1
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Sun X, Liu F, Liu H, Guo L, Ma H, Zhu J, Qian Y. Molecular mechanisms and behavioral relevance underlying neural correlates of childhood neglect. J Affect Disord 2024; 367:795-805. [PMID: 39255872 DOI: 10.1016/j.jad.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Childhood neglect is associated with brain changes, yet the molecular mechanisms and behavioral relevance underlying such associations remain elusive. METHODS We calculated fractional amplitude of low-frequency fluctuations (fALFF) using resting-state functional MRI and tested their correlation with childhood neglect across a large sample of 510 healthy young adults. Then, we investigated the spatial relationships of the identified neural correlates of childhood neglect with gene expression, neurotransmitter, and behavioral domain atlases. RESULTS We found that more severe childhood neglect was correlated with higher fALFF in the bilateral anterior cingulate cortex. Remarkably, the identified neural correlates of childhood neglect were spatially correlated with expression of gene categories primarily involving neuron, synapse, ion channel, cognitive and perceptual processes, and physiological response and regulation. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including serotonin and GABA. Finally, neural correlates of childhood neglect were associated with diverse behavioral domains implicating mental disorders, emotion, cognition, and sensory perception. LIMITATIONS The cross-sectional study design cannot unequivocally establish causality. CONCLUSIONS Our findings may not only add to the current knowledge regarding the relationship between childhood neglect and mental health, but also have clinical implications for developing preventive strategies for individuals exposed to childhood neglect who are at risk for mental disorders.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Hu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Lixin Guo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China.
| |
Collapse
|
3
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
4
|
Poupard L, Page G, Thoreau V, Kaouah Z. Relationships between Gut Microbiota and Autism Spectrum Disorders: Development and Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:554-564. [PMID: 39420603 PMCID: PMC11494427 DOI: 10.9758/cpn.24.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024]
Abstract
Many studies have demonstrated the impact of intestinal microbiota on normal brain development. Moreover, the gut microbiota (GM) is impacted by multiple endogenous and environmental factors that may promote gut dysbiosis (GD). An increasing number of studies are investigating the possible role of the GD in the development of neurological and behavioral disorders. For autism spectrum disorders (ASD), specific intestinal bacterial signatures have been identified, knowing that gastrointestinal symptoms are frequently found in ASD. In this review, the peri and post-natal factors modulating the GM are described and the specific gut bacterial signature of ASD children is detailed. Through bidirectional communication between the GM and the brain, several mechanisms are involved in the development of ASD, such as cytokine-mediated neuroinflammation and decreased production of neuroprotective factors such as short-chain fatty acids by the GM. Imbalance of certain neurotransmitters such as serotonin or gamma-aminobutyric acid could also play a role in these gut-brain interactions. Some studies show that this GD in ASD is partly reversible by treatment with pre- and probiotics, or fecal microbiota transplantation with promising results. However, certain limitations have been raised, in particular concerning the short duration of treatment, the small sample sizes and the diversity of protocols. The development of standardized therapeutics acting on GD in large cohort could rescue the gastrointestinal symptoms and behavioral impairments, as well as patient management.
Collapse
Affiliation(s)
- Lisa Poupard
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
| | - Guylène Page
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| | - Vincent Thoreau
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| | - Zahyra Kaouah
- Medicine and Pharmacy Faculty, University of Poitiers, Poitiers, France
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Pôle Biologie Santé, University of Poitiers, Poitiers, France
| |
Collapse
|
5
|
Jia Q, Tan H, Li T, Duan X. Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signal 2024:10.1007/s11302-024-10059-2. [PMID: 39480600 DOI: 10.1007/s11302-024-10059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental condition characterized by persistent inattention, hyperactivity, and impulsivity. Although its precise etiology remains unclear, current evidence suggests that dysregulation within the neurotransmitter system plays a key role in the pathogenesis of ADHD. Adenosine, an endogenous nucleoside widely distributed throughout the body, modulates various physiological processes, including neurotransmitter release, sleep regulation, and cognitive functions through its receptors. This review critically examines the role of the adenosine system in ADHD, focusing on the links between adenosine receptor function and ADHD-related symptoms. Additionally, it explores how adenosine interacts with dopamine and other neurotransmitter pathways, shedding light on its involvement in ADHD pathophysiology. This review aims to provide insights into the potential therapeutic implications of targeting the adenosine system for ADHD management.
Collapse
Affiliation(s)
- Qingxia Jia
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hongwan Tan
- People's Hospital of Tongliang District, Chongqing, 402560, Tongliang, China
| | - Tingsong Li
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoling Duan
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
6
|
Horovitz O. Nutritional Psychology: Review the Interplay Between Nutrition and Mental Health. Nutr Rev 2024:nuae158. [PMID: 39441711 DOI: 10.1093/nutrit/nuae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Nutritional psychology is a burgeoning field that examines the intricate relationship between nutrition and mental health. This concept, its historical development, and its current significance in understanding the complex interplay between diet and psychological well-being are explored in this article. The influence of various nutrients on mental health, the role of dietary patterns, and the impact of nutrition on specific mental disorders are examined. Highlighted are the potential mechanisms underlying the nutrition-mental health connection, and the implications for clinical practice and public health interventions are discussed. The discussion in this article underscores the importance of considering nutrition as essential in mental health promotion and treatment.
Collapse
Affiliation(s)
- Omer Horovitz
- The Physiology and Behavior Laboratory, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
- Psychology Department, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
| |
Collapse
|
7
|
Zou Z, Xiao N, Chen Z, Lin X, Li Y, Li P, Cheng Q, Du B. Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota. Mol Nutr Food Res 2024:e2300467. [PMID: 39432823 DOI: 10.1002/mnfr.202300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2024] [Indexed: 10/23/2024]
Abstract
SCOPE Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats. METHODS AND RESULTS After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of Lactobacillus animalis and Lactobacillus johnsonii are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression. CONCLUSION AP, as a natural and safe active substance, has a positive effect in the treatment of depression.
