1
|
Ghalwash AA, El-Gohary RM, El Amrousy D, Morad LM, Kassem SS, Hegab II, Okasha AH. The gut microbiota metabolite trimethylamine-N-oxide in children with β-thalassemia: potential implication for iron-induced renal tubular dysfunction. Pediatr Res 2024:10.1038/s41390-024-03639-w. [PMID: 39448817 DOI: 10.1038/s41390-024-03639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Renal tubular dysfunction is common in transfusion-dependent β thalassemia (β-TM). Iron overload, chronic anemia, and hypoxia are precipitating factors for renal insult. However, gut microbiota engagement in the renal insult has not been explored. Our work aimed to assess the potential link between iron overload, gut leakage/dysbiosis, and kidney dysfunction in these children. METHODS We enrolled 40 children with β-TM and 40 healthy controls. Gut leakage/dysbiosis biomarkers (trimethylamine-N-oxide [TMAO] and fecal short-chain fatty acids [SCFAs]), oxidative stress and inflammatory biomarkers, TMAO-regulated proteins such as serum sirtuin 1 (S.SIRT1) and serum high mobility box group-1 (S.HMGB1), and tubular dysfunction biomarkers were assessed. Correlations and regression analysis were performed to assess the relation between different parameters. RESULTS Iron overload, redox imbalance, and generalized inflammation were evident in children with β-TM. Renal tubular dysfunction biomarkers and S.TMAO were significantly elevated in the patient group. Furthermore, fecal SCFAs were significantly lower with upregulation of the investigated genes in the patient group. The correlation studies affirmed the close relationship between circulating ferritin, TMAO, and renal dysfunction and strongly implicated SIRT1/HMGB1 axis in TMAO action. CONCLUSIONS Gut dysbiosis may have a role in the pathogenesis of renal injury in children with β-TM. IMPACT Renal tubular dysfunction is a prominent health issue in β thalassemia major (β-TM). Iron overload, chronic anemia, and hypoxia are known precipitating factors. However, gut microbiota engagement in renal insult in these patients has not yet been explored. We aimed to assess potential link between iron overload, gut leakage/dysbiosis, and kidney dysfunction in β-TM children and to highlight the SIRT1/HMGB1 axis, a signal motivated by the gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO), involvement in such insults. We found that gut leakage/dysbiosis may have a role in kidney dysfunction in β-TM children by exacerbating the iron-motivated oxidative stress, inflammation, ferroptosis, and modulating SIRT1/HMGB1 axis.
Collapse
Affiliation(s)
- Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Lamia M Morad
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaima S Kassem
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ibrahim Z, Khan NA, Siddiqui R, Qaisar R, Marzook H, Soares NC, Elmoselhi AB. Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being. Nutr Metab (Lond) 2024; 21:66. [PMID: 39123239 PMCID: PMC11316329 DOI: 10.1186/s12986-024-00836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS,, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Nelson C Soares
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid university of Medicine and Health Sciences, Dubai, 0000, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av Padre Cruz, Lisbon, 1649-016, Portugal
| | - Adel B Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE.
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
4
|
Baron M, Zuo B, Chai J, Zhao J, Jahan-Mihan A, Ochrietor J, Arikawa AY. The effects of fermented vegetables on the gut microbiota for prevention of cardiovascular disease. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e6. [PMID: 39290661 PMCID: PMC11404656 DOI: 10.1017/gmb.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 09/19/2024]
Abstract
This study investigated the impact of regular consumption of fermented vegetables (FVs) on inflammation and the composition of the gut microbiota in adults at increased risk for cardiovascular disease. Eighty-seven adults ages 35-64 were randomized into an FV group, who consumed 100 g FVs daily at least five times per week for eight weeks, or a usual diet (UD) group. Blood and stool samples were obtained before and after the intervention. Dependent samples t tests and adjusted linear models were used for within- and between-group comparisons. The mean age and body mass index of participants were 45 years and 30 kg/m2, and 80% were female. Bloating or gas was the most common side effect reported (19.3% FV group vs. 9.4% UD group). There were no changes in C-reactive protein, oxidized low-density lipoprotein-receptor 1, angiopoietin-like protein 4, trimethylamine oxide, and lipopolysaccharide-binding protein or bacterial alpha diversity between groups. Our findings indicate that consuming 100 g of FVs for at least five days per week for eight weeks does not change inflammatory biomarkers or microbial alpha diversity as measured by the Shannon index. It is possible that higher doses of FVs are necessary to elicit a significant response by gut bacteria.
