant impact of pigment metabolism in the gut on their bioavailability. In addition, the current study revealed large inter-individual and compositional variabilities of pigment after colonic fermentation compared with systemic metabolism, likely attributed to the increasing complexity of intestinal environment with diverse gut microbiota. To conclude, intestinal uptake and systemic metabolism of betacyanins are intimately associated with their intestinal biotransformation, with gut microbiota serving as a crucial factor.
Collapse
Affiliation(s)
- Yunqing Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Opeyemi O Adekolurejo
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom; School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Binying Wang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Katie McDermott
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Thuy Do
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, LS2 9LU, United Kingdom
| | - Lisa J Marshall
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
26
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
27
|
Wang J, Ouyang B, Cao R, Xu Y. An UHPLC-QTOF-MS-based strategy for systematic profiling of chemical constituents and associated in vivo metabolites of a famous traditional Chinese medicine formula, Yinchenhao decoction. Biomed Chromatogr 2024; 38:e5784. [PMID: 38009806 DOI: 10.1002/bmc.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Yinchenhao decoction (YCHD), a famous traditional Chinese medicine formula, has been applied for relieving jaundice in China for more than 1800 years. However, the material basis for YCHD is still unclear, and the chemical composition and metabolism characteristic in vivo are undefined, making the potential effective constituents and mechanism of action unclear. Herein, an ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based strategy was applied for the chemical profiling of YCHD, as well as their in vivo prototypes and global metabolites that defined the metabolome. Our results showed that a total of 139 chemicals were identified in YCHD, including 28 organic acids, 12 monoterpenoids, five diterpenes, three triterpenoids, 17 iridoids, 23 anthraquinones, 26 flavonoids, four coumarins and 21 other types. Moreover, 58 prototypes and 175 metabolites were found in rat biological samples after oral administration of YCHD; those distributed in plasma, liver, intestine and feces were suggested to be potentially effective substances. Oxidation, hydrogenation, decarboxylation and conjugations with methyl, sulfate and glucuronate were considered as the predominant metabolic pathways in vivo. In conclusion, this is a systemic study of chemical constituents and in vivo metabolome profiles of YCHD, contributing to the material basis understanding and further mechanism research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingchen Ouyang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Cao
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
D'Angelo S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants (Basel) 2023; 12:2086. [PMID: 38136206 PMCID: PMC10740764 DOI: 10.3390/antiox12122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The ends of human chromosomes are defended by DNA-protein complexes named telomeres, which inhibit the chromosomes from fusing with each other and from being known as a double-strand break by DNA reparation proteins. Telomere length is a marker of biological aging, and disfunction of telomeres is related to age-related syndromes. Telomere attrition has been shown to be accelerated by oxidative stress and inflammation. Telomere length has been proven to be positively linked with nutritional status in human and animal scientific research as several nutrients influence it through mechanisms that imitate their function in cellular roles including oxidative stress and inflammation. Data reported in this article support the idea that following a low-in-fat and rich-plant polyphenols food diet seems to be able to slow down the shortening of telomeres.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Department of Medical, Movement and Wellbeing Sciences, Parthenope University, 80133 Naples, Italy
