1
|
Giraldo-Berrio D, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline mitigates Aβ and TAU pathology, neuronal dysfunction, and death in the PSEN1 E280A cholinergic-like neurons model of familial Alzheimer's disease. Neuropharmacology 2024; 261:110152. [PMID: 39245141 DOI: 10.1016/j.neuropharm.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aβ), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 μM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aβ by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aβ (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Investigations, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratory 412, Medellín, Colombia.
| |
Collapse
|
2
|
Mishra M, Wasnik K, Sharma A, Kumar K, Verma R, Paik P, Chawla R. Epigallocatechin-3-gallate Synergistically Inhibits the Proliferation of Lung Cancer Cells with Gemcitabine by Induction of Apoptosis Mediated by ROS Generation. ACS APPLIED BIO MATERIALS 2024; 7:6832-6846. [PMID: 39333045 DOI: 10.1021/acsabm.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The present study focused on the formulation, characterization, and evaluation of solid lipid nanoparticles (SLNs) loaded with gemcitabine (GEM) and epigallocatechin-3-gallate (EGCG) for lung cancer treatment. A 2-level, 3-factor factorial design was used to optimize various process parameters in the preparation of SLNs. The average particle size and polydispersity index (PDI) of GEM-EGCG SLNs were found to be 122.8 ± 8.02 and 0.1738 ± 0.02, respectively. Drug loading and release studies indicated a sustained release behavior for GEM-EGCG SLNs, with release kinetics confirmed by the Higuchi model. Cell viability and anticancer activities were assessed using the MTT assay, which determined an IC50 value of 12.5 μg/mL for GEM-EGCG SLNs against A549 cell lines (lung carcinoma epithelial cells). The SLNs were able to internalize into the nuclei of cells, likely due to their small particle size, and were effective in killing cancer cells. Additionally, a study of ROS production-mediated apoptosis of A549 cells was performed through FACS. GEM-EGCG SLNs were found to be stable for 3 months. In vivo studies revealed better drug distribution in the lungs and improved pharmacokinetic profile compared with pure drugs. Overall, the results suggest that combining GEM and EGCG in biocompatible SLNs has resulted in synergistic antitumor potential and improved bioavailability for both drugs, making it a promising anticancer therapeutic regimen against lung cancer.
Collapse
Affiliation(s)
- Mohini Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Aditya Sharma
- Sri Ganganagar Homoeopathic Medical College, Hospital & Research Center, Tantia University, Sri Ganganagar 335002, Rajasthan, India
| | - Krishan Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Rinki Verma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Pandey P, Verma M, Lakhanpal S, Pandey S, Kumar MR, Bhat M, Sharma S, Alam MW, Khan F. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. Biopolymers 2024:e23637. [PMID: 39417679 DOI: 10.1002/bip.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The utilization of nanoformulations derived from natural products for the treatment of many human diseases, including cancer, is a rapidly developing field. Conventional therapies used for cancer treatment have limited efficacy and a greater number of adverse effects. Hence, it is imperative to develop innovative anticancer drugs with superior effectiveness. Among the diverse array of natural anticancer compounds, resveratrol, curcumin, and epigallocatechin gallate (EGCG) have gained considerable attention in recent years. Despite their strong anticancer properties, medicinally significant phytochemicals such as resveratrol, curcumin, and EGCG have certain disadvantages, such as limited solubility in water, stability, and bioavailability problems. Encapsulating these phytochemicals in poly(lactic-co-glycolic acid) (PLGA), a polymer that is nontoxic, biodegradable, and biocompatible, is an effective method for delivering medication to the tumor location. In addition, PLGA nanoparticles can be modified with targeting molecules to specifically target cancer cells, thereby improving the effectiveness of phytochemicals in fighting tumors. Combining plant-based medicine (phytotherapy) with nanotechnology in a clinical environment has the potential to enhance the effectiveness of drugs and improve the overall health outcomes of patients. Therefore, it is crucial to have a comprehensive understanding of the different aspects and recent advancements in using PLGA-based nanocarriers for delivering anticancer phytochemicals. This review addresses the most recent advancements in PLGA-based delivery systems for resveratrol, EGCG, and curcumin, emphasizing the possibility of resolving issues related to the therapeutic efficacy and bioavailability of these compounds.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Hejazi S, Moosavi M, Molavinia S, Mansouri E, Azadnasab R, Khodayar MJ. Epicatechin ameliorates glucose intolerance and hepatotoxicity in sodium arsenite-treated mice. Food Chem Toxicol 2024; 192:114950. [PMID: 39182636 DOI: 10.1016/j.fct.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Arsenic is a metalloid found in the environment that causes toxic effects in different organs, mainly the liver. This study aimed to investigate the protective effects of epicatechin (EC), a natural flavonol, on glucose intolerance (GI) and liver toxicity caused by sodium arsenite (SA) in mice. Our findings showed that SA exposure led to the development of GI. Liver tissue damage and decreased pancreatic Langerhans islet size were also observed in this study. Mice exposed to SA exhibited hepatic oxidative damage, indicated by reduced antioxidant markers (such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione), along with elevated levels of thiobarbituric acid reactive substances. SA administration elevated the serum activities of liver enzymes alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Furthermore, notable increases in the levels of inflammatory and apoptotic markers (Toll-like receptor 4, nuclear factor-kappa B, tumor necrosis factor-α, nitric oxide, B-cell lymphoma-2, and cysteine aspartate-specific protease-3) were observed in the liver. Treatment of SA-exposed mice with EC considerably reversed these biochemical and histological changes. This study demonstrated the beneficial effects of EC in ameliorating SA-induced hyperglycemia and hepatotoxicity due to its ability to enhance the antioxidant system by modulating inflammation and apoptosis.
Collapse
Affiliation(s)
- Sara Hejazi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahrzad Molavinia
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Atsarina DM, Widyastiti NS, Muniroh M, Susilaningsih N, Maharani N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J Obes Metab Syndr 2024; 33:261-269. [PMID: 39098053 PMCID: PMC11443325 DOI: 10.7570/jomes23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11β-HSD1 levels. Results Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11β-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.30 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11β-HSD1 and blood glucose levels.
