1
|
Christensen A, McGill CJ, Qian W, Pike CJ. Effects of obesogenic diet and 17β-estradiol in female mice with APOE 3/3, 3/4, and 4/4 genotypes. Front Aging Neurosci 2024; 16:1415072. [PMID: 39347015 PMCID: PMC11427389 DOI: 10.3389/fnagi.2024.1415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The main genetic risk factor for Alzheimer's disease (AD) is the apolipoprotein E ε4 allele (APOE4). AD risk associated with APOE4 disproportionately affects women. Furthermore, human and rodent studies indicate that the cognitive deficits associated with APOE4 are greater in females. One modifiable AD risk factor is obesity during middle age. Given that approximately two-thirds of US adults are overweight, it is important to understand how obesity affects AD risk, how it interacts with APOE4, and the extent to which its detrimental effects can be mitigated with therapeutics. One intervention study for women is estrogen-based hormone therapy, which can exert numerous health benefits when administered in early middle age. No experimental studies have examined the interactions among APOE4, obesity, and hormone therapy in aging females. To begin to explore these issues, we considered how obesity outcomes are affected by treatment with estradiol at the onset of middle age in female mice with human APOE3 and APOE4. Furthermore, to explore how gene dosage affects outcomes, we compared mice homozygous for APOE3 (3/3) and homozygous (4/4) or hemizygous (3/4) for APOE4. Mice were examined over a 4-month period that spans the transition into reproductive senescence, a normal age-related change that models many aspects of human perimenopause. Beginning at 5 months of age, mice were maintained on a control diet (10% fat) or high-fat diet (HFD; 60% fat). After 8 weeks, by which time obesity was present in all HFD groups, mice were implanted with an estradiol or vehicle capsule that was maintained for the final 8 weeks. Animals were assessed on a range of metabolic and neural measures. Overall, APOE4 was associated with poorer metabolic function and cognitive performance. However, an obesogenic diet induced relatively greater impairments in metabolic function and cognitive performance in APOE3/3 mice. Estradiol treatment improved metabolic and cognitive outcomes across all HFD groups, with APOE4/4 generally exhibiting the greatest benefit. APOE3/4 mice were intermediate to the homozygous genotypes on many measures but also exhibited unique profiles. Together, these findings highlight the importance of the APOE genotype as a modulator of the risks associated with obesity and the beneficial outcomes of estradiol.
Collapse
Affiliation(s)
| | | | | | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2024:10.1007/s12035-024-04449-1. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
4
|
Krolak-Salmon P, Swerdlow RH, Mastain T, Dive-Pouletty C, Pooley N, Kisomi M. Efficacy and Safety of Exogenous Ketones in People with Mild Neurocognitive Disorder and Alzheimer's Disease: A Systematic Literature Review. Nutr Rev 2024:nuae098. [PMID: 39047293 DOI: 10.1093/nutrit/nuae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
CONTEXT Mild neurocognitive disorder (NCD), formally known as mild cognitive impairment, is usually the clinical stage preceding the development of Alzheimer's disease (AD), the most prevalent major NCD, and other causes of dementia. Glucose is a major source of energy for human brain metabolism and the uptake of glucose is reduced in patients with mild NCD, AD, and other NCDs. Unlike glucose, the uptake of ketones remains normal in people with mild NCD and AD, suggesting that the use of ketone bodies may compensate for glucose energy deficiency in patients with mild NCD and AD. OBJECTIVE The aim of this systematic review was to summarize the efficacy and safety of exogenic ketones, including medium chain triglycerides (MCTs), on cognitive function in patients with mild NCD and AD. DATA SOURCES The Embase, MEDLINE, MEDLINE In-Process, PubMed Ahead-of-Print, Cochrane Central Register of Controlled Trials, Europe PMC databases were searched from inception to April 2022. Studies reporting cognitive function efficacy and safety outcomes from randomized controlled trials of exogenic ketones in patients with mild NCD and AD were included. DATA EXTRACTION Data were extracted by 1 reviewer and checked by a second reviewer. Risk of bias was assessed using the Cochrane risk of bias tool, version 2. DATA ANALYSIS This review identified 13 individual trials investigating the efficacy and safety of MCT or coconut oil for patients with mild NCD or with AD. Because of the heterogeneity of the studies, a narrative synthesis was used. CONCLUSION Overall, improvements associated with exogenic ketones were observed in multiple aspects of cognitive abilities, although the large heterogeneity between the included studies makes it difficult to draw firm conclusions from the current literature. Although some studies investigated the impact of the apolipoprotein E ε4 allele status on treatment efficacy, the current data are insufficient to conclude whether such an effect is present. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration No. CRD42022336664.
