1
|
Nath P, Dey A, Kundu T, Pathak T, Chatterjee M, Roy P, Satapathi S. Highly fluorescent nitrogen doped carbon dots as analytical probe for sensitive detection of curcumin through smartphone integrated 3D-printed platform: A new horizon in food safety. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125260. [PMID: 39401471 DOI: 10.1016/j.saa.2024.125260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024]
Abstract
COVID-19 pandemic has significantly influenced the dietary habits of humans, emphasizing the incorporation of natural ingredients to enhance immunity towards viral and bacterial infections. Curcumin (Cur), a widely used traditional medicine in various Asian countries and a natural coloring agent, has gained popularity, leading to surge in its usage specially in post COVID-19 era. This surge has led to increased scrutiny of the potential side effects of excessive Cur use, with recent reports suggesting it may result in inactivation of DNA and reduce adenosine triphosphate levels, leading to health risks. In this work, we synthesized highly fluorescent nitrogen-doped carbon dots with a photoluminescence quantum yield of 72.9 % for the sensitive and selective detection of Cur. The developed fluorescent probe exhibits excellent sensory response towards Cur within a concentration range of 0.081-51.45 µM, achieving an ultra-low detection limit of 15.91 nM. The sensor was successfully tested on real food samples like ginger powder, turmeric powder, and curry powder, demonstrating good recovery rates. To assess the practicality of the sensor system, we developed a 3D-printed smartphone-integrated device platform for curcumin detection through fluorescence image analysis. This developed platform exhibited promising results, achieving a limit of detection (LoD) of 132.28 nM across a curcumin concentration range of 0.13-54.00 µM. This device platform holds significant potential for the development of efficient sensors for real-time detection of Cur in food samples.
Collapse
Affiliation(s)
- Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Ankan Dey
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Tathagata Kundu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Tiyasa Pathak
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Manisha Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Partha Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Foroutan Z, Cicero AFG, Jamialahmadi T, Sahebkar A. Curcuminoids as natural modulators of necroptosis: therapeutic implications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03455-3. [PMID: 39287673 DOI: 10.1007/s00210-024-03455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Necroptosis is an emerging form of programmed cell death characterized by necrosis, an inflammatory type of cell death. Necroptosis is primarily initiated by specific mediators that interact with receptor proteins, leading to the activation of protein kinases RIPK1 and RIPK3. These kinases transmit death signals and recruit and phosphorylate mixed lineage kinase domain-like protein (MLKL), which ultimately triggers cell death and necroptosis. Curcuminoids, natural compounds derived from turmeric, have been shown to possess various therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer effects. In this concise overview, we aim to explore the relationship between curcuminoids and the molecular mechanisms of the necroptosis pathway based on recent in vivo and in vitro studies. The available literature indicates that curcuminoids, mainly curcumin, can act as inhibitors of necroptosis in tissue damage scenarios while serving as a necroptosis inducer in cancer cells. Curcuminoids significantly influence key indicators of necroptosis, highlighting their potential to enhance disease treatment. Future studies should focus on further investigating this important component of turmeric to advance therapeutic approaches.
Collapse
Affiliation(s)
- Zahra Foroutan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS AOU Bologna, Bologna, Italy
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Emam MH, Mahmoud MI, El-Guendy N, Loutfy SA. Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors. AMB Express 2024; 14:104. [PMID: 39285019 PMCID: PMC11405717 DOI: 10.1186/s13568-024-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/04/2024] [Indexed: 09/22/2024] Open
Abstract
Developing a potent antiviral agent to combat Coronavirus Disease-19 (COVID-19) is of critical importance as we may be at risk of the emergence of new virus strains or another pandemic recurrence. The interaction between the SARS-CoV-2 spike protein and Angiotensin Converting Enzyme 2 (ACE2) is the main protein-protein interaction (PPI) implicated in the virus entry into the host cells. Spike-ACE2 PPI represents a major target for drug intervention. We have repurposed a previously described protein-protein interaction detection method to be utilized as a drug screening assay. The assay was standardized using Chitosan nanoparticles (CNPs) as the drug and SARS-CoV-2 spike-ACE2 interaction as the PPI model. The assay was then used to screen four natural bioactive compounds: Curcumin (Cur), Gallic acid (GA), Quercetin (Q), and Silymarin (Sil), and their cytotoxicity was evaluated in vitro. Production of the spike protein and the evaluation of its activity in comparison to a standard commercial protein was part of our work as well. Here we describe a novel simple immunofluorescent screening assay to identify potential SARS-CoV-2 inhibitors that could assess the inhibitory effect of any ligand against any PPI.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt
| | - Mohamed I Mahmoud
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Nadia El-Guendy
- Medical biochemistry and Molecular biology unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt.
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt.
| |
Collapse
|
5
|
Mohd Abd Razak MR, Md Jelas NH, Norahmad NA, Mohmad Misnan N, Muhammad A, Padlan N, Sa'at MNF, Zainol M, Syed Mohamed AF. In vitro study on efficacy of SKF7 ®, a Malaysian medicinal plant product against SARS-CoV-2. BMC Complement Med Ther 2024; 24:333. [PMID: 39261916 PMCID: PMC11389526 DOI: 10.1186/s12906-024-04628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND In early 2020, COVID-19 pandemic has mobilized researchers in finding new remedies including repurposing of medicinal plant products focusing on direct-acting antiviral and host-directed therapies. In this study, we performed an in vitro investigation on the standardized Marantodes pumilum extract (SKF7®) focusing on anti-SARS-CoV-2 and anti-inflammatory activities. METHODS Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays. RESULTS The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL. CONCLUSIONS In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.
Collapse
Affiliation(s)
- Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia.
| | - Nur Hana Md Jelas
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Amirrudin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Noorsofiana Padlan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Nor Farhan Sa'at
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Murizal Zainol
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
6
|
Buniowska-Olejnik M, Mykhalevych A, Urbański J, Berthold-Pluta A, Michałowska D, Banach M. The potential of using curcumin in dairy and milk-based products-A review. J Food Sci 2024; 89:5245-5254. [PMID: 39126698 DOI: 10.1111/1750-3841.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
This review examines the potential of curcumin as a technological and functional food additive in dairy and milk-based products. The advantages of incorporating curcumin in these products include its antimicrobial properties, support for the activity of lactic acid bacteria, improvement in sensory characteristics, and shelf-life extension. Curcumin notably enhances antioxidant activity and acts as a natural preservative in cheese, cheese-like products, and butter. In ice cream and dairy desserts, curcumin contributes to attractive color formation and offers functional benefits such as antioxidant activity, photostability, and increased nutritional value. However, the use of turmeric extract, a common source of curcumin, presents challenges including low bioavailability, color instability, and the formation of insoluble precipitates. The application of specialized curcumin formulations with enhanced water dispersion, purity, and bioavailability can mitigate these issues, improve the product's technological properties, and ensure compliance with local regulations. This review highlights the importance of continued research and development to optimize the use of curcumin in dairy and milk-based products, offering valuable insights for scientists and food industry professionals.