Collapse
Affiliation(s)
- Diana Mazaya Atsarina
- Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nyoman Suci Widyastiti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Neni Susilaningsih
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| |
Collapse
|
6
|
Tain YL, Hsu CN. Maternal Polyphenols and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:3168. [PMID: 39339768 PMCID: PMC11434705 DOI: 10.3390/nu16183168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has led to the recognition of cardiovascular-kidney-metabolic (CKM) syndrome, which represents a significant global health challenge. Polyphenols, a group of phytochemicals, have demonstrated potential health-promoting effects. METHODS This review highlights the impact of maternal polyphenol supplementation on the CKM health of offspring. RESULTS Initially, we summarize the interconnections between polyphenols and each aspect of CKM syndrome. We then discuss in vivo studies that have investigated the use of polyphenols during pregnancy and breastfeeding, focusing on their role in preventing CKM syndrome in offspring. Additionally, we explore the common mechanisms underlying the protective effects of maternal polyphenol supplementation. CONCLUSIONS Overall, this review underscores the potential of early-life polyphenol interventions in safeguarding against CKM syndrome in offspring. It emphasizes the importance of continued research to advance our understanding and facilitate the clinical translation of these interventions.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Wilasrusmee KT, Sitticharoon C, Keadkraichaiwat I, Maikaew P, Pongwattanapakin K, Chatree S, Sririwichitchai R, Churintaraphan M. Epigallocatechin gallate enhances sympathetic heart rate variability and decreases blood pressure in obese subjects: a randomized control trial. Sci Rep 2024; 14:21628. [PMID: 39285220 PMCID: PMC11405511 DOI: 10.1038/s41598-024-72269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
This study aimed to investigate effects of epigallocatechin gallate (EGCG) on blood pressure (BP) and autonomic nervous system, indicated by 5-min heart rate variability (HRV) measurement in obese subjects, and determine correlations of BP with metabolic factors. In a double-blind, randomized controlled trial, obese subjects (n = 30) were randomly allocated to receive 150 mg EGCG (n = 15) or placebo (n = 15) twice a day without dietary restrictions. After 8-week EGCG treatment, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) significantly decreased, while the low-frequency (LF) to high-frequency power (HF) ratio (LF/HF ratio) significantly increased (P < 0.05 all), indicating a shift toward sympathetic dominance, either directly or indirectly after BP lowering. SBP had positive correlations with obesity parameters, leptin, insulin, and insulin resistance but had a negative correlation with insulin sensitivity. DBP was positively correlated with age and HF in normalized unit, but negatively correlated with height and LF in ms2. High-density lipoprotein cholesterol (HDL-C) was negatively correlated with SBP, DBP, and MAP reflecting its protective effect against elevated BP. In conclusion, the 8-week EGCG treatment decreased BP and increased the LF/HF ratio, reflecting increased sympathetic activity, either a direct EGCG effect or an indirect compensatory response following BP reduction.
Collapse
Affiliation(s)
- Kittikorn Tommy Wilasrusmee
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
8
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2024:10.1007/s11010-024-05096-9. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
9
|
Mishra M, Verma R, Sharma A, Kumar K, Chawla R. Evaluation of Gemcitabine and Epigallocatechin-3-Gallate Loaded Solid Lipid Nanoparticles on Benzopyrene Induced Lung Cancer Model Via Intranasal Route: Improved Pharmacokinetics and Safety Profile. AAPS PharmSciTech 2024; 25:176. [PMID: 39085673 DOI: 10.1208/s12249-024-02892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The objective of this study was to create a new treatment for lung cancer using solid lipid nanoparticles (SLNs) loaded with gemcitabine (GEM) and epigallocatechin-3-gallate (EGCG) that can be administered through the nose. We analyzed the formulation for its effectiveness in terms of micromeritics, drug release, and anti-cancer activity in the benzopyrene-induced Swiss albino mice lung cancer model. We also assessed the pharmacokinetics, biodistribution, biocompatibility, and hemocompatibility of GEM-EGCG SLNs. The GEM-EGCG SLNs had an average particle size of 93.54 ± 11.02 nm, a polydispersity index of 0.146 ± 0.05, and a zeta potential of -34.7 ± 0.4 mV. The entrapment efficiency of GEM and EGCG was 93.39 ± 4.2% and 89.49 ± 5.1%, respectively, with a sustained release profile for both drugs. GEM-EGCG SLNs had better pharmacokinetics than other treatments, and a high drug targeting index value of 17.605 for GEM and 2.118 for EGCG, indicating their effectiveness in targeting the lungs. Blank SLNs showed no pathological lesions in the liver, kidney, and nasal region validating the safety of SLNs. GEM-EGCG SLNs also showed fewer pathological lesions than other treatments and a lower hemolysis rate of 1.62 ± 0.10%. These results suggest that GEM-EGCG SLNs could effectively treat lung cancer.
Collapse
Affiliation(s)
- Mohini Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rinki Verma
- Department of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Aditya Sharma
- Sri Ganganagar Homoeopathic Medical College, Hospital & Research Center, Tantia University, Sri Ganganagar, Rajasthan, 335002, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Maestri D. Groundnut and tree nuts: a comprehensive review on their lipid components, phytochemicals, and nutraceutical properties. Crit Rev Food Sci Nutr 2024; 64:7426-7450. [PMID: 39093582 DOI: 10.1080/10408398.2023.2185202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.
Collapse
Affiliation(s)
- Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET). Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
11
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
12
|
Arsecularatne A, Kapini R, Liu Y, Chang D, Münch G, Zhou X. Combination Therapy for Sustainable Fish Oil Products: Improving Cognitive Function with n-3 PUFA and Natural Ingredients. Biomedicines 2024; 12:1237. [PMID: 38927446 PMCID: PMC11201817 DOI: 10.3390/biomedicines12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are recommended as beneficial dietary supplements for enhancing cognitive function. Although fish oil (FO) is renowned for its abundant n-3 PUFA content, combining FO with other natural products is considered as a viable option to support the sustainable development of FO products. This review aims to provide comprehensive insights into the advanced effects of combining FO or its components of DHA and EPA with natural products on protecting cognitive function. In two double-blind random control trials, no advanced effects were observed for adding curcumin to FO on cerebral function protection. However, 16 week's treatment of FO combined with vitamin E did not yield any advanced effects in cognitive factor scores. Several preclinical studies have demonstrated that combinations of FO with natural products can exhibit advanced effects in addressing pathological components in cognitive impairment, including neuroinflammation, oxidative stress, and neuronal survival. In conclusion, evidence from clinical trials for beneficial use of FO and natural ingredients combination is lacking. Greater cohesion is needed between preclinical and clinical data to substantiate the efficacy of FO and natural product combinations in preventing or slowing the progression of cognitive decline.