Collapse
Affiliation(s)
- Pierre Krolak-Salmon
- Institut du Vieillissement - Hospices Civils de Lyon, Lyon, France
- Emeis, Group Medical Department, Puteaux Cedex, 92813, France
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS 66209, USA
| | | | | | - Nick Pooley
- Maverex Ltd, Newcatle Upon Tyne, NE6 2AR, United Kingdom
| | | |
Collapse
|
5
|
Liu X, Beck T, Dhana K, Tangney CC, Desai P, Krueger K, Evans DA, Rajan KB. Dietary fats and the APOE-e4 risk allele in relation to cognitive decline: a longitudinal investigation in a biracial population sample. J Nutr Health Aging 2024; 28:100211. [PMID: 38507884 DOI: 10.1016/j.jnha.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND APOE-e4 is the strongest genetic risk factor for Alzheimer's disease. However, the influence of APOE-e4 on dietary fat intake and cognition has not been investigated. OBJECTIVE We aim to examine the association of types of dietary fat and their association to cognitive decline among those with and without the APOE-e4 allele. METHODS The study included 3,360 Chicago Health and Aging Project (CHAP) participants from four Southside Chicago communities. Global cognition was assessed using a composite score of episodic memory, perceptual speed, MMSE, and diet using a 144-item food frequency questionnaire. APOE genotype was assessed by the hME Sequenom mass-array platform. Longitudinal mixed-effect regression models were used to examine the association of dietary fat and the APOE-e4 allele with cognitive decline, adjusted for age, sex, education, smoking status, and calorie intake. RESULTS The present study involved 3,360 participants with a mean age of 74 at baseline, 62% African Americans, 63% females, and a mean follow-up of 7.8 years. Among participants with the APOE-e4 risk allele, higher intakes of total and saturated fat (SFA) were associated with a faster decline in global cognition. Among individuals with the APOE-e4 risk allele, a 5% increase in calories from SFA was associated with a 21% faster decline (β = -0.0197, P = 0.0038). In contrast, a higher intake of long-chain n-3 polyunsaturated fatty acids (LC-n3 PUFA) was associated with a slower rate of decline in global cognition among APOE-e4 carriers. Specifically, for every 1% energy increment from LC-n3 PUFA, the annual rate of global cognitive decline was slower by 0.024 standardized unit (SD 0.010, P = 0.023), about 30.4% slower annual cognitive decline. Higher SFA or other types of dietary fat were not associated with cognitive decline among APOE-e4 non-carriers. CONCLUSIONS Our study found a significant association between SFA and faster cognitive decline, LC-n3 PUFA and slower cognitive decline among those with the APOE-e4 allele. Our findings suggested that higher intake of SFA might contribute faster cognitive decline in combination with APOE-e4 whereas LC-n3 PUFA might compensate the adverse effects of APOE-e4. The interaction between intakes of different types of dietary fat and APOE-e4 on cognitive function warrants further research.
Collapse
Affiliation(s)
- Xiaoran Liu
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Todd Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Christy C Tangney
- Department of Clinical Nutrition & Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kristin Krueger
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Denis A Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Glatt RM, Amos A, Merrill DA, Hodes JF, Wong CL, Miller KJ, Siddarth P. Neurocognitive Effects of an Online Brain Health Program and Weekly Telehealth Support Group in Older Adults with Subjective Memory Loss: A Pilot Study. Geriatrics (Basel) 2024; 9:37. [PMID: 38525754 PMCID: PMC10961747 DOI: 10.3390/geriatrics9020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Adopting healthy lifestyle behaviors has the potential to slow cognitive decline in older adults by reducing risks associated with dementia. Curriculum-based group health coaching may aid in establishing behavior change centered for dementia risk factors. METHODS In this pilot clinical care patient group study (n = 6), we examined the effects of a six-month online Cognitive Health Program combined with a weekly telehealth support group led by the course creator, and personalized health optimization by a collaborating physician, in older adults with subjective cognitive decline. Cognition was assessed at baseline and post-intervention using a computerized battery. RESULTS Cognitive changes were estimated with nonparametric tests and effect sizes (Cohen's d). Results showed significant improvements in global cognition (p < 0.03, d = 1.6), spatial planning (p < 0.01, d = 2.3), and visuospatial processing (p < 0.05, d = 1.1) compared to baseline. Participants reported high levels of satisfaction with the virtual group format and online curriculum. CONCLUSIONS This small pilot study suggests that a virtual six-month personalized health coaching group with self-paced online health education is feasible and potentially efficacious for improving cognition in participants with subjective cognitive complaints. This format may facilitate behavior change to slow cognitive decline. Future studies should include a control group, a larger, more diverse sample as well as assessing mood and other subjective measures.
Collapse
Affiliation(s)
- Ryan M. Glatt
- Pacific Neuroscience Institute and Foundation, Santa Monica, CA 90404, USA; (R.M.G.); (D.A.M.); (K.J.M.)
| | | | - David A. Merrill
- Pacific Neuroscience Institute and Foundation, Santa Monica, CA 90404, USA; (R.M.G.); (D.A.M.); (K.J.M.)
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Providence Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - John F. Hodes
- College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Claudia L. Wong
- Pacific Neuroscience Institute and Foundation, Santa Monica, CA 90404, USA; (R.M.G.); (D.A.M.); (K.J.M.)
| | - Karen J. Miller
- Pacific Neuroscience Institute and Foundation, Santa Monica, CA 90404, USA; (R.M.G.); (D.A.M.); (K.J.M.)
| | - Prabha Siddarth
- Pacific Neuroscience Institute and Foundation, Santa Monica, CA 90404, USA; (R.M.G.); (D.A.M.); (K.J.M.)
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Liu X, Li Y, Chen X, Yin H, Li F, Chen N, Cui J, Li W. Revisiting the mechanisms linking blood glucose to cognitive impairment: new evidence for the potential important role of klotho. Front Endocrinol (Lausanne) 2024; 15:1323407. [PMID: 38505757 PMCID: PMC10948412 DOI: 10.3389/fendo.2024.1323407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Background The association between blood glucose and cognition is controversial. Klotho is an anti-aging protein with neural protective effects. This study aimed to use a population-based study to disentangle the relationship between blood glucose levels and cognitive function in older adults, and to explore the role of klotho in it. Methods A total of 1445 eligible participants from National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included in our study. Cognitive function was assessed by Digit Symbol Substitution Test (DSST) and categorized into four quartiles (Q1-Q4). General characteristics and laboratory test results including serum klotho concentration and blood glucose levels were collected. Associations of cognitive function and klotho levels with blood glucose concentrations were explored through multivariate linear regression models. Mediation models were constructed to figure out the mediating role of klotho. Results All three multivariate linear regression models showed a negative correlation between blood glucose and cognitive function. (Model 1, β=-0.149, 95%CI: -0.202,-0.096, p=0.001; Model 2, β=-0.116, 95%CI: -0.167,-0.065, p=0.001; Model 3, β=-0.007, 95%CI: -0.118,-0.023, p=0.003). Mediation analysis showed that klotho mediated the statistical association between blood glucose level and cognitive function with proportions (%) of 12.5. Conclusion Higher blood glucose levels are associated with poorer cognitive performance in non-diabetic older adults, partially mediated through lower klotho levels.
