1
|
Ren Y, Jiang M, Zhu JK, Zhou W, Zhao C. Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2109-2125. [PMID: 39031490 DOI: 10.1111/jipb.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.
Collapse
Affiliation(s)
- Yuying Ren
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengdan Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies, Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Peng X, Li H, Xu W, Yang Q, Li D, Fan T, Li B, Ding J, Ku W, Deng D, Zhu F, Xiao L, Wang R. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int J Mol Sci 2024; 25:8969. [PMID: 39201658 PMCID: PMC11354338 DOI: 10.3390/ijms25168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.
Collapse
Affiliation(s)
- Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Qian Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Tingting Fan
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Bin Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junhui Ding
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| |
Collapse
|
3
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
4
|
Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, Isa NM, Leow TC. Functional expression, purification, biochemical and biophysical characterizations, and molecular dynamics simulation of a histidine acid phosphatase from Saccharomyces cerevisiae. World J Microbiol Biotechnol 2024; 40:171. [PMID: 38630327 DOI: 10.1007/s11274-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Zahra Binti Jamaludin
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
5
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
6
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Horbowicz M, Górecki RJ, Railean V, Pomastowski P, Buszewski B. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat ( Triticum aestivum L.) Seedling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1627. [PMID: 37111851 PMCID: PMC10145852 DOI: 10.3390/plants12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.
Collapse
Affiliation(s)
- Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Yu B, Gao P, Song J, Yang H, Qin L, Yu X, Song H, Coulson J, Bekkaoui Y, Akhov L, Han X, Cram D, Wei Y, Zaharia LI, Zou J, Konkin D, Quilichini TD, Fobert P, Patterson N, Datla R, Xiang D. Spatiotemporal transcriptomics and metabolic profiling provide insights into gene regulatory networks during lentil seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36965062 DOI: 10.1111/tpj.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritious legume with seeds rich in protein, minerals and an array of diverse specialized metabolites. The formation of a seed requires regulation and tight coordination of developmental programs to form the embryo, endosperm and seed coat compartments, which determines the structure and composition of mature seed and thus its end-use quality. Understanding the molecular and cellular events and metabolic processes of seed development is essential for improving lentil yield and seed nutritional value. However, such information remains largely unknown, especially at the seed compartment level. In this study, we generated high-resolution spatiotemporal gene expression profiles in lentil embryo, seed coat and whole seeds from fertilization through maturation. Apart from anatomic differences between the embryo and seed coat, comparative transcriptomics and weighted gene co-expression network analysis revealed embryo- and seed coat-specific genes and gene modules predominant in specific tissues and stages, which highlights distinct genetic programming. Furthermore, we investigated the dynamic profiles of flavonoid, isoflavone, phytic acid and saponin in seed compartments across seed development. Coupled with transcriptome data, we identified sets of candidate genes involved in the biosynthesis of these metabolites. The global view of the transcriptional and metabolic changes of lentil seed tissues throughout development provides a valuable resource for dissecting the genetic control of secondary metabolism and development of molecular tools for improving seed nutritional quality.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Jingpu Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Li Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Xiaoyu Yu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Halim Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Justin Coulson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Leonid Akhov
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - L Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Pierre Fobert
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
9
|
Frittelli A, Botticella E, Palombieri S, Masci S, Celletti S, Fontanella MC, Astolfi S, De Vita P, Volpato M, Sestili F. The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain. FRONTIERS IN PLANT SCIENCE 2023; 14:1079559. [PMID: 36743506 PMCID: PMC9890658 DOI: 10.3389/fpls.2023.1079559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Micronutrient malnutrition affects more than half of the world population. Reduced bioavailability of microelements in the raw materials is considered one of the main causes of mineral deficiency in populations whose diet is largely based on the consumption of staple crops. In this context, the production of low phytic acid (lpa) cereals is a main goal of the breeding programs, as phytic acid (PA) binds essential mineral cations such as iron (Fe), zinc (Zn), manganese (Mn), potassium (K), calcium (Ca) and magnesium (Mg) precipitating in the form of phytate salts poorly digested by monogastric animals, including humans, due to the lack of phytases in the digestive tract. Since PA limits the bioavailability of microelements, it is widely recognized as an anti-nutritional compound. A Targeting Induced Local Lesions IN Genomes (TILLING) approach has been undertaken to silence the genes encoding the TdABCC13 proteins, known as Multidrug-Resistance associated Proteins 3 (TdMRP3), transporters involved in the accumulation of PA inside the vacuole in durum wheat. The TdMRP3 complete null genotypes showed a significant reduction in the content of PA and were able to accumulate a higher amount of essential micronutrients (Fe, Zn, Mn) compared to the control. The number of spikelets and seeds per spike, traits associated with the agronomic performances, were reduced compared to the control, but the negative effect was in part balanced by the increased grain weight. The TdMRP3 mutant lines showed morphological differences in the root apparatus such as a significant decrease in the number of root tips, root length, volume and surface area and an increase in root average diameter compared to the control plants. These materials represent a promising basis for obtaining new commercial durum wheats with higher nutritional value.
