1
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang XH, Wang R, Li Y, Zhou HL, Zhou L, Sun M. Characteristics and factors associated with psychotic-like experiences in remission: a cross-sectional study of 4208 college students in China. BMJ Open 2024; 14:e084141. [PMID: 39353694 PMCID: PMC11448162 DOI: 10.1136/bmjopen-2024-084141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVES Previous research has extensively explored the factors associated with psychotic-like experiences (PLEs). However, the characteristics and associated factors of remitted PLEs, which refer to the absence of current PLEs following previous PLEs, remain unclear. Therefore, this study aims to describe the characteristics of adolescents who reported remitted PLEs. DESIGN Cross-sectional study. SETTING The survey was conducted from October to December 2020 in three colleges located in Guangzhou, China. PARTICIPANTS A total of 4208 college freshmen aged from 15 to 24 participated in our survey. PRIMARY AND SECONDARY OUTCOME MEASURES The 15-item positive subscale of the Community Assessment of the Psychic Experience was used to assess both lifetime and current PLEs. Multivariate logistic regression models were used to examine the associations between remitted PLEs and a range of demographic factors, lifestyle, psychosocial factors, lifetime affective symptoms and sleep problems. RESULTS Three groups of PLEs were observed: non-PLEs (47.27% of the sample), remitted PLEs (40.42%) and current PLEs (12.31%). Several factors have been identified as shared correlates of remission and absence of PLEs, including fewer recent adverse life events, greater resilience, fewer symptoms of depression and anxiety, and early waking. Furthermore, higher levels of social support (OR 1.48, 95% CI 1.01 to 2.17; OR 1.53, 95% CI 1.18 to 1.97) was a specific factor associated with the remission of PLEs. Compared with individuals without PLEs, those with remitted PLEs were more likely to be female (OR 1.50, 95% CI 1.28 to 1.75), less likely to be younger (OR 0.88, 95% CI 0.81 to 0.95) and prone to have more chronic physical illness (OR 1.67, 95% CI 1.29 to 2.16), habitual alcohol intake (OR 1.85, 95% CI 1.19 to 2.88), more childhood trauma (OR for low vs high=0.72, 95% CI 0.57 to 0.91) and the sleep problems of waking up easily (OR 1.36, 95% CI 1.12 to 1.65). CONCLUSION These findings suggest that remitted PLEs play a vital, unique role among three groups and provide preliminary targets for the intervention for adolescents at risk of mental health problems. Further investigation may shed light on the causality of the relationship between remitted PLEs and associated factors.
Collapse
Affiliation(s)
- Xin-Hu Yang
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Wang
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Li
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ling Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Sun
- Department of Social Psychiatry, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol 2024; 15:1428601. [PMID: 39175542 PMCID: PMC11338815 DOI: 10.3389/fphar.2024.1428601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR versus IF remain inconclusive, this review focuses on various forms of IF, particularly time-restricted eating (TRE). Methods This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as "Obesity," "Intermittent Fasting," "Time-restricted eating," "Chronotype," and "Circadian rhythms" guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge. Results This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joan Vendrell
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
5
|
Calcaterra V, Magenes VC, Basso M, Conte V, Maggioni G, Russo S, De Silvestri A, Fabiano V, Marrocco EA, Veggiotti P, Zuccotti G. Eating disorder risks and psychopathological distress in Italian high school adolescents. Ital J Pediatr 2024; 50:144. [PMID: 39113094 PMCID: PMC11304653 DOI: 10.1186/s13052-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Psychopathological disorders are often comorbid diagnosis in eating disorders (EDs). We aimed to assess the presence of psychopathological traits and symptoms associated with EDs in an Italian high school adolescent population. METHODS A sample of high school adolescents was enrolled, and demographic and clinical data were collected. Two self-report questionnaires, the Eating Disorder Inventory-3 (EDI-3) and the Questionnaire for the Assessment of Psychopathology in Adolescence (Q-PAD), were administered. RESULTS 548 adolescents (333 F/215 M; 16.89 ± 0.85 years) were included. Symptoms associated with EDs of clinical or high clinical concern were prevalent in a range of individuals, with percentages varying from 26.82% for body dissatisfaction to 51.83% for Interoceptive Deficits. The findings from the Q-PAD assessment indicated the presence of psychological distress, leading to discomfort or challenging situations requiring potential intervention in a percentage of adolescents ranging from 2.93% for psychosocial risks to 23.77% for anxiety. These percentages showed differences between genders (F > M, p < 0.001). Our study also highlighted an association between symptoms of EDs and lifestyle factors within families. We observed correlations between Q-PAD measures and EDI-3 scores, including a positive correlation between Q-PAD and EDI-3 body dissatisfaction (r = 0.7), Q-PAD interpersonal conflicts and EDI-3 interpersonal problems (r = 0.6) and a negative correlation between Q-PAD self-esteem and well-being and EDI-3 ineffectiveness Composite (r=-0.7). CONCLUSIONS a substantial prevalence of ED symptoms and psychological distress among high school adolescents were recorded. These conditions are interrelated, suggesting the importance of addressing them comprehensively. Early detection is essential to improve treatment outcomes and to implement preventive strategies.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, 27100, Italy
- Pediatric Department, Vittore Buzzi Children's Hospital, Milan, 20154, Italy
| | | | - Martina Basso
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, 20154, Italy
| | - Veronica Conte
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, 20154, Italy
| | - Giulia Maggioni
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, 20154, Italy
| | - Susanna Russo
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, 20154, Italy
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Valentina Fabiano
- Pediatric Department, Vittore Buzzi Children's Hospital, Milan, 20154, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milano, 20157, Italy
| | | | - Pierangelo Veggiotti
- Department of Biomedical and Clinical Sciences, University of Milan, Milano, 20157, Italy
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, 20154, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Vittore Buzzi Children's Hospital, Milan, 20154, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, Milano, 20157, Italy.