Collapse
Affiliation(s)
- Xiangliang Liu
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuguang Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Xinqiao Chen
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Hongmei Yin
- Department of General Practice, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Fangqi Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
German IJS, Pomini KT, Andreo JC, Shindo JVTC, de Castro MVM, Detregiachi CRP, Araújo AC, Guiguer EL, Fornari Laurindo L, Bueno PCDS, de Souza MDSS, Gabaldi M, Barbalho SM, Shinohara AL. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024; 16:326. [PMID: 38276564 PMCID: PMC10818576 DOI: 10.3390/nu16020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Marcia Gabaldi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| |
Collapse
|
9
|
Zhang JJ, Ye YX, Dorajoo R, Khor CC, Chang XL, Yu HC, Xie JC, Pan A, Koh WP. APOE Genotype Modifies the Association between Midlife Adherence to the Planetary Healthy Diet and Cognitive Function in Later Life among Chinese Adults in Singapore. J Nutr 2024; 154:252-260. [PMID: 38035998 DOI: 10.1016/j.tjnut.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND It remains unclear if adherence to the planetary healthy diet (PHD), designed to improve human and environmental health, is associated with better cognitive function in aging, and if this association differs by apolipoprotein E (APOE) genotype. OBJECTIVES We aimed to examine the association between the PHD pattern and risk of poor cognitive function, and to further assess whether the APOE ε4 allele could modify this association. METHODS The study included 16,736 participants from the Singapore Chinese Health Study. The PHD score was calculated using data from a validated 165-item food frequency questionnaire at baseline (1993-1998), with higher scores indicating greater adherence to the PHD. Cognitive function was assessed by the Singapore-modified Mini-Mental State Examination at follow-up 3 visits (2014-2016). A subset of 9313 participants had APOE genotype data. Logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment for potential confounders. RESULTS We identified 2397 (14.3%) cases of poor cognitive function. In the total population, OR (95% CI) of poor cognitive function for each one-SD increment in the PHD score was 0.89 (0.85, 0.93). Carriers of APOE ε4 allele had increased risk of poor cognitive function (OR: 1.36, 95% CI: 1.15, 1.61). There was a significant interaction between the PHD score and the APOE ε4 allele (P-interaction = 0.042). Each one-SD increment in the PHD score was significantly associated with lower risk of poor cognitive function (OR: 0.89; 95% CI: 0.83, 0.96) in non-carriers of APOE ε4 allele, but not in APOE ε4 allele carriers (OR: 1.04, 95% CI: 0.89, 1.23). CONCLUSIONS Midlife adherence to the PHD was associated with reduced risk of poor cognitive function in later life. However, this was not observed in carriers of APOE ε4 allele who had higher risk of poor cognitive function.
Collapse
Affiliation(s)
- Ji-Juan Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xu-Ling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Han-Cheng Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jin-Chi Xie
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
10
|
Norgren J, Sindi S, Matton A, Kivipelto M, Kåreholt I. APOE-Genotype and Insulin Modulate Estimated Effect of Dietary Macronutrients on Cognitive Performance: Panel Analyses in Nondiabetic Older Adults at Risk of Dementia. J Nutr 2023; 153:3506-3520. [PMID: 37778510 DOI: 10.1016/j.tjnut.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The apolipoprotein E gene (APOE ε-2/3/4, combined as 6 different genotypes: ε-22/23/24/33/34/44) and insulin status modulate dementia risk and play a role in the metabolism of macronutrients. OBJECTIVES We aimed to examine APOE-genotype and fasting insulin as effect modifiers of the slopes between dietary macronutrients and cognitive performance among older adults at risk of dementia. METHODS Panel analyses-with diet and cognition measured at baseline and follow-up at years 1 and 2-were performed in a sub-sample from the FINGER (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) trial (n = 676, 60-77 y, 46% females, all nondiabetics). The associations between macronutrients (3-d food records, z-scores) and global cognition (modified Neuropsychological Test Battery, z-score) were analyzed in mixed regression models adjusted for confounders selected a priori. After a gradient was implied by the point estimates in categorical APOE analyses, we investigated a continuous APOE variable [APOE-gradient, coded -1 (for ε-23), -0.5 (ε-24), 0 (ε-33), 1 (ε-34), 2 (ε-44)] as an effect-modifier. RESULTS At increasing levels of the APOE-gradient, a relatively more favorable slope between diet and cognition was observed for a lower carbohydrate/fat ratio [β = -0.040, 95% confidence interval (CI): -0.074, -0.006; P = 0.020 for interaction diet × APOE-gradient), and higher protein (β = 0.075, 95% CI: 0.042, 0.109; P = 9.4 × 10-6). Insulin concentration (log-linear) modulated the association between the carbohydrate/fat ratio and cognition by a quadratic interaction (β = -0.016, P = 0.039). Coherent findings for exploratory predictors (fiber, fat subtypes, composite score, metabolic biomarkers) were compatible with published hypotheses of differential dietary adaptation by APOE, with cognition among ε-33 being relatively independent of dietary parameters-implying "metabolic flexibility." Antagonistic slopes to cognition for ε-23 (positive) compared with ε-34 and ε-44 (negative) were found for a Higher-carbohydrates-fiber-Lower-fat-protein composite score, even as within-subjects effects. CONCLUSIONS APOE-based precision nutrition appears conceptually promising, but replications in wider samples are warranted, as well as support from trials. Both relative hyper- and hypoinsulinemia might modulate the effect of diet on cognition.