| |
Collapse
|
29
|
Wang K, Hu S. The synergistic effects of polyphenols and intestinal microbiota on osteoporosis. Front Immunol 2023; 14:1285621. [PMID: 37936705 PMCID: PMC10626506 DOI: 10.3389/fimmu.2023.1285621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoporosis is a common metabolic disease in middle-aged and elderly people. It is characterized by a reduction in bone mass, compromised bone microstructure, heightened bone fragility, and an increased susceptibility to fractures. The dynamic imbalance between osteoblast and osteoclast populations is a decisive factor in the occurrence of osteoporosis. With the increase in the elderly population in society, the incidence of osteoporosis, disability, and mortality have gradually increased. Polyphenols are a fascinating class of compounds that are found in both food and medicine and exhibit a variety of biological activities with significant health benefits. As a component of food, polyphenols not only provide color, flavor, and aroma but also act as potent antioxidants, protecting our cells from oxidative stress and reducing the risk of chronic disease. Moreover, these natural compounds exhibit anti-inflammatory properties, which aid in immune response regulation and potentially alleviate symptoms of diverse ailments. The gut microbiota can degrade polyphenols into more absorbable metabolites, thereby increasing their bioavailability. Polyphenols can also shape the gut microbiota and increase its abundance. Therefore, studying the synergistic effect between gut microbiota and polyphenols may help in the treatment and prevention of osteoporosis. By delving into how gut microbiota can enhance the bioavailability of polyphenols and how polyphenols can shape the gut microbiota and increase its abundance, this review offers valuable information and references for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
30
|
Fideles SOM, Ortiz ADC, Reis CHB, Buchaim DV, Buchaim RL. Biological Properties and Antimicrobial Potential of Cocoa and Its Effects on Systemic and Oral Health. Nutrients 2023; 15:3927. [PMID: 37764711 PMCID: PMC10534671 DOI: 10.3390/nu15183927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cocoa is considered a functional food because it is a natural source of macro- and micronutrients. Thus, cocoa is rich in vitamins, minerals, fiber, fatty acids, methylxanthines and flavonoids. In addition to favoring the metabolism of lipids and carbohydrates, the bioactive components of cocoa can have an antioxidant, anti-inflammatory and antimicrobial effect, providing numerous benefits for health. This literature review presents an overview of the effects of cocoa, fruit of the Theobroma cacao tree, on systemic and oral health. Several studies report that cocoa intake may contribute to the prevention of cardiovascular, neurodegenerative, immunological, inflammatory, metabolic and bone diseases, in addition to reducing the risk of vascular alterations and cognitive dysfunctions. On oral health, in vitro studies have shown that cocoa extract exerted an inhibitory effect on the growth, adherence and metabolism of cariogenic and periodontopathogenic bacteria, also inhibiting acid production, glycosyltransferase enzyme activity and the synthesis of insoluble polysaccharides. Additionally, administration of cocoa extract reduced biofilm accumulation and caries development in animals infected with cariogenic species. Clinical studies also reported that the use of mouthwashes containing cocoa extract reduced Streptococcus mutans counts in saliva and dental biofilm formation. In short, these studies highlight the nutritional value of cocoa, considering its clinical applicability, stability and economic accessibility.
Collapse
Affiliation(s)
- Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (S.O.M.F.); (A.d.C.O.); (C.H.B.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
31
|
Expósito-Almellón X, Duque-Soto C, López-Salas L, Quirantes-Piné R, de Menezes CR, Borrás-Linares I, Lozano-Sánchez J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients 2023; 15:3880. [PMID: 37764662 PMCID: PMC10538179 DOI: 10.3390/nu15183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.