Collapse
Affiliation(s)
- Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zhixian Chen
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Xucong Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Qian Cheng
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
8
|
Wang L, Yu L, Liu Z, Che C, Wang Y, Zhao Y, Zhu M, Yang G, Cao A. FMT intervention decreases urine 5-HIAA levels: a randomized double-blind controlled study. Front Med (Lausanne) 2024; 11:1411089. [PMID: 39493719 PMCID: PMC11529335 DOI: 10.3389/fmed.2024.1411089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is often linked to gastrointestinal issues and altered serotonin metabolism. Emerging evidence suggests gut microbiota influence both, with fecal microbiota transplantation (FMT) offering a potential therapeutic approach. However, its impact on serotonin metabolism and ASD symptoms is not well understood. In this study, we aimed to evaluate the clinical effects of FMT and examine changes in specific urinary metabolites in children with ASD. Methods A randomized double-blind controlled trial was performed to evaluate the clinical effects of FMT on GI and ASD-related symptoms. Gastrointestinal symptoms were assessed using the Gastrointestinal Symptom Rating Scale (GSRS), and the ASD-related symptoms were assessed using the Childhood Autism Rating Scale (CARS), Aberrant Behavior Checklist (ABC), and Social Responsiveness Scale (SRS) scores. Urinary metabolites were analyzed by homogeneous enzyme immunoassay using commercially available kits. Results Significant improvements in GI and core ASD symptoms were observed following FMT intervention. The average GSRS scores decreased from 30.17 (before) to 19 (after; p < 0.0001), CARS scores decreased from 36.22 to 33.33 (p < 0.0001), SRS scores decreased from 151.17 to 137.5 (p = 0.0002), and the ABC scores decreased 76.39 to 53.17 (p < 0.0001) in the FMT group. However, in the placebo group, GSRS, CARS, and SRS scores showed no significant changes, while ABC scores decreased from 72 to 58.75 (p = 0.034). The FMT group also showed a significant reduction in urinary 5-hydroxyindoleacetic acid (5-HIAA) levels from 8.6 to 7.32 mg/L (p = 0.022), while other metabolites showed no significant changes. Conclusion FMT is a safe and effective treatment for improving GI and core symptoms in children with ASD, with 5-HIAA showing potential as a urinary biomarker for treatment response.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Lianhu Yu
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Zhiyue Liu
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Chao Che
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Yu Wang
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Yongheng Zhao
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Mengna Zhu
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| | - Guang Yang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Aihua Cao
- Department of Pediatrics, Shandong University Qilu Hospital, Shandong, Jinan, China
| |
Collapse
|
9
|
Kang MC, Deutz NEP, Kirschner SK, Engelen MPKJ. Metabolic kinetics and muscle and brain health markers in older adults, and the role of age and presence of chronic morbidities: A large cross-sectional cohort study. Clin Nutr 2024; 43:36-47. [PMID: 39423760 DOI: 10.1016/j.clnu.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Older adults are at risk for muscle and cognitive function decline during advanced aging, but the underlying metabolic mechanisms and the role of aging-associated chronic morbidities remain unclear. In the present study, we examined whether protein and amino acid kinetics in older adults with and without chronic morbidities are different when 50-70 and 70-90 of age and related to markers of muscle and brain health declines. METHODS In a large cross-sectional observational study, 575 older adults from 12 trials (2014-2022) were stratified based on their age (50-70y vs. 70-95y) and the presence of chronic morbidities. The main outcomes were whole-body production (WBP) and interconversions of amino acids by stable amino acid tracers, body composition, and muscle and cognitive performance. Additionally, the association between metabolic markers and muscle and brain health was assessed. RESULTS Overall lower muscle strength, muscle and fat mass, and cognitive function (p < 0.03), but no mood disturbances, were found in 70-95y compared to 50-70y older adults. Presence of morbidities was associated with lower muscle strength and mass, and cognitive function, but higher visceral adipose tissue, and mood disturbances (p < 0.05). Aging was associated with suppressed WBP of most amino acids, de novo arginine production, and net protein breakdown, but higher myofibrillar protein breakdown (p < 0.007). Presence of morbidities was associated with lower WBP of glutamine, glutamate, histidine, isoleucine, phenylalanine, tyrosine, and net protein breakdown, and higher WBP of valine and taurine (p < 0.04). Age showed significant negative correlations with WBP of nearly all amino acids, de novo arginine production and net protein breakdown (r: [-0.407, -0.136], p < 0.01) but a positive correlation with WBP of myofibrillar protein breakdown (r = 0.133, p = 0.009). Lean mass showed positive correlations with de novo arginine production and net protein breakdown and WBP of all amino acids except for isoleucine (r: [0.16, 0.799], p < 0.005). MoCA showed a positive correlation with WBP of leucine and valine (r: [0.163, 0.2], p < 0.03). Worse cognitive performance was positively associated with WBP of tau-methylhistidine and taurine (r: [0.13, 0.141], p < 0.04), but negatively associated with WBP of glycine and valine, de novo arginine production, and net protein breakdown (r: [-0.222, -0.115], p < 0.05). CONCLUSION Comprehensive phenotyping of a large group of older adults revealed differences in metabolic health in response to advanced aging and chronic morbidities. Poor muscle health accompanied by advanced aging was associated with overall metabolic downregulation, except for enhanced myofibrillar (muscle) protein breakdown. Presence of chronic morbidities was further associated with disturbed muscle health, mood, arginine, and taurine pathways, and higher visceral adipose tissue. Therefore, different phenotypes among older adults need to be considered when evaluating therapeutic approaches to improve muscle and brain health.
Collapse
Affiliation(s)
- Minchae C Kang
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Sarah K Kirschner
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Abdel-Rahman M, Hussein AA, Ahmed-Farid OA, Sawi AA, Abdel Moneim AE. Intermittent fasting alerts neurotransmitters and oxidant/antioxidant status in the brain of rats. Metab Brain Dis 2024; 39:1291-1305. [PMID: 39292431 PMCID: PMC11513736 DOI: 10.1007/s11011-024-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Several recent studies have attempted to understand how fasting has benefits for body health, especially the nervous system. To evaluate the impact of intermittent fasting on body weight, brain neurotransmitters, brain oxidative stress, and brain-derived neurotrophic factor (BDNF) in several areas of the brain, this study was conducted in rats. Thirty male Wistar rats were randomly divided into two groups. Group 1 (15 rats) served as the control and group 2 (15 rats) underwent intermittent fasting (IF; 24 h) for 1, 7, or 15 days. The findings demonstrated that intermittent fasting significantly reduced body weight. In this sense, brain monoamines and amino acids, namely dopamine, glutamate, aspartate, and oxidative stress markers (malondialdehyde and nitric oxide), decreased significantly after 1 day of IF. However, norepinephrine, serotonin, gamma-amino butyric acid, and glycine increased significantly. Additionally, glutathione levels were markedly elevated in IF. Surprisingly, the neuromodulatory effect of intermittent fasting fluctuates depending on the IF period. To support this fluctuation, BDNF levels increased after 1 day in the hippocampus and decreased after 15 days of intermittent fasting in all areas of the brain tested. In conclusion, our results show that intermittent fasting has beneficial influences on the brain; however, prolonged intermittent fasting can also induce some unfavorable physiological outcomes that prevent optimal neurological function.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Aida A Hussein
- Zoology and Entomology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Giza Governorate, Egypt
| | - Abdullah A Sawi
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | |
Collapse
|
12
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Steckler R, Magzal F, Kokot M, Walkowiak J, Tamir S. Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids. Brain Behav Immun Health 2024; 40:100829. [PMID: 39184374 PMCID: PMC11342906 DOI: 10.1016/j.bbih.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Background Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with complex genetic and environmental underpinnings. Emerging evidence suggests a significant role of gut microbiota in ADHD pathophysiology. This study investigates variations in gut microbiota composition and Short-Chain Fatty Acid (SCFA) profiles between children and adolescents with ADHD and healthy controls. Methods The study included 42 ADHD patients and 31 healthy controls, aged 6-18 years. Fecal samples were analyzed for microbial composition using 16S rRNA gene sequencing and for SCFA profiles through gas chromatography-mass spectrometry (GC-MS). The study assessed both α and β diversity of gut microbiota and quantified various SCFAs to compare between the groups. Results ADHD subjects demonstrated significantly reduced gut microbiota diversity, as indicated by lower α-diversity indices (Shannon index, Observed species, Faith PD index) and a trend towards significance in β-diversity (Weighted UniFrac). Notably, the ADHD group exhibited significantly lower levels of key SCFAs, including acetic, propionic, isobutyric, isovaleric, and valeric acids, highlighting a distinct microbial and metabolic profile in these individuals. Conclusion This study uncovers significant alterations in gut microbiota and SCFA profiles in children with ADHD, compared to healthy controls. The observed changes in SCFAs, known for their associations with other behavioral and neurologic pathologies, and for their role in neural signaling. These findings offer a metabolite fingerprint that could potentially lead to novel diagnostic and treatment approaches for ADHD, emphasizing the importance of gut microbiota in the disorder's pathogenesis and management.