Collapse
Affiliation(s)
- Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | - Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Kyiv, Ukraine
| | - Jakub Urbański
- Food Studies, SWPS University, Warsaw, Poland
- Dairy Biotechnologies Ltd., Puławy, Poland
| | - Anna Berthold-Pluta
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Dorota Michałowska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
| |
Collapse
|
7
|
Aghakhani N, Soraya H. Curcumin supplementation as a complementary and alternative medicine for COVID-19 patients. Phytother Res 2024; 38:2724-2727. [PMID: 38520269 DOI: 10.1002/ptr.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Nader Aghakhani
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
9
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
10
|
Al-Jamal H, Idriss S, Roufayel R, Abi Khattar Z, Fajloun Z, Sabatier JM. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses 2024; 16:320. [PMID: 38543686 PMCID: PMC10974729 DOI: 10.3390/v16030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
In 2020, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) challenged the world with a global outbreak that led to millions of deaths worldwide. Coronavirus disease 2019 (COVID-19) is the symptomatic manifestation of this virus, which can range from flu-like symptoms to utter clinical complications and even death. Since there was no clear medicine that could tackle this infection or lower its complications with minimal adverse effects on the patients' health, the world health organization (WHO) developed awareness programs to lower the infection rate and limit the fast spread of this virus. Although vaccines have been developed as preventative tools, people still prefer going back to traditional herbal medicine, which provides remarkable health benefits that can either prevent the viral infection or limit the progression of severe symptoms through different mechanistic pathways with relatively insignificant side effects. This comprehensive review provides scientific evidence elucidating the effect of 10 different plants against SARS-CoV-2, paving the way for further studies to reconsider plant-based extracts, rich in bioactive compounds, into more advanced clinical assessments in order to identify their impact on patients suffering from COVID-19.
Collapse
Affiliation(s)
- Hadi Al-Jamal
- Faculty of Public Health 3, Lebanese University, Tripoli 1100, Lebanon;
| | - Sara Idriss
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Jean-Marc Sabatier
- INP, Inst Neurophysiopathol, Aix-Marseille Université, CNRS, 13385 Marseille, France
| |
Collapse
|
11
|
Arab FL, Hoseinzadeh A, Mohammadi FS, Rajabian A, Faridzadeh A, Mahmoudi M. Immunoregulatory effects of nanocurcumin in inflammatory milieu: Focus on COVID-19. Biomed Pharmacother 2024; 171:116131. [PMID: 38198954 DOI: 10.1016/j.biopha.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The use of natural compounds, such as curcumin, to treat infections caused by bacteria, viruses, fungi, parasites, inflammatory diseases, and various types of cancer is an active and dynamic area of research. Curcumin has a long history of use in the food industry, and there is currently a growing interest in its therapeutic applications. Numerous clinical trials have consistently shown that curcumin, a polyphenolic compound, is safe and well-tolerated even at high doses. There is no toxicity limit. However, the clinical efficacy of curcumin has been limited by its constraints. However, scientific evidence indicates that the use of adjuvants and carriers, such as nanoparticles, exosomes, micelles, and liposomes, can help overcome this limitation. The properties, functions, and human benefits of using nanocurcumin are well-supported by scientific research. Recent evidence suggests that nanocurcumin may be a beneficial therapeutic modality due to its potential to decrease gene expression and secretion of specific inflammatory biomarkers involved in the cytokinestorm seen in severe COVID-19, as well as increase lymphocyte counts. Nanocurcumin has demonstrated the ability to improve clinical manifestations and modulate immune response and inflammation in various autoinflammatory diseases. Additionally, its efficacy, affordability, and safety make it a promising replacement for residual cancer cells after tumor removal. However, further studies are necessary to evaluate the safety and efficacy of nanocurcumin as a new therapeutic in clinical trials, including appropriate dosage, frequency, and duration.
Collapse
Affiliation(s)
- Fahimeh Lavi Arab
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Akram Hoseinzadeh
- Immunology Research Center, Bu‑Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Teshima K, Tanaka T, Ye Z, Ikeda K, Matsuzaki T, Shiroma T, Muroya A, Hosoda M, Yasugi M, Komatsu H. Antiviral activity of curcumin and its analogs selected by an artificial intelligence-supported activity prediction system in SARS-CoV-2-infected VeroE6 cells. Nat Prod Res 2024; 38:867-872. [PMID: 36987590 DOI: 10.1080/14786419.2023.2194647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Curcumin has been reported to exert its anti-SARS-CoV-2 activity by inhibiting the binding of spike receptor-binding domain (RBD) to angiotensin-converting enzyme-2 (ACE2). To identify more potent compounds, we evaluated the antiviral activities of curcumin and its analogs in SARS-CoV-2-infected cells. An artificial intelligence-supported activity prediction system was used to select the compounds, and 116 of the 334 curcumin analogs were proposed to have spike RBD-ACE2 binding inhibitory activity. These compounds were narrowed down to eight compounds for confirmatory studies. Six out of the eight compounds showed antiviral activity with EC50 values of less than 30 µM and binding inhibitory activity with IC20 values of less than 30 µM. Structure-activity relationship analyses revealed that the double bonds in the carbon chain connecting the two phenolic groups were essential for both activities. X-ray co-crystallography studies are needed to clarify the true binding pose and design more potent derivatives.
Collapse
Affiliation(s)
- Koji Teshima
- Research & Development Headquarters, Lequio Pharma Co., Ltd, Naha, Japan
| | | | | | - Ken Ikeda
- Interprotein Corporation, Osaka, Japan
| | | | - Tamotsu Shiroma
- Research & Development Headquarters, Lequio Pharma Co., Ltd, Naha, Japan
| | | | | | - Mayo Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano, Japan
| | | |
Collapse
|
13
|
Ahmadzadeh AM, Pourali G, Mirheidari SB, Shirazinia M, Hamedi M, Mehri A, Amirbeik H, Saghebdoust S, Tayarani-Najaran Z, Sathyapalan T, Forouzanfar F, Sahebkar A. Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:534-562. [PMID: 37455451 DOI: 10.2174/1389201024666230714143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Hamedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Amirbeik
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby Road HU3 2JZ, Hull, UK.m
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Law SK, Leung AWN, Xu C. Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2-A Review. Pharmaceuticals (Basel) 2023; 17:34. [PMID: 38256868 PMCID: PMC10818644 DOI: 10.3390/ph17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). METHODS To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. RESULTS Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. CONCLUSION The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions.