Collapse
Affiliation(s)
- Jakob Norgren
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden; Stockholms Sjukhem, Research and Development Unit, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden; Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
12
|
Bedsaul-Fryer JR, van Zutphen-Küffer KG, Monroy-Gomez J, Clayton DE, Gavin-Smith B, Worth C, Schwab CN, Freymond M, Surowska A, Bhering Martins L, Senn-Jakobsen C, Kraemer K. Precision Nutrition Opportunities to Help Mitigate Nutrition and Health Challenges in Low- and Middle-Income Countries: An Expert Opinion Survey. Nutrients 2023; 15:3247. [PMID: 37513665 PMCID: PMC10385361 DOI: 10.3390/nu15143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Precision nutrition involves several data collection methods and tools that aim to better inform nutritional recommendations and improve dietary intake, nutritional status, and health outcomes. While the benefits of collecting precise data and designing well-informed interventions are vast, it is presently unclear whether precision nutrition is a relevant approach for tackling nutrition challenges facing populations in low- and middle-income countries (LMIC), considering infrastructure, affordability, and accessibility of approaches. The Swiss Food & Nutrition Valley (SFNV) Precision Nutrition for LMIC project working group assessed the relevance of precision nutrition for LMIC by first conducting an expert opinion survey and then hosting a workshop with nutrition leaders who live or work in LMIC. The experts were interviewed to discuss four topics: nutritional problems, current solutions, precision nutrition, and collaboration. Furthermore, the SFNV Precision Nutrition for LMIC Virtual Workshop gathered a wider group of nutrition leaders to further discuss precision nutrition relevance and opportunities. Our study revealed that precision public health nutrition, which has a clear focus on the stratification of at-risk groups, may offer relevant support for nutrition and health issues in LMIC. However, funding, affordability, resources, awareness, training, suitable tools, and safety are essential prerequisites for implementation and to equitably address nutrition challenges in low-resource communities.
Collapse
Affiliation(s)
| | - Kesso G van Zutphen-Küffer
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland
- Department of Human Nutrition & Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | | | - Diane E Clayton
- York Consumer Health, Route Du Charmin 15, 1648 Hauteville, Switzerland
| | | | - Céline Worth
- Nestlé, Corporate R&D, Av. Nestlé 55, 1800 Vevey, Switzerland
| | - Christian Nils Schwab
- Integrative Food and Nutrition Center, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland
| | | | - Anna Surowska
- EssentialTech Centre, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland
| | - Laís Bhering Martins
- Swiss Food & Nutrition Valley, EPFL Innovation Park, Station 12, 1015 Lausanne, Switzerland
| | | | - Klaus Kraemer
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Wei BZ, Li L, Dong CW, Tan CC, Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr 2023; 117:1096-1109. [PMID: 37028557 PMCID: PMC10447496 DOI: 10.1016/j.ajcnut.2023.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Previous data have linked omega-3 fatty acids with risk of dementia. We aimed to assess the longitudinal relationships of omega-3 polyunsaturated fatty acid intake as well as blood biomarkers with risk of Alzheimer's disease (AD), dementia, or cognitive decline. Longitudinal data were derived from 1135 participants without dementia (mean age = 73 y) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to evaluate the associations of omega-3 fatty acid supplementation and blood biomarkers with incident AD during the 6-y follow-up. A meta-analysis of published cohort studies was further conducted to test the longitudinal relationships of dietary intake of omega-3 and its peripheral markers with all-cause dementia or cognitive decline. Causal dose-response analyses were conducted using the robust error meta-regression model. In the ADNI cohort, long-term users of omega-3 fatty acid supplements exhibited a 64% reduced risk of AD (hazard ratio: 0.36, 95% confidence interval: 0.18, 0.72; P = 0.004). After incorporating 48 longitudinal studies involving 103,651 participants, a moderate-to-high level of evidence suggested that dietary intake of omega-3 fatty acids could lower risk of all-cause dementia or cognitive decline by ∼20%, especially for docosahexaenoic acid (DHA) intake (relative risk [RR]: 0.82, I2 = 63.6%, P = 0.001) and for studies that were adjusted for apolipoprotein APOE ε4 status (RR: 0.83, I2 = 65%, P = 0.006). Each increment of 0.1 g/d of DHA or eicosapentaenoic acid (EPA) intake was associated with an 8% ∼ 9.9% (Plinear < 0.0005) lower risk of cognitive decline. Moderate-to-high levels of evidence indicated that elevated levels of plasma EPA (RR: 0.88, I2 = 38.1%) and erythrocyte membrane DHA (RR: 0.94, I2 = 0.4%) were associated with a lower risk of cognitive decline. Dietary intake or long-term supplementation of omega-3 fatty acids may help reduce risk of AD or cognitive decline.
Collapse
Affiliation(s)
- Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Abbel D, Åsvold BO, Kolberg M, Selbæk G, Noordam R, Skjellegrind HK. The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients 2023; 15:nu15112469. [PMID: 37299431 DOI: 10.3390/nu15112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Studies exploring the possible protective effect of coffee and tea consumption on dementia have shown inconsistent results so far. We aimed to investigate whether consumption of tea and different types of coffee at midlife are associated with dementia later in life and whether sex or ApoE4 influence such association. METHODS We included 7381 participants from the Norwegian HUNT Study. Self-reported questionnaires assessed daily consumption of coffee and tea at baseline. After 22 years, individuals 70 years or older were screened for cognitive impairment. RESULTS General coffee consumption and tea consumption was not associated with dementia risk. Compared to daily consumption of 0-1 cups of coffee, daily consumption of ≥8 cups of boiled coffee was associated with increased dementia risk in women (OR: 1.83, 95% CI: 1.10-3.04, p-value for trend = 0.03) and daily consumption of 4-5 cups of other types of coffee was associated with a decrease in dementia risk in men (OR: 0.48, 95% CI: 0.32-0.72, p-value for trend = 0.05). Furthermore, the association between boiled coffee and increased dementia risk was only found in ApoE4 non-carriers. Differences by sex or ApoE4 carrier status were not supported by strong statistical evidence for interaction. Tea consumption was not associated with dementia risk. CONCLUSION type of coffee may play a role in the direction of the association between coffee-drinking habits and dementia later in life.