Collapse
Affiliation(s)
- Rafi Steckler
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Faiga Magzal
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Marta Kokot
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Snait Tamir
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| |
Collapse
|
15
|
Lockwood MB, Sung C, Alvernaz SA, Lee JR, Chin JL, Nayebpour M, Bernabé BP, Tussing-Humphreys LM, Li H, Spaggiari M, Martinino A, Park CG, Chlipala GE, Doorenbos AZ, Green SJ. The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities. Biol Res Nurs 2024; 26:636-656. [PMID: 38836469 DOI: 10.1177/10998004241256031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Choa Sung
- Post-Doctoral Fellow, Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Suzanne A Alvernaz
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer L Chin
- Medical Student, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Mehdi Nayebpour
- Virginia BioAnalytics LLC, Washington, District of Columbia, USA
| | - Beatriz Peñalver Bernabé
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - Lisa M Tussing-Humphreys
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hongjin Li
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Mario Spaggiari
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Martinino
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chang G Park
- Department of Population Health Nursing Science, Office of Research Facilitation, University of Illinois Chicago, Chicago, IL, USA
| | - George E Chlipala
- Research Core Facility, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois ChicagoCollege of Nursing, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Wellington MO. The Choice of Dietary Protein Source May Influence Specific Amino Acid Absorption Kinetics in Pigs. J Nutr 2024; 154:2893-2894. [PMID: 39216787 DOI: 10.1016/j.tjnut.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
|
17
|
Wang C, Xu Q, Wei C, Hu Q, Xiao Y, Jin Y. Kynurenine Attenuates Ulcerative Colitis Mediated by the Aryl Hydrocarbon Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21000-21012. [PMID: 39271472 DOI: 10.1021/acs.jafc.4c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The higher prevalence of ulcerative colitis (UC) and the side effects of its therapeutic agents contribute to finding novel treatments. This study aimed to investigate whether kynurenine (KYN), a tryptophan metabolite, has the possibility of alleviating UC and further clarifying the underlying mechanism. The effect of KYN on treating UC was evaluated by intestinal pathology, inflammatory cytokines, and tight-junction proteins in colitis mice and LPS-stimulated Caco-2 cells. Our results revealed that KYN relieved pathological symptoms of UC, improved intestinal barrier function, enhanced AhR expression, and inhibited NF-κB signaling pathway activation in the colon of colitis mice. Moreover, the improved intestinal barrier function, the decreased inflammasome production, and the inhibited activation of the NF-κB signaling pathway by KYN were dependent on AhR in Caco-2 cells. KYN could trigger AhR activation, inactivate the NF-κB signaling pathway, and inhibit NLRP3 inflammasome production, thus alleviating intestinal epithelial barrier dysfunction and reducing intestinal inflammation. In conclusion, the present study reveals that KYN ameliorates UC by improving the intestinal epithelial barrier and activating the AhR-NF-κB-NLRP3 signaling pathway, and it can be a promising therapeutic agent and dietary supplement for alleviating UC.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
18
|
Wang B, Cheng P, Jin B, Jiang Y, Wang Q, Xu H. Effect of Tryptophan Restriction in the Therapy of Irritable Bowel Syndrome: a Systematic Review. Int J Gen Med 2024; 17:4141-4151. [PMID: 39308964 PMCID: PMC11414632 DOI: 10.2147/ijgm.s474525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The metabolic pathways of tryptophan (TRP) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), positing that the strategic modulation of TRP consumption may exert regulatory effects on serotonin levels, consequently altering the clinical manifestation of IBS. This systematic review was meticulously orchestrated to evaluate the effect of TRP restriction on IBS. Methods A comprehensive search of the MEDLINE/PubMed, Cochrane Library, and Embase databases was conducted. Controlled trials that compared the efficacy of TRP restriction in IBS patients were scrutinized. The primary outcomes were gastrointestinal symptoms, quality of life, and pain, whereas the secondary outcomes included anxiety, mood, and safety. The risk of bias was meticulously assessed according to the guidelines recommended by the Cochrane Collaboration. Results A total of five trials, enrolling 135 participants, were incorporated into the qualitative synthesis. Low-TRP intake attenuated gastrointestinal discomfort and enhanced psychological well-being in IBS patients, while the effects of acute TRP depletion were controversial. Safety data from one randomized controlled trial reported no occurrence of adverse events. Conclusion This systematic review suggests that moderating, rather than depleting, TRP intake may potentially be a feasible and safe adjunctive treatment for patients with IBS. Future research incorporating a high-quality study design and consensus on clinical outcome measurements for IBS is warranted.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Peilin Cheng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Bingjie Jin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qingcai Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
19
|
Ferraz-Bannitz R, Ozturk B, Cummings C, Efthymiou V, Casanova Querol P, Poulos L, Wang H, Navarrete V, Saeed H, Mulla CM, Pan H, Dreyfuss JM, Simonson DC, Sandoval DA, Patti ME. Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia. J Clin Invest 2024; 134:e180157. [PMID: 39264731 PMCID: PMC11527454 DOI: 10.1172/jci180157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUNDBariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1-3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin.METHODSTo identify mediators of disordered metabolism in PBH, we analyzed the plasma metabolome in the fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-Roux-en-Y gastric bypass (post-RYGB) (n = 10), and nonsurgical controls (n = 8).RESULTSIn the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone β-hydroxybutyrate were increased by 30%-80% in PBH versus asymptomatic. Conversely, multiple amino acids (branched-chain amino acids, tryptophan) and polyunsaturated lipids were reduced by 20%-50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced 2- to 10-fold in PBH in the fasting state. Postprandially, plasma serotonin was uniquely increased 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin.CONCLUSIONTogether these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target.FUNDINGNational Institutes of Health (NIH) grant R01-DK121995, NIH grant P30-DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2018/22111-2.
Collapse
Affiliation(s)
- Rafael Ferraz-Bannitz
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Berkcan Ozturk
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Pilar Casanova Querol
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsay Poulos
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hanna Wang
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Valerie Navarrete
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hamayle Saeed
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M. Mulla
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Donald C. Simonson
- Harvard Medical School, Boston, Massachusetts, USA
- Divsion of Endocrinology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Darleen A. Sandoval
- Section of Nutrition, Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. J Clin Med 2024; 13:5364. [PMID: 39336850 PMCID: PMC11432543 DOI: 10.3390/jcm13185364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Bulimia nervosa (BN) is a disorder primarily affecting adolescent females, characterized by episodes of binge eating followed by inappropriate compensatory behaviors aimed at preventing weight gain, including self-induced vomiting and the misuse of diuretics, laxatives, and insulin. The precise etiology of BN remains unknown, with factors such as genetics, biological influences, emotional disturbances, societal pressures, and other challenges contributing to its prevalence. First-line treatment typically includes pharmacotherapy, which has shown moderate effectiveness. Neuroimaging evidence suggests that altered brain activity may contribute to the development of BN, making interventions that directly target the brain extremely valuable. One such intervention is repetitive transcranial magnetic stimulation (rTMS), a non-invasive stimulation technique that has been garnering interest in the medical community for many years. METHODS This review explores the use of rTMS in the treatment of BN. Searches were conducted in the PubMed/Medline, ResearchGate, and Cochrane databases. RESULTS Twelve relevant studies were identified. Analysis of the results from these studies reveals promising findings, particularly regarding key parameters in the pathophysiology of BN. Several studies assessed the impact of rTMS on binge episodes. While some studies did not find significant reductions, most reported decreases in binge eating and purging behaviors, with some cases showing complete remission. Reductions in symptoms of depression and food cravings were also demonstrated. However, results regarding cognitive improvement were mixed. The discussion focused heavily on potential mechanisms of action, including neuromodulation of brain networks, induction of neuroplasticity, impact on serotonergic dysfunction, anti-inflammatory action, and HPA axis modulation. rTMS was found to be a safe intervention with no serious side effects. CONCLUSIONS rTMS in the treatment of BN appears to be a promising intervention that alleviates some symptoms characteristic of the pathophysiology of this disorder. An additional effect is a significant reduction in depressive symptoms. However, despite these findings, further research is required to confirm its effectiveness and elucidate the mechanisms of action. It is also recommended to further investigate the potential mechanisms of action described in this review.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| | | |
Collapse
|
21
|
Zou Z, Fan W, Liu H, Liu Q, He H, Huang F. The roles of 5-HT in orofacial pain. Oral Dis 2024; 30:3838-3849. [PMID: 38622872 DOI: 10.1111/odi.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.