Collapse
Affiliation(s)
- Siu Kan Law
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | | - Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
15
|
Shi W, Jiang D, Rando H, Khanduja S, Lin Z, Hazel K, Pottanat G, Jones E, Xu C, Lin D, Yasar S, Cho SM, Lu H. Blood-brain barrier breakdown in COVID-19 ICU survivors: an MRI pilot study. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:333-338. [PMID: 38058998 PMCID: PMC10696574 DOI: 10.1515/nipt-2023-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Objectives Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique. Methods COVID-19 ICU survivors (n=7) and age and sex-matched control participants (n=17) were recruited from June 2021 to March 2023. None of the control participants were hospitalized due to COVID-19 infection. The COVID-19 ICU survivors were studied at 98.6 ± 14.9 days after their discharge from ICU. A non-invasive MRI technique was used to assess the BBB permeability to water molecules, in terms of permeability surface area-product (PS) in the units of mL/100 g/min. Results PS was significantly higher in COVID-19 ICU survivors (p=0.038) when compared to the controls, with values of 153.1 ± 20.9 mL/100 g/min and 132.5 ± 20.7 mL/100 g/min, respectively. In contrast, there were no significant differences in whole-brain cerebral blood flow (p=0.649) or brain volume (p=0.471) between the groups. Conclusions There is preliminary evidence of a chronic BBB breakdown in COVID-19 survivors who had a severe acute infection, suggesting a plausible contributor to neurological long-COVID symptoms.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah Rando
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shivalika Khanduja
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ebony Jones
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
16
|
Liu K, Zhu Y, Cao X, Liu Y, Ying R, Huang Q, Gao P, Zhang C. Curcumin as an antiviral agent and immune-inflammatory modulator in COVID-19: A scientometric analysis. Heliyon 2023; 9:e21648. [PMID: 38027776 PMCID: PMC10661356 DOI: 10.1016/j.heliyon.2023.e21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Reports regarding the antiviral activity of curcumin have surfaced. However, to date there has been no scientometric analysis of the relationship between curcumin and Coronavirus Disease 2019 (COVID-19). To comprehensively understand the studies involving curcumin in the context of COVID-19, we conducted a scientometric analysis to provide an exhaustive review of these studies. Methods We systematically searched the Web of Science core collection database for bibliographic data indexed from January 1, 2020, to December 31, 2022, using keywords such as 'curcumin', 'COVID-19', and their synonyms. To clarify the research content and trends related to curcumin in COVID-19, we utilized VOSviewer, Origin 2023, and Charticulator for analysis, supplemented by external data. Results The final count of publications included in this study was 252. These publications originated from 63 countries or territories, with India contributing the highest number of publications. They were published across 170 journals. Notably, the Egyptian Knowledge Bank (EKB) emerged as the most important institution that carried out this study. The most cited publication had been referenced 166 times. The main elements involved in the keyword analysis were reflected in the antiviral activity of curcumin and the immuno-inflammatory modulation of the inflammatory cytokine storm. Furthermore, the pharmacological mechanisms of curcumin for treating COVID-19 emerged as a prominent area of research. Simultaneously, there exists direct evidence of clinical usage of curcumin to enhance COVID-19 outcomes. Conclusions The scientometric analysis underscores the burgeoning professional domain of curcumin-based treatment for COVID-19. Ongoing studies have focused on the antiviral activity of curcumin and its immunomodulatory effects on inflammatory cytokine storms. On the other hand, the pharmacological mechanism of curcumin in the treatment of COVID-19 is a hot spot in the research field at present, which may become the main research trend in this field in the future. While maintaining a focus on foundational research, the clinical application of curcumin in COVID-19 infection is developing in parallel, highlighting its obvious guiding value in clinical practice. These insights offer researchers a snapshot of the present state of curcumin treatment for COVID-19 and guide further mechanistic validation efforts in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
17
|
Brenner MB, Flory S, Wüst M, Frank J, Wagner K. Novel Biphasic In Vitro Dissolution Method Correctly Predicts the Oral Bioavailability of Curcumin in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15632-15643. [PMID: 37824789 DOI: 10.1021/acs.jafc.3c04990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.
Collapse
Affiliation(s)
- Marvin Benedikt Brenner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Sandra Flory
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Matthias Wüst
- Food Chemistry, University of Bonn, Institute of Nutritional and Food Sciences, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Jan Frank
- Department of Food Biofunctionality, University of Hohenheim, Institute of Nutritional Sciences, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Karl Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Pharmaceutical Institute, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
18
|
Yang YF, Singh S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. Int J Mol Sci 2023; 24:15471. [PMID: 37895148 PMCID: PMC10607042 DOI: 10.3390/ijms242015471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
COVID-19 pandemic has caused widespread panic and fear among the global population. As such, repurposing drugs are being used as viable therapeutic options due to the limited effective treatments for Long COVID symptoms. Ivermectin is one of the emerging repurposed drugs that has been shown effective to have antiviral effects in clinical trials. In addition, antioxidant compounds are also gaining attention due to their capabilities of reducing inflammation and severity of symptoms. Due to the absence of knowledge in pharmacogenomics and modes of actions in the human body for these compounds, this study aims to provide a pharmacogenomic profile for the combination of ivermectin and six selected antioxidants (epigallocatechin gallate (EGCG), curcumin, sesamin, anthocyanins, quercetin, and N-acetylcysteine (NAC)) as potentially effective regimens for long COVID symptoms. Results showed that there were 12 interacting genes found among the ivermectin, 6 antioxidants, and COVID-19. For network pharmacology, the 12 common interacting genes/proteins had the highest associations with Pertussis pathway, AGE-RAGE signaling pathway in diabetic complications, and colorectal cancer in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Disease analyses also revealed that the top three relevant diseases with COVID-19 infections were diabetes mellitus, ischemia, reperfusion injury. We also identified 6 potential target microRNAs (miRNAs) of the 12 commonly curated genes used as molecular biomarkers for COVID-19 treatments. The established pharmacogenomic network, disease analyses, and identified miRNAs could facilitate developments of effective regimens for chronic sequelae of COVID-19 especially in this post-pandemic era. However, further studies and clinical trials are needed to substantiate the effectiveness and dosages for COVID-19 treatments.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Sher Singh
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
19
|
Sarawi WS, Alhusaini AM, Alghibiwi HK, Alsaab JS, Hasan IH. Roles of Nrf2/HO-1 and ICAM-1 in the Protective Effect of Nano-Curcumin against Copper-Induced Lung Injury. Int J Mol Sci 2023; 24:13975. [PMID: 37762280 PMCID: PMC10531221 DOI: 10.3390/ijms241813975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Copper (Cu) is an essential trace element for maintaining normal homeostasis in living organisms. Yet, an elevated level of Cu beyond homeostatic capacity may lead to oxidative damage of cellular components in several organs, including the lungs. This work investigated the effects of curcumin (Curc) and nano-curcumin (nCurc) against Cu-induced lung injury, accenting the roles of oxidative stress, inflammation, and the nuclear factor erythroid 2-related factor/heme oxygenase-1 Nrf2/HO-1 pathway. Rats were challenged with 100 mg/kg of copper sulfate (CuSO4) while being treated with Curc or nCurc for 7 days. Cu-triggered lung oxidative stress detected as dysregulation of oxidative/antioxidant markers, a downregulation of Nrf-2/HO-1 signaling, and an increase in the inflammatory markers interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and intracellular adhesion molecule-1 (ICAM-1). Additionally, it decreased the expression of lung-specific proteins, surfactant protein-C (SP-C), and mucin-1 (MUC-1), induced apoptosis, and caused changes in lung histology. Curc and nCurc alleviated CuSO4-induced lung injury by suppressing oxidative damage and inflammation and activating Nrf-2/HO-1. They also prevented apoptosis and restored the normal expression of SP-C and MUC-1. We concluded that nCurc exhibited superior efficacy compared with Curc in mitigating CuSO4-induced lung injury. This was associated with reduced oxidative stress, inflammation, and apoptotic responses and increased Nrf2/HO-1 signaling and expression of SP-C and MUC-1.