Collapse
Affiliation(s)
- Denise Abbel
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7600 Levanger, Norway
- Leiden University Medical Center, Department of Internal Medicine, Section of Gerontology and Geriatrics, 2333 ZA Leiden, The Netherlands
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bjørn Olav Åsvold
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7600 Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Marit Kolberg
- Center for Oral Health Services and Research Mid-Norway (TkMidt), 7030 Trondheim, Norway
| | - Geir Selbæk
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Raymond Noordam
- Leiden University Medical Center, Department of Internal Medicine, Section of Gerontology and Geriatrics, 2333 ZA Leiden, The Netherlands
| | - Håvard Kjesbu Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7600 Levanger, Norway
- General Practice Research Unit, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, 7600 Levanger, Norway
| |
Collapse
|
15
|
Unión-Caballero A, Meroño T, Andrés-Lacueva C, Hidalgo-Liberona N, Rabassa M, Bandinelli S, Ferrucci L, Fedecostante M, Zamora-Ros R, Cherubini A. Apolipoprotein E gene variants shape the association between dietary fibre intake and cognitive decline risk in community-dwelling older adults. Age Ageing 2023; 52:afac329. [PMID: 36729469 PMCID: PMC10144730 DOI: 10.1093/ageing/afac329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND healthy dietary patterns have been associated with lower risk for age-related cognitive decline. However, little is known about the specific role of dietary fibre on cognitive decline in older adults. OBJECTIVE this study aimed to examine the association between dietary fibre and cognitive decline in older adults and to assess the influence of genetic, lifestyle and clinical characteristics in this association. DESIGN AND PARTICIPANTS the Invecchiare in Chianti, aging in the Chianti area study is a cohort study of community-dwelling older adults from Italy. Cognitive function, dietary and clinical data were collected at baseline and years 3, 6, 9 and 15. Our study comprised 848 participants aged ≥ 65 years (56% female) with 2,038 observations. MAIN OUTCOME AND MEASURES cognitive decline was defined as a decrease ≥3 units in the Mini-Mental State Examination score during consecutive visits. Hazard ratios for cognitive decline were estimated using time-dependent Cox regression models. RESULTS energy-adjusted fibre intake was not associated with cognitive decline during the 15-years follow-up (P > 0.05). However, fibre intake showed a significant interaction with Apolipoprotein E (APOE) haplotype for cognitive decline (P = 0.02). In participants with APOE-ɛ4 haplotype, an increase in 5 g/d of fibre intake was significantly associated with a 30% lower risk for cognitive decline. No association was observed in participants with APOE-ɛ2 and APOE-ɛ3 haplotypes. CONCLUSIONS AND RELEVANCE dietary fibre intake was not associated with cognitive decline amongst older adults for 15 years of follow-up. Nonetheless, older subjects with APOE-ɛ4 haplotype may benefit from higher fibre intakes based on the reduced risk for cognitive decline in this high-risk group.
Collapse
Affiliation(s)
- Andrea Unión-Caballero
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Montserrat Rabassa
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging (NIH), Baltimore, MD, USA
| | - Massimiliano Fedecostante
- Geriatria, Accettazione geriatrica e Centro di ricerca per l’invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Raúl Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d'Innovació Alimentària (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l’invecchiamento, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
16
|
Jiang J, Hong Y, Li W, Wang A, Jiang S, Jiang T, Wang Y, Wang L, Yang S, Ren Q, Zou X, Xu J. Chain Mediation Analysis of the Effects of Nutrition and Cognition on the Association of Apolipoprotein E ɛ4 with Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2023; 96:669-681. [PMID: 37840496 DOI: 10.3233/jad-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Apolipoprotein E (APOE) is the most recognized risk gene for cognitive decline and clinical progression of late-onset Alzheimer's disease (AD); nonetheless, its association with neuropsychiatric symptoms (NPSs) remains inconclusive. OBJECTIVE To investigate the association of APOE ɛ4 with NPSs and explore nutritional status and cognition as joint mediators of this association. METHODS Between June 2021 and October 2022, patients with amnestic mild cognitive impairment (aMCI) or AD were recruited from the Chinese Imaging, Biomarkers, and Lifestyle Study. NPSs were assessed using the Neuropsychiatric Inventory, while global cognition and nutritional status were evaluated using the Mini-Mental State Examination (MMSE) and Mini-Nutritional Assessment (MNA), respectively. Simple mediation and multiple chain mediation models were developed to examine the mediating effects of the MNA and MMSE scores on the relationship between APOE ɛ4 and specific neuropsychiatric symptom. RESULTS Among 310 patients, 229 (73.87%) had NPSs, and 110 (35.48%) carried APOE ɛ4. Patients with APOE ɛ4 were more likely to have hallucinations (p = 0.014), apathy (p = 0.008), and aberrant motor activity (p = 0.018). MNA and MMSE scores mediated the association between APOE ɛ4 and hallucinations (17.97% and 37.13%, respectively), APOE ɛ4 and apathy (30.73% and 57.72%, respectively), and APOE ɛ4 and aberrant motor activity (17.82% and 34.24%), respectively. Chain-mediating effects of MNA and MMSE scores on the association of APOE ɛ4 with hallucinations, apathy, and aberrant motor activity after adjusting for confounding factors were 6.84%, 11.54%, and 6.19%, respectively. CONCLUSION Nutritional status and cognition jointly mediate the association between APOE ɛ4 and neuropsychiatric symptoms in patients with aMCI or AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yin Hong
- Department of Health Management, Beijing Tian Tan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shiyi Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| |
Collapse
|
17
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
18
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Leikin-Frenkel A, Schnaider Beeri M, Cooper I. How Alpha Linolenic Acid May Sustain Blood-Brain Barrier Integrity and Boost Brain Resilience against Alzheimer's Disease. Nutrients 2022; 14:nu14235091. [PMID: 36501121 PMCID: PMC9737216 DOI: 10.3390/nu14235091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cognitive decline, the primary clinical phenotype of Alzheimer's disease (AD), is currently attributed mainly to amyloid and tau protein deposits. However, a growing body of evidence is converging on brain lipids, and blood-brain barrier (BBB) dysfunction, as crucial players involved in AD development. The critical role of lipids metabolism in the brain and its vascular barrier, and its constant modifications particularly throughout AD development, warrants investigation of brain lipid metabolism as a high value therapeutic target. Yet, there is limited knowledge on the biochemical and structural roles of lipids in BBB functionality in AD. Within this framework, we hypothesize that the ApoE4 genotype, strongly linked to AD risk and progression, may be related to altered fatty acids composition in the BBB. Interestingly, alpha linolenic acid (ALA), the precursor of the majoritarian brain component docosahexaenoic acid (DHA), emerges as a potential novel brain savior, acting via BBB functional improvements, and this may be primarily relevant to ApoE4 carriers.