Collapse
Affiliation(s)
- Zhishan Zou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haotian Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Nikolaus S, Fazari B, Chao OY, Almeida FR, Abdel-Hafiz L, Beu M, Henke J, Antke C, Hautzel H, Mamlins E, Müller HW, Huston JP, von Gall C, Giesel FL. 2,5-Dimethoxy-4-iodoamphetamine and altanserin induce region-specific shifts in dopamine and serotonin metabolization pathways in the rat brain. Pharmacol Biochem Behav 2024; 242:173823. [PMID: 39002804 DOI: 10.1016/j.pbb.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE For understanding the neurochemical mechanism of neuropsychiatric conditions associated with cognitive deficits it is of major relevance to elucidate the influence of serotonin (5-HT) agonists and antagonists on memory function as well dopamine (DA) and 5-HT release and metabolism. In the present study, we assessed the effects of the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and the 5-HT2A receptor altanserin (ALT) on object and place recognition memory and cerebral neurotransmitters and metabolites in the rat. METHODS Rats underwent a 5-min exploration trial in an open field with two identical objects. After systemic injection of a single dose of either DOI (0.1 mg/kg), ALT (1 mg/kg) or the respectice vehicle (0.9 % NaCl, 50 % DMSO), rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Upon the assessment of object exploration and motor/exploratory behaviors, rats were sacrificed. DA, 5-HT and metabolite levels were analyzed in cingulate (CING), caudateputamen (CP), nucleus accumbens (NAC), thalamus (THAL), dorsal (dHIPP) and ventral hippocampus (vHIPP), brainstem and cerebellum with high performance liquid chromatography. RESULTS DOI decreased rearing but increased head-shoulder motility relative to vehicle. Memory for object and place after both DOI and ALT was not different from vehicle. Network analyses indicated that DOI inhibited DA metabolization in CING, CP, NAC, and THAL, but facilitated it in dHIPP. Likewise, DOI inhibited 5-HT metabolization in CING, NAC, and THAL. ALT facilitated DA metabolization in the CING, NAC, dHIPP, vHIPP, and CER, but inhibited it in the THAL. Additionally, ALT facilitated 5-HT metabolization in NAC and dHIPP. CONCLUSIONS DOI and ALT differentially altered the quantitative relations between the neurotransmitter/metabolite levels in the individual brain regions, by inducing region-specific shifts in the metabolization pathways. Findings are relevant for understanding the neurochemistry underlying DAergic and/or 5-HTergic dysfunction in neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | - Benedetta Fazari
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Jan Henke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Abey NO, Ebuehi OAT, Imaga NA. Effect of perinatal dietary protein deficiency on some neurochemicals and cytoarchitectural balance, in F1 and F2 generations of rats. Nutr Neurosci 2024; 27:962-977. [PMID: 37995096 DOI: 10.1080/1028415x.2023.2285085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Protein deficiency, characterized by an inadequate intake of protein in the diet that fails to meet the body's physiological requirements across various stages, can lead to detrimental outcomes. This is of interest due to the persistent low protein content in staple foods and suboptimal dietary patterns. The study sought to assess the intergenerational repercussions of dietary protein deficiency on specific neurochemicals and the cytoarchitecture of the brain within the F1 and F2 generations of rats. The rats were categorized into four groups based on the protein content percentage in their diets: 21% protein diet (21%PD), 10% protein diet (10%PD), 5% protein diet (5%PD), and control diet. Neurobehavior was assessed, while brain serotonin and dopamine levels were measured using HPLC. BDNF and GDNF expression in the hippocampal and prefrontal (PFC) sections, Immunohistochemical investigations of the morphological impact on the hippocampus and PFC, were also analyzed. The protein-deficient groups displayed anxiety, loss of striatal serotonin and increased dopamine levels, degenerated pyramidal cells in the hippocampus, and a prominent reduction in cellular density in the PFC. BDNF and GDNF levels in the PFC were reduced in the 5%PD group. GFAP astrocyte expression was observed to be increased in the prefrontal cortex (PFC) and hippocampal sections, indicating heightened reactivity. The density of hypertrophied cells across generations further suggests the presence of neuroinflammation. Changes in brain structure, neurotransmitter levels, and neurotrophic factor levels may indicate intergenerational alterations in critical regions, potentially serving as indicators of the brain's adaptive response to address protein deficiency across successive generations.
Collapse
Affiliation(s)
- Nosarieme Omoregie Abey
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Osaretin Albert Taiwo Ebuehi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Ngozi Awa Imaga
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| |
Collapse
|
24
|
Seo H, Yoon JW, Kwon Y, Yeom E. Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in Drosophila melanogaster. Dev Reprod 2024; 28:87-94. [PMID: 39444642 PMCID: PMC11495883 DOI: 10.12717/dr.2024.28.3.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in Drosophila melanogaster. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, Dilp2 mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in D. melanogaster.
Collapse
Affiliation(s)
- Hyejin Seo
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
| | - Jong-Won Yoon
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Younghwi Kwon
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| |
Collapse
|
25
|
El Baassiri MG, Raouf Z, Jang HS, Scheese D, Duess JW, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury. J Trauma Acute Care Surg 2024; 97:356-364. [PMID: 38189659 DOI: 10.1097/ta.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2 ko , and (4) TBI Ccr2 ko . Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS , Lcn2 , TNFα , and IL1β and the innate immunity receptor toll-like receptor 4 ( Tlr4 ). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2 ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2 ko groups demonstrated reduced expression of inflammatory mediators ( iNOS , Lcn2 , IL1β , and Tlr4 ) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 ( Tph1 ) and dopa decarboxylase ( Ddc ). CONCLUSION Our study reveals a critical role for Ccr2 + monocytes in modulating intestinal homeostasis after TBI. Ccr2 + monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2 + monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- From the Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Witkowska A, Jaromirska J, Gabryelska A, Sochal M. Obstructive Sleep Apnea and Serotoninergic Signalling Pathway: Pathomechanism and Therapeutic Potential. Int J Mol Sci 2024; 25:9427. [PMID: 39273373 PMCID: PMC11395478 DOI: 10.3390/ijms25179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Obstructive Sleep Apnea (OSA) is a disorder characterized by repeated upper airway collapse during sleep, leading to apneas and/or hypopneas, with associated symptoms like intermittent hypoxia and sleep fragmentation. One of the agents contributing to OSA occurrence and development seems to be serotonin (5-HT). Currently, the research focuses on establishing and interlinking OSA pathogenesis and the severity of the disease on the molecular neurotransmitter omnipresent in the human body-serotonin, its pathway, products, receptors, drugs affecting the levels of serotonin, or genetic predisposition. The 5-HT system is associated with numerous physiological processes such as digestion, circulation, sleep, respiration, and muscle tone-all of which are considered factors promoting and influencing the course of OSA because of correlations with comorbid conditions. Comorbidities include obesity, physiological and behavioral disorders as well as cardiovascular diseases. Additionally, both serotonin imbalance and OSA are connected with psychiatric comorbidities, such as depression, anxiety, or cognitive dysfunction. Pharmacological agents that target 5-HT receptors have shown varying degrees of efficacy in reducing the Apnea-Hypopnea Index and improving OSA symptoms. The potential role of the 5-HT signaling pathway in modulating OSA provides a promising avenue for new therapeutic interventions that could accompany the primary treatment of OSA-continuous positive airway pressure. Thus, this review aims to elucidate the complex role of 5-HT and its regulatory mechanisms in OSA pathophysiology, evaluating its potential as a therapeutic target. We also summarize the relationship between 5-HT signaling and various physiological functions, as well as its correlations with comorbid conditions.
Collapse
Affiliation(s)
- Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
27
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024:1-14. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
28
|
Youn C, Caillaud ML, Li Y, Gallagher I, Strasser B, Tanaka H, Haley AP. Interplay of Large Neutral Amino Acids, Metabolic Syndrome, and Apolipoprotein E ε4 on Brain Integrity at Midlife. Lifestyle Genom 2024; 17:113-121. [PMID: 39102798 PMCID: PMC11385466 DOI: 10.1159/000540336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Large neutral amino acids (LNAAs) tryptophan and phenylalanine have been implicated in the pathogenesis of neurodegenerative diseases. Given limited research on the effects of LNAA on brain health across different life stages, vascular risk, and genetic backgrounds, our study aimed to explore the interaction of LNAA levels, metabolic syndrome (MetS), and the presence of the apolipoprotein E ε4 (ApoE ε4) allele brain integrity at midlife. METHODS Sixty-eight adults aged 40-61 underwent a health assessment to calculate the number of MetS components, quantify LNAA, measure white matter hyperintensity (WMH) volume, and genotype ApoE ε4. Multivariate linear regression analyses were performed to test the joint effect of LNAA, MetS, and ApoE ε4 on WMH while adjusting for sex, age, and education. RESULTS Significant 3-way interactions were observed between serum tryptophan (β = 0.042, SE = 0.018, p < 0.05) and phenylalanine (β = 0.044, SE = 0.013, p < 0.01) levels, number of MetS components, and ApoE ε4 alleles status on WMH volume. Neither individual LNAA levels nor MetS components alone predicted WMH volume. CONCLUSIONS The study highlights significant 3-way interactions between LNAA, MetS, and genetic risk factors in the pathology of WMH, particularly in individuals genetically predisposed to Alzheimer's disease. These interactions suggest differential impacts of LNAA on WMH volume dependent on both genetic and metabolic factors. Results emphasize the need for personalized metabolic and genetic profile assessments in neurodegenerative disease management.