Collapse
Affiliation(s)
- Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Science, Western Sydney University, Paramatta, NSW 2150, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| |
Collapse
|
13
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Wang N, Que H, Luo Q, Zheng W, Li H, Wang Q, Gu J. Mechanisms of ferroptosis in nonalcoholic fatty liver disease and therapeutic effects of traditional Chinese medicine: a review. Front Med (Lausanne) 2024; 11:1356225. [PMID: 38590315 PMCID: PMC10999571 DOI: 10.3389/fmed.2024.1356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in hepatocytes (nonalcoholic fatty liver (NAFL)), and lobular inflammation and hepatocyte damage (which characterize nonalcoholic steatohepatitis (NASH) are found in most patients). A subset of patients will gradually develop liver fibrosis, cirrhosis, and eventually hepatocellular carcinoma, which is a deadly disease that threatens human life worldwide. Ferroptosis, a novel nonapoptotic form of programmed cell death (PCD) characterized by iron-dependent accumulation of reactive oxygen radicals and lipid peroxides, is closely related to NAFLD. Traditional Chinese medicine (TCM) has unique advantages in the prevention and treatment of NAFLD due to its multicomponent, multipathway and multitarget characteristics. In this review, we discuss the effect of TCM on NAFLD by regulating ferroptosis, in order to provide reference for the further development and application of therapeutic drugs to treat NAFLD.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Wenxin Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hong Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qin Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
15
|
Kukavica B, Škondrić S, Trifković T, Mišić D, Gašić U, Topalić-Trivunović L, Savić A, Velemir A, Davidović-Plavšić B, Šešić M, Lukić N. Comparative polyphenolic profiling of five ethnomedicinal plants and their applicative potential in the treatment of type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117377. [PMID: 37939910 DOI: 10.1016/j.jep.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plants Salvia officinalis, Trifolium pratense, Agrimonia eupatoria, Cichorium intybus and Vinca minor are traditionally used for the prevention and treatment of numerous diseases, including diabetes. AIM OF THE STUDY Type 2 diabetes (T2D) is one of the most common diseases nowadays, often accompanied by oxidative stress and microbial infections. The aim of our work was to examine the antidiabetic, antioxidant, and antimicrobial properties of ethanol extracts of five medicinal plants for the purpose of their possible use in the treatment of T2D. MATERIALS AND METHODS The polyphenolic profile of the plant extracts was analyzed by Ultra-High Performance Liquid Chromatography with a diode array detector configured with a triple quadrupole mass spectrometer (UHPLC/DAD/(-)HESI-MS2). In vitro antidiabetic activity of extracts was determined by measuring the percentage of α-amylase and α-glucosidase inhibition. The antioxidant activity of the extract was determined by different spectrophotometric methods, while the antimicrobial activity was determined by agar dilution and disc diffusion methods. RESULTS A. eupatoria extract contains the highest percentage of flavonoids (94%, with isoquercetin, vitexin, and rutin as the most abundant) in relation to the concentration of total phenolic compounds and exhibits excellent antidiabetic, antioxidant, and antimicrobial activity. S. officinalis extract contains 60% flavonoids (predominately cirsimaritin and epigallocatechin gallate) and 40% phenolic acids (with rosmarinic acid being the most abundant from this group) and exhibits weak antidiabetic activity, significant antioxidant activity, and excellent antibacterial activity. A 45% percentage of flavonoids (with isoquercetin as the most abundant one) and 55% of phenolic acids (with ferulic acid as the most abundant) were measured in the extract of T. pratense, which had excellent antidiabetic activity but weaker antioxidant and antimicrobial activity. A similar percentage of flavonoids (52%, with epigallocatechin gallate in the highest concentration) and phenolic acids (48%, with chlorogenic acid as the most abundant) was measured in the extract of C. intybus which showed moderate antidiabetic, antioxidant, and antimicrobial properties. The extract of V. minor was the richest in phenolic acids (80%, with the most abundant chlorogenic acid), which resulted in weaker antidiabetic and antioxidant activities (except for Fe2+ chelating ability) and antimicrobial activity. CONCLUSION The results indicate that specific phenolic compounds are responsible for the different biological activities of the plant extracts. Among the investigated plants, the extract of A. eupatoria has the greatest potential for applications in the treatment of T2D.
Collapse
Affiliation(s)
- Biljana Kukavica
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Siniša Škondrić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Tanja Trifković
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Danijela Mišić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ljiljana Topalić-Trivunović
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Aleksandar Savić
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Ana Velemir
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Milica Šešić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Nataša Lukić
- University of Hohenheim, Faculty of Agriculture, Institute of Landscape and Plant Ecology, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany; University of Banja Luka, Faculty of Forestry, Bulevar vojvode Stepe Stepanovića 75a, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| |
Collapse
|
16
|
Nassar K, El-Mekawey D, Elmasry AE, Refaey MS, El-Sayed Ghoneim M, Elshaier YAMM. The significance of caloric restriction mimetics as anti-aging drugs. Biochem Biophys Res Commun 2024; 692:149354. [PMID: 38091837 DOI: 10.1016/j.bbrc.2023.149354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.
Collapse
Affiliation(s)
- Khloud Nassar
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Doaa El-Mekawey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Ahmed E Elmasry
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt.
| | - Yaseen A M M Elshaier
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
17
|
Dinesh H, Sundar S, Kannan S, Ramadoss R, Selvam SP, Ramani P. Synthesis and Characterization of Epigallocatechin Gallate-mediated Hydroxyapatite. Pharm Nanotechnol 2024; 12:165-170. [PMID: 37287296 DOI: 10.2174/2211738511666230607113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Hydroxyapatite is a significant material that finds its application in the field of dental and bone tissue engineering. METHODS The formulation of nanohydroxyapatite with the aid of bioactive compounds has gained importance in recent years due to the beneficial activity contributed by them. The present work focuses on the formulation of nanohydroxyapatite synthesis using epigallocatechin gallate, an active biochemical component of green tea. RESULTS The prepared epigallocatechin gallate-mediated nanohydroxyapatite (epi-HAp) was nanoglobular in shape and composed of calcium, phosphorous, carbon and oxygen, which was confirmed by Scanning electron microscope- energy dispersive X-ray analysis (SEM-EDX). The Attenuated Total Reflection- Infra red spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS) assured that the reduction and stabilisation of nanohydroxyapatite were mediated by epigallocatechin gallate. CONCLUSION The epi-HAp exhibited anti-inflammatory behaviour along with nil effect on cytotoxicity. To be precise, the epi-HAp can be an effective biomaterial in bone and dental applications.
Collapse
Affiliation(s)
- Hanish Dinesh
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sandhya Sundar
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Saranya Kannan
- Functional Nanomaterials Laboratory (Green Lab), Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Ramya Ramadoss
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Suganya Panneer Selvam
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Pratibha Ramani
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
18
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
19
|
Boudin M, Diallo G, Drancé M, Mougin F. The OREGANO knowledge graph for computational drug repurposing. Sci Data 2023; 10:871. [PMID: 38057380 PMCID: PMC10700660 DOI: 10.1038/s41597-023-02757-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
Drug repositioning is a faster and more affordable solution than traditional drug discovery approaches. From this perspective, computational drug repositioning using knowledge graphs is a very promising direction. Knowledge graphs constructed from drug data and information can be used to generate hypotheses (molecule/drug - target links) through link prediction using machine learning algorithms. However, it remains rare to have a holistically constructed knowledge graph using the broadest possible features and drug characteristics, which is freely available to the community. The OREGANO knowledge graph aims at filling this gap. The purpose of this paper is to present the OREGANO knowledge graph, which includes natural compounds related data. The graph was developed from scratch by retrieving data directly from the knowledge sources to be integrated. We therefore designed the expected graph model and proposed a method for merging nodes between the different knowledge sources, and finally, the data were cleaned. The knowledge graph, as well as the source codes for the ETL process, are openly available on the GitHub of the OREGANO project ( https://gitub.u-bordeaux.fr/erias/oregano ).