Collapse
Affiliation(s)
- Xavier Expósito-Almellón
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain;
| | | | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva s/n, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| |
Collapse
|
32
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
33
|
Fushimi T, Hirahata C, Hiroki K, Fujii Y, Calabrese V, Suhara Y, Osakabe N. Activation of transient receptor potential channels is involved in reactive oxygen species (ROS)-dependent regulation of blood flow by (-)-epicatechin tetramer cinnamtannin A2. Biochem Pharmacol 2023:115682. [PMID: 37429424 DOI: 10.1016/j.bcp.2023.115682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Intervention trials confirmed that blood flow-mediated dilatation increases significantly after intake of astringent (-)-epicatechin (EC) oligomers (procyanidins)-rich foods, but the mechanism remains unclear. We have previously found that procyanidins can activate the sympathetic nervous and subsequently increase blood flow. Here, we examined whether procyanidin-derived reactive oxygen species (ROS) activate transient receptor potential (TRP) channels in gastrointestinal sensory nerves and consequently induce sympathoexcitation. We evaluated the redox properties of EC and its tetramer cinntamtannin A2 (A2) at pH 5 or 7, mimicking plant vacuole or oral cavity/small intestine using a luminescent probe. At pH 5, A2 or EC showed O2・- scavenging ability, but they promoted O2・- generation at pH 7. We observed blood flow in rat cremaster arterioles using laser Doppler, a single oral dose of 10 µg/kg A2 markedly increased blood flow, while EC showed little activity. This change with A2 was significantly dampened by co-administration of adrenaline blocker, ROS scavenger N-acetyl-L-cysteine (NAC), TRP vanilloid 1, or ankyrin 1 antagonist. We also performed a docking simulation of EC or A2 with the binding site of a typical ligand for each TRP channel and calculated the respective binding affinities. The binding energies were notably higher for A2 than typical ligands, suggesting that A2 is less likely to bind to these sites. ROS produced at neutral pH following the orally administered A2 to the gastrointestinal tract could activate TRP channels, triggering sympathetic hyperactivation and causing hemodynamic changes.
Collapse
Affiliation(s)
- Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Chie Hirahata
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Kento Hiroki
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Yasuyuki Fujii
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania
| | - Yoshitomo Suhara
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology.
| |
Collapse
|
34
|
Palma-Morales M, Melgar-Locatelli S, Castilla-Ortega E, Rodríguez-Pérez C. How Healthy Is It to Fortify Cocoa-Based Products with Cocoa Flavanols? A Comprehensive Review. Antioxidants (Basel) 2023; 12:1376. [PMID: 37507916 PMCID: PMC10376846 DOI: 10.3390/antiox12071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Cocoa's healthy benefits may be attributed to the potent antioxidant activity of cocoa polyphenols, mainly flavanols, which have been characterised as existing in a high concentration in cocoa. However, the phenolic composition of cocoa and cocoa-derived products is highly variable, and manufacturing processes might significantly reduce their phenolic content. For that reason, the full characterisation of cocoa and cocoa-derived products before evaluating their bioactivity is crucial. The aim of this review is to analyse the available evidence on the effect of flavanol-fortified cocoa-derived products on human health. (2) Methods: Forty-eight clinical trials focused on the health effect of consuming flavanol-fortified drinks, bars and chocolate have been reviewed, with a total of 1523 subjects. (3) Results: Although studies differ widely in methodology, dosage, duration, and target population, beneficial effects of flavanol-rich cocoa consumption have been observed at doses ranging from 45.3 mg/d to 1078 mg/d, especially on cardiovascular health and cognitive function. (4) Conclusions: Considering the high consumption and acceptability of cocoa and cocoa-derived products, the fortification of cocoa products as well as other highly consumed foods with cocoa flavanols could be an effective strategy for health promotion.