Collapse
Affiliation(s)
- Cherry Youn
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Marie L Caillaud
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Yanrong Li
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Isabelle Gallagher
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Barbara Strasser
- Faculty of Medicine, Sigmund Freud Private University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
S H, T T, Vellapandian C. Gut-Brain Axis: Unveiling the Interplay Between Diabetes Mellitus and Alzheimer's Disease. Cureus 2024; 16:e68083. [PMID: 39347125 PMCID: PMC11438540 DOI: 10.7759/cureus.68083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex bidirectional communication system linking the gastrointestinal tract with the CNS, influencing various physiological processes, including cognition. Emerging research suggests a significant interplay between diabetes mellitus (DM) and Alzheimer's disease (AD) mediated through this axis. DM, characterized by impaired insulin signaling and chronic inflammation, appears to exacerbate the pathology of AD. Key mechanisms include insulin resistance affecting neuronal function and promoting amyloid-beta accumulation and tau phosphorylation, hallmark features of AD. Additionally, dysbiosis of gut microbiota in DM may contribute to neuroinflammation and oxidative stress, further aggravating AD pathology. The gut microbiota can modulate systemic inflammation and metabolic dysfunction, potentially impacting AD progression in DM individuals. Understanding these interactions is crucial for developing targeted therapeutic strategies that address both DM and AD simultaneously. This abstract highlights the intricate relationship between metabolic disorders like DM and neurodegenerative conditions such as AD, emphasizing the role of the GBA as a pivotal area for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Haripriya S
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Tamilanban T
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Chitra Vellapandian
- Department of Pharmacy/Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
30
|
Salmerón AM, Pérez-Fernández C, Abreu AC, Fernández S, Tristán AI, Ruiz-Sobremazas D, Cabré M, Guardia-Escote L, Fernández I, Sánchez-Santed F. Exploring microbiota-gut-brain axis biomarkers linked to autism spectrum disorder in prenatally chlorpyrifos-exposed Fmr1 knock-out and wild-type male rats. Toxicology 2024; 506:153871. [PMID: 38925359 DOI: 10.1016/j.tox.2024.153871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Fmr1 (fragile X messenger ribonucleoprotein 1)-knockout (KO) rats, modeling the human Fragile X Syndrome (FXS), are of particular interest for exploring the ASD-like phenotype in preclinical studies. Gestational exposure to chlorpyrifos (CPF) has been associated with ASD diagnosis in humans and ASD-like behaviors in rodents and linked to the microbiota-gut-brain axis. In this study, we have used both Fmr1-KO and wild-type male rats (F2 generation) at postnatal days (PND) 7 and 40 obtained after F1 pregnant females were randomly exposed to 1 mg/kg/mL/day of CPF or vehicle. A nuclear magnetic resonance (NMR) metabolomics approach together with gene expression profiles of these F2 generation rats were employed to analyze different brain regions (such as prefrontal cortex, hippocampus, and cerebellum), whole large intestine (at PND7) and gut content (PND40). The statistical comparison of each matrix spectral profile unveiled tissue-specific metabolic fingerprints. Significant variations in some biomarker levels were detected among brain tissues of different genotypes, including taurine, myo-inositol, and 3-hydroxybutyric acid, and exposure to CPF induced distinct metabolic alterations, particularly in serine and myo-inositol. Additionally, this study provides a set of metabolites associated with gastrointestinal dysfunction in ASD, encompassing several amino acids, choline-derived compounds, bile acids, and sterol molecules. In terms of gene expression, genotype and gestational exposure to CPF had only minimal effects on decarboxylase 2 (gad2) and cholinergic receptor muscarinic 2 (chrm2) genes.
Collapse
Affiliation(s)
- Ana M Salmerón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain
| | - Ana C Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain.
| | - Silvia Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Ana I Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain
| | - María Cabré
- Research Group in Neurobehavior and Health (NEUROLAB) and Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laia Guardia-Escote
- Research Group in Neurobehavior and Health (NEUROLAB) and Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Centre, Research Centre for Social Welfare and Inclusion (CIBIS), University of Almería, Ctra. Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
31
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
33
|
Tripp BA, Dillon ST, Yuan M, Asara JM, Vasunilashorn SM, Fong TG, Inouye SK, Ngo LH, Marcantonio ER, Xie Z, Libermann TA, Otu HH. Integrated Multi-Omics Analysis of Cerebrospinal Fluid in Postoperative Delirium. Biomolecules 2024; 14:924. [PMID: 39199312 PMCID: PMC11352186 DOI: 10.3390/biom14080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Preoperative risk biomarkers for delirium may aid in identifying high-risk patients and developing intervention therapies, which would minimize the health and economic burden of postoperative delirium. Previous studies have typically used single omics approaches to identify such biomarkers. Preoperative cerebrospinal fluid (CSF) from the Healthier Postoperative Recovery study of adults ≥ 63 years old undergoing elective major orthopedic surgery was used in a matched pair delirium case-no delirium control design. We performed metabolomics and lipidomics, which were combined with our previously reported proteomics results on the same samples. Differential expression, clustering, classification, and systems biology analyses were applied to individual and combined omics datasets. Probabilistic graph models were used to identify an integrated multi-omics interaction network, which included clusters of heterogeneous omics interactions among lipids, metabolites, and proteins. The combined multi-omics signature of 25 molecules attained an AUC of 0.96 [95% CI: 0.85-1.00], showing improvement over individual omics-based classification. We conclude that multi-omics integration of preoperative CSF identifies potential risk markers for delirium and generates new insights into the complex pathways associated with delirium. With future validation, this hypotheses-generating study may serve to build robust biomarkers for delirium and improve our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Bridget A. Tripp
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Simon T. Dillon
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
| | - Min Yuan
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M. Asara
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tamara G. Fong
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Long H. Ngo
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Towia A. Libermann
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
34
|
Zhao X, Guo J, Wang Y, Yi X. High-tannin food enhances spatial memory and scatter-hoarding in rodents via the microbiota-gut-brain axis. MICROBIOME 2024; 12:140. [PMID: 39075602 DOI: 10.1186/s40168-024-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The mutually beneficial coevolutionary relationships between rodents and plant seeds have been a theme of research in plant-animal relationships. Seed tannins are important secondary metabolites of plants that regulate the food-hoarding behavior of rodents; however, the underlying molecular mechanisms are not yet clear. In this study, we investigated whether and how seed tannins improve spatial memory and regulate the hoarding behavior of Tamias sibiricus by altering their gut microbiota. RESULTS We showed that acorn tannins not only improved spatial memory but also enhanced scatter-hoarding in T. sibiricus. Changes in the composition and function of the gut microbiota in response to tannins from acorns are closely related to these improvements. Metabonomic analyses revealed the role of gut isovaleric acid and isobutyric acid as well as serum L-tryptophan in mediating the spatial memory of T. sibiricus via the gut microbiota. The hippocampal proteome provides further evidence that the microbiota-gut-brain axis regulates spatial memory and scatter-hoarding in animals. Our study is likely the first to report that plant secondary metabolites improve hippocampal function and spatial memory and ultimately modulate food-hoarding behavior via the microbiota-gut-brain axis. CONCLUSION Our findings may have resolved the long-standing puzzle about the hidden role of plant secondary metabolites in manipulating food-hoarding behavior in rodents via the microbiota-gut-brain axis. Our study is important for better understanding the mutualistic coevolution between plants and animals. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiawei Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
- Present address: Huxi Middle School, Dongchangfu District, Liaocheng, 252000, China
| | - Yiming Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
35
|
Golmohammadi M, Samadi M, Salimi Y, Nachvak SM, Ebrahimzadeh Attari V. The association of dietary inflammatory index with sleep outcomes: A systematic review. Health Promot Perspect 2024; 14:136-147. [PMID: 39291049 PMCID: PMC11403336 DOI: 10.34172/hpp.42595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background Sleep is a vital physiological process that plays a crucial role in various aspects of human health and well-being. Regarding the important role of diet on the sleep quality, the present study aimed to assess the association of dietary inflammatory index (DII) with the sleep outcomes and also to provide the potential mechanisms of action. Methods PubMed, Web of Science and Scopus databases and Google Scholar search engine were systematically searched for relevant studies related to DII and sleep outcomes using appropriate search terms until February 2024. Results From the initial systematic search of databases, 197 studies were retrieved. However, only 14 of them met the criteria for evaluation. Out of these, eleven studies indicated a significant correlation between higher DII scores and poor overall sleep quality and/or short/long sleep duration or its subscales. On the contrary, four studies did not find any proof of this association. Conclusion This systematic review indicated that following an anti-inflammatory diet could potentially lead to an improvement in the sleep outcomes. Well-designed clinical trials in the future will be necessary to provide a better understanding and quantification of this association.