Collapse
Affiliation(s)
- Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.M.A.); (H.K.A.); (J.S.A.); (I.H.H.)
| | | | | | | | | |
Collapse
|
20
|
Sadeghizadeh M, Asadollahi E, Jahangiri B, Yadollahzadeh M, Mohajeri M, Afsharpad M, Najafi F, Rezaie N, Eskandari M, Tavakoli-Ardakani M, Feizabadi F, Masjedi MR. Promising clinical outcomes of nano-curcumin treatment as an adjunct therapy in hospitalized COVID-19 patients: A randomized, double-blinded, placebo-controlled trial. Phytother Res 2023; 37:3631-3644. [PMID: 37118944 DOI: 10.1002/ptr.7844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/01/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Different immunomodulation strategies have been used to manage COVID-19 due to the complex immune-inflammatory processes involved in the pathogenesis of this infection. Curcumin with its powerful anti-inflammatory and antiviral properties could serve as a possible COVID-19 therapy. In this study, a randomized, double-blinded, placebo-controlled trial was performed to investigate the effectiveness and safety of nano-curcumin oral soft gels as a complementary therapy in moderate-severe COVID-19 patients. Hydroxychloroquine (HCQ) plus sofosbuvir was routinely administered to all 42 COVID-19 patients, who were randomly assigned to receive 140 mg of nano-curcumin or placebo for 14 days. CT scans of the chest were taken, and blood tests were run for all patients at time points of 0, 7, and 14 days. Our results indicated that C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels significantly decreased from baseline in the nano-curcumin-treated group on day 7. Furthermore, blood levels of D-dimer, CRP, serum ferritin, ESR, and inflammatory cytokines including IL-6, IL-8, and IL-10 decreased more significantly in the nano-curcumin-treated group after 14 days. Additionally, the nano-curcumin group showed significant improvements in chest CT scores, oxygen saturation levels, and hospitalization duration. Based on our data, oral administration of nano-curcumin may be regarded as a promising adjunct treatment for COVID-19 patients due to its ability to speed up chest clearance and recovery.
Collapse
Affiliation(s)
- Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Asadollahi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Jahangiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Yadollahzadeh
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Nader Rezaie
- Department of Pulmonology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohana Eskandari
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Feizabadi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
- Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tobacco Control Research Center (TCRC), Iranian Anti-tobacco Association, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Singh S, Lohani P, Priya A, Ranjan A, Nimavat N. Effect of educational intervention on knowledge and attitude about the role of vitamins, minerals and nutraceuticals in COVID-19 and other disorders among medical and nursing undergraduates of a tertiary care teaching hospital. Clin Nutr ESPEN 2023; 56:142-148. [PMID: 37344064 DOI: 10.1016/j.clnesp.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/14/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE There must be a perfect balance between Food and Dietary supplements (DS) to ensure optimal well-being. The purpose of this study was to evaluate the impact of a webinar on the change in knowledge and attitude about the role of vitamins, minerals and DS among medical and nursing undergraduates so that they could bring about a positive change in popular practices, as well-informed Health Care Professionals (HCPs). MATERIALS AND METHODS The study was a cross-sectional analytical study comprising 12 knowledge and 11 attitude questions administered to medical and nursing undergraduates with the help of semi-structured and pre-validated google form both before and after a webinar explaining the role of key nutrients and also the evidence and recommendations surrounding DS. Data were analyzed using STATA.12 to assess the impact of the webinar. RESULTS There were 415 participants, with 265 medical and 150 nursing students. There was a significant improvement both in the knowledge (4.95 (±1.45), 7.76 (±1.69) and attitude scores (pre-webinar mean score 31.8 (±5.57) post-webinar mean score 27.7 (±4.90))of the participants after the webinar. An overall positive correlation before the webinar changed to a more significant negative correlation, indicating a positive impact of the webinar (0.0054-0.0701). CONCLUSION The study suggests that continuing education informing various HCPs and undergraduate students about the absolute necessity of a diet rich in nutrients, vitamins, minerals, and probiotics is the need of the hour. Additionally, the efficacy and safety concerns, appropriate indications and dosages of various DS should be adequately stressed so that informed decisions can be made. Such training programs might have a far-reaching impact on the nutrition choices of the population at large.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, AIIMS Patna, Bihar, India.
| | - Pallavi Lohani
- Department of Community and Family Medicine, AIIMS Patna, Bihar India; Dept of Community Medicine, Madhubani Medical College, Madhubani, Bihar, India.
| | - Aakanksha Priya
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, Bihar, India.
| | - Alok Ranjan
- Department of Community & Family Medicine, AIIMS Patna, Bihar, India.
| | - Nirav Nimavat
- Department of Community Medicine, PIMS, Udaipur, Rajasthan, India; Department of Community Medicine, Dr Kiran C Patel Medical College and Research Institute, Bharuch, Gujarat, India.
| |
Collapse
|
22
|
Gérain J, Uebelhoer M, Costes B, Herman J, Pietri S, Donneau AF, Monseur J, Henrotin Y. NASAFYTOL ® supplementation in adults hospitalized with COVID-19 infection: results from an exploratory open-label randomized controlled trial. Front Nutr 2023; 10:1137407. [PMID: 37426178 PMCID: PMC10324407 DOI: 10.3389/fnut.2023.1137407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives The effect and safety of Nasafytol®, a food supplement combining curcumin, quercetin, and Vitamin D, on hospitalized COVID-19-positive patients as support to standard of care were to be assessed. Methods This exploratory, open-label, randomized, controlled trial was carried out among hospitalized adults with COVID-19 infection. Participants were randomly assigned to receive Nasafytol® or Fultium® control. The improvement of the clinical condition and occurrence of (serious) adverse events were evaluated. The study was registered on clincaltrials.gov with the identifier NCT04844658. Results Twenty-five patients received Nasafytol®, and 24 received Fultium®. Demographic characteristics were well balanced between the groups. On day 14 (or at hospital leave if < 14 days), no difference was observed between groups regarding their clinical condition, fever, or the need of oxygen therapy. At day 7, however, 19 participants had been discharged from the hospital in the Nasafytol® arm compared to 10 participants in the Fultium® arm. No participants were transferred to the ICU or died in the Nasafytol® arm, vs. 4 transfers and 1 death in the Fultium® arm. The clinical condition of participants in the Nasafytol® arm had improved, as evidenced by a decrease in the COVID-19 WHO score. Interestingly, five SAEs occurred with Fultium®, while no SAE was observed with Nasafytol®. Conclusion Supplementation with Nasafytol®, in addition to standard-of-care treatment, led to a faster discharge from the hospital, improved clinical conditions of participants, and a reduced risk of serious outcomes, including transfer to the intensive care unit or death, in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Jean Gérain
- Department of Internal Medicine, CHIREC Hospital Group, Brussels, Belgium
| | | | | | - Julie Herman
- Artialis SA, Avenue Hippocrate 5, Liège, Belgium
| | | | - Anne-Françoise Donneau
- Biostatitics Unit, Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | - Justine Monseur
- Biostatitics Unit, Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | | |
Collapse
|
23
|
Chittasupho C, Srisawad K, Arjsri P, Phongpradist R, Tingya W, Ampasavate C, Dejkriengkraikul P. Targeting Spike Glycoprotein S1 Mediated by NLRP3 Inflammasome Machinery and the Cytokine Releases in A549 Lung Epithelial Cells by Nanocurcumin. Pharmaceuticals (Basel) 2023; 16:862. [PMID: 37375809 DOI: 10.3390/ph16060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation and tissue damage can result from uncontrolled inflammation during SARS-CoV-2 or COVID-19 infections, leading to post-acute COVID conditions or long COVID. Curcumin, found in turmeric, has potent anti-inflammatory properties but limited effectiveness. This study developed nanocurcumin, a curcumin nanoparticle, to enhance its physical and chemical stability and investigate its in vitro anti-inflammatory properties upon CoV2-SP induction in lung epithelial cells. Nanocurcumin was prepared by encapsulating curcumin extract in phospholipids. The particle size, polydispersity index, and zeta potential of nanocurcumin were measured using dynamic light scattering. The encapsulated curcumin content was determined using HPLC analysis. The encapsulation efficiency of curcumin was 90.74 ± 5.35% as determined by HPLC. Regarding the in vitro release of curcumin, nanocurcumin displayed a higher release content than non-nanoparticle curcumin. Nanocurcumin was further investigated for its anti-inflammatory properties using A549 lung epithelial cell line. As determined by ELISA, nanocurcumin showed inhibitory effects on inflammatory cytokine releases in CoV2-SP-stimulated conditions, as evidenced by a significant decrease in IL-6, IL-1β and IL-18 cytokine secretions compared with the spike-stimulated control group (p < 0.05). Additionally, as determined by RT-PCR, nanocurcumin significantly inhibited the CoV2-SP-stimulated expression of inflammatory genes (IL-6, IL-1β, IL-18, and NLRP3) compared with the spike-stimulated control group (p < 0.05). Regarding the inhibition of NLRP3 inflammasome machinery proteins by Western blot, nanocurcumin decreased the expressions of inflammasome machinery proteins including NLRP3, ASC, pro-caspase-1, and the active form of caspase-1 in CoV2-SP-stimulated A549 cells compared with the spike-stimulated control group (p < 0.05). Overall, the nanoparticle formulation of curcumin improved its solubility and bioavailability, demonstrating anti-inflammatory effects in a CoV2-SP-induced scenario by inhibiting inflammatory mediators and the NLRP3 inflammasome machinery. Nanocurcumin shows promise as an anti-inflammatory product for preventing COVID-19-related airway inflammation.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wipawan Tingya