Collapse
Affiliation(s)
- Marina Boudin
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France.
| | - Gayo Diallo
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Martin Drancé
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Fleur Mougin
- AHeaD team, Bordeaux Population Health Inserm U1219, Univ. Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
20
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
21
|
Alnuqaydan AM, Zainy FMA, Almutary AG, Sadier NS, Rah B. Tamarix articulata extract offers protection against toxicity induced by beauty products in Hs27 human skin fibroblasts. PLoS One 2023; 18:e0287071. [PMID: 37972033 PMCID: PMC10653522 DOI: 10.1371/journal.pone.0287071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
The current study evaluates the cytotoxicity, mode of cell death and chemical analysis of selected beauty products and evaluation of the protective effect of Tamarix articulata (TA) extract against toxicity induced by beauty products in skin fibroblasts (Hs27). MTT and Crystal violet (CV) assays were used to determine the dose-dependent cytotoxic effects of beauty products against Hs27 fibroblasts. DNA fragmentation assay and annexin-V staining were conducted to determine the mode of cell killing induced by evaluated beauty products. Quantification of reactive oxygen species (ROS) and antioxidant enzyme levels were used to evaluate the oxidative stress. Chemical analysis and heavy metals were evaluated to determine beauty products. Pre-treatment with TA extract for different time points followed by time-dependent exposure with beauty products to assess the protective effect of TA extract in Hs27 cells was analyzed by MTT and CV assays. Owing to the presence of various harmful heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb) in beauty products, our results revealed that all beauty products induce significant cytotoxicity over time (1, 4 h) in a dose-dependent (125, 250, 500 μg/mL) manner. DNA fragmentation assay, quantification of apoptosis by annexin-V staining, determination of ROS and antioxidant enzymes (CAT, GSH-Px and SOD) revealed that the induced cytotoxicity was caused by oxidative stress-mediated apoptosis. However, pre-incubation with a safe dose (50 μg/mL) of TA for different times (24, 48 h) followed by exposure to various doses (62.5, 125, 250, 500 μg/mL) of beauty products for different times (1, 4 h) revealed significant (*p≤0.05, **p≤0.01) protection against beauty product-mediated cytotoxicity. The effect was more pronounced for 1 h exposure to beauty products compared to 4 h. Our study demonstrates that the due to the presence of heavy metals in synthetic beauty products exhibit marked toxicity to skin fibroblasts due to oxidative stress-mediated apoptosis. However, the presence of abundant bioactive polyphenols with promising antiscavenging activity in TA extracts significantly nullifies cytotoxicity promoted by examined beauty products in skin fibroblasts (Hs27).
Collapse
Affiliation(s)
- Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faten M. Ali Zainy
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Bilal Rah
- Iron Biology Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
23
|
Wang Y, Xia H, Yu J, Sui J, Pan D, Wang S, Liao W, Yang L, Sun G. Effects of green tea catechin on the blood pressure and lipids in overweight and obese population-a meta-analysis. Heliyon 2023; 9:e21228. [PMID: 38034724 PMCID: PMC10681946 DOI: 10.1016/j.heliyon.2023.e21228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Background Overweight and obesity as main health problems harm human beings worldwide. The number of people diagnosed with overweight and obese is gradually increasing. Green tea catechin has been reported to effectively help control body weight in overweight and obese population, and is protectively against the blood pressure and lipids in people with type 2 diabetes and metabolic syndrome. Methods We retrieved 4 English databases (PubMed, Web of science, Cochrane, Scoups) from inception to April 20, 2023. Two reviewers independently determined eligibility, assessed the reporting quality of included studies, and extracted the data. Data were extracted from eleven studies. The results were presented with the weighted mean differences (WMDs), and the confidence intervals (CIs) was 95 %. The random-effects or fixed-effects model was applied according to the heterogeneity. The subgroup analysis was used to identify the source of heterogeneity. Publication bias was evaluated using funnel plots, Egger's test, and Begg's test. Results Eleven randomized controlled trials (RCTs) inclusion studies were screened from 3072 literature articles, involving 613 overweight and obese patients. After combining all studies, it was found that in overweight and obese people green tea catechin could reduce waist circumference (WC) (pooled WMD = -1.37 cm, 95 % CI: -2.52 to -0.22 cm, p = 0.019), and triglyceride (TG) (pooled WMD = -0.18 mmol/L, 95 % CI: -0.35 to -0.02 mmol/L, p = 0.032), and increase high density lipoprotein cholesterol (HDL-c) (pooled WMD = 0.07 mmol/L, 95 % CI: 0.01-0.14 mmol/L, p = 0.031). Conclusion Green tea catechin supplement effectively reduced WC and TG levels and improved HDL-c levels. However, it did not show the significant effect on the blood pressure in overweight and obese people. The present meta-analysis showed a moderate benefit of green tea catechin supplementation on lipid profiles in overweight and obese people.