Collapse
Affiliation(s)
- Mona Golmohammadi
- Student research committee, Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehnoosh Samadi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Salimi
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Ebrahimzadeh Attari
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Mateo-Orcajada A, Abenza-Cano L, Molina-Morote JM, Vaquero-Cristóbal R. The influence of physical activity, adherence to Mediterranean diet, and weight status on the psychological well-being of adolescents. BMC Psychol 2024; 12:410. [PMID: 39068446 PMCID: PMC11282856 DOI: 10.1186/s40359-024-01906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
The mental health of adolescents is a determining factor for their adequate development, but is influenced by factors such as physical activity, nutrition, gender, and weight status. However, previous research has not analysed differences in psychological status, mainly in basic psychological needs and life satisfaction, among male and female adolescents with different levels of physical activity, weight status and adherence to the Mediterranean diet (AMD). For this reason, the objectives of the present investigation were to establish whether the differences between active and inactive adolescents in basic psychological needs and life satisfaction depend on gender; and to determine the differences in basic psychological needs and life satisfaction of active and inactive adolescents with different weight status and AMD. A total of 791 adolescents aged between twelve and sixteen years old participated in the study. All the participants were measured for basic psychological needs, life satisfaction, and level of physical activity, AMD, and height and body mass. The results showed a higher score in basic psychological needs and life satisfaction for active adolescents in both the males' and females' groups. No differences were found in the psychological variables when comparing adolescents with different weight status. Adolescents with a higher AMD showed higher scores in satisfaction of basic psychological needs and satisfaction with life than adolescents with a worse AMD. Therefore, it can be concluded that the level of physical activity and AMD are factors to be considered for the mental health of adolescents, but the relevance of weight status will have to be confirmed in future research.
Collapse
Affiliation(s)
| | - Lucía Abenza-Cano
- Facultad de Deporte. UCAM, Universidad Católica de Murcia, Murcia, Spain.
| | | | - Raquel Vaquero-Cristóbal
- Research Group Movement Sciences and Sport (MS&SPORT), Department of Physical Activity and Sport, Faculty of Sport Sciences, University of Murcia, Murcia, Spain
| |
Collapse
|
37
|
McNeil BK, Renaud DL, Steele MA, Cangiano LR, Olmeda MF, Villot C, Chevaux E, Yu J, Hernandez LL, Frizzarini WS, DeVries TJ. Effects of weaning and inactivated Lactobacillus helveticus supplementation on dairy calf behavioral and physiological indicators of affective state. J Dairy Sci 2024:S0022-0302(24)01029-4. [PMID: 39067749 DOI: 10.3168/jds.2023-24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The objectives of this study were to determine if weaning would induce behavioral and physiological indicators of a negative affective state, and if supplementation of inactivated Lactobacillus helveticus (ILH) to dairy calves would reduce those indicators of negative affect during weaning. Male Holstein calves (n = 23) were enrolled in the study on d 1 of life. The calves were housed in individual pens in 1 of 4 rooms for the 42 d study. Calves began a stepdown weaning from 9 L/d of milk replacer (MR), at 150 g of MR powder/L, on d 35 and received 6 L/d on d 35 - 36, 3 L/d on d 37 - 38, and 0.4 L/d on d 39 - 42. The MR was divided between 3 meals/d until the last 0.4 L/d phase which was divided between 2 meals/d. Calves had ad libitum water access throughout the study and calf starter from d 28 onwards. Within room, calves were assigned to 1 of 2 treatments: 1) control (CON; n = 11) and 2) 5 g of ILH/d split over and mixed into the 0800 h and 2000 h milk feedings from d 3-42 (ILH; n = 12). Lying behavior was recorded using HOBO data loggers from d 21-41. On d 33, 37 and 41, infrared eye images were taken to determine maximum eye temperature (MET), saliva samples were collected to determine cortisol concentration, and play assessments were conducted to quantify play behavior. On d 34, 38, and 42, blood samples were collected to determine blood serotonin concentration, whereas on d 38 and 39, calves were tested with a cognitive task. A subset of calves (n = 5/treatment) were euthanized to collect gut and brain tissue samples for serotonin concentration on d 43. Weaning resulted in fewer (d 37-41, tendency: d 36), but longer (d 38-41, tendency: d 37), lying bouts and reduced play (d 41), although no changes in lying time, MET, saliva cortisol, nor blood serotonin were detected with initiation of weaning. Supplementation of ILH was associated with lower lying time throughout the study, and reduced play duration and higher salivary cortisol and MET during weaning. No differences in lying bouts, play count, blood and tissue (colon, ileum, prefrontal cortex and brain stem) serotonin concentration, and time to complete the cognitive task were detected between the treatments. Overall, weaning induced behavioral changes indicative of negative affective state, and some behavioral differences were observed with ILH supplementation both before and during weaning, with some physiological changes observed during weaning.
Collapse
Affiliation(s)
- B K McNeil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - D L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - L R Cangiano
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M F Olmeda
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Villot
- Lallemand SAS, F-31702 Blagnac, France
| | - E Chevaux
- Lallemand SAS, F-31702 Blagnac, France
| | - J Yu
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - W S Frizzarini
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
38
|
Maurer A, Lieb A, Bongard S. Internalizing psychological symptoms in children and adolescents with fructose malabsorption. Front Psychol 2024; 15:1414852. [PMID: 39070588 PMCID: PMC11272657 DOI: 10.3389/fpsyg.2024.1414852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Due to an inhibited tryptophan resorption, patients with fructose malabsorption are expected to experience decreased serotonin synthesis. A deficiency of serotonin may cause internalizing mental disorders like depression and anxiety, and a fructose-oriented eating behavior may affect these symptoms. Methods The parents of 24 children and adolescents with a currently diagnosed fructose malabsorption aged 4;00-13;02 years (M = 8.10, SD = 2.05), the parents of 12 patients with a currently confirmed combination of fructose and lactose malabsorption aged 4;00-12;11 years (M = 8.07, SD = 2.11) and the parents of a comparative sample of 19 healthy participants aged 5;00 to 17;07 years (M = 9.06, SD = 3.04) were interviewed. The interviews were conducted using a screening questionnaire of the German "Diagnostic System of Mental Disorders in children and adolescents based on the ICD-10 and DSM-5 DISYPS-III" and a self-developed questionnaire on eating, leisure and sleeping behavior. Results On standardized scales parents of children with fructose malabsorption reported higher levels of Depression compared to symptoms of Attention-Deficit/Hyperactivity Disorders (ADHD) and Oppositional Defiant and Conduct Disorders (ODD/CD). Compared to healthy controls, for patients with fructose malabsorption, higher symptom levels of Depression and Anxiety were reported. With regard to eating behavior, within the group with a combination of fructose and lactose malabsorption, a strong positive association between an increased fruit sugar consumption and higher levels of Anxiety and Obsessive-Compulsive Disorders/Tics were found. Discussion These results suggest a close association between fructose malabsorption and elevated internalizing psychological symptoms in children and adolescents.Clinical trial registration:https://drks.de/search/en/trial/DRKS00031047, DRKS-ID [DRKS00031047].