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
25
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
26
|
Buniowska-Olejnik M, Urbański J, Mykhalevych A, Bieganowski P, Znamirowska-Piotrowska A, Kačániová M, Banach M. The influence of curcumin additives on the viability of probiotic bacteria, antibacterial activity against pathogenic microorganisms, and quality indicators of low-fat yogurt. Front Nutr 2023; 10:1118752. [PMID: 37077903 PMCID: PMC10106739 DOI: 10.3389/fnut.2023.1118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Curcumin is a nutraceutical with unique anti-inflammatory, anti-oxidative, and antimicrobial properties. In this study, we aimed to examine the advantages of the use of water dispersible and highly bioavailable form of standardized turmeric extract (Curcuma longa L.)-NOMICU® L-100 (N) in the formulation of probiotic yogurt in comparison with the standard turmeric extract (TE). The antimicrobial activity of both supplements was studied and compared in the context of gram-positive and gram-negative bacteria, yeasts, and fungi. The N maintains the level of Bifidobacterium animalis subsp. lactis BB-2 in yogurt at the recommended level (7-9 log CFU/g) throughout the storage period. NOMICU® L-100 also has a higher inhibitory capacity for the growth of yeast and fungi. The evaluation of quality indicators of yogurt with N and TE at the level of 0.2% proves that yogurt with N has original taste properties. A lower degree of syneresis was noted for yogurt with TE (0.2%), but its sensory properties are unacceptable to the consumer due to the appearance of a bitter taste. In conclusion, based on the obtained results, it has been proven that the use of NOMICU® L-100 (0.2%) in the composition of yogurt provides a product of functional direction with stable quality and safety indicators, which can be stored for at least 28 days.
Collapse
Affiliation(s)
- Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | - Jakub Urbański
- Food Studies, SWPS University, Warsaw, Poland
- Dairy Biotechnologies Ltd., Puławy, Poland
| | - Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Kyiv, Ukraine
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | - Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Rzeszów, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
| |
Collapse
|
27
|
Suresh MV, Francis S, Aktay S, Kralovich G, Raghavendran K. Therapeutic potential of curcumin in ARDS and COVID-19. Clin Exp Pharmacol Physiol 2023; 50:267-276. [PMID: 36480131 PMCID: PMC9877870 DOI: 10.1111/1440-1681.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Curcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19.
Collapse
Affiliation(s)
| | - Sairah Francis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
29
|
Maghool F, Emami MH, Alipour R, Mohammadzadeh S, Sereshki N, Dehkordi SAE, Fahim A, Tayarani-Najaran Z, Sheikh A, Kesharwani P, Sahebkar A. Rescue effect of curcumin against copper toxicity. J Trace Elem Med Biol 2023; 78:127153. [PMID: 36989586 DOI: 10.1016/j.jtemb.2023.127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Turmeric has long been used not only as an indispensable part of Asian cuisine but as a medicinal herb for dressing wounds, bites, burns, treating eye infections and acne. Curcuminoids are the active substances and their synthetic derivatives (i.e. diacetylcurcumin (DAC) and metal-curcumin complexes) possess an incredibly wide range of medicinal properties that encompass chelation capacity for multiple heavy metals, antioxidant activity, anti-inflammatory properties, cytotoxicity against cancerous cells, antiviral and antibacterial effects, antihypertensive and insulin sensitizing role, and regulatory role on apoptosis. The aforementioned properties have put curcumin on spotlight as a potential treatment for ailments such as, hepatic diseases, neurodegenerative diseases, metabolic syndrome, dyslipidemia, cardiovascular disease, auto-immune diseases, malignancies and conditions associated with metal overload. Copper is essential for major biological functions, however, an excess causes chronic ailments including neurodegenerative disorders. The fascinating approach of curcumin could alleviate such effect by forming a complex. Thus, this review aims to present available data on the effect of copper-curcumin interaction in various in vitro, ex-vivo in vivo, and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Hosseini H, Ghavidel F, Panahi G, Majeed M, Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effect of the curcumin and piperine combination on lipid profile in patients with metabolic syndrome and related disorders. Phytother Res 2023; 37:1212-1224. [PMID: 36649934 DOI: 10.1002/ptr.7730] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Metabolic syndrome is characterized by multiple metabolic disorders. Several studies indicated that curcumin plus piperine could affect lipids profiles in various diseases. The present meta-analysis aims to assess the effect of curcumin plus piperine on lipid profiles in patients with MetS and associated disorders using a systematic review and meta-analysis of randomized controlled trials. Trials were searched by several electronic databases up to May 2022. The Comprehensive Meta-Analysis (CMA) version3 software carried out this systematic review and meta-analysis. Random-effects model and the inverse variance method were used to conduct the meta-analysis. We evaluated the publication bias and heterogeneity of all eligible studies. In addition, subgroup analyses and sensitivity assessments were performed to assess potential sources of heterogeneity. The combined results by the random-effects model demonstrated that curcumin plus piperine significantly decreased total cholesterol and LDL-C in patients suffering from metabolic syndrome. In comparison, the results of the overall effect size did not show any significant change in triglyceride concentrations. Our results were robust in sensitivity analysis and were not dependent on the dose of curcumin, the dose of piperine, and the duration of treatment. Our results showed that co-administration of piperine and curcumin supplementation improves the lipid profile in metabolic syndrome. However, further long-term RCTs are required to ascertain their clinical benefit.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farideh Ghavidel
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomeical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Sharifi S, Bagherniya M, Khoram Z, Ebrahimi Varzaneh A, Atkin SL, Jamialahmadi T, Sahebkar A, Askari G. Efficacy of curcumin plus piperine co-supplementation in moderate-to-high hepatic steatosis: A double-blind, randomized, placebo-controlled clinical trial. Phytother Res 2023. [PMID: 36799355 DOI: 10.1002/ptr.7764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is a global health problem that can progress to steatohepatitis and cirrhosis. The aim of this study was to determine the effect of curcumin + piperine on cardiometabolic risk factors, as well as hepatic steatosis and fibrosis in NAFLD patients with moderate-to-high hepatic steatosis. Patients diagnosed with moderate-to-high NAFLD by liver sonography were randomized to either curcumin + piperine (500 mg/day curcumin plus 5 mg/day piperine) for 12 weeks (n = 30) or placebo groups (n = 30). Liver fibroscan, anthropometric measurements, dietary intake, physical activity, blood pressure, lipid profile, high-sensitivity C-reactive protein, fasting blood glucose (FBG), and liver enzymes were assessed at baseline and after 12 weeks of follow-up. Intention-to-treat analysis was undertaken. Curcumin + piperine decreased waist circumference (p = 0.026), systolic blood pressure (p = 0.001), total cholesterol (p = 0.004), low-density lipoprotein-cholesterol (p = 0.006), FBG (p = 0.002), alanine transaminase (p = 0.007) and aspartate transaminase (p = 0.012) compared with placebo. However, fibroscan measurement did not differ between curcumin + piperine and placebo groups (p > 0.05). Fibroscan measurement as a marker of NAFLD improvement did not differ after 12 weeks of curcumin + piperine; however, curcumin + piperine may be considered as an adjunct therapy to improve anthropometric measures, blood pressure, lipid profile, blood glucose, and liver function in NAFLD patients.