| |
Collapse
|
6
|
Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, Lopez-Yus M, Aranaz P, Oteo JA, Escoté X, Lorente-Cebrian S, Roche E, Courtois A, López V, Portillo MP, Milagro FI, Carpéné C. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem 2024; 80:603-625. [PMID: 39377969 PMCID: PMC11502541 DOI: 10.1007/s13105-024-01046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, 03202, Spain
| | - Claude Atgié
- Equipe ClipIn (Colloïdes pour l'Industrie et la Nutrition), Bordeaux INP, Institut CBMN, UMR 5248, Pessac, 33600, France
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
- Hospital Universitario San Pedro, Logroño, 26006, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
| | - Silvia Lorente-Cebrian
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Zaragoza, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), Elche, 03202, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, 03010, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Arnaud Courtois
- Département des Sciences de l'Environnement, Institut des Sciences de la Vigne et du Vin, UMR OEnologie (UMR 1366, INRAE, Bordeaux INP), AXE Molécules à Intérêt Biologique, Bordeaux, 33882, France
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, 31432, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse, 31432, France
| |
Collapse
|
7
|
Wang J, Apizi A, Tao N, An H. Association between the metabolic score for insulin resistance and prostate cancer: a cross-sectional study in Xinjiang. PeerJ 2024; 12:e17827. [PMID: 39076779 PMCID: PMC11285359 DOI: 10.7717/peerj.17827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Background Insulin resistance is associated with the development and progression of various cancers. However, the epidemiological evidence for the association between insulin resistance and prostate cancer is still limited. Objectives To investigate the associations between insulin resistance and prostate cancer prevalence. Methods A total of 451 patients who were pathologically diagnosed with prostate cancer in the First Affiliated Hospital of Xinjiang Medical University were selected as the case population; 1,863 participants who conducted physical examinations during the same period were selected as the control population. The metabolic score for insulin resistance (METS-IR) was calculated as a substitute indicator for evaluating insulin resistance. The Chi-square test and Mann-Whitney U test were performed to compare the basic information of the case population and control population. Univariate and multivariate logistic regression analyses to define factors that may influence prostate cancer prevalence. The generalized additive model (GAM) was applied to fit the relationship between METS-IR and prostate cancer. Interaction tests based on generalized additive model (GAM) and contour plots were also carried out to analyze the interaction effect of each factor with METS-IR on prostate cancer. Results METS-IR as both a continuous and categorical variable suggested that METS-IR was negatively associated with prostate cancer prevalence. Smoothed curves fitted by generalized additive model (GAM) displayed a nonlinear correlation between METS-IR and prostate cancer prevalence (P < 0.001), and presented that METS-IR was negatively associated with the odds ratio (OR) of prostate cancer. The interaction based on the generalized additive model (GAM) revealed that METS-IR interacted with low-density lipoprotein cholesterol (LDL-c) to influence the prostate cancer prevalence (P = 0.004). Contour plots showed that the highest prevalence probability of prostate cancer was achieved when METS-IR was minimal and low-density lipoprotein cholesterol (LDL-c) or total cholesterol (TC) was maximal. Conclusions METS-IR is nonlinearly and negatively associated with the prevalence of prostate cancer. The interaction between METS-IR and low-density lipoprotein cholesterol (LDL-c) has an impact on the prevalence of prostate cancer. The study suggests that the causal relationship between insulin resistance and prostate cancer still needs more research to confirm.