Collapse
Affiliation(s)
- Marta Palma-Morales
- Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) 'José Mataix', University of Granada, Avda. del Conocimiento s/n, 18071 Granada, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Cartuja Campus, 18011 Granada, Spain
| | - Sonia Melgar-Locatelli
- Biomedical Research Instute of Malaga and Platform in Nanomedicine-IBIMA Platform BIONAND, 29590 Málaga, Spain
- Departament of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, 29010 Málaga, Spain
| | - Estela Castilla-Ortega
- Biomedical Research Instute of Malaga and Platform in Nanomedicine-IBIMA Platform BIONAND, 29590 Málaga, Spain
- Departament of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, 29010 Málaga, Spain
| | - Celia Rodríguez-Pérez
- Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) 'José Mataix', University of Granada, Avda. del Conocimiento s/n, 18071 Granada, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Cartuja Campus, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
35
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
36
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
37
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
38
|
García-Cordero J, Martinez A, Blanco-Valverde C, Pino A, Puertas-Martín V, San Román R, de Pascual-Teresa S. Regular Consumption of Cocoa and Red Berries as a Strategy to Improve Cardiovascular Biomarkers via Modulation of Microbiota Metabolism in Healthy Aging Adults. Nutrients 2023; 15:nu15102299. [PMID: 37242181 DOI: 10.3390/nu15102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the present study was to analyze the effects of cocoa flavanols and red berry anthocyanins on cardiovascular biomarkers, such as homocysteine, angiotensin-converting enzyme (ACE), nitric oxide (NO), flow-mediated vasodilation (FMD), blood pressure and lipid profile. Additionally, we aimed to ascertain their possible interactions with microbiota related metabolites, such as secondary bile acids (SBA), short-chain fatty acids (SCFA) and trimethylamine N-oxide (TMAO). A randomized, parallel-group study, single-blind for the research team, was performed on 60 healthy volunteers between the ages of 45 and 85, who consumed 2.5 g/day of cocoa powder (9.59 mg/day of total flavanols), 5 g/day of a red berry mixture (13.9 mg/day of total anthocyanins) or 7.5 g/day of a combination of both for 12 weeks. The group that had consumed cocoa showed a significant reduction in TMAO (p = 0.03) and uric acid (p = 0.01) levels in serum, accompanied by an increase in FMD values (p = 0.03) and total polyphenols. corrected by creatinine (p = 0.03) after the intervention. These latter values negatively correlated with the TMAO concentration (R = -0.57, p = 0.02). Additionally, we observed an increase in carbohydrate fermentation in the groups that had consumed cocoa (p = 0.04) and red berries (p = 0.04) between the beginning and the end of the intervention. This increase in carbohydrate fermentation was correlated with lower levels of TC/HDL ratio (p = 0.01), systolic (p = 0.01) and diastolic blood pressure (p = 0.01). In conclusion, our study showed a positive modulation of microbiota metabolism after a regular intake of cocoa flavanols and red berry anthocyanins that led to an improvement in cardiovascular function, especially in the group that consumed cocoa.
Collapse
Affiliation(s)
- Joaquín García-Cordero
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Alba Martinez
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Carlos Blanco-Valverde
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Alicia Pino
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| | - Verónica Puertas-Martín
- Hospital 12 de Octubre, 28041 Madrid, Spain
- Facultad de Educación, Universidad Internacional de la Rioja, 26006 Logroño, Spain
| | | | - Sonia de Pascual-Teresa
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Novais, 10, 28040 Madrid, Spain
| |
Collapse
|
39
|
Dalabasmaz S, Toker ÖS, Palabiyik I, Konar N. Cocoa polyphenols and milk proteins: covalent and non-covalent interactions, chocolate process and effects on potential polyphenol bioaccesibility. Crit Rev Food Sci Nutr 2023; 64:9082-9094. [PMID: 37154036 DOI: 10.1080/10408398.2023.2207661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, we discussed covalent and non-covalent reactions between cocoa polyphenols and proteins (milk and cocoa) and the possible effects of these reactions on their bioaccessibility, considering environmental and processing conditions. Better insight into these interactions is crucial for understanding the biological effects of polyphenols, developing nutritional strategies, and improving food processing and storage. Protein-polyphenol reactions affect the properties of the final product and can lead to the formation of various precursors at various stages in the manufacturing process, such as fermentation, roasting, alkalization, and conching. Due to the complex composition of the chocolate and the various technological processes, comprehensive food profiling strategies should be applied to analyze protein-polyphenol covalent reactions covering a wide range of potential reaction products. This will help to identify potential effects on the bioaccessibility of bioactive compounds such as low-molecular-weight peptides and polyphenols. To achieve this, databases of potential reaction products and their binding sites can be generated, and the effects of various process conditions on related parameters can be investigated. This would then allow to a deeper insight into mechanisms behind protein-polyphenol interactions in chocolate, and develop strategies to optimize chocolate production for improved nutritional and sensory properties.