Collapse
Affiliation(s)
- Annabel Maurer
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - Adrian Lieb
- Gastroenterologische Ambulanz der Klinik für Kinder- und Jugendmedizin des Universitätsklinikums Frankfurt, Frankfurt, Germany
| | - Stephan Bongard
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
39
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Singh DP, Kumar A, Prajapati J, Bijalwan V, Kumar J, Amin P, Kandoriya D, Vidhani H, Patil GP, Bishnoi M, Rawal R, Das S. Sexual dimorphism in neurobehavioural phenotype and gut microbial composition upon long-term exposure to structural analogues of bisphenol-A. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135178. [PMID: 39002480 DOI: 10.1016/j.jhazmat.2024.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Bisphenol S (BPS) and Bisphenol F (BPF), the analogues of the legacy endocrine disrupting chemical, Bisphenol A (BPA) are ubiquitous in the environment and present in various consumer goods, and potentially neurotoxic. Here, we studied sex-specific responses of bisphenols on behavioural phenotypes, including their association with pro-inflammatory biomarkers and altered neurotransmitters levels, and the key gut microbial abundances. Neurobehavioural changes, using standard test battery, biochemical and molecular estimations for inflammatory cytokines, neurotransmitters, and oxido-nitrosative stress markers, gene expression analysis using qRT-PCR, H&E based histological investigations, gut permeability assays and Oxford Nanopore-based 16S-rRNA metagenomics sequencing for the gut microbial abundance estimations were performed. Bisphenol(s) exposure induces anxiety and depression-like behaviours, particularly in the male mice, with heightened pro-inflammatory cytokines levels and systemic endotoxemia, altered monoamine neurotransmitters levels/turnovers and hippocampal neuronal degeneration and inflammatory responses in the brain. They also increased gut permeability and altered microbial diversity, particularly in males. Present study provides evidence for sex-specific discrepancies in neurobehavioural phenotypes and gut microbiota, which necessitate a nuanced understanding of sex-dependent responses to bisphenols. The study contributes to ongoing discussions on the multifaceted implications of bisphenols exposure and underscores the need for tailored regulatory measures to mitigate potential health risks associated with them.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| | - Aasish Kumar
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Pranjal Amin
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India; Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Devat Kandoriya
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Heena Vidhani
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Gajanan Pratap Patil
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Mahendra Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab 140603, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| |
Collapse
|
41
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
42
|
Forootani B, Sasanfar B, Salehi-Abargouei A, Mirzaei M. The association between plant and animal protein intake with depression, anxiety, and stress. Nutr Neurosci 2024:1-14. [PMID: 38980695 DOI: 10.1080/1028415x.2024.2372194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
BACKGROUND Recent evidence suggests that diet composition is a key biological factor related to the development of depressive disorders. The present study was conducted to investigate the animal and plant protein intake and their replacement in association with depression, anxiety, and stress in Iranian adults. METHOD In this cross-sectional study, the dietary intake of 7169 subjects were assessed using a validated food frequency questionnaire. The depression, anxiety, and stress Scale - 21 (DASS-21) questionnaire was used to psychological disorders. Logistic regression was used to obtain odds ratios for depression, anxiety, and stress across quintiles of animal and plant protein. RESULTS The participants' age range was 20-69 years. Individuals with the highest animal protein consumption had a lower chance for developing depression compared to those with the lowest intakes (OR = 0.73, 95%CI: 0.59-0.90; Ptrend < 0.01). Results also showed a significant association between animal protein intake and anxiety, such that subjects in the highest quintile of animal protein intake had 24% lower odds for anxiety compared to those in the lowest quintile (p < 0.05). We found a significant association between highest quintiles of animal protein intake and a 40% lower risk for stress among female individuals (Ptrend = 0.05). The multivariable-adjusted non-linear analyses also revealed that the replacement of plant protein with animal protein was significantly associated with the likelihood of depression and anxiety (P < 0.05). CONCLUSION Animal protein intake might lower the odds of depression and anxiety particularly. Future prospective investigations are proposed to confirm these findings.
Collapse
Affiliation(s)
- Bita Forootani
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahareh Sasanfar
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
43
|
Asakura S, Kaneko K, Kawano K, Shobako M, Xu C, Sato M, Kurabayashi A, Suzuki H, Ito A, Higuchi Y, Nakayama R, Takahashi H, Ohinata K. Characterization of rice endosperm-derived antidepressant-like peptide (REAP): An orally active novel tridecapeptide derived from rice protein. Peptides 2024; 177:171184. [PMID: 38432550 DOI: 10.1016/j.peptides.2024.171184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
It is ideal to ingest bioactive substances from daily foods to stay healthy. Rice is the staple food for almost half of the human population. We found that an orally administered enzymatic digest of rice endosperm protein exhibits antidepressant-like effects in the tail suspension test (TST) using mice. A comprehensive peptide analysis of the digest using liquid chromatography-tandem mass spectrometry was performed, and a tridecapeptide QQFLPEGQSQSQK, detected in the digest, was chemosynthesized. Oral administration of the tridecapeptide exhibited antidepressant-like effects at a low dose comparable to classical antidepressant in the TST. This also exhibited anti-depressant-like effect in the forced swim test. We named it rice endosperm-derived antidepressant-like peptide (REAP). Intriguingly, intraperitoneal administration had no effect. Orally administered REAP(8-13) but not REAP(1-7) exhibited antidepressant-like activity, suggesting that the C-terminal structure is important for the antidepressant-like effect. We confirmed the presence of REAP, corresponding to rice glutelin type B4(130-142) and B5(130-142), in the digest. The effects of REAP were blocked by both dopamine D1 and D2 antagonists. These results suggest that it exerts its antidepressant-like activity through activation of the dopamine system. Taken together, oral administration of a novel tridecapeptide exhibited antidepressant-like effects via the dopamine system. This is the first report of a rice-derived peptide that exhibits antidepressant-like effects.
Collapse
Affiliation(s)
- Saho Asakura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Kohei Kawano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Maiko Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Chendong Xu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Masaru Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Atsushi Kurabayashi
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Akira Ito
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Yuki Higuchi
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Ryoko Nakayama
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Hajime Takahashi
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
44
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
45
|
Lang B, Ma W, Liao X, Duan Y, Ren C, Chen H. Modifying carbon dots with L-phenylalanine for rapid discrimination of tryptophan enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3907-3916. [PMID: 38829128 DOI: 10.1039/d4ay00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
New chiral carbon dots (CDs), L-PCDs, for discriminating tryptophan (Trp) enantiomers were prepared in this work. Firstly, original CDs were synthesized through a hydrothermal method using pyridine-2,6-dicarboxylic acid and o-phenylenediamine as raw materials. Then, the surface of original CDs was modified with L-phenylalanine to create chiral fluorescent carbon L-PCDs. In the presence of D-Trp, the fluorescence intensity of L-PCDs decreased significantly while it remained unchanged in the presence of L-Trp. The chiral sensing system used in this study has a rapid response time of 3 minutes and can identify enantiomers with an enantioselectivity (ID/IL) of up to 3.3. For D-Trp, a good linear relationship can be obtained in the range of 0.3-4.2 mM with a limit of detection of 0.06 mM. This sensor allows for both quantitative detection of D-Trp and determination of enantiomeric percentage in the racemate. The chiral recognition mechanism is attributed to the different interaction between D-/L-Trp and L-PCDs.