Collapse
Affiliation(s)
- Jinru Wang
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Aireti Apizi
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hengqing An
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
8
|
Sharma B, Schmidt L, Nguyen C, Kiernan S, Dexter-Meldrum J, Kuschner Z, Ellis S, Bhatia ND, Agriantonis G, Whittington J, Twelker K. The Effect of L-Carnitine on Critical Illnesses Such as Traumatic Brain Injury (TBI), Acute Kidney Injury (AKI), and Hyperammonemia (HA). Metabolites 2024; 14:363. [PMID: 39057686 PMCID: PMC11278892 DOI: 10.3390/metabo14070363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective effect in cases of global and focal cerebral ischemia. Moreover, it is an effective agent in reducing nephrotoxicity by suppressing downstream mitochondrial fragmentation. LC can reduce the severity of renal ischemia-reperfusion injury, renal cast formation, tubular necrosis, iron accumulation in the tubular epithelium, CK activity, urea levels, Cr levels, and MDA levels and restore the function of enzymes such as SOD, catalase, and GPx. LC can also be administered to patients with hyperammonemia (HA), as it can suppress ammonia levels. It is important to note, however, that LC levels are dysregulated in various conditions such as aging, cirrhosis, cardiomyopathy, malnutrition, sepsis, endocrine disorders, diabetes, trauma, starvation, obesity, and medication interactions. There is limited research on the effects of LC supplementation in critical illnesses such as TBI, AKI, and HA. This scarcity of studies highlights the need for further research in this area.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Lee Schmidt
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Samantha Kiernan
- Touro College of Osteopathic Medicine–Harlem, New York, NY 10027, USA;
| | - Jacob Dexter-Meldrum
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Scott Ellis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| |
Collapse
|
9
|
Li M. Association of physical activity with MAFLD/MASLD and LF among adults in NHANES, 2017-2020. Wien Klin Wochenschr 2024; 136:258-266. [PMID: 38170220 DOI: 10.1007/s00508-023-02314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES To investigate the correlations between physical activity (PA) and metabolic associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) within a substantial population-based survey, and to examine the association between PA and liver fibrosis (LF). METHODS Data from the 2017-2020 NHANES cycle were utilized in this study. PA was divided into four types: leisure-time PA (LTPA), transportation-related PA (TPA), occupational PA (OPA) and total time PA (total PA, which is composed of OPA, TPA and LTPA). Weighted logistic regression models were performed to analyze the associations between PA and MAFLD/MASLD and LF. Mediation analysis was used to explore whether LTPA completely mediated the statistically significant relationship between total PA and MAFLD/MASLD or LF. RESULTS The study encompassed a sample size of 5897 participants aged 20 years and above, among the total participants, 2568 individuals with MAFLD and 2588 individuals with MASLD. There was no statistically significant correlation observed between OPA/TPA and MAFLD/MASLD and LF; however, active LTPA demonstrated an inverse association with MAFLD/MASLD (OR: 0.548; 95% CI: 0.458, 0.656/OR: 0.543; 95% CI: 0.453, 0.650), as well as a negative correlation with significant/advanced LF (OR: 0.457; 95% CI: 0.334,0.625/OR: 0.427; 95% CI: 0.295,0.619). There was also a significant inverse association between total PA and MAFLD/MASLD or LF, but this association was carried by the difference in LTPA. CONCLUSION Participation in active LTPA is associated with a reduced likelihood of MAFLD/MASLD and LF, while neither OPA nor TPA can replace these effects of LTPA.
Collapse
Affiliation(s)
- Minhua Li
- Zhujiang Hospital of Southern Medical University, 510150, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
11
|
Feng Z, Zhao F, Wang Z, Tang X, Xie Y, Qiu L. The relationship between sarcopenia and metabolic dysfunction-associated fatty liver disease among the young and middle-aged populations. BMC Gastroenterol 2024; 24:111. [PMID: 38491346 PMCID: PMC10943823 DOI: 10.1186/s12876-024-03192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as a new term for diagnosing fatty liver disease, which is considered to be a multi-systemic disease with multiple extrahepatic manifestations, including sarcopenia. The link between sarcopenia and MAFLD remains uncertain, especially among young and middle-aged adults. Thus, we examined the relationship between MAFLD and sarcopenia in young and middle-aged individuals in this study. METHODS A total of 2214 individuals with laboratory tests, dual-energy X-ray absorptiometry and ultrasound transient elastography from NHANES 2017-2018 were selected for this study. MAFLD was diagnosed as fatty liver disease with any one of the situations: overweight/obesity, diabetes mellitus, presence of metabolic dysregulation. Sarcopenia was defined by appendicular lean mass adjusted for body mass index (BMI). Multivariable logistic regression and restricted cubic spline (RCS) model were applied to explore the relationship between MAFLD and sarcopenia, and the mediation analyses were also conducted. Moreover, subgroup analyses stratified by BMI and lifestyles were done. RESULTS The prevalence of MAFLD was 47.85%, and nearly 8.05% of participants had sarcopenia. The prevalence of sarcopenia was higher in participants with MAFLD (12.75%; 95% CI 10.18-15.31%) than in the non-MAFLD (3.73%; 95% CI 2.16-5.31%). MAFLD was significantly positively associated with sarcopenia after adjustments [OR = 2.87 (95% CI: 1.62-5.09)]. Moreover, significant positive associations were observed between liver fibrosis and sarcopenia prevalence in MAFLD patients (OR = 2.16; 95% CI 1.13-4.15). The RCS curve revealed that MAFLD was linearly associated with sarcopenia. The relationship between the MAFLD and sarcopenia were mediated by C-reactive protein (mediation proportion: 15.9%) and high-density lipoprotein cholesterol (mediation proportion: 18.9%). Subgroup analyses confirmed the association between MAFLD and sarcopenia differed in different lifestyle groups. CONCLUSIONS Both MAFLD prevalence and severity was significantly associated with sarcopenia. Thus, clinicians should advise comorbidity screening and lifestyle changes to young and middle-aged patients.
Collapse
Affiliation(s)
- Ziyan Feng
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Fanrong Zhao
- Department of gastroenterology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Ziyao Wang
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Xinyi Tang
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China
| | - Yan Xie
- Department of gastroenterology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China.
| | - Li Qiu
- Department of Medical Ultrasound and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Almoraie NM, Shatwan IM. The Potential Effects of Dietary Antioxidants in Obesity: A Comprehensive Review of the Literature. Healthcare (Basel) 2024; 12:416. [PMID: 38391792 PMCID: PMC10887832 DOI: 10.3390/healthcare12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Obesity has become a global health concern, with its prevalence steadily increasing in recent decades. It is associated with numerous health complications, including cardiovascular diseases, diabetes, and certain types of cancer. The aetiology of obesity is multifactorial, involving genetic, environmental, and lifestyle factors. In recent years, oxidative stress has emerged as a potential contributor to obesity and its related metabolic disorders. Dietary antioxidants, which can counteract oxidative stress, have gained significant attention for their potential role in preventing and managing obesity. This comprehensive review aims to explore the impact of dietary antioxidants on obesity and its associated metabolic dysregulations, discussing the underlying mechanisms and highlighting the potential therapeutic implications.