Collapse
Affiliation(s)
| | | | - Junhui Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China
| |
Collapse
|
24
|
Yıldırım M, Sessevmez M, Poyraz S, Düzgüneş N. Recent Strategies for Cancer Therapy: Polymer Nanoparticles Carrying Medicinally Important Phytochemicals and Their Cellular Targets. Pharmaceutics 2023; 15:2566. [PMID: 38004545 PMCID: PMC10675520 DOI: 10.3390/pharmaceutics15112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a leading cause of death in the world today. In addition to the side effects of the chemotherapeutic drugs used to treat cancer, the development of resistance to the drugs renders the existing drugs ineffective. Therefore, there is an urgent need to develop novel anticancer agents. Medicinally important phytochemicals such as curcumin, naringenin, quercetin, epigallocatechin gallate, thymoquinone, kaempferol, resveratrol, genistein, and apigenin have some drawbacks, including low solubility in water, stability and bioavailability issues, despite having significant anticancer effects. Encapsulation of these natural compounds into polymer nanoparticles (NPs) is a novel technology that could overcome these constraints. In comparison to the free compounds, phytochemicals loaded into nanoparticles have greater activity and bioavailability against many cancer types. In this review, we describe the preparation and characterization of natural phytochemical-loaded polymer NP formulations with significant antioxidant and anti-inflammatory effects, their in vitro and in vivo anticancer activities, as well as their possible cellular targets.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Samet Poyraz
- Department of Analytical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| |
Collapse
|
25
|
de la Rubia Ortí JE, Platero Armero JL, Cuerda-Ballester M, Sanchis-Sanchis CE, Navarro-Illana E, Lajara-Romance JM, Benlloch M, Ceron JJ, Tvarijonaviciute A, Proaño B. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods 2023; 12:3730. [PMID: 37893623 PMCID: PMC10606609 DOI: 10.3390/foods12203730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) patients present dyslipidemia and functional disability. Epigallocatechin gallate (EGCG) and coconut oil have been shown to be effective against dyslipidemia. OBJECTIVE To analyze the relationship between lipid profiles, fat consumption, and functional disability in patients with MS after administering EGCG and coconut oil. METHODS A four-month pilot study was conducted on 45 MS patients, divided into an intervention group (IG) and a control group (CG). The IG received 800 mg of EGCG and 60 mL of coconut oil. Lipid profiles were measured before and after the intervention, along with other data such as dietary habits, inflammatory markers, and functional capacity. RESULTS Dyslipidemia did not correlate with the patients' fat consumption. After the intervention, triglycerides (TG) levels were lower in IG compared to CG. This decrease was positively correlated with an improvement in functional disability (determined by the Expanded Disability Status Scale (EDSS)) and negatively with high-density cholesterol (HDL) and apolipoprotein A1. Significant and positive correlations were observed between EDSS and C-reactive protein (CRP) in the IG. These changes in the IG could be related to body fat decrease, whose percentage shows a positive correlation with CRP and TG levels, and a negative correlation with HDL levels. CONCLUSIONS Patients with MS present a certain type of dyslipemia not associated with their nutritional habits. The administration of EGCG and coconut oil seems to decrease blood TG levels, which could explain the functional improvements.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Luis Platero Armero
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - María Cuerda-Ballester
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Claudia Emmanuela Sanchis-Sanchis
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | | | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Joaquín Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| |
Collapse
|
26
|
Smith E, Lewis A, Narine SS, Emery RJN. Unlocking Potentially Therapeutic Phytochemicals in Capadulla ( Doliocarpus dentatus) from Guyana Using Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023; 13:1050. [PMID: 37887375 PMCID: PMC10608729 DOI: 10.3390/metabo13101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Doliocarpus dentatus is thought to have a wide variety of therapeutic phytochemicals that allegedly improve libido and cure impotence. Although a few biomarkers have been identified with potential antinociceptive and cytotoxic properties, an untargeted mass spectrometry-based metabolomics approach has never been undertaken to identify therapeutic biofingerprints for conditions, such as erectile dysfunction, in men. This study executes a preliminary phytochemical screening of the woody vine of two ecotypes of D. dentatus with renowned differences in therapeutic potential for erectile dysfunction. Liquid chromatography-mass spectrometry-based metabolomics was used to screen for flavonoids, terpenoids, and other chemical classes found to contrast between red and white ecotypes. Among the metabolite chemodiversity found in the ecotype screens, using a combination of GNPS, MS-DIAL, and SIRIUS, approximately 847 compounds were annotated at levels 2 to 4, with the majority of compounds falling under lipid and lipid-like molecules, benzenoids and phenylpropanoids, and polyketides, indicative of the contributions of the flavonoid, shikimic acid, and terpenoid biosynthesis pathways. Despite the extensive annotation, we report on 138 tentative compound identifications of potentially therapeutic compounds, with 55 selected compounds at a level-2 annotation, and 22 statistically significant therapeutic biomarkers, the majority of which were polyphenols. Epicatechin methyl gallate, catechin gallate, and proanthocyanidin A2 had the greatest significant differences and were also relatively abundant among the red and white ecotypes. These putatively identified compounds reportedly act as antioxidants, neutralizing damaging free radicals, and lowering cell oxidative stress, thus aiding in potentially preventing cellular damage and promoting overall well-being, especially for treating erectile dysfunction (ED).
Collapse
Affiliation(s)
- Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| |
Collapse
|
27
|
Knany HR, Elsabbagh SA, Shehata MA, Eldehna WM, Bekhit AA, Ibrahim TM. In silico screening of SARS-CoV2 helicase using African natural products: Docking and molecular dynamics approaches. Virology 2023; 587:109863. [PMID: 37586235 DOI: 10.1016/j.virol.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
In the current medical era, there is an urgent necessity to identify new effective drugs to enrich the COVID-19's therapeutic arsenal. The SARS-COV-2 NSP13/helicase enzyme has been identified as a potential target for developing novel COVID-19 inhibitors. In this work, we aimed at endorsing effective natural products with potential inhibitory action towards the NSP13 through the virtual screening of 1012 natural products of botanical and marine origin from the South African Natural Compounds Database (SANCDB). The molecules were docked into the NTPase active site, and the best twelve compounds were chosen for further analysis. Thereafter, a combination of molecular dynamics simulations and MM-GBSA free energy calculations were carried out for a subset of best hits complexed with NSP13 helicase. We believe that the findings of this work will pave the way for additional research and experimental validation of some natural products as viable NSP13 helicase inhibitors.
Collapse
Affiliation(s)
- Hamada R Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
28
|
Vempuluru VS, Laiton A, Milman T, Lee JB, Eagle RC, Shields CL. Exogenous Ochronosis With Ocular Involvement From Chronic Use of Teavigo. Ophthalmic Plast Reconstr Surg 2023; 39:e139-e142. [PMID: 37010051 DOI: 10.1097/iop.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Exogenous ochronosis refers to accumulation of homogentisic acid metabolites in tissues, manifesting as pigmentation of affected tissues. Phenolic compounds are most commonly implicated, including hydroquinone, quinine, phenol, resorcinol, mercury, and picric acid. The affected connective tissues exhibit brownish discoloration when heavily pigmented and the histopathological appearance is characteristic with "banana-shaped" ochre-colored pigment deposits. Herein, the authors describe a rare case of exogenous ochronosis involving the conjunctiva, sclera and skin, as a result of chronic use of Teavigo (94% epigallocatechin gallate), a polyphenol compound with postulated antioxidant and antiapoptotic activity.
Collapse
Affiliation(s)
| | | | | | - Jason B Lee
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University & Jefferson Dermatopathology Center; Philadelphia, Pennsylvania, U.S.A
| | | | | |
Collapse
|
29
|
Eltahir S, Ahmad A. Flavonoids on the Frontline against Cancer Metastasis. Cancers (Basel) 2023; 15:4139. [PMID: 37627166 PMCID: PMC10452402 DOI: 10.3390/cancers15164139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the leading cause of death in cancer patients [...].