Collapse
Affiliation(s)
- Arianna Frittelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Silvia Celletti
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Università Cattolica, Piacenza, Italy
| | - Stefania Astolfi
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Padalkar G, Mandlik R, Sudhakaran S, Vats S, Kumawat S, Kumar V, Kumar V, Rani A, Ratnaparkhe MB, Jadhav P, Bhat JA, Deshmukh R, Sharma TR, Sonah H. Necessity and challenges for exploration of nutritional potential of staple-food grade soybean. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Cominelli E, Sparvoli F, Lisciani S, Forti C, Camilli E, Ferrari M, Le Donne C, Marconi S, Juan Vorster B, Botha AM, Marais D, Losa A, Sala T, Reboul E, Alvarado-Ramos K, Waswa B, Ekesa B, Aragão F, Kunert K. Antinutritional factors, nutritional improvement, and future food use of common beans: A perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:992169. [PMID: 36082303 PMCID: PMC9445668 DOI: 10.3389/fpls.2022.992169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 06/06/2023]
Abstract
Common bean seeds are an excellent source of protein as well as of carbohydrates, minerals, vitamins, and bioactive compounds reducing, when in the diet, the risks of diseases. The presence of bioactive compounds with antinutritional properties (e.g., phytic acid, lectins, raffinosaccharides, protease inhibitors) limits, however, the bean's nutritional value and its wider use in food preparations. In the last decades, concerted efforts have been, therefore, made to develop new common bean genotypes with reduced antinutritional compounds by exploiting the natural genetic variability of common bean and also applying induced mutagenesis. However, possible negative, or positive, pleiotropic effects due to these modifications, in terms of plant performance in response to stresses or in the resulting technological properties of the developed mutant genotypes, have yet not been thoroughly investigated. The purpose of the perspective paper is to first highlight the current advances, which have been already made in mutant bean characterization. A view will be further provided on future research directions to specifically explore further advantages and disadvantages of these bean mutants, their potential use in innovative foods and representing a valuable genetic reservoir of combinations to assess the true functional role of specific seed bioactive components directly in the food matrix.
Collapse
Affiliation(s)
- Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Chiara Forti
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Barend Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | | | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Belgaroui N, El Ifa W, Hanin M. Phytic acid contributes to the phosphate-zinc signaling crosstalk in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:1-8. [PMID: 35526500 DOI: 10.1016/j.plaphy.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. Crosstalk between these two elements to control their uptake and homeostasis in plants has been previously demonstrated. However, the signaling molecule(s) required for the mechanisms underlying this interaction remain unknown. Phytic acid (PA), the main P storage form in plants, serves also as a signalling molecule in processes controlling plant growth and development as well as responses to different stimuli. In this study, we investigated the involvement of PA in the control of Zn-Pi homeostasis interaction in Arabidopsis. For this purpose, we used two classes of low phytic acid (lpa) lines: the inositol polyphosphate kinase 1 gene (ipk1-1) mutant and two transgenic lines expressing the bacterial phytase PHY-US417. The transgenic lines exhibit an enhanced root growth under Zn-deficiency compared to wild type (WT) and ipk1-1. In addition, higher Pi and Zn contents were detected in the lpa lines under standard and also deficient conditions (-Pi and -Zn). However, the activation of shoot Pi accumulation which occurs in WT in response to Zn depletion was not observed in the lpa lines. Finally, we noticed that the changes in Pi and Zn accumulation seem to be correlated with a tight regulation of Pi and Zn transporters in the lpa lines. All these findings underline a regulatory role of PA in the control of the Zn-Pi crosstalk but also open the door to possible involvement of additional unknown signaling molecules in this process.