Collapse
Affiliation(s)
- Noha M Almoraie
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| | - Israa M Shatwan
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| |
Collapse
|
13
|
Zhang H, Zeng T, Zhang J, Zheng J, Min J, Peng M, Liu G, Zhong X, Wang Y, Qiu K, Tian S, Liu X, Huang H, Surmach M, Wang P, Hu X, Chen L. Development and validation of machine learning-augmented algorithm for insulin sensitivity assessment in the community and primary care settings: a population-based study in China. Front Endocrinol (Lausanne) 2024; 15:1292346. [PMID: 38332892 PMCID: PMC10850228 DOI: 10.3389/fendo.2024.1292346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Objective Insulin plays a central role in the regulation of energy and glucose homeostasis, and insulin resistance (IR) is widely considered as the "common soil" of a cluster of cardiometabolic disorders. Assessment of insulin sensitivity is very important in preventing and treating IR-related disease. This study aims to develop and validate machine learning (ML)-augmented algorithms for insulin sensitivity assessment in the community and primary care settings. Methods We analyzed the data of 9358 participants over 40 years old who participated in the population-based cohort of the Hubei center of the REACTION study (Risk Evaluation of Cancers in Chinese Diabetic Individuals). Three non-ensemble algorithms and four ensemble algorithms were used to develop the models with 70 non-laboratory variables for the community and 87 (70 non-laboratory and 17 laboratory) variables for the primary care settings to screen the classifier of the state-of-the-art. The models with the best performance were further streamlined using top-ranked 5, 8, 10, 13, 15, and 20 features. Performances of these ML models were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPR), and the Brier score. The Shapley additive explanation (SHAP) analysis was employed to evaluate the importance of features and interpret the models. Results The LightGBM models developed for the community (AUROC 0.794, AUPR 0.575, Brier score 0.145) and primary care settings (AUROC 0.867, AUPR 0.705, Brier score 0.119) achieved higher performance than the models constructed by the other six algorithms. The streamlined LightGBM models for the community (AUROC 0.791, AUPR 0.563, Brier score 0.146) and primary care settings (AUROC 0.863, AUPR 0.692, Brier score 0.124) using the 20 top-ranked variables also showed excellent performance. SHAP analysis indicated that the top-ranked features included fasting plasma glucose (FPG), waist circumference (WC), body mass index (BMI), triglycerides (TG), gender, waist-to-height ratio (WHtR), the number of daughters born, resting pulse rate (RPR), etc. Conclusion The ML models using the LightGBM algorithm are efficient to predict insulin sensitivity in the community and primary care settings accurately and might potentially become an efficient and practical tool for insulin sensitivity assessment in these settings.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Geng Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Kangli Qiu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shenghua Tian
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaohuan Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Hantao Huang
- Department of Emergency Medicine, Yichang Yiling Hospital, Yichang, China
| | - Marina Surmach
- Department of Public Health and Health Services, Grodno State Medical University, Grodno, Belarus
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
14
|
Wu S, Liu X, Dong A, Gragnoli C, Griffin C, Wu J, Yau ST, Wu R. The metabolomic physics of complex diseases. Proc Natl Acad Sci U S A 2023; 120:e2308496120. [PMID: 37812720 PMCID: PMC10589719 DOI: 10.1073/pnas.2308496120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/15/2023] [Indexed: 10/11/2023] Open
Abstract
Human diseases involve metabolic alterations. Metabolomic profiles have served as a vital biomarker for the early identification of high-risk individuals and disease prevention. However, current approaches can only characterize individual key metabolites, without taking into account the reality that complex diseases are multifactorial, dynamic, heterogeneous, and interdependent. Here, we leverage a statistical physics model to combine all metabolites into bidirectional, signed, and weighted interaction networks and trace how the flow of information from one metabolite to the next causes changes in health state. Viewing a disease outcome as the consequence of complex interactions among its interconnected components (metabolites), we integrate concepts from ecosystem theory and evolutionary game theory to model how the health state-dependent alteration of a metabolite is shaped by its intrinsic properties and through extrinsic influences from its conspecifics. We code intrinsic contributions as nodes and extrinsic contributions as edges into quantitative networks and implement GLMY homology theory to analyze and interpret the topological change of health state from symbiosis to dysbiosis and vice versa. The application of this model to real data allows us to identify several hub metabolites and their interaction webs, which play a part in the formation of inflammatory bowel diseases. The findings by our model could provide important information on drug design to treat these diseases and beyond.