Collapse
Affiliation(s)
- Sevim Dalabasmaz
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ömer Said Toker
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Yıldız Technical University, İstanbul, Turkey
| | - Ibrahim Palabiyik
- Agriculture Faculty, Food Engineering Department, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Nevzat Konar
- Agriculture Faculty, Dairy Technology Department, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers - A pilot study. Food Chem 2023; 406:134989. [PMID: 36527987 DOI: 10.1016/j.foodchem.2022.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.
Collapse
|
41
|
Ziółkiewicz A, Kasprzak-Drozd K, Rusinek R, Markut-Miotła E, Oniszczuk A. The Influence of Polyphenols on Atherosclerosis Development. Int J Mol Sci 2023; 24:ijms24087146. [PMID: 37108307 PMCID: PMC10139042 DOI: 10.3390/ijms24087146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Polyphenols have attracted tremendous attention due to their pro-health properties, including their antioxidant, anti-inflammatory, antibacterial and neuroprotective activities. Atherosclerosis is a vascular disorder underlying several CVDs. One of the main risk factors causing atherosclerosis is the type and quality of food consumed. Therefore, polyphenols represent promising agents in the prevention and treatment of atherosclerosis, as demonstrated by in vitro, animal, preclinical and clinical studies. However, most polyphenols cannot be absorbed directly by the small intestine. Gut microbiota play a crucial role in converting dietary polyphenols into absorbable bioactive substances. An increasing understanding of the field has confirmed that specific GM taxa strains mediate the gut microbiota-atherosclerosis axis. The present study explores the anti-atherosclerotic properties and associated underlying mechanisms of polyphenols. Moreover, it provides a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and cardiovascular benefits.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Ewa Markut-Miotła
- Department of Lung Diseases and Children Rheumatology, Medical University of Lublin, Prof. Antoniego Gębali 6, 20-093 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr Wiotolda Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
42
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
43
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
44
|
Yuansah SC, Laga A, Pirman. Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
45
|
Giura L, Urtasun L, Astiasaran I, Ansorena D. Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet. Foods 2023; 12:882. [PMID: 36832957 PMCID: PMC9957160 DOI: 10.3390/foods12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, the application of high-pressure processing (HPP) for optimizing the texture of a cocoa dessert rich in casein and developed for people with dysphagia was investigated. Different treatments (250 MPa/15 min; 600 MPa/5 min) and protein concentrations (10-15%) were combined and evaluated for choosing the optimum combination leading to an adequate texture. The selected formulation was a dessert containing 4% cocoa and 10% casein and subjected to 600 MPa for 5 min. It showed a high nutritional value (11.5% protein) and high antioxidant capacity, which was slightly affected by the HPP processing. The rheological and textural properties showed that HPP had a clear effect on the dessert structure. The loss tangent decreased from 2.692 to 0.165, indicating the transition from a liquid to a gel-like structure, which is in a suitable range for dysphagia foods. During storage (14 and 28 days at 4 °C), progressive significant changes in the structure of the dessert were observed. A decrease in all rheological and textural parameters occurred, except for the loss of tangent, which increased its value. In any case, at 28 days of storage, samples maintained the weak gel-like structure (0.686 loss tangent) that is acceptable for dysphagia management.