Collapse
Affiliation(s)
- Shima Sharifi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Khoram
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Stephen L Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen, Bahrain
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Shojaei M, Foshati S, Abdi M, Askari G, Sukhorukov VN, Bagherniya M, Sahebkar A. The effectiveness of nano-curcumin on patients with COVID-19: A systematic review of clinical trials. Phytother Res 2023; 37:1663-1677. [PMID: 36799442 DOI: 10.1002/ptr.7778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The main aim of the current study was to summarize the findings of available clinical studies to assess nano-curcumin's influence on COVID patients. A comprehensive online search was performed in Scopus, PubMed, ISI Web of Science, and Google Scholar until March 2022 to identify trials that investigated the effects of nano-curcumin in patients with COVID-19. Eight studies comprising 569 patients were included in this review. Compared with placebo, nano-curcumin had no significant effect on C-reactive protein (CRP) and high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). However, gene expression of IL-6 and gene expression as well as secretion of interleukin-1 beta (IL-1β) significantly decreased following nano-curcumin intervention. Nano-curcumin had beneficial effects on fever, cough, chills, myalgia, and olfactory and taste disturbances. The duration of hospitalization and mortality rate were significantly lower in the nano-curcumin group compared with the control group. Lymphocyte count was significantly increased after curcumin supplementation. Nano-curcumin also had favorable effects on O2 saturation, sputum, chest pain, wheeze, and dyspnea in patients with COVID-19. No major adverse effects were reported in response to nano-curcumin supplementation. In summary, the results of this systematic review of clinical trials suggested that nano-curcumin supplementation has beneficial effects on inflammation, respiratory function, disease manifestations, and complications in patients with COVID-19 viral infection.
Collapse
Affiliation(s)
- Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Foshati
- Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddese Abdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Dadkhah Tehrani S, Shojaei M, Bagherniya M, Pirro M, Sahebkar A. The effects of phytochemicals on serum triglycerides in subjects with hypertriglyceridemia: A systematic review of randomized controlled trials. Phytother Res 2023; 37:1640-1662. [PMID: 36756995 DOI: 10.1002/ptr.7763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
This systematic review aimed to evaluate the efficacy of phytochemicals on lipid parameters in patients with hypertriglyceridemia (HTG). A comprehensive search was performed in PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar from inception up to October 2021 to recognize randomized controlled trials (RCTs) assessing the effects of phytochemicals on lipid profiles in patients with HTG. Forty-eight RCTs including 53 arms and comprising 3,478 HTG patients met the eligibility criteria. Phytochemicals significantly reduced the serum levels of triglycerides in 32 out 53 arms, total cholesterol in 22 out of 51, low-density lipoprotein cholesterol in 21 out of 48, very low-density lipoprotein cholesterol in 1 out of 5, apolipoprotein B in 2 out of 4, and lipoprotein(a) levels in 2 out of 4 arms. Furthermore, phytochemicals supplementation increased the levels of high-density lipoprotein cholesterol in 15 out of 48 arms. In brief, phytochemicals supplementation might have beneficial effects on HTG. In most of the studies, phytochemicals had a favorable effect on at least one of the lipid parameters.
Collapse
Affiliation(s)
- Sahar Dadkhah Tehrani
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, fahan, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Tyagi R, Paul A, Raj VS, Ojha KK, Kumar S, Panda AK, Chaurasia A, Yadav MK. A Drug Repurposing Approach to Identify Therapeutics by Screening Pathogen Box Exploiting SARS-CoV-2 Main Protease. Chem Biodivers 2023; 20:e202200600. [PMID: 36597267 DOI: 10.1002/cbdv.202200600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/03/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) and is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller number of approved therapeutics available to target the SARS-CoV-2 virus, and the virus is evolving at a fast pace. So, there is a continuous need for new therapeutics to combat COVID-19. The main protease (Mpro ) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral genome, thus could be a potent target for the treatment of COVID-19. In the present study, we performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties against Mpro drug target. Ten compounds showed a higher binding affinity for Mpro than the reference compound (N3), with desired physicochemical properties. Furthermore, in-depth docking and superimposition revealed that three compounds (MMV1782211, MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of Mpro . In addition, the molecular dynamics simulation study showed a solid and stable interaction of MMV178221-Mpro complex compared to the other two molecules (MMV1782220, and MMV1578574). In line with this observation, MM/PBSA free energy calculation also demonstrated the highest binding free energy of -115.8 kJ/mol for MMV178221-Mpro compound. In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent molecule to target the Mpro and must be explored in vitro and in vivo to combat the COVID-19.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Center for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Sonepat, 131 029, Haryana, India
| | - Anubrat Paul
- Center for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Sonepat, 131 029, Haryana, India
| | - V Samuel Raj
- Center for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Sonepat, 131 029, Haryana, India
| | - Krishna Kumar Ojha
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824 236, Bihar, India
| | - Sunil Kumar
- ICAR-Indian Agriculture Statistical Research Institute, New Delhi, India, 110012
| | - Aditya K Panda
- Department of Biosciences and Bioinformatics, Khallikote University, Berhampur, 761008, Odisha, India
| | - Anurag Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, UP, India
| | - Manoj Kumar Yadav
- Center for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Sonepat, 131 029, Haryana, India
- Department of Biomedical Engineering, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| |
Collapse
|
35
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
36
|
Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Res 2023; 37:1462-1487. [PMID: 36720711 DOI: 10.1002/ptr.7737] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
Curcumin is extracted from the rhizomes Curcuma longa L. It is known for its anti-inflammatory and anti-oxidant activities. Despite its safety and potential for use against various diseases, curcumin's utility is restricted due to its low oral bioavailability. Co-administration of curcumin along with piperine could potentially improve the bioavailability of curcumin. The present review aimed to provide an overview of the efficacy and safety of curcumin-piperine co-supplementation in human health. The findings of this comprehensive review show the beneficial effects of curcumin-piperine in improving glycemic indices, lipid profile and antioxidant status in diabetes, improving the inflammatory status caused by obesity and metabolic syndrome, reducing oxidative stress and depression in chronic stress and neurological disorders, also improving chronic respiratory diseases, asthma and COVID-19. Further high-quality clinical trial studies are needed to firmly establish the clinical efficacy of the curcumin-piperine supplement.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Anticancer potential of curcumin-cyclodextrin complexes and their pharmacokinetic properties. Int J Pharm 2023; 631:122474. [PMID: 36509227 DOI: 10.1016/j.ijpharm.2022.122474] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common diseases throughout the world, with many treatment modalities currently being used, and new treatment strategies being sought. Most chemotherapeutic molecules have shown extensive toxicity for normal cells, which leads to severe adverse effects. Chemotherapy may also lead to drug resistance, which is one of the major obstacles to the clinical treatment of cancer. Curcumin, a polyphenolic natural compound, has long been considered a therapeutic molecule for a variety of diseases and possesses anti-cancer, anti-oxidant, and anti-inflammatory properties. However, its use is limited due to its hydrophobic nature, poor solubility in water at acidic or neutral pH, and limited bioavailability at the tumor site. Cyclodextrin complexes of curcumin increase curcumin's water solubility, as well as its physicochemical stability to hydrolysis and photochemical decomposition. The most common type of cyclodextrin used for pharmaceutical preparations is β-cyclodextrin. This review focuses on different curcumin-cyclodextrin formulations and compares their pharmacokinetic parameters and efficacy.