Collapse
Affiliation(s)
- Shuang Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Xiang Liu
- Chern Institute of Mathematics, Nankai University, Tianjin300071, China
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing101408, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, China
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA17033
- Department of Medicine, Creighton University School of Medicine, Omaha, NE68124
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome00197, Italy
| | - Christopher Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA16802
| | - Jie Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing101408, China
| | - Shing-Tung Yau
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing101408, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing100084, China
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing101408, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing100084, China
| |
Collapse
|
15
|
Calcaterra V, Magenes VC, Siccardo F, Hruby C, Basso M, Conte V, Maggioni G, Fabiano V, Russo S, Veggiotti P, Zuccotti G. Thyroid dysfunction in children and adolescents affected by undernourished and overnourished eating disorders. Front Nutr 2023; 10:1205331. [PMID: 37841407 PMCID: PMC10576529 DOI: 10.3389/fnut.2023.1205331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Eating disorders (ED) are one of the most prevalent chronic disorders in adolescents and young adults, with a significantly increasing prevalence in younger children, particularly in girls. Even if obesity in essence is not framed as an eating disorder and has always been considered a separate pathology, ED and obesity could be considered part of a continuum. It has become evident that one condition can lead to another, such as binge eating disorder (BED) and bulimia nervosa, and that they share the same repercussions in terms of psychosocial, metabolic, and nutritional health. This narrative review aims to investigate the hypothalamic-pituitary-thyroid axis in undernourished and overnourished patients with ED, including obesity, in order to highlight the relationship between weight control and thyroid function and its effects and to consider therapeutic and preventive strategies in children and adolescents. Literature data report that thyroid alterations occur in patients with ED, both underweight and overweight, and represent a continuum of changes depending on the severity and time course of the disease involving the endocrine system. Considering the relevant role thyroid hormones (TH) play not only in energy expenditure (EE) but also in metabolic control and cardiovascular risks related to dysmetabolism and mood regulation, continuous monitoring of thyroid homeostasis in patients with ED is mandatory to prevent severe complications and to start early treatment when necessary.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | | | | | - Chiara Hruby
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Martina Basso
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, Italy
| | - Veronica Conte
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, Italy
| | - Giulia Maggioni
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, Italy
| | - Valentina Fabiano
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milano, Milan, Italy
| | - Susanna Russo
- Child and Adolescent Neuropsychiatry Unit (UONPIA), ASST-Fatebenefratelli-Sacco, Milan, Italy
| | - Pierangelo Veggiotti
- Department of Biomedical and Clinical Science, University of Milano, Milan, Italy
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milano, Milan, Italy
| |
Collapse
|
16
|
Huang XH, Peng HW, Huang JR, Yu R, Hu ZJ, Peng XE. Association of food intake with a risk of metabolic dysfunction-associated fatty liver disease: a cross-sectional study. Gastroenterol Rep (Oxf) 2023; 11:goad054. [PMID: 37705510 PMCID: PMC10495696 DOI: 10.1093/gastro/goad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease, the risk of which can be increased by poor diet. The objective of this study was to evaluate the associations between food items and MAFLD, and to propose reasonable dietary recommendations for the prevention of MAFLD. Methods Physical examination data were collected from April 2015 through August 2017 at Nanping First Hospital (n = 3,563). Dietary intakes were assessed using a semi-quantitative food frequency questionnaire. The association between food intake and the risk of MAFLD was assessed by using the inverse probability weighted propensity score. Results Beverages (soft drinks and sugar-sweetened beverages) and instant noodles were positively associated with MAFLD risk, adjusting for smoking, drinking, tea intake, and weekly hours of physical activity [adjusted odds ratio (ORadjusted): 1.568; P = 0.044; ORadjusted: 4.363; P = 0.001]. Milk, tubers, and vegetables were negatively associated with MAFLD risk (ORadjusted: 0.912; P = 0.002; ORadjusted: 0.633; P = 0.007; ORadjusted: 0.962; P = 0.028). In subgroup analysis, the results showed that women [odds ratio (OR): 0.341, 95% confidence interval (CI): 0.172-0.676] had a significantly lower risk of MAFLD through consuming more tubers than men (OR: 0.732, 95% CI: 0.564-0.951). Conclusions These findings suggest that reducing consumption of beverages (soft drinks and sugar-sweetened beverages) and instant noodles, and consuming more milk, vegetables, and tubers may reduce the risk of MAFLD.
Collapse
Affiliation(s)
- Xian-Hua Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - He-Wei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jing-Ru Huang
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China
| | - Rong Yu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhi-Jian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
17
|
Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol 2023:125125. [PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Lip Yong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, University Technology MARA, Selangor, Shah Alam 40450, Malaysia
| | - Najihah Binti Mohd Hasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
18
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
19
|
Ferreira DM, de Oliveira NM, Chéu MH, Meireles D, Lopes L, Oliveira MB, Machado J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:688. [PMID: 36771772 PMCID: PMC9921517 DOI: 10.3390/plants12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Olea europaea L. folium merits further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of Madural, Verdeal, and Cobrançosa elementary leaves and leaf sprouts (mamões) collected in the region of Valpaços, Portugal. Organic analysis assessed the moisture content, total carbohydrates, ash, protein, and fat contents, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Moisture content was determined through infrared hygrometry and TPC was determined by a spectrophotometric method. Concerning organic analysis, all leaf samples showed similar moisture content, though Cobrançosa's leaf sprouts and Verdeal's elementary leaves had slightly lower contents. Meanwhile, these cultivars also showed a higher TPC, α-tocopherol isomer, and fatty acid composition (FAC). FAC in all samples exhibited higher contents of PUFA and SFA than MUFA, with a predominance of linolenic and palmitic acids. Organic analyses of Cobrançosa's leaf sprouts and Verdeal's elementary leaf extracts allow for the prediction of adequate physiological properties regarding neuroinflammatory, neurobehavioral, metabolic, cardiovascular, osteo-degenerative, anti-ageing, pulmonary, and immunological defense disorders. These physiological changes observed in our preliminary in silico studies suggest an excellent nutraceutical, which should be borne in mind during severe pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- RECI—Research Unit in Education and Community Intervention, Instituto Piaget—ISEIT, 3515-776 Viseu, Portugal
| | - Diana Meireles
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| |
Collapse
|
20
|
Alhasaniah AH. l-carnitine: Nutrition, pathology, and health benefits. Saudi J Biol Sci 2023; 30:103555. [PMID: 36632072 PMCID: PMC9827390 DOI: 10.1016/j.sjbs.2022.103555] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.