Collapse
Affiliation(s)
- Melissa Baron
- Instructor of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Bin Zuo
- Research Assistant of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Jianmin Chai
- Schoo of Life Sciences, University of Foshan, Foshan, China
| | - Jiangchao Zhao
- Animal Science, University of Arkansas, Fayetteville, AR, USA
| | | | - Judy Ochrietor
- Biology, University of North Florida, Jacksonville, FL, USA
| | - Andrea Y Arikawa
- Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
5
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
6
|
Raij T, Raij K. Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome. Front Endocrinol (Lausanne) 2024; 15:1358404. [PMID: 38505756 PMCID: PMC10948554 DOI: 10.3389/fendo.2024.1358404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
Background Fatigue of unknown origin is a hallmark symptom in chronic fatigue syndrome (CFS) and is also found in 20% of hypothyroidism patients despite appropriate levothyroxine treatment. Here, we suggest that in these disorders, peripheral serotonin levels are low, and elevating them to normal range with L-carnitine is accompanied with reduced fatigue. Methods We conducted a retrospective analysis of follow-up clinical data (CFS N=12; hypothyroidism with fatigue N=40) where serum serotonin and fatigue levels were compared before vs. after 7 weeks of oral L-carnitine supplementation. Results After L-carnitine, serotonin increased (8-fold in CFS, Sig. = 0.002, 6-fold in hypothyroidism, Sig. < 0.001) whereas fatigue decreased (2-fold in both CFS and hypothyroidism, Sig. = 0.002 for CFS, Sig. < 0.001 for hypothyroidism). There was a negative correlation between serotonin level and fatigue (for CFS, rho = -0.49 before and -0.67 after L-carnitine; for hypothyroidism, rho = -0.24 before and -0.83 after L-carnitine). Conclusions These findings suggest a new link between low peripheral serotonin, L-carnitine, and fatigue.
Collapse
Affiliation(s)
- Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department Of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MGH Department of Radiology, Boston, MA, United States
| | - Kari Raij
- Kruunuhaka Medical Center, Helsinki, Finland
| |
Collapse
|
7
|
Huang PH, Chen DQ, Chen YW, Shih MK, Lee BH, Tain YL, Hsieh CW, Hou CY. Evaluation of the Feasibility of In Vitro Metabolic Interruption of Trimethylamine with Resveratrol Butyrate Esters and Its Purified Monomers. Molecules 2024; 29:429. [PMID: 38257342 PMCID: PMC10820948 DOI: 10.3390/molecules29020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 μM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - De-Quan Chen
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan;
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| |
Collapse
|
8
|
Liu L, Kaur GI, Kumar A, Kanwal A, Singh SP. The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications. Cardiovasc Hematol Agents Med Chem 2024; 22:375-389. [PMID: 38275032 DOI: 10.2174/0118715257273506231208045308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.
Collapse
Affiliation(s)
- Lu Liu
- Endoscopic Diagnosis and Treatment Center, Baoding First Central Hospital, Baoding, China
| | - Guneet Inderjeet Kaur
- Department of Sports Psychology, Central University of Rajasthan, Ajmer, 305817, India
| | - Avinash Kumar
- Department of Sports Biosciences, Central University of Rajasthan, Ajmer, 305817, India
| | | | | |
Collapse
|
9
|
Husso A, Pessa-Morikawa T, Koistinen VM, Kärkkäinen O, Kwon HN, Lahti L, Iivanainen A, Hanhineva K, Niku M. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol 2023; 21:207. [PMID: 37794486 PMCID: PMC10552303 DOI: 10.1186/s12915-023-01709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Mikael Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hyuk Nam Kwon
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- School of Biological Sciences and Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Ciccone MM, Lepera ME, Guaricci AI, Forleo C, Cafiero C, Colella M, Palmirotta R, Santacroce L. Might Gut Microbiota Be a Target for a Personalized Therapeutic Approach in Patients Affected by Atherosclerosis Disease? J Pers Med 2023; 13:1360. [PMID: 37763128 PMCID: PMC10532785 DOI: 10.3390/jpm13091360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the increasing number of studies on the relationship between the gut microbiota and atherosclerosis have led to significant interest in this subject. The gut microbiota, its metabolites (metabolome), such as TMAO, and gut dysbiosis play an important role in the development of atherosclerosis. Furthermore, inflammation, originating from the intestinal tract, adds yet another mechanism by which the human ecosystem is disrupted, resulting in the manifestation of metabolic diseases and, by extension, cardiovascular diseases. The scientific community must understand and elucidate these mechanisms in depth, to gain a better understanding of the relationship between atherosclerosis and the gut microbiome and to promote the development of new therapeutic targets in the coming years. This review aims to present the knowledge acquired so far, to trigger others to further investigate this intriguing topic.