Collapse
Affiliation(s)
- Alicia Leikin-Frenkel
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- School of Psychology, The Reichman University (IDC), Herzliya 4610101, Israel
- Correspondence: ; Tel.: +972-3-5303693
| |
Collapse
|
20
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
21
|
Niotis K, Akiyoshi K, Carlton C, Isaacson R. Dementia Prevention in Clinical Practice. Semin Neurol 2022; 42:525-548. [PMID: 36442814 DOI: 10.1055/s-0042-1759580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 55 million people globally are living with dementia and, by 2050, this number is projected to increase to 131 million. This poses immeasurable challenges for patients and their families and a significant threat to domestic and global economies. Given this public health crisis and disappointing results from disease-modifying trials, there has been a recent shift in focus toward primary and secondary prevention strategies. Approximately 40% of Alzheimer's disease (AD) cases, which is the most common form of dementia, may be prevented or at least delayed. Success of risk reduction studies through addressing modifiable risk factors, in addition to the failure of most drug trials, lends support for personalized multidomain interventions rather than a "one-size-fits-all" approach. Evolving evidence supports early intervention in at-risk patients using individualized interventions directed at modifiable risk factors. Comprehensive risk stratification can be informed by emerging principals of precision medicine, and include expanded clinical and family history, anthropometric measurements, blood biomarkers, neurocognitive evaluation, and genetic information. Risk stratification is key in differentiating subtypes of dementia and identifies targetable areas for intervention. This article reviews a clinical approach toward dementia risk stratification and evidence-based prevention strategies, with a primary focus on AD.
Collapse
Affiliation(s)
- Kellyann Niotis
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Kiarra Akiyoshi
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York - Presbyterian, New York, New York.,Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida
| |
Collapse
|
22
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Fu J, Tan LJ, Lee JE, Shin S. Association between the mediterranean diet and cognitive health among healthy adults: A systematic review and meta-analysis. Front Nutr 2022; 9:946361. [PMID: 35967772 PMCID: PMC9372716 DOI: 10.3389/fnut.2022.946361] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background An increasing prevalence of cognitive disorders warrants comprehensive systematic reviews on the effect of diet on cognitive health. Studies have suggested that the Mediterranean (MeDi) diet has protective effects against metabolic diseases. However, comprehensive systematic reviews on the effect of the MeDi diet on the cognitive decline are limited. We investigated whether adherence to the MeDi diet could lower the risk of the cognitive disorder or improve cognitive function in older adults. Methods In this systematic review and meta-analysis, PubMed, Web of Science, PsycINFO, Scopus, and Cochrane databases were searched from inception to June 2021. Cohort studies and randomized controlled trials (RCTs) were included. The effect sizes were estimated as log risk ratios and standard mean differences (SMDs) with 95% confidence intervals (CIs). The Newcastle–Ottawa score and Cochrane Collaboration’s tool were used to assess the risk of bias in cohort studies and RCTs, respectively. Results Of the 1,687 screened studies, 31 cohort studies and five RCTs met the eligibility criteria for qualitative analysis; 26 cohort studies and two RCTs were included in the meta-analysis. In the cohort studies, high adherence to the MeDi diet was associated with lower risk of mild cognitive impairment (MCI) [risk ratio (RR) = 0.75 (0.66–0.86)], and Alzheimer’s disease (AD) [RR = 0.71 (0.56–0.89)]. In the RCTs, high adherence to the MeDi diet was associated with better episodic [SMD = 0.20 (0.09–0.30)] and working memories [SMD = 0.17 (0.01–0.32)] than lowest group. Conclusion Adherence to the MeDi diet may reduce the risk of MCI and AD. However, other associations with cognitive outcomes (global cognition, working memory, and episodic memory) remain open to interpretation. Overall, the MeDi diet is recommended to prevent or delay cognitive disorders and improve cognitive function. Further, long-term RCTs are warranted to strengthen the evidence. Systematic review registration [https://www.crd.york.ac.uk], identifier [CRD42021276801].
Collapse
Affiliation(s)
- Jialei Fu
- Department of Food and Nutrition, Chung-Ang University, Seoul, South Korea
| | - Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Seoul, South Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, South Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
24
|
Fukuoka T, Irie S, Watanabe Y, Kutsuna T, Abe A. The relationship between spatiotemporal gait parameters and cognitive function in healthy adults: protocol for a cross-sectional study. Pilot Feasibility Stud 2022; 8:154. [PMID: 35879785 PMCID: PMC9310397 DOI: 10.1186/s40814-022-01122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Motor dysfunctions, such as slower walking speed, precede the occurrence of dementia and mild cognitive impairment, suggesting that walking parameters are effective biomarkers for detecting early sub-clinical cognitive risk. It is often also concurrent with self-complained cognitive dysfunction, called motoric cognitive risk (MCR) syndrome. Our preliminary study found several walking parameters, obtained by a three-dimensional motion capture system, to be correlated with computer-based assessments of various cognitive function modalities, although the sample size was small. The Cognitive-Gait (CoGait) Database Project, described in the current protocol, aims to establish a database of multi-dimensional walking and cognitive performance data, collected from a large sample of healthy participants, crucial for detecting early sub-clinical cognitive risk. METHODS We will recruit healthy volunteers, 20 years or older, without any neurological musculoskeletal or psychiatric disorders. The estimated sample size is 450 participants, including a 10% attrition rate. Using computer-based cognitive assessments, participants will perform six tasks: (i) the simple reaction time task, (ii) Go/No-Go task, (iii) Stroop Color-Word Test, (iv) N-back test, (v) Trail Making Test, and (vi) digit span test. We will also conduct paper-based cognitive assessments such as the Mini-Mental State Examination, Montreal Cognitive Assessment, and the Geriatric Depression Scale-15 for assessing MCR. Gait will be measured through joint kinematics and global positioning in participants' lower legs while walking at a comfortable and faster pace, using pants with an inertial measurement unit-based three-dimensional motion capture system. Finally, we will establish a prediction model for various cognitive performance modalities based on walking performance. DISCUSSION This will be the first study to reveal the relationship between walking and cognitive performance using multi-dimensional data collected from a large sample of healthy adults, from the general population. Despite certain methodological limitations such as the accuracy of measurements, the CoGait database is expected to be the standard value for both walking and cognitive functions, supporting the evaluation of psychomotor function in early sub-clinical cognitive risk identification, including motoric-cognitive risk syndrome.