Collapse
Key Words
- AD, Alzheimer's disease
- AIF, Apoptosis-inducing factor
- Anti-wasting effect
- BBB, Blood–brain barrier
- CC, Cancer cachexia
- CHF, Chronic heart failure
- COPD, Chronic obstructive pulmonary disease
- ESRD, End-stage renal disease
- GOT, Glutamic oxaloacetic transaminase
- HCC, Hepatocellular carcinoma
- HFD, High-Fat Diet
- HOI, Highest observed intake
- Health benefits
- LC, l-carnitine
- MI, myocardial infarction
- MTX, Methotrexate
- NF-kB, Nuclear factor-kB
- Nutrition
- OSL, Observed safe level
- PCD, Primary carnitine deficiency
- Pathology
- ROS, Reactive oxygen species
- SCD, Secondary carnitine deficiency
- TLE, Temporal lobe epilepsy
- VD, Vascular dementia
- l-carnitine
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| |
Collapse
|
21
|
Ma K, Sheng W, Gao R, Feng J, Huang W, Cui L, Liu J, Li Y. Ethanolic extract of root from Arctium lappa L ameliorates obesity and hepatic steatosis in rats by regulating the AMPK/ACC/CPT-1 pathway. J Food Biochem 2022; 46:e14455. [PMID: 36183168 DOI: 10.1111/jfbc.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Burdock (Arctium lappa L) root is eaten as a vegetable in many countries and used as an ethnomedicine because of its various pharmacological effects. The objective of this study was to investigate the underlying mechanisms of ethanolic extract of root from Arctium lappa L root (ALE) to lose weight and regulate lipid metabolism. The results showed that ALE can regulate lipid metabolism level and inhibit the weight gain of rats induced by the high-sugar and high-fat diet. The contents of triglyceride and cholesterol in the liver of obese rats significantly reduced, and hepatic steatosis was ameliorated. In addition, this study identified that ALE enhanced hepatic fatty acid β-oxidation and ameliorated hepatic steatosis by activating AMPK/ACC/CPT-1 pathway. These results indicated that ALE has a potential preventive and therapeutic effect on metabolic-associated fatty liver disease and obesity. PRACTICAL APPLICATIONS: Obesity is already a global health problem. Obesity causes accumulation of triglycerides, which leads to hepatic steatosis. Long-term steatosis causes liver damage and metabolic fatty liver disease. Plant-derived functional foods or herbal medicines have better effects on weight loss and liver protection, which are more conducive to long-term use with less toxic side effects. As a medicinal and edible plant material, Arctium lappa L root has the effect in losing weight. Our study showed that ethanolic extract of Arctium lappa L root effectively regulates lipid metabolism and inhibits hepatic steatosis. Arctium lappa L root may be used as a therapeutic drug and functional food raw material for obesity and fatty liver disease.
Collapse
Affiliation(s)
- Kaiyang Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weixi Sheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
22
|
Schifano E, Conta G, Preziosi A, Ferrante C, Batignani G, Mancini P, Tomassini A, Sciubba F, Scopigno T, Uccelletti D, Miccheli A. 2-hydroxyisobutyric acid (2-HIBA) modulates ageing and fat deposition in Caenorhabditis elegans. Front Mol Biosci 2022; 9:986022. [PMID: 36533081 PMCID: PMC9749906 DOI: 10.3389/fmolb.2022.986022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 06/30/2024] Open
Abstract
High levels of 2-hydroxyisobutyric acid (2-HIBA) were found in urines of patients with obesity and hepatic steatosis, suggesting a potential involvement of this metabolite in clinical conditions. The gut microbial origin of 2-HIBA was hypothesized, however its actual origin and role in biological processes are still not clear. We investigated how treatment with 2-HIBA affected the physiology of the model organism Caenorhabditis elegans, in both standard and high-glucose diet (HGD) growth conditions, by targeted transcriptomic and metabolomic analyses, Coherent Anti-Stokes Raman Scattering (CARS) and two-photon fluorescence microscopy. In standard conditions, 2-HIBA resulted particularly effective to extend the lifespan, delay ageing processes and stimulate the oxidative stress resistance in wild type nematodes through the activation of insulin/IGF-1 signaling (IIS) and p38 MAPK pathways and, consequently, through a reduction of ROS levels. Moreover, variations of lipid accumulation observed in treated worms correlated with transcriptional levels of fatty acid synthesis genes and with the involvement of peptide transporter PEP-2. In HGD conditions, the effect of 2-HIBA on C. elegans resulted in a reduction of the lipid droplets deposition, accordingly with an increase of acs-2 gene transcription, involved in β-oxidation processes. In addition, the pro-longevity effect appeared to be correlated to higher levels of tryptophan, which may play a role in restoring the decreased viability observed in the HGD untreated nematodes.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giorgia Conta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Carino Ferrante
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giovanni Batignani
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberta Tomassini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Tullio Scopigno