Collapse
Affiliation(s)
- Sarah Eltahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama, 901 19th St. South, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Yaowiwat N, Poomanee W, Leelapornpisid P, Chaiwut P. Utilization of Emulsion Inversion to Fabricate Tea ( Camellia sinensis L.) Flower Extract Obtained by Supercritical Fluid Extraction-Loaded Nanoemulsions. ACS OMEGA 2023; 8:28090-28097. [PMID: 37576676 PMCID: PMC10413370 DOI: 10.1021/acsomega.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
This study aimed to obtain tea flower extract (TFE) using supercritical fluid extraction, to determine the compounds present in the TFE and to establish its antioxidant activity. The fabrication of TFE nanoemulsions was also investigated using response surface methodology (RSM). UHPLC-ESI-QTOF-MS/MS and UHPLC-ESI-QqQ-MS/MS analysis showed that the TFE was composed of catechin and its derivatives, flavonols and anthocyanins, suggesting its potential as a free radical scavenger with strong reducing powers. A central composite design was applied to optimize the independent factors of the nanoemulsions. The factors had a significant (p < 0.05) effect on all response variables. The optimum level of factors for the fabrication was a surfactant-to-oil ratio of 2:1, a high hydrophilic-lipophilic balance (HLB) surfactant to low HLB surfactant ratio (HLR) of 1.6:1, and a PEG-40/PEG-60 hydrogenated castor oil ratio of 2:1. The responses obtained from the optimum levels were a 34.01 nm droplet size, a polydispersity index of 0.15, and 75.85% entrapment efficiency. In conclusion, TFE could be an antioxidant active ingredient and has been successfully loaded into nanoemulsions using RSM.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Worrapan Poomanee
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Pimporn Leelapornpisid
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Phanuphong Chaiwut
- School
of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Green
Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
31
|
Alimpić Aradski A, Oalđe Pavlović M, Janošević D, Todorović S, Gašić U, Mišić D, Pljevljakušić D, Šavikin K, Marin PD, Giweli A, Duletić-Laušević S. Leaves micromorphology, chemical profile, and bioactivity of in vitro-propagated Nepeta cyrenaica (Lamiaceae). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:661-679. [PMID: 37387322 DOI: 10.1002/pca.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION The endemic species Nepeta cyrenaica Quézel & Zaffran, native to northeastern Libya, is valued as an important honey-bearing plant. OBJECTIVES This study was aimed to examine the micromorphology, phytochemistry, and bioactivity of in vitro-propagated N. cyrenaica for the first time. MATERIALS AND METHODS The leaf indumentum was examined using light and scanning electron microscopy and further characterised for histochemistry. The chemical composition of essential oil (EO) was performed using GC-MS analysis, while dichloromethane (DCM), methanol (ME), ethanol (ET), and aqueous (AQ) extracts were analysed using qualitative and quantitative LC/MS analyses. The antioxidant activities of EO and extracts were assessed using three parallel assays, while enzyme-inhibiting effects were evaluated against four enzymes. RESULTS The leaves bear various types of glandular trichomes, with lipophilic secretion predominating. The main EO component of EO was 1,8-cineole. A considerable number of phenolics and iridoids were tentatively identified in the ME extract. Quantitative LC/MS analysis confirmed that ferulic acid, rosmarinic acid, and epigallocatechin gallate were present in the highest amount in the extracts, in which three iridoids were also quantified. Although the ME extract contained the highest amount of polyphenolics and iridoids, the DCM extract showed the best overall biological potential. Additionally, EO exerted the strongest acetylcholinesterase and tyrosinase inhibition. CONCLUSION This study demonstrated that the endemic N. cyrenaica can be efficiently grown under in vitro conditions, where it develops various glandular trichomes that are thought to secrete and/or accumulate bioactive compounds with valuable medicinal potential.
Collapse
Affiliation(s)
- Ana Alimpić Aradski
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Mariana Oalđe Pavlović
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Dušica Janošević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Slađana Todorović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dejan Pljevljakušić
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, Serbia
| | - Petar D Marin
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Abdulhmid Giweli
- Faculty of Science, University of Al-Zintan, Zintan, Libya
- National Research Center for Tropical and Transboundary Diseases, Zintan, Libya
| | - Sonja Duletić-Laušević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
33
|
Wu G, Cheng H, Guo H, Li Z, Li D, Xie Z. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats. J Nutr Biochem 2023; 118:109349. [PMID: 37085056 DOI: 10.1016/j.jnutbio.2023.109349] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Tea polyphenol EGCG has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and 1 sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.
Collapse
Affiliation(s)
- Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huijun Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Zhuang Li
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
34
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
35
|
Potential of Polyphenols for Improving Sleep: A Preliminary Results from Review of Human Clinical Trials and Mechanistic Insights. Nutrients 2023; 15:nu15051257. [PMID: 36904255 PMCID: PMC10005154 DOI: 10.3390/nu15051257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Global epidemiologic evidence supports an interrelationship between sleep disorders and fruits and vegetable ingestion. Polyphenols, a broad group of plant substances, are associated with several biologic processes, including oxidative stress and signaling pathways that regulate the expression of genes promoting an anti-inflammatory environment. Understanding whether and how polyphenol intake is related to sleep may provide avenues to improve sleep and contribute to delaying or preventing the development of chronic disease. This review aims to assess the public health implications of the association between polyphenol intake and sleep and to inform future research. The effects of polyphenol intake, including chlorogenic acid, resveratrol, rosmarinic acid, and catechins, on sleep quality and quantity are discussed to identify polyphenol molecules that may improve sleep. Although some animal studies have investigated the mechanisms underlying the effects of polyphenols on sleep, the paucity of trials, especially randomized controlled trials, does not allow for conducting a meta-analysis to reach clear conclusions about the relationships among these studies to support the sleep-improving effects of polyphenols.
Collapse
|
36
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
37
|
Preparation of water-in-oil Pickering emulsion stabilized by Camellia oleifera seed cake protein and its application as EGCG delivery system. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
38
|
Ungarala R, Sinha SN, Sunder RS. Ultra high-Performance Liquid Chromatography (UHPLC) method development and validation for the identification of oxidized product of Epigallocatechin-3-Gallate (EGCG). J Chromatogr Sci 2023; 61:140-150. [PMID: 35373814 DOI: 10.1093/chromsci/bmac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In the present study we reported oxidation of epigallocatechin-3-gallate (EGCG) and validation of oxidized product by a validated ultra high-performance liquid chromatography (UHPLC) method. METHODS Two hundred milligrams of EGCG was oxidized in 5 mL of hydrogen peroxide (H2O2) and was identified by a validated UHPLC method with precision and robustness. Confirmation of parameters like C-H stretching and mass was carried out using infrared spectroscopy and mass spectroscopy, respectively. Identification of oxidized EGCG (O-EGCG) was done by UHPLC. RESULTS The infrared spectroscopy chromatograms observed less intensity C-H stretching as compared to O-EGCG. The mass of EGCG and O-EGCG were 459.09 and 915.16, respectively. Structure elucidation revealed a loss of one proton in O-EGCG as compared to EGCG. Validation of the developed method was specific, with linear correlation coefficient 0.9981 and 0.9917, respectively for EGCG and O-EGCG, the accuracy rate of 95.2%-99.6% for EGCG, and 99.18%-101.5% for O-EGCG. CONCLUSION Together, the results of this study demonstrate the formation of a dimer also the UHPLC method developed for identification of both EGCG and O-EGCG is validated as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines.