Collapse
Affiliation(s)
| | - Shun Irie
- R&D division, Xenoma Inc, Tokyo, 143-0013 Japan
- Division of Smart Healthcare Research, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu, Tochigi, 321-0293 Japan
| | - Yoshiteru Watanabe
- Major of Physical Therapy, Department of Rehabilitation, School of Health Sciences, Tokyo University of Technology, Tokyo, 144-8535 Japan
| | - Toshiki Kutsuna
- Major of Physical Therapy, Department of Rehabilitation, School of Health Sciences, Tokyo University of Technology, Tokyo, 144-8535 Japan
| | - Akiko Abe
- Major of Occupational Therapy, Department of Rehabilitation, School of Health Sciences, Tokyo University of Technology, Tokyo, 144-8535 Japan
| |
Collapse
|
25
|
Ahmad W. Glucose enrichment impair neurotransmission and induce Aβ oligomerization that cannot be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease. J Nutr Biochem 2022; 108:109100. [PMID: 35779795 DOI: 10.1016/j.jnutbio.2022.109100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Amyloid beta (Aβ) plaques formation and impaired neurotransmission and neuronal behaviors are primary hallmarks of Alzheimer's disease (AD) that are further associated with impaired glucose metabolism in elderly AD's patients. However, the exact role of glucose metabolism on disease progression has not been elucidated yet. In this study, the effect of glucose on Aβ-mediated toxicity, neurotransmission and neuronal behaviors has been investigated using a C. elegans model system expressing human Aβ. In addition to regular diet, worms expressing Aβ were supplemented with different concentrations of glucose and glycerol and 5 mM 2-deoxyglucose to draw any conclusions. Addition of glucose to the growth medium delayed Aβ-associated paralysis, promoted abnormal body shapes and movement, unable to restore impaired acetylcholine neurotransmission, inhibited egg laying and hatching in pre-existing Aβ-mediated pathology. The harmful effects of glucose may associate with an increase in toxic Aβ oligomers and impaired neurotransmission. O-β-GlcNAcylation (O-GlcNAc), a well-known post-translational modification is directly associated with glucose metabolism and has been found to ameliorates the Aβ- toxicity. We reasoned that glucose addition might induce O-GlcNAc, thereby protect against Aβ. Contrary to our expectations, induced glucose levels were not protective. Increasing O-GlcNAc, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and, therefore, reduce Aβ- toxicity but not in the presence of high glucose. The effects of glucose cannot be effectively managed by manipulating O-GlcNAc in AD models of C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
26
|
Folate Related Pathway Gene Analysis Reveals a Novel Metabolic Variant Associated with Alzheimer’s Disease with a Change in Metabolic Profile. Metabolites 2022; 12:metabo12060475. [PMID: 35736408 PMCID: PMC9230919 DOI: 10.3390/metabo12060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic disorders may be important potential causative pathways to Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) decreasing output, raised intracranial pressure, and ventricular enlargement have all been linked to AD. Cerebral folate metabolism may be a key player since this is significantly affected by such changes in CSF, and genetic susceptibilities may exist in this pathway. In the current study, we aimed to identify whether any single nucleotide polymorphism (SNPs) affecting folate and the associated metabolic pathways were significantly associated with AD. We took a functional nutrigenomics approach to look for SNPs in genes for the linked folate, methylation, and biogenic amine neurotransmitter pathways. Changes in metabolism were found with the SNPs identified. An abnormal SNP in methylene tetrahydrofolate dehydrogenase 1 (MTHFD1) was significantly predictive of AD and associated with an increase in tissue glutathione. Individuals without these SNPs had normal levels of glutathione but significantly raised MTHFD1. Both changes would serve to decrease potentially neurotoxic levels of homocysteine. Seven additional genes were associated with Alzheimer’s and five with normal ageing. MTHFD1 presents a strong prediction of susceptibility and disease among the SNPs associated with AD. Associated physiological changes present potential biomarkers for identifying at-risk individuals.