Collapse
Affiliation(s)
- Larisa Giura
- Centro de Investigación en Nutrición, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, IDISNA—Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
- National Centre for Food Technology and Safety (CNTA), Crta-Na 134-km 53, 31570 San Adrian, Spain
| | - Leyre Urtasun
- Centro de Investigación en Nutrición, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, IDISNA—Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - Iciar Astiasaran
- National Centre for Food Technology and Safety (CNTA), Crta-Na 134-km 53, 31570 San Adrian, Spain
| | - Diana Ansorena
- National Centre for Food Technology and Safety (CNTA), Crta-Na 134-km 53, 31570 San Adrian, Spain
| |
Collapse
|
46
|
Kolonas A, Vareltzis P, Kiroglou S, Goutzourelas N, Stagos D, Trachana V, Tsadila C, Mossialos D, Mourtakos S, Gortzi O. Antioxidant and Antibacterial Properties of a Functional Sports Beverage Formulation. Int J Mol Sci 2023; 24:ijms24043558. [PMID: 36834967 PMCID: PMC9959907 DOI: 10.3390/ijms24043558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Athletes often consume functional beverages in order to improve performance and reduce oxidative stress caused by high-intensity exercise. The present study aimed to evaluate the antioxidant and antibacterial properties of a functional sports beverage formulation. The beverage's antioxidant effects were assessed on human mesenchymal stem cells (MSCs) by determining thiobarbituric acid reactive substances (TBARS; TBARS levels decreased significantly by 52.67% at 2.0 mg/mL), total antioxidant capacity (TAC; TAC levels increased significantly by 80.82% at 2.0 mg/mL) and reduced glutathione (GSH; GSH levels increased significantly by 24.13% at 2.0 mg/mL) levels. Furthermore, the beverage underwent simulated digestion following the INFOGEST protocol to assess its oxidative stability. The analysis of the total phenolic content (TPC) using the Folin-Ciocalteu assay revealed that the beverage contained a TPC of 7.58 ± 0.066 mg GAE/mL, while the phenolics identified by HPLC were catechin (2.149 mg/mL), epicatechin (0.024 mg/mL), protocatechuic acid (0.012 mg/mL), luteolin 7-glucoside (0.001 mg/mL), and kaempferol-3-O-β-rutinoside (0.001 mg/mL). The beverage's TPC was strongly correlated with TAC (R2 = 896). Moreover, the beverage showcased inhibitory and bacteriostatic effects against Staphylococcus aureus and Pseudomonas aeruginosa. Lastly, the sensory acceptance test demonstrated that the functional sports beverage was well accepted by the assessors.
Collapse
Affiliation(s)
- Alexandros Kolonas
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | - Patroklos Vareltzis
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Smaro Kiroglou
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Stamatis Mourtakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 176 71 Athens, Greece
| | - Olga Gortzi
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
- Correspondence:
| |
Collapse
|
47
|
Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin Pharmacol Ther 2023; 113:246-259. [PMID: 35278334 PMCID: PMC10084001 DOI: 10.1002/cpt.2581] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Depression is considered a major public health concern, where existing pharmacological treatments are not equally effective across all patients. The pathogenesis of depression involves the interaction of complex biological components, such as the immune system and the microbiota-gut-brain axis. Adjunctive lifestyle-oriented approaches for depression, including physical exercise and special diets are promising therapeutic options when combined with traditional antidepressants. However, the mechanisms of action of these strategies are incompletely understood. Accumulating evidence suggests that physical exercise and specific dietary regimens can modulate both the immune system and gut microbiota composition. Here, we review the current information about the strategies to alleviate depression and their crosstalk with both inflammatory mechanisms and the gut microbiome. We further discuss the role of the microbiota-gut-brain axis as a possible mediator for the adjunctive therapies for depression through inflammatory mechanisms. Finally, we review existing and future adjunctive strategies to manipulate the gut microbiota with potential use for depression, including physical exercise, dietary interventions, prebiotics/probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Francisco Donoso