Collapse
Affiliation(s)
- Ramakrishna Ungarala
- Food Safety Division, ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - R Shyam Sunder
- University College of Technology, Osmania University, Tarnaka, Hyderabad, Telangana 500007, India
| |
Collapse
|
39
|
Yanagimoto A, Matsui Y, Yamaguchi T, Saito S, Hanada R, Hibi M. Acute Dose-Response Effectiveness of Combined Catechins and Chlorogenic Acids on Postprandial Glycemic Responses in Healthy Men: Results from Two Randomized Studies. Nutrients 2023; 15:nu15030777. [PMID: 36771483 PMCID: PMC9918965 DOI: 10.3390/nu15030777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Epidemiologic studies show that the risk of diabetes can be reduced by ingesting green tea or coffee. Previous studies have shown that simultaneously taking green tea catechins (GTC) and coffee chlorogenic acid (CCA) alters postprandial gastrointestinal hormones secretion and improves insulin sensitivity. However, there is no evidence on the acute effects of GTC and CCA on incretin and blood glucose, and on the respective dose of polyphenols. In this randomized, double-blind, placebo-controlled crossover study, we examined the effective dose of GTC and CCA on postprandial glucose, insulin, and incretin responses to a high-fat and high-carbohydrate cookie meal containing 75 g of glucose in healthy men. Study 1 (n = 18) evaluated two doses of GTC (270 or 540 mg) containing a fixed dose of CCA (270 mg) with 113 mg of caffeine and a placebo (0 mg GTC and 0 mg CCA) with 112 mg of caffeine. Study 2 (n = 18) evaluated two doses of CCA (150 or 300 mg) containing a fixed dose of GTC (540 mg) and a placebo with 99 mg of caffeine. The single combined ingestion of GTC and CCA significantly altered the incretin response and suppressed glucose and insulin levels. These findings suggest that the effective minimum dose is 540 mg of GTC and 150 mg of CCA.
Collapse
Affiliation(s)
- Aya Yanagimoto
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
- Correspondence: ; Tel.: +81-3-5630-7476
| | - Yuji Matsui
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Tohru Yamaguchi
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shinichiro Saito
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Ryuzo Hanada
- SOUSEIKAI Sumida Hospital, 1-29-1 Honjo, Sumida-ku, Tokyo 130-0004, Japan
| | - Masanobu Hibi
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| |
Collapse
|
40
|
Hu Y, Liu Z, Tao X, Li J, Hou Z, Guo X, Zhou D, Wang M, Zhu B. Epigallocatechin-3-gallate alleviates trans, trans-2,4-decadienal-induced endothelial pyroptosis and dysfunction by inhibiting NLRP3 inflammasome activation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
41
|
Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers (Basel) 2023; 15:cancers15030862. [PMID: 36765820 PMCID: PMC9913717 DOI: 10.3390/cancers15030862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea's unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers.
Collapse
Affiliation(s)
| | | | | | - James Segars
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| | - Md Soriful Islam
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| |
Collapse
|
42
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|
43
|
Panda SP, Mahamat MSA, Rasool MA, Prasanth DSNBK, Ismail IA, Abasher MAA, Jena BR. Inhibitory effects of mixed flavonoid supplements on unraveled DSS-induced ulcerative colitis and arthritis. BIOIMPACTS : BI 2023; 13:73-84. [PMID: 36817000 PMCID: PMC9923810 DOI: 10.34172/bi.2022.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Introduction: The mixed flavonoid supplement (MFS) [Trimethoxy Flavones (TMF) + epigallocatechin-3-gallate (EGCG)] can be used to suppress inflammatory ulcers as an ethical medicine in Ayurveda. The inflammation of the rectum and anal regions is mostly attributed to nuclear factor kappa beta (NF-κB) signaling. NF-κB stimulates the expression of matrix metalloproteinase (MMP9), inflammatory cytokines tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β). Although much research targeted the NF-κB and MMP9 signaling pathways, a subsequent investigation of target mediators in the inflammatory ulcer healing and NF-κB pathway has not been done. Methods: The docking studies of compounds TMF and EGCG were performed by applying PyRx and available software to understand ligand binding properties with the target proteins. The synergistic ulcer healing and anti-arthritic effects of MFS were elucidated using dextran sulfate sodium (DSS)-induced colon ulcer in Swiss albino rats. The colon mucosal injury was analyzed by colon ulcer index (CUI) and anorectic tissue microscopy. The IL-1β, tumor necrosis factor (TNF-α), and the pERK, MMP9, and NF-κB expressions in the colon tissue were determined by ELISA and Western blotting. RT-PCR determined the mRNA expression for inflammatory marker enzymes. Results: The docking studies revealed that EGCG and TMF had a good binding affinity with MMP9 (i.e., -6.8 and -6.0 Kcal/mol) and NF-kB (-9.4 and 8.3 kcal/mol). The high dose MFS better suppressed ulcerative colitis (UC) and associated arthritis with marked low-density pERK, MMP9, and NF-κB proteins. The CUI score and inflammatory mediator levels were suppressed with endogenous antioxidant levels in MFS treated rats. Conclusion: The MFS effectively unraveled anorectic tissue inflammation and associated arthritis by suppressing NF-κB-mediated MMP9 and cytokines.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India,Corresponding author: Siva Prasad Panda,
| | - Mahamat Sami Adam Mahamat
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - Malikyahia Abdul Rasool
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - DSNBK Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Idris Adam Ismail
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - Moyed Abasher Ahmed Abasher
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | | |
Collapse
|
44
|
Li L, Sun Y, Zha W, Li L, Li H. Novel insights into the N 6-methyladenosine RNA modification and phytochemical intervention in lipid metabolism. Toxicol Appl Pharmacol 2022; 457:116323. [PMID: 36427654 DOI: 10.1016/j.taap.2022.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Epitranscriptome (RNA modification) plays a vital role in a variety of biological events. N6-methyladenosine (m6A) modification is the most prevalent mRNA modification in eukaryotic cells. Dynamic and reversible m6A modification affects the plasticity of epitranscriptome, which plays an essential role in lipid metabolism. In this review, we comprehensively delineated the role and mechanism of m6A modification in the regulation of lipid metabolism in adipose tissue and liver, and summarized phytochemicals that improve lipid metabolism disturbance by targeting m6A regulator, providing potential lead candidates for drug therapeutics. Moreover, we discussed the main challenges and possible future directions in this field.