Collapse
|
38
|
Photothermally Controlled Drug Release of Poly(d,l-lactide) Nanofibers Loaded with Indocyanine Green and Curcumin for Efficient Antimicrobial Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15020327. [PMID: 36839649 PMCID: PMC9963466 DOI: 10.3390/pharmaceutics15020327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Chronic wound infections with antibiotic-resistant bacteria have become a significant problem for modern healthcare systems since they are often associated with high costs and require profound topical wound management. Successful wound healing is achieved by reducing the bacterial load of the wound and providing an environment that enhances cell growth. In this context, nanofibers show remarkable success because their structure offers a promising drug delivery platform that can mimic the native extracellular matrix and accelerate cell proliferation. In our study, single-needle electrospinning, a versatile and cost-efficient technique, was used to shape polymers into an applicable and homogeneous fleece capable of a photothermally triggered drug release. It was combined with antimicrobial photodynamic therapy, a promising procedure against resistant bacteria. Therefore, poly(d,l-lactide) nanofibers loaded with curcumin and indocyanine green (ICG) were produced for local antimicrobial treatment. The mesh had a homogeneous structure, and the nanofibers showed a smooth surface. Recordings with a thermal camera showed that near-infrared light irradiation of ICG increased the temperature (>44 °C) in the surrounding medium. Release studies confirmed more than 29% enhanced curcumin release triggered by elevated temperature. The antimicrobial activity was tested against the gram-positive strain Staphylococcus saprophyticus subsp. bovis and the gram-negative strain Escherichia coli DH5 alpha. The nanofibers loaded with both photosensitizers and irradiated with both wavelengths reduced the bacterial viability (~4.4 log10, 99.996%) significantly more than the nanofibers loaded with only one photosensitizer (<1.7 log10, 97.828%) or irradiated with only one wavelength (<2.0 log10, 98.952%). In addition, our formulation efficiently eradicated persistent adhered bacteria by >4.3 log10 (99.995%), which was also confirmed visually. Finally, the produced nanofibers showed good biocompatibility, proven by the cellular viability of mouse fibroblasts (L929). The data demonstrate that we have developed a new economic nanofiber formulation, which offers a triggered drug release, excellent antimicrobial properties, and good biocompatibility.
Collapse
|
39
|
Hassanizadeh S, Shojaei M, Bagherniya M, Orekhov AN, Sahebkar A. Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. Biofactors 2023. [PMID: 36607090 DOI: 10.1002/biof.1932] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The antioxidant, anti-inflammatory, and antibacterial properties of curcumin have made it a valuable herbal product for improving various disorders, such as COVID-19, cancer, depression, anxiety, osteoarthritis, migraine, and diabetes. Recent research has demonstrated that encapsulating curcumin in nanoparticles might improve its therapeutic effects and bioavailability. To our knowledge, the efficacy of nano-curcumin on different aspects of health and disease has not been summarized in a study. Therefore, this review aimed to evaluate nano-curcumin's efficacy in various diseases based on the findings of clinical trials. In order to review publications focusing on nanocurcumin's impact on various diseases, four databases were searched, including PubMed, Scopus, Web of Science, and Google Scholar. This review highlights the potential benefits of nano-curcumin in improving a wide range of human diseases including COVID-19, neurological disorders, chronic disease, oral diseases, osteoarthritis, metabolic syndrome, and other diseases, especially as an adjunct to standard therapy and a healthy lifestyle.
Collapse
Affiliation(s)
- Shirin Hassanizadeh
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Askari G, Bagherniya M, Kiani Z, Alikiaii B, Mirjalili M, Shojaei M, Hassanizadeh S, Vajdi M, Feizi A, Majeed M, Sahebkar A. Evaluation of Curcumin-Piperine Supplementation in COVID-19 Patients Admitted to the Intensive Care: A Double-Blind, Randomized Controlled Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:413-426. [PMID: 37378780 DOI: 10.1007/978-3-031-28012-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Curcumin is a traditional remedy for diseases associated with hyper-inflammatory responses and immune system impairment. Piperine, a bioactive compound in black pepper, has the potential to enhance curcumin bioavailability. 0This study aims to examine the effect of the curcumin-piperine co-supplementation in patients infected with SARS-CoV-2 and admitted to the intensive care unit (ICU). MATERIAL AND METHODS In this parallel randomized, double-blind, placebo-controlled trial, 40 patients with COVID-19 admitted to ICU were randomized to receive three capsules of curcumin (500 mg)-piperine (5 mg) or placebo for 7 days. RESULTS After 1 week of the intervention, serum aspartate aminotransferase (AST) (p = 0.02) and C-reactive protein (CRP) (p = 0.03) were significantly decreased, and hemoglobin was increased (p = 0.03) in the curcumin-piperine compared to the placebo group. However, compared with the placebo, curcumin-piperine had no significant effects on the other biochemical, hematological, and arterial blood gas and 28-day mortality rate was three patients in each group (p = 0.99). CONCLUSION The study results showed that short-term curcumin-piperine supplementation significantly decreased CRP, AST, and increased hemoglobin in COVID-19 patients admitted to the ICU. Based on these promising findings, curcumin appears to be a complementary treatment option for COVID-19 patients, although some parameters were not affected by the intervention.