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Muntean C, Sasaran MO, Crisan A, Banescu C. Effects of PPARG and PPARGC1A gene polymorphisms on obesity markers. Front Public Health 2022; 10:962852. [PMID: 36466447 PMCID: PMC9709282 DOI: 10.3389/fpubh.2022.962852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric obesity presents a multifactorial etiology, which involves genetic traits as well, including single nucleotide polymorphisms. The aim of the study is to investigate the contribution of PPARG gene polymorphisms (namely Pro12Ala rs1801282, His447His rs3856806, and Pro115Gln rs1800571) and PPARGC1A rs8192678 SNP on the anthropometric and metabolic parameters in a population of Romanian children. We conducted a cross-sectional study of 295 Caucasian children, divided according to the body mass index (BMI) z-score into the study (obese and overweight) group of 130 children and the control (normoponderal) group of 165 children. Anthropometric parameters were greater in the obese and overweight population as opposed to controls, with significant differences (p < 0.01) found for the weight (2.77 ± 1.54 SD vs. -0.04 ± 1.15 SD), body mass index (BMI) (2.28 ± 0.97 SD vs. -0.18 ± 1.19 SD), mid-upper arm circumference (MUAC) (4.59 ± 2.28 SD vs. 0.28 ± 3.45 SD), tricipital skin-fold (TSF) (3.31 ± 3.09 SD vs. 0.62 ± 7.28 SD) and waist-to-height ratio (WHtR) (0.61 ± 1.51 SD vs. -0.35 ± 1.35 SD) z-scores. Moreover, triglyceride values were higher in the study group (118.70 ± 71.99 SD vs. 77.09 ± 37.39 SD). No significant difference in the allele and genotype distribution of investigates gene polymorphisms was observed between the studied groups (p > 0.05). PPARG (rs1801282, rs3856806, and rs1800571) were not associated with demographic, anthropometric, and laboratory parameters. However, PPARGC1A rs8192678 CC genotype was associated with TSF z-score (p = 0.03), whereas total and LDL cholesterol levels were significantly higher among TT homozygotes (p < 0.01). Our data suggest that PPARG (rs1801282, rs3856806, and rs1800571) and PPARGC1A (rs8192678) gene polymorphisms were not associated with childhood and adolescence overweight and obesity. The present study identified a significant increase in fasting glucose levels, triglyceride, albumin, and ALT levels in children with excess weight, as well as expected important upward variation of anthropometric parameters (BMI, MUAC, TSF z-scores).
Collapse
Affiliation(s)
- Carmen Muntean
- Department of Paediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania,*Correspondence: Carmen Muntean
| | - Maria Oana Sasaran
- Department of Paediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Adriana Crisan
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
24
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
25
|
Study protocol for an adapted personal project analysis to measure vertical inter-goal relations on physical activity and diet. BMC Psychol 2022; 10:225. [PMID: 36153601 PMCID: PMC9509544 DOI: 10.1186/s40359-022-00931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Background The promotion of multiple healthy lifestyles has been implemented as part of public health efforts to prevent and reduce the burden of non-communicable diseases. However, these interventions have shown a heterogeneity in their effectiveness. The pursuit of multiple daily goals may influence overall progress in achieving health goals. Horizontal inter-goal relations can be conflicting (due to time constraints) or facilitating (due to goal compatibility) and impact progress towards goal achievement. Personal values also play an important role in health promotion. Personal values direct attention towards accomplishing a higher-level goal through goal setting. Identifying the conflicting or facilitating relationships between health goals and personal values would provide insights in how individuals value health and the personal values that may support the adoption of a healthy behavior. The health goals that this study will focus on are physical activity and a healthy diet. Methods Participants between 18 and 30 years old residing in Belgium and interested in a healthy diet and/or physical activity, will be recruited. The study will be a mixed-methods research study based on an adapted personal project analysis for goal elicitation, goal appraisal, and rating of inter-goal conflicting or facilitating relations on a cross-impact matrix. The main objectives include examining the conflicting and facilitating relations between health goals and personal values. Secondary objectives include: examining correlations between horizontal and vertical goal relations; and the goal self-concordance score as a method of data triangulation of facilitating relations between goals and personal values. Discussion This study will provide insights into how the emerging adult population relate healthy behaviors, specifically physical activity and a healthy diet, to their personal values. The degree to which individuals are able to pursue a health goal is also influenced by other life goals, and therefore the conflicting and facilitating relations between health goals and other life goals will also be examined. This study contributes to multiple health behavior change theories and has implications for the formulation of interventions for the promotion of healthy behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s40359-022-00931-4.
Collapse
|
26
|
Discovery of Novel Epoxyketone Peptides as Lipase Inhibitors. Molecules 2022; 27:molecules27072261. [PMID: 35408660 PMCID: PMC9000415 DOI: 10.3390/molecules27072261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.