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | - Yvonne M Nolan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Zhang J, Yu H, Zhang H, Zhao Q, Si W, Qin Y, Zhang J. Dietary Epimedium extract supplementation improves intestinal functions and alters gut microbiota in broilers. J Anim Sci Biotechnol 2023; 14:14. [PMID: 36653873 PMCID: PMC9847172 DOI: 10.1186/s40104-022-00812-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/27/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Growth-promoting antibiotics have been banned by law in the livestock and poultry breeding industry in many countries. Various alternatives to antibiotics have been investigated for using in livestock. Epimedium (EM) is an herb rich in flavonoids that has many beneficial effects on animals. Therefore, this study was planned to explore the potential of EM as a new alternative antibiotic product in animal feed. METHODS A total of 720 1-day-old male broilers (Arbor Acres Plus) were randomly divided into six groups and fed basal diet (normal control; NC), basal diet supplemented with antibiotic (75 mg/kg chlortetracycline; CTC), and basal diet supplemented with 100, 200, 400 or 800 mg/kg EM extract for 6 weeks (EM100, EM200, EM400 and EM800 groups). The growth performance at weeks 3 and 6 was measured. Serum, intestinal tissue and feces were collected to assay for antioxidant indexes, intestinal permeability, lactic acid and short-chain fatty acids (SCFAs) profiles, microbial composition, and expression of intestinal barrier genes. RESULTS The average daily feed intake in CTC group at 1-21 d was significantly higher than that in the NC group, and had no statistical difference with EM groups. Compared with NC group, average daily gain in CTC and EM200 groups increased significantly at 1-21 and 1-42 d. Compared with NC group, EM200 and EM400 groups had significantly decreased levels of lipopolysaccharide and D-lactic acid in serum throughout the study. The concentrations of lactic acid, acetic acid, propionic acid, butyric acid and SCFAs in feces of birds fed 200 mg/kg EM diet were significantly higher than those fed chlortetracycline. The dietary supplementation of chlortetracycline and 200 mg/kg EM significantly increased ileal expression of SOD1, Claudin-1 and ZO-1 genes. Dietary supplemented with 200 mg/kg EM increased the relative abundances of g_NK4A214_group and Lactobacillus in the jejunal, while the relative abundances of Microbacterium, Kitasatospora, Bacteroides in the jejunal and Gallibacterium in the ileum decreased. CONCLUSION Supplementation with 200 mg/kg EM extract improved the composition of intestinal microbiota by regulating the core bacterial genus Lactobacillus, and increased the concentration of beneficial metabolites lactic acid and SCFAs in the flora, thereby improving the antioxidant capacity and intestinal permeability, enhancing the function of tight junction proteins. These beneficial effects improved the growth performance of broilers.
Collapse
Affiliation(s)
- Jiaqi Zhang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Haitao Yu
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Huiyan Zhang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Qingyu Zhao
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Wei Si
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Yuchang Qin
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Junmin Zhang
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.464332.4Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| |
Collapse
|
49
|
Xue H, Han J, Ma J, Song H, He B, Liu X, Yi M, Zhang L. Identification of Immune-Active Peptides in Casein Hydrolysates and Its Transport Mechanism on a Caco-2 Monolayer. Foods 2023; 12:foods12020373. [PMID: 36673465 PMCID: PMC9857510 DOI: 10.3390/foods12020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, we investigated the transport mechanism of immune-active peptide fragments isolated from casein gastrointestinal hydrolysates via a Caco-2 monolayer. The casein gastrointestinal hydrolysates could stimulate B-lymphocyte proliferation and reduce the TNF-α level. Then, we identified the bioactive peptide fragments derived from casein gastrointestinal hydrolysis using LC-MS/MS. Our results demonstrated that the transport mechanism of five immune-active peptides at the cell level was bypass transport. In addition, the majority of peptide RYPLGYL was transported through the monolayer cell membrane as an intact form for playing immune-active functions. The KHPIK and FFSDK were mainly degraded into small fragments, except for a small amount passing through Caco-2 cells in an entire form. Overall, these results suggested that casein or its immune-active peptides might play a role in regulation of the intestinal immune system.
Collapse
Affiliation(s)
- Haiyan Xue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence:
| | - Jingjing Han
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jun Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Hongxin Song
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Baoyuan He
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaofeng Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Meixia Yi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Lei Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
50
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|