Collapse
Affiliation(s)
- Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Kiani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiye Mirjalili
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Vajdi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Sahebkar A, Jamialahmadi T, Rahmoune H, Guest PC. Long-Term Vaccination and Treatment Strategies for COVID-19 Disease and Future Coronavirus Pandemics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:27-49. [PMID: 37378760 DOI: 10.1007/978-3-031-28012-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased infectivity and immune escape capabilities has allowed continuation of the COVID-19 pandemic for the foreseeable future. This review describes the worldwide efforts aimed at developing new vaccination and treatment strategies to keep pace with these variants as they emerge. In the case of vaccines and monoclonal antibody-based therapeutics, we describe the development of variant-specific, multivalent, and universal coronavirus directed approaches. Existing treatment approaches consist of repurposed medicines, such as antiviral compounds and anti-inflammatory agents, although efforts are underway to develop new ways of preventing or minimizing the effects of infection with the use of small molecules that disrupt binding the SARS-CoV-2 virus to host cells. Finally, we discuss the preclinical and clinical testing of natural products from medicinal herbs and spices, which have demonstrated anti-inflammatory and antiviral properties and therefore show potential as novel and safe COVID-19 treatment approaches.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
42
|
Shirani M, Talebi S, Shojaei M, Askari G, Bagherniya M, Guest PC, Sathyapalan T, Sahebkar A. Spices and Biomarkers of COVID-19: A Mechanistic and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:375-395. [PMID: 37378778 DOI: 10.1007/978-3-031-28012-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the face of the COVID-19 pandemic, many people around the world have increased their healthy behaviors to prevent transmission of the virus and potentially improve their immune systems. Therefore, the role of diet and food compounds such as spices with bioactive and antiviral properties may be important in these efforts. In this chapter, we review the efficacy of spices such as turmeric (curcumin), cinnamon, ginger, black pepper, saffron, capsaicin, and cumin by investigating the effects of these compounds of COVID-19 disease severity biomarkers.
Collapse
Affiliation(s)
- Masha Shirani
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shokoofeh Talebi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Golpour-Hamedani S, Pourmasoumi M, Askari G, Bagherniya M, Majeed M, Guest PC, Sahebkar A. Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:397-411. [PMID: 37378779 DOI: 10.1007/978-3-031-28012-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now plagued the world for almost 3 years. Although vaccines are now available, the severity of the pandemic and the current dearth of approved effective medications have prompted the need for novel treatment approaches. Curcumin, as a food nutraceutical with anti-inflammatory and antioxidant effects, is now under consideration for the prevention and treatment of COVID-19. Curcumin has been demonstrated to retard the entrance of SARS-CoV-2 into cells, interfere with its proliferation inside cells, and curb the hyperinflammatory state caused by the virus by modulating immune system regulators, minimizing the cytokine storm effect, and modulating the renin-angiotensin system. This chapter discusses the role of curcumin and its derivatives in the prevention and treatment of COVID-19 infection, considering the molecular mechanisms involved. It will also focus on the molecular and cellular profiling techniques as essential tools in this research, as these can be used in the identification and development of new biomarkers, drug targets, and therapeutic approaches for improved patient care.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
44
|
Abdulaziz A, Pramodh AV, Sukumaran V, Raj D, John AMVB. The Influence of Photodynamic Antimicrobial Chemotherapy on the Microbiome, Neuroendocrine and Immune System of Crustacean Post Larvae. TOXICS 2022; 11:36. [PMID: 36668762 PMCID: PMC9866830 DOI: 10.3390/toxics11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT), employing a combination of light and natural photosensitizer molecules such as curcumin, has been accepted as a safe modality for removing aquatic pathogens which cause diseases such as cholera in humans and vibriosis in aquatic animals. Curcumin and its photodegradation products are generally considered as safe to animals, but the impact of reactive oxygen species (ROS) generated by these products on the growth and survival of organisms at a cellular level has not been studied in detail. The ROS generated by curcumin on photoexcitation using blue light (λmax 405 nm, 10 mW cm-2) disinfects more than 80% of free-living Vibrio spp. in the rearing water of Penaeus monodon. However, it is less effective against Vibrio spp. colonized inside P. monodon because the carapace of the animal prevents the transmission of more than 70% of light at the 400-450 nm range and thus reduces the formation of ROS. The influence of curcumin and photoexcited curcumin on the microbiome of P. monodon were revealed by nanopore sequencing. The photoexcited curcumin induced irregular expression of genes coding the moult-inhibiting hormone (MIH), Crustacean hyperglycaemic hormone (CHH)), prophenoloxidase (ProPO), and crustin, which indicates toxic effects of ROS generated by photoexcited curcumin on the neuroendocrine and immune systems of crustaceans, which could alter their growth and survival in aquaculture settings. The study proposed the cautious use of photodynamic therapy in aquaculture systems, and care must be taken to avoid photoexcitation when animals are experiencing moulting or environmental stress.
Collapse
|
45
|
Arabi SM, Bahari H, Hamidipor S, Bahrami LS, Feizy Z, Nematy M, Kesharwani P, Sahebkar A. The effects of curcumin-containing supplements on inflammatory biomarkers in hemodialysis patients: A systematic review and meta-analysis. Phytother Res 2022; 36:4361-4370. [PMID: 36205586 DOI: 10.1002/ptr.7642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/27/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
In the past decade, the effect of curcumin or turmeric supplementation on many aspects of health status in different populations has been evaluated. In the present study, a systematic review and meta-analysis were conducted to estimate the effect of curcumin administration on inflammatory markers in hemodialysis (HD) patients. A systematic search was performed in MEDLINE, EMBASE, Scopus, and Clarivate Analytics Web of Science databases from 1997 until June2022 for terms related to curcumin/turmeric and hemodialysis (HD). Randomized, double-blind/single-blind studies examining the effects of curcumin/turmeric on the inflammation of HD participants older than 18 years were considered eligible for inclusion. Data were pooled using the weighted mean difference (WMD) and 95% CI as the summary statistic, considering a random-effects analysis model. The data that were pooled from nine studies with 472 patients indicated that curcumin-containing supplement had significant effect on serum C-reactive protein (CRP) levels (WMD = -3.3 mg/L; 95% CI: -5.4 to -1.3; p < 0.001, I2 = 76.7%, 8 studies, 467 participants), and interlukine-6 (IL-6) levels (SMD: -0.4; 95% CI: -0.8 to -0.07; p = 0.02, I2 = 31.6%, 3 studies, 153 participants) compared control group. Although curcumin intervention could not change tumor neurosis factor-α (TNF-α) concentration (SMD = -0.3; 95% CI: -0.7 to 0.04; p = 0.08, I2 = 25.3%, 3 studies, 153 participants), when compared with the placebo group. Our study's main limitations were small number of studies, overall high risk of bias in the included trials, and high heterogeneity in some results. The present meta-analysis suggested that intervention with curcumin-containing supplements was associated with a significant reduction in serum hs-CRP and IL-6 concentrations in HD patients. The curcumin intervention in the reduction of hs-CRP levels was greater than the minimal clinically important difference (MCID) for CRP (0.5 mg/L), which can be helpful in physicians' clinical decisions.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Hamidipor
- Department of Physical Education & Sport Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Mohsen Nematy
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
48
|
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238210. [PMID: 36500303 PMCID: PMC9737474 DOI: 10.3390/molecules27238210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient's condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria.
Collapse
|
49
|
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin. Int J Mol Sci 2022; 23:ijms232214413. [PMID: 36430891 PMCID: PMC9696847 DOI: 10.3390/ijms232214413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
Collapse
|
50
|
Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|