Collapse
|
27
|
Laboratory Profile of COVID-19 Patients with Hepatitis C-Related Liver Cirrhosis. J Clin Med 2022; 11:jcm11030652. [PMID: 35160114 PMCID: PMC8836842 DOI: 10.3390/jcm11030652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with cirrhosis are known to have multiple comorbidities and impaired organ system functioning due to alterations caused by chronic liver failure. In the past two years, since the COVID-19 pandemic started, several studies have described the affinity of SARS-CoV-2 with the liver and biliary cells. Considering hepatitis C as a significant independent factor for cirrhosis in Romania, this research was built on the premises that this certain group of patients is susceptible to alterations of their serum parameters that are yet to be described, which might be useful in the management of COVID-19 in these individuals. A retrospective cohort study was developed at a tertiary hospital for infectious disease in Romania, which included a total of 242 patients with hepatitis C cirrhosis across two years, out of which 46 patients were infected with SARS-CoV-2. Stratification by patient weight and COVID-19 status identified several important laboratory serum tests as predictors for acute-on-chronic liver failure and risk for intensive care unit admission. Thus, white blood cell count, lymphocyte count, ferritin, hypoglycemia, prothrombin time, and HCV viral load were independent risk factors for ACLF in patients with COVID-19. High PT, creatinine, BUN, and HCV viral load were the strongest predictors for ICU admission. Inflammatory markers and parameters of gas exchange were also observed as risk factors for ACLF and ICU admission, including procalcitonin, CRP, IL-6, and D-dimers. Our study questions and confirms the health impact of COVID-19 on patients with cirrhosis and whether their laboratory profile significantly changes due to SARS-CoV-2 infection.
Collapse
|
28
|
Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J 2022; 46:15-37. [PMID: 34965646 PMCID: PMC8831809 DOI: 10.4093/dmj.2021.0280] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Insulin resistance is the pivotal pathogenic component of many metabolic diseases, including type 2 diabetes mellitus, and is defined as a state of reduced responsiveness of insulin-targeting tissues to physiological levels of insulin. Although the underlying mechanism of insulin resistance is not fully understood, several credible theories have been proposed. In this review, we summarize the functions of insulin in glucose metabolism in typical metabolic tissues and describe the mechanisms proposed to underlie insulin resistance, that is, ectopic lipid accumulation in liver and skeletal muscle, endoplasmic reticulum stress, and inflammation. In addition, we suggest potential therapeutic strategies for addressing insulin resistance.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Division of Molecular Medicine, Gachon University College of Medicine, Incheon, Korea
- Corresponding author: Cheol Soo Choi https://orcid.org/0000-0001-9627-058X Division of Molecular Medicine, Gachon University College of Medicine, 21 Namdongdaero 774beon-gil, Namdong-gu, Incheon 21565, Korea E-mail:
| |
Collapse
|
29
|
Leptin Protein Expression and Promoter Methylation in Ovarian Cancer: A Strong Prognostic Value with Theranostic Promises. Int J Mol Sci 2021; 22:ijms222312872. [PMID: 34884678 PMCID: PMC8657586 DOI: 10.3390/ijms222312872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest among all gynecological cancers. Epidemiological studies showed that obesity might influence many cancers including OC. One of the key factors that may link obesity and OC is leptin (LEP), known as an adipokine with pleiotropic effects on body homeostasis. This study aims to investigate the expression pattern of LEP, assess the methylation profiles of LEP and their associations with clinicopathological features including survival outcomes of OC patients. The protein expression of LEP was evaluated in 208 samples using both tissue microarray and immunohistochemistry techniques. The methylation profiles of LEP were measured in 63 formalin-fixed, paraffin-embedded tumor tissues by quantitative polymerase chain reaction using a MethyLight assay. Our results showed a significant association of LEP protein overexpression with several clinicopathological variables, mainly tumor subtype, LVI, age of menarche, tumor size and stage (p < 0.04). Kaplan-Meier analysis (using low expression versus high expression as a discriminator) indicated that LEP protein overexpression is a powerful positive prognosticator of both OC recurrence (DFS) and disease-specific survival (DSS) in our OC cohort (log-rank p = 0.01 and p = 0.002, respectively). This implies that patients with high LEP expression profiles live longer with less recurrence rates. Methylation analysis results demonstrated a clear association between no/low LEP protein expression pattern (38%) and LEP promoter CpG island hypermethylation (43%). Results of this study suggest that LEP is a powerful prognosticator of OC recurrence and DSS. LEP expression in OC seems to be regulated by its promoter hypermethylation through gene partial/total silencing. Further multi-institutional studies using larger cohorts are required to demystify the intricate molecular functions of this leptin-driven effects in OC pathophysiology and to accurately assess its theranostic potential and validate its prognostic/predictive power in OC onset, progression towards more effective and personalized management of OC patients.
Collapse
|
30
|
Assessment of Risk Factors Associated with Cardiovascular Diseases in Overweight Women. Nutrients 2021; 13:nu13103658. [PMID: 34684659 PMCID: PMC8537521 DOI: 10.3390/nu13103658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
The assessment of anthropometric variables has been shown to be useful as a predictor of cardiovascular risk in overweight and obese patients. The aim of this study was to determine the usefulness of the relationship between breast volume and body mass index as an indicator of cardiovascular risk in premenopausal women with overweight and mild obesity. A prospective observational study of 93 premenopausal women was performed. Evaluation of anthropometric measures included age, body mass index, waist and hip circumferences, breast projection, and ptosis. Cardiovascular risk factors were evaluated using the Framingham cardiovascular risk score, the triglycerides/HDL cholesterol ratio and the waist-hip ratio. Ninety-three women were included, with a mean 36.4 ± 7.5 years. Mean BMI was 27.3 ± 1.9 kg/m2, waist-to-Hip ratio was 0.8 ± 0.07, and mammary volume was 1045 ± 657.4 cm3. Mean body fat mass was 30.6 + 3.6% and mean visceral fat was 6.6 + 3.2%. The mean triglycerides to HDL ratio was 1.7 ± 0.8 and waist-to-hip ratio was 0.8 ± 0.07. Breast volume related to body mass index can be used as a predictor of cardiovascular risk in premenopausal women who are overweight and mildly obese.
Collapse
|