Collapse
Affiliation(s)
- Linghuan Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuanhai Sun
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weiwei Zha
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqing Li
- Taizhou Municipal Hospital, Taizhou University, Taizhou 318000, PR China
| | - Hanbing Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
45
|
Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A. The beneficial therapeutic effects of plant-derived natural products for the treatment of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2772-2790. [PMID: 35961944 PMCID: PMC9745475 DOI: 10.1002/jcsm.13057] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant-derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant-derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee-extension strength, weight-lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant-derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant-derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
46
|
de Mello e Silva GN, Batista Rodrigues ES, Lopes de Macêdo IY, Vicente Gil HP, Campos HM, Ghedini PC, Cardozo da Silva L, Batista EA, Lopes de Araújo G, Vaz BG, Pinto de Castro Ferreira TA, Oliveira do Couto R, de Souza Gil E. Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): An Amazon superfruit with in vitro neuroprotective properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Yanagimoto A, Matsui Y, Yamaguchi T, Hibi M, Kobayashi S, Osaki N. Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022; 14:nu14235063. [PMID: 36501092 PMCID: PMC9737369 DOI: 10.3390/nu14235063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Epidemiologic studies have revealed that consuming green tea or coffee reduces diabetes risk. We evaluated the effects of the combined consumption of green tea catechins and coffee chlorogenic acids (GTC+CCA) on postprandial glucose, the insulin incretin response, and insulin sensitivity. Eleven healthy men were recruited for this randomized, double-blinded, placebo-controlled crossover trial. The participants consumed a GTC+CCA-enriched beverage (620 mg GTC, 373 mg CCA, and 119 mg caffeine/day) for three weeks; the placebo beverages (PLA) contained no GTC or CCA (PLA: 0 mg GTC, 0 mg CCA, and 119 mg caffeine/day). Postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) responses were measured at baseline and after treatments. GTC+CCA consumption for three weeks showed a significant treatment-by-time interaction on glucose changes after the ingestion of high-fat and high-carbohydrate meals, however, it did not affect fasting glucose levels. Insulin sensitivity was enhanced by GCT+CCA compared with PLA. GTC+CCA consumption resulted in a significant increase in postprandial GLP-1 and a decrease in GIP compared to PLA. Consuming a combination of GTC and CCA for three weeks significantly improved postprandial glycemic control, GLP-1 response, and postprandial insulin sensitivity in healthy individuals and may be effective in preventing diabetes.
Collapse
Affiliation(s)
- Aya Yanagimoto
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
- Correspondence: ; Tel.: +81-3-5630-7476
| | - Yuji Matsui
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Tohru Yamaguchi
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Masanobu Hibi
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Shigeru Kobayashi
- Department of Surgery, Tokyo Rinkai Hospital, 1-4-2 Rinkai-cho, Edogawa, Tokyo 134-0086, Japan
| | - Noriko Osaki
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| |
Collapse
|
48
|
Lee YL, Lee SY. Potential lipid-lowering effects of Ulmus macrocarpa Hance extract in adults with untreated high low-density lipoprotein cholesterol concentrations: A randomized double-blind placebo-controlled trial. Front Med (Lausanne) 2022; 9:1000428. [PMID: 36388925 PMCID: PMC9663492 DOI: 10.3389/fmed.2022.1000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Ulmus macrocarpa Hance extract (UME) has demonstrated an antilipidemic effect via upregulation of the adenosine monophosphate-activated protein kinase pathway and regulation of lipid metabolism in both laboratory and animal studies. Therefore, we examined the effects and safety of UME on plasma lipids in adults with untreated high, low-density lipoprotein cholesterol (LDL-C) concentrations. MATERIALS AND METHODS In the current double-blind placebo-controlled randomized clinical trial, 80 patients with untreated high LDL-C concentrations (130-190 mg/dl) were randomly allocated to either the "UME group" (received 500 mg UME as two capsules per day) or the "Placebo group" (received placebo containing cornstarch as two capsules per day) for 12 weeks. The primary outcome was the change in LDL-C concentration within the 12-week treatment period; secondary outcomes included changes in total cholesterol (TC), triglyceride, high-density lipoprotein cholesterol, apolipoprotein A1, and apolipoprotein B (ApoB) concentrations. RESULTS UME over 12 weeks led to a greater decrease in LDL-C, TC, and ApoB concentrations than did the placebo as follows: by 18.1 mg/dl (P < 0.001); 23.3 mg/dl (P < 0.001); 9.3 mg/dl (P = 0.018), respectively. When LDL-C, TC, and ApoB concentrations were expressed as a lsmeans percentage of the baseline concentration, they after 12 weeks of UME had greater % differences compared to the placebo as follows: by 11.9% (P < 0.001); 10.0% (P < 0.001); 8.6% (P < 0.05), respectively. However, no significant inter- and intra-group changes in liver enzyme, free fatty acid, anti-inflammatory marker, and fasting glucose concentrations were observed. None of the participants experienced notable adverse events. DISCUSSION UME causes a significant improvement in lipid profiles in adults with untreated high LDL-C concentrations. CLINICAL TRIAL REGISTRATION [www.clinicaltrials.gov/], identifier [NCT03773315].
Collapse
Affiliation(s)
- Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
| | - Sang Yeoup Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
49
|
Wu Q, Chen Z, Ding Y, Tang Y, Cheng Y. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis. Front Nutr 2022; 9:1033129. [PMID: 36330148 PMCID: PMC9623008 DOI: 10.3389/fnut.2022.1033129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high incidence and is closely related to metabolic syndrome. If not controlled, it may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-apoptotic form of programmed cell death (PCD), is closely related to NAFLD and HCC, and the mechanisms of action involved are more complex. Some studies have demonstrated that many drugs inhibit ferroptosis and protect liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine (TCM), especially herbs or herbal extracts, has received increasing attention. However, there are relatively few review articles on the regulation of NAFLD by TCM through ferroptosis pathway. Here, we summarize the TCM intervention mechanism and application affecting NAFLD/NAFLD-HCC via regulation of ferroptosis. This article focuses on the relationship between ferroptosis and NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting ferroptosis. It not only summarizes the mechanism of early prevention and treatment of NAFLD, but also provides reference ideas for the development of TCM for the treatment of metabolic diseases and liver diseases.
Collapse
Affiliation(s)
- Qiongbo Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Zihao Chen
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Ding
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yunting Tang
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yawei Cheng
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng,
| |
Collapse
|
50
|
Šturm L, Prislan I, González-Ortega R, Mrak P, Snoj T, Anderluh G, Poklar Ulrih N. Interactions of (-)-epigallocatechin-3-gallate with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183999. [PMID: 35820494 DOI: 10.1016/j.bbamem.2022.183999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.
Collapse
Affiliation(s)
- Luka Šturm
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rodrigo González-Ortega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|