Collapse
Affiliation(s)
- Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Mario Erminio Lepera
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Raffele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| |
Collapse
|
11
|
Gadgil MD, Wood AC, Karaman I, Graça G, Tzoulaki I, Zhong VW, Greenland P, Kanaya AM, Herrington DM. Metabolomic Profile of the Healthy Eating Index-2015 in the Multiethnic Study of Atherosclerosis. J Nutr 2023; 153:2174-2180. [PMID: 37271414 PMCID: PMC10493432 DOI: 10.1016/j.tjnut.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Poor diet quality is a risk factor for type 2 diabetes and cardiovascular disease. However, knowledge of metabolites marking adherence to Dietary Guidelines for Americans (2015 version) are limited. OBJECTIVES The goal was to determine a pattern of metabolites associated with the Healthy Eating Index (HEI)-2015, which measures adherence to the Dietary Guidelines for Americans. METHODS The analysis examined 3557 adult men and women from the longitudinal cohort Multiethnic Study of Atherosclerosis (MESA), without known cardiovascular disease and with complete dietary data. Fasting serum specimens and diet and demographic questionnaires were assessed at baseline. Untargeted 1H 1-dimensional nuclei magnetic resonance spectroscopy (600 MHz) was used to generate metabolomics and lipidomics. A metabolome-wide association study specified each spectral feature as outcomes, HEI-2015 score as predictor, adjusting for age, sex, race, and study site in linear regression analyses. Subsequently, hierarchical clustering defined the discrete groups of correlated nuclei magnetic resonance features associated with named metabolites, and the linear regression analysis assessed for associations with HEI-2015 total and component scores. RESULTS The sample included 50% women with an mean age of 63 years, with 40% identifying as White, 23% as Black, 24% as Hispanic, and 13% as Chinese American. The mean HEI-2015 score was 66. The metabolome-wide association study identified 179 spectral features significantly associated with HEI-2015 score. The cluster analysis identified 7 clusters representing 4 metabolites; HEI-2015 score was significantly associated with all. HEI-2015 score was associated with proline betaine [β = 0.12 (SE = 0.02); P = 4.70 × 10-13] and was inversely related to proline [β = -0.13 (SE = 0.02); P = 4.45 × 10-14], 1,5 anhydrosorbitol [β = -0.08 (SE = 0.02); P = 4.37 × 10-7] and unsaturated fatty acyl chains [β = 0.08 (SE = 0.02); P = 8.98 × 10-7]. Intake of total fruit, whole grains, and seafood and plant proteins was associated with proline betaine. CONCLUSIONS Diet quality is significantly associated with unsaturated fatty acyl chains, proline betaine, and proline. Further analysis may clarify the link between diet quality, metabolites, and pathogenesis of cardiometabolic disease.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, United States.
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Houston, TX United States
| | - Ibrahim Karaman
- National Phenome Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Goncalo Graça
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, United Kingdom
| | - Ioanna Tzoulaki
- National Phenome Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Victor W Zhong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, United States
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Liu C, Song Z, Li Z, Boon MR, Schönke M, Rensen PCN, Wang Y. Dietary choline increases brown adipose tissue activation markers and improves cholesterol metabolism in female APOE*3-Leiden.CETP mice. Int J Obes (Lond) 2023; 47:236-243. [PMID: 36732416 DOI: 10.1038/s41366-023-01269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.
Collapse
Affiliation(s)
- Cong Liu
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zikuan Song
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
14
|
Arora P, Singh K, Kumari M, Trivedi R. Temporal profile of serum metabolites and inflammation following closed head injury in rats is associated with HPA axis hyperactivity. Metabolomics 2022; 18:28. [PMID: 35486220 DOI: 10.1007/s11306-022-01886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Closed head injury (CHI) causes neurological disability along with systemic alterations that can activate neuro-endocrine response through hypothalamic-pituitary-adrenal (HPA) axis activation. A dysregulated HPA axis function can lead to relocation of energy substrates and alteration in metabolic pathways and inflammation at the systemic level. OBJECTIVES Assessment of time-dependent changes in serum metabolites and inflammation after both mild and moderate CHI. Along with this, serum corticosterone levels and hypothalamic microglial response were observed. METHODS Rats underwent mild and moderate weight-drop injury and their serum and hypothalamus were assessed at acute, sub-acute and chronic timepoints. Changes in serum metabolomics were determined using high resolution NMR spectroscopy. Serum inflammatory cytokine, corticosterone levels and hypothalamic microglia were assessed at all timepoints. RESULTS Metabolites including lactate, choline and branched chain amino acids were found as the classifiers that helped distinguish between control and injured rats during acute, sub-acute and chronic timepoints. While, increased αglucose: βglucose and TMAO: choline ratios after acute and sub-acute timepoints of mild injury differentiated from moderate injured rats. The injured rats also showed distinct inflammatory profile where IL-1β and TNF-α levels were upregulated in moderate injured rats while IL-10 levels were downregulated in mild injured rats. Furthermore, injury specific alterations in serum metabolic and immunologic profile were found to be associated with hyperactive HPA axis, with consistent increase in serum corticosterone concentration post injury. The hypothalamic microglia showed a characteristic activated de-ramified cellular morphology in both mild and moderate injured rats. CONCLUSION The study suggests that HPA axis hyperactivity along with hypothalamic microglial activation led to temporal changes in the systemic metabolism and inflammation. These time dependent changes in the metabolite profile of rats can further strengthen the knowledge of diagnostic markers and help distinguish injury related outcomes after TBI.
Collapse
Affiliation(s)
- Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kavita Singh
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India
- Department of Biotechnology, Delhi Technological University (DTU), Delhi, 110042, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, 110054, India.
| |
Collapse
|
15
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
17
|
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules 2021; 11:biom11121892. [PMID: 34944536 PMCID: PMC8699500 DOI: 10.3390/biom11121892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.
Collapse
|