Collapse
Affiliation(s)
- Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wenming Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yaning Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Key Laboratory of Special Function Materials and Structure Design (MOE), Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
46
|
Gallo A, Martone AM, Liperoti R, Cipriani MC, Ibba F, Camilli S, Rognoni FM, Landi F, Montalto M. Mild cognitive impairment and microbiota: what is known and future perspectives. Front Med (Lausanne) 2024; 11:1410246. [PMID: 38957302 PMCID: PMC11217486 DOI: 10.3389/fmed.2024.1410246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Mild cognitive impairment (MCI) is a heterogeneous condition definable as the intermediate clinical state between normal aging and dementia. As a pre-dementia condition, there is a recent growing interest in the identification of non-invasive markers able to predict the progression from MCI to a more advanced stage of the disease. Previous evidence showed the close link between gut microbiota and neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Conversely, the actual relationship between gut microbiota and MCI is yet to be clarified. In this work, we provide an overview about the current knowledge regarding the role of gut microbiota in the context of MCI, also assessing the potential for microbiota-targeted therapies. Through the review of the most recent studies focusing on this topic, we found evidence of an increase of Bacteroidetes at phylum level and Bacteroides at genus level in MCI subjects with respect to healthy controls and patients with AD. Despite such initial evidence, the definitive identification of a typical microbiota profile associated with MCI is still far from being achieved. These preliminary results, however, are growingly encouraging research on the role of gut microbiota modulation in improving the cognitive status of pre-dementia subjects. To date, few studies evaluated the role of probiotics in MCI subjects, and they showed favorable results, although still biased by small sample size, heterogeneity of study design and short follow-up.
Collapse
Affiliation(s)
- Antonella Gallo
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Anna Maria Martone
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Rosa Liperoti
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Francesca Ibba
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Camilli
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiammetta Maria Rognoni
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Montalto
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
47
|
van Zundert SKM, van Rossem L, Mirzaian M, Griffioen PH, Willemsen SP, van Schaik RHN, Steegers-Theunissen RPM. Periconceptional Non-medical Maternal Determinants Influence the Tryptophan Metabolism: The Rotterdam Periconceptional Cohort (Predict Study). Int J Tryptophan Res 2024; 17:11786469241257816. [PMID: 38873365 PMCID: PMC11171438 DOI: 10.1177/11786469241257816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Background The vital role of the maternal tryptophan (TRP) metabolism in maternal health and pregnancy is well established. However, non-medical maternal determinants influencing the TRP metabolism have been poorly investigated. We hypothesise that periconceptional maternal non-medical determinants alter the TRP metabolism, affecting both kynurenine (KP) and serotonin pathway (SP) metabolite concentrations. Therefore, we investigated the influence of non-medical maternal determinants on the TRP metabolism during the periconception period. Methods About 1916 pregnancies were included from the Rotterdam Periconceptional Cohort between November 2010 and December 2020. Data on periconceptional non-medical maternal determinants were collected through questionnaires. Serum samples were collected at 8.5 (SD = 1.6) weeks of gestation and TRP, kynurenine (KYN), 5-hydroxytryptophan (5-HTP), 5-HT (5-hydroxytryptamine) and 5-hydroxyindole acetic acid (5-HIAA) were determined using validated liquid chromatography (tandem) mass spectrometry. Mixed models were used to determine associations between periconceptional non-medical maternal determinants and these metabolites. Results In total 11 periconceptional non-medical maternal determinants were identified. Protein intake was positively associated with TRP (β = .12, 95% CI = 0.07-0.17), while age, energy intake and body mass index (BMI) (β = -.24, 95% CI = -0.37 to -0.10) were negatively associated with TRP. Age, BMI and total homocysteine were associated with higher KYN, whereas non-western geographical origin was associated with lower KYN (β = -.09, 95% CI = -0.16 to -0.03). Protein intake and total homocysteine (β = .07, 95% CI = 0.03-0.11) had a positive association with 5-HTP, while a negative association was found for energy intake. A non-western geographical origin and drug use were associated with higher 5-HT, and BMI with lower 5-HT (β = -6.32, 95% CI = -10.26 to -2.38). Age was positively associated with 5-HIAA (β = .92, 95% CI = 0.29-1.56), and BMI negatively. Conclusions Periconceptional non-medical maternal determinants, including age, geographical origin, drug use, energy and protein intake, BMI and total homocysteine, influence KP and SP metabolite concentrations.
Collapse
Affiliation(s)
- Sofie KM van Zundert
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Ron HN van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
48
|
Prakash S, Shah CS, Prakash A. Serotonin syndrome controversies: A need for consensus. World J Crit Care Med 2024; 13:94707. [PMID: 38855279 PMCID: PMC11155509 DOI: 10.5492/wjccm.v13.i2.94707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024] Open
Abstract
Serotonin syndrome (SS) is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system. Although more than seven decades have passed since the first description of SS, it is still an enigma in terms of terminology, clinical features, etiology, pathophysiology, diagnostic criteria, and therapeutic measures. The majority of SS cases have previously been reported by toxicology or psychiatry centers, particularly in people with mental illness. However, serotonergic medications are used for a variety of conditions other than mental illness. Serotonergic properties have been discovered in several new drugs, including over-the-counter medications. These days, cases are reported in non-toxicology centers, such as perioperative settings, neurology clinics, cardiology settings, gynecology settings, and pediatric clinics. Overdoses or poisonings of serotonergic agents constituted the majority of the cases observed in toxicology or psychiatry centers. Overdose or poisoning of serotonergic drugs is uncommon in other clinical settings. Patients may develop SS at therapeutic dosages. Moreover, these patients may continue to use serotonergic medications even if they develop mild to moderate SS due to several reasons. Thus, the clinical presentation (onset, severity, and clinical features) in such instances may not exactly match what toxicologists or psychiatrists observe in their respective settings. They produce considerable diversity in many aspects of SS. However, other experts discount these new developments in SS. Since SS is a potentially lethal illness, consensus is required on several concerns related to SS.
Collapse
Affiliation(s)
- Sanjay Prakash
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Chetsi S Shah
- Department of Neurology, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Vadodara 391760, Gujarāt, India
| | - Anurag Prakash
- Medicine, Parul Institute of Medical Sciences and Research Centre, Parul University Waghodia, Vadodara 391760, India
| |
Collapse
|
49
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
50
|
Velichkov M, Bezur Z, van Reekum CM, Williams CM. A biphasic response to blueberry supplementation on depressive symptoms in emerging adults: a double-blind randomized controlled trial. Eur J Nutr 2024; 63:1071-1088. [PMID: 38300292 PMCID: PMC11139700 DOI: 10.1007/s00394-023-03311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE The aim of the present study was to examine the acute and chronic effects of wild blueberry supplementation on mood, executive function, and serum biomarkers of neuroplasticity, inflammation, and oxidative stress in emerging adults with moderate-to-severe depressive symptoms. METHODS In this double-blind trial, 60 emerging adults (Mage = 20.0 years, 32% male) with self-reported depressive symptoms were randomly assigned to receive a single blueberry drink (acute phase), followed by 6 weeks of daily blueberry supplementation (chronic phase), or a matched placebo drink. The primary outcome was Beck Depression Inventory-II (BDI-II) scores at 6-week follow-up. Further measures included momentary affect (PANAS-X) and accuracy on an executive function task. The data were analyzed using ANCOVAs adjusted for baseline values, sex, and habitual fruit and vegetable intake. Estimated marginal means were calculated to compare the treatment arms. RESULTS The blueberry drink significantly improved positive affect (p = 0.026) and executive function (p = 0.025) at 2 h post-ingestion, with change scores being positively correlated in the blueberry group (r = 0.424, p = 0.017). However, after six weeks of supplementation the reduction in BDI-II scores was greater in the placebo group by 5.8 points (95% CI: 0.8-10.7, p = 0.023). Generalized anxiety and anhedonia also decreased significantly more in the placebo group. No significant differences were found for any of the biomarkers. CONCLUSIONS Six weeks of wild blueberry supplementation were inferior to placebo in reducing depressive symptoms. Nevertheless, the correlated improvements in positive affect and executive function after a single dose of blueberries point to a beneficial, albeit transient, psychological effect. These contrasting results suggest a biphasic, hormetic-like response that warrants further investigation. TRIAL REGISTRATION NCT04647019, dated 30 November, 2020.
Collapse
Affiliation(s)
- Martin Velichkov
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Zsofia Bezur
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Carien M van Reekum
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Claire M Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| |
Collapse
|