Collapse
|
27
|
Chen H, Chen F, Jiang Y, Zhang L, Hu G, Sun F, Zhang M, Ji Y, Chen Y, Che G, Zhou X, Zhang Y. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer's Disease. Front Aging Neurosci 2022; 14:881239. [PMID: 35669462 PMCID: PMC9166238 DOI: 10.3389/fnagi.2022.881239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is one of the major worldwide causes of dementia that is characterized by irreversible decline in learning, memory loss, and behavioral impairments. Mitophagy is selective autophagy through the clearance of aberrant mitochondria, specifically for degradation to maintain energy generation and neuronal and synaptic function in the brain. Accumulating evidence shows that defective mitophagy is believed to be as one of the early and prominent features in AD pathogenesis and has drawn attention in the recent few years. APOE ε4 allele is the greatest genetic determinant for AD and is widely reported to mediate detrimental effects on mitochondria function and mitophagic process. Given the continuity of the physiological process, this review takes the mitochondrial dynamic and mitophagic core events into consideration, which highlights the current knowledge about the molecular alterations from an APOE-genotype perspective, synthesizes ApoE4-associated regulations, and the cross-talk between these signaling, along with the focuses on general autophagic process and several pivotal processes of mitophagy, including mitochondrial dynamic (DRP1, MFN-1), mitophagic induction (PINK1, Parkin). These may shed new light on the link between ApoE4 and AD and provide novel insights for promising mitophagy-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
- Huiyi Chen
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Jiang
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Lu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guizhen Hu
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Che
- Department of Children Rehabilitation, Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejian University School of Medicine, Hangzhou, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
Stratification of the Gut Microbiota Composition Landscape across the Alzheimer's Disease Continuum in a Turkish Cohort. mSystems 2022; 7:e0000422. [PMID: 35133187 PMCID: PMC8823292 DOI: 10.1128/msystems.00004-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder that spans a continuum with multiple phases, including preclinical, mild cognitive impairment, and dementia. Unlike for most other chronic diseases, human studies reporting on AD gut microbiota in the literature are very limited. With the scarcity of approved drugs for AD therapies, the rational and precise modulation of gut microbiota composition using diet and other tools is a promising approach to the management of AD. Such an approach could be personalized if an AD continuum can first be deconstructed into multiple strata based on specific microbiota features by using single or multiomics techniques. However, stratification of AD gut microbiota has not been systematically investigated before, leaving an important research gap for gut microbiota-based therapeutic approaches. Here, we analyze 16S rRNA amplicon sequencing of stool samples from 27 patients with mild cognitive impairment, 47 patients with AD, and 51 nondemented control subjects by using tools compatible with the compositional nature of microbiota. To stratify the AD gut microbiota community, we applied four machine learning techniques, including partitioning around the medoid clustering and fitting a probabilistic Dirichlet mixture model, the latent Dirichlet allocation model, and we performed topological data analysis for population-scale microbiome stratification based on the Mapper algorithm. These four distinct techniques all converge on Prevotella and Bacteroides stratification of the gut microbiota across the AD continuum, while some methods provided fine-scale resolution in stratifying the community landscape. Finally, we demonstrate that the signature taxa and neuropsychometric parameters together robustly classify the groups. Our results provide a framework for precision nutrition approaches aiming to modulate the AD gut microbiota. IMPORTANCE The prevalence of AD worldwide is estimated to reach 131 million by 2050. Most disease-modifying treatments and drug trials have failed, due partly to the heterogeneous and complex nature of the disease. Recent studies demonstrated that gut dybiosis can influence normal brain function through the so-called "gut-brain axis." Modulation of the gut microbiota, therefore, has drawn strong interest in the clinic in the management of the disease. However, there is unmet need for microbiota-informed stratification of AD clinical cohorts for intervention studies aiming to modulate the gut microbiota. Our study fills in this gap and draws attention to the need for microbiota stratification as the first step for microbiota-based therapy. We demonstrate that while Prevotella and Bacteroides clusters are the consensus partitions, the newly developed probabilistic methods can provide fine-scale resolution in partitioning the AD gut microbiome landscape.
Collapse
|
29
|
Lilamand M, Mouton-Liger F, Di Valentin E, Sànchez Ortiz M, Paquet C. Efficacy and Safety of Ketone Supplementation or Ketogenic Diets for Alzheimer's Disease: A Mini Review. Front Nutr 2022; 8:807970. [PMID: 35111799 PMCID: PMC8803132 DOI: 10.3389/fnut.2021.807970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-related neurodegenerative disorder, with no curative treatment available so far. Alongside the brain deposition of β-amyloid peptide and hyperphosphorylated tau, neuroinflammation triggered by the innate immune response in the central nervous system, plays a central role in the pathogenesis of AD. Glucose usually represents the main fuel for the brain. Glucose metabolism has been related to neuroinflammation, but also with AD lesions. Hyperglycemia promotes oxidative stress and neurodegeneration. Insulinoresistance (e.g., in type 2 diabetes) or low IGF-1 levels are associated with increased β-amyloid production. However, in the absence of glucose, the brain may use another fuel: ketone bodies (KB) produced by oxidation of fatty acids. Over the last decade, ketogenic interventions i.e., ketogenic diets (KD) with very low carbohydrate intake or ketogenic supplementation (KS) based on medium-chain triglycerides (MCT) consumption, have been studied in AD animal models, as well as in AD patients. These interventional studies reported interesting clinical improvements in animals and decrease in neuroinflammation, β-amyloid and tau accumulation. In clinical studies, KS and KD were associated with better cognition, but also improved brain metabolism and AD biomarkers. This review summarizes the available evidence regarding KS/KD as therapeutic options for individuals with AD. We also discuss the current issues and potential adverse effects associated with these nutritional interventions. Finally, we propose an overview of ongoing and future registered trials in this promising field.
Collapse
Affiliation(s)
- Matthieu Lilamand
- Groupe Hospitalier Lariboisiere FW Saint-Louis, Cognitive Neurology Center Paris Nord Ile de France, AP-HP.Nord, Paris, France
- Department of Geriatrics, Bichat and Bretonneau University Hospitals, AP-HP.Nord, Paris, France
- INSERM UMR-S1144, Université de Paris, Paris, France
- *Correspondence: Matthieu Lilamand
| | - François Mouton-Liger
- Groupe Hospitalier Lariboisiere FW Saint-Louis, Cognitive Neurology Center Paris Nord Ile de France, AP-HP.Nord, Paris, France
- Department of Histology and Biology of Aging, Groupe Hospitalier Lariboisiere FW Saint Louis, AP-HP.Nord, Paris, France
| | - Emmanuelle Di Valentin
- Department of Geriatrics, Bichat and Bretonneau University Hospitals, AP-HP.Nord, Paris, France
| | - Marta Sànchez Ortiz
- Groupe Hospitalier Lariboisiere FW Saint-Louis, Cognitive Neurology Center Paris Nord Ile de France, AP-HP.Nord, Paris, France
| | - Claire Paquet
- Groupe Hospitalier Lariboisiere FW Saint-Louis, Cognitive Neurology Center Paris Nord Ile de France, AP-HP.Nord, Paris, France
- INSERM UMR-S1144, Université de Paris, Paris, France
- Department of Histology and Biology of Aging, Groupe Hospitalier Lariboisiere FW Saint Louis, AP-HP.Nord, Paris, France
| |
Collapse
|
30
|
Cronjé HT, Jensen MK, Rozing MP, Koch M. Ketogenic therapies in mild cognitive impairment and dementia. Curr Opin Lipidol 2021; 32:330-332. [PMID: 34472542 DOI: 10.1097/mol.0000000000000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Héléne T Cronjé
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maarten P Rozing
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Manja Koch
- Institute of Epidemiology, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|