Collapse
Affiliation(s)
- Nibras Belgaroui
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology. University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Wided El Ifa
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology. University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology. University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
13
|
Nutrient Availability Does Not Affect Community Assembly in Root-Associated Fungi but Determines Fungal Effects on Plant Growth. mSystems 2022; 7:e0030422. [PMID: 35695510 PMCID: PMC9239174 DOI: 10.1128/msystems.00304-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonmycorrhizal root-colonizing fungi are key determinants of plant growth, driving processes ranging from pathogenesis to stress alleviation. Evidence suggests that they might also facilitate host access to soil nutrients in a mycorrhiza-like manner, but the extent of their direct contribution to plant nutrition is unknown. To study how widespread such capacity is across root-colonizing fungi, we surveyed soils in nutrient-limiting habitats using plant baits to look for fungal community changes in response to nutrient conditions. We established a fungal culture collection and used Arabidopsis thaliana inoculation bioassays to assess the ability of fungi to facilitate host's growth in the presence of organic nutrients unavailable to plants. Plant baits captured a representation of fungal communities extant in natural habitats and showed that nutrient limitation has little influence on community assembly. Arabidopsis thaliana inoculated with 31 phylogenetically diverse fungi exhibited a consistent fungus-driven growth promotion when supplied with organic nutrients compared to untreated plants. However, direct phosphorus measurement and RNA-seq data did not support enhanced nutrient uptake but rather that growth effects may result from changes in the plant's immune response to colonization. The widespread and consistent host responses to fungal colonization suggest that distinct, locally adapted nonmycorrhizal fungi affect plant performance across habitats. IMPORTANCE Recent studies have shown that root-associated fungi that do not engage in classical mycorrhizal associations can facilitate the hosts' access to nutrients in a mycorrhiza-like manner. However, the generality of this capacity remains to be tested. Root-associated fungi are frequently deemed major determinants of plant diversity and performance, but in the vast majority of cases their ecological roles in nature remain unknown. Assessing how these plant symbionts affect plant productivity, diversity, and fitness is important to understanding how plant communities function. Recent years have seen important advances in the understanding of the main drivers of the diversity and structure of plant microbiomes, but a major challenge is still linking community properties with function. This study contributes to the understanding of the cryptic function of root-associated fungi by testing their ability to participate in a specific process: nutrient acquisition by plants.
Collapse
|
14
|
Chapman MA, He Y, Zhou M. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. THE NEW PHYTOLOGIST 2022; 234:1583-1597. [PMID: 35318683 PMCID: PMC9994440 DOI: 10.1111/nph.18021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 04/14/2023]
Abstract
Underutilized crops are, by definition, under-researched compared to staple crops yet come with traits that may be especially important given climate change and the need to feed a globally increasing population. These crops are often stress-tolerant, and this combined with unique and beneficial nutritional profiles. Whilst progress is being made by generating reference genome sequences, in this Tansley Review, we show how this is only the very first step. We advocate that going 'beyond a reference genome' should be a priority, as it is only at this stage one can identify the specific genes and the adaptive alleles that underpin the valuable traits. We sum up how population genomic and pangenomic approaches have led to the identification of stress- and disease-tolerant alleles in staple crops and compare this to the small number of examples from underutilized crops. We also demonstrate how previously underutilized crops have benefitted from genomic advances and that many breeding targets in underutilized crops are often well studied in staple crops. This cross-crop population-level resequencing could lead to an understanding of the genetic basis of adaptive traits in underutilized crops. This level of investment may be crucial for fully understanding the value of these crops before they are lost.
Collapse
Affiliation(s)
- Mark A. Chapman
- Biological SciencesUniversity of SouthamptonLife Sciences Building 85, Highfield CampusSouthamptonSO17 1BJUK
| | - Yuqi He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| |
Collapse
|
15
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
16
|
Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Mol Biol Rep 2022; 49:8025-8035. [PMID: 35294703 DOI: 10.1007/s11033-022-07333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.
Collapse
|
17
|
Lydia Pramitha J, Joel J, Rajasekaran R, Uma D, Vinothana K, Balakrishnan M, Sathyasheela KRV, Muthurajan R, Hossain F. Stability Analysis and Heterotic Studies in Maize ( Zea mays L.) Inbreds to Develop Hybrids With Low Phytic Acid and High-Quality Protein. FRONTIERS IN PLANT SCIENCE 2022; 12:781469. [PMID: 35145531 PMCID: PMC8823190 DOI: 10.3389/fpls.2021.781469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Maize is a major staple crop with high value as food and feed in the poultry sector. Considering the overall nutritional value, maize-based diets comprise two major constraints, i.e., higher phytic acid (PA) and lack of tryptophan. To overcome these issues, a set of identified stable donors for low PA (lpa) and higher tryptophan were crossed in a line × tester fashion, and the hybrids obtained were evaluated at three locations with two replications. Among the inbreds for yield, UMI 1201 and UMI 1205 were the stable good combiners, and for PA, UMI 447 and LPA-2-285 were identified as efficient combiners across locations. Subsequently, 72 hybrids developed from these inbreds had a reduced phytate and higher tryptophan compared with checks having alterations in their yield levels. From Additive Main Effects and Multiplicative Interaction (AMMI) and Genotype main effect plus genotype-by-environment interaction (GGE) biplots, DMR-QPM-09-13-1 × UMI 1099 (PA:9.38 mg/g, trp:0.06%, and yield:184.35 g) and UMI 1205 × UMI 467 (PA:7.04 mg/g, trp:0.06%, and yield:166.39 g) were stable for their high yield with medium PA and tryptophan. Also, across environments, UMI 1200 × UMI 467 had a stable average yield of 129.91 g along with the lowest PA of 4.50 mg/g and higher tryptophan of 0.07%. Thus, these hybrids could be selected and evaluated in upcoming biofortification trials to benefit the poultry sector. Furthermore, the parental inbreds utilized were grouped into heterotic pools to serve as a source population for the development of lpa hybrids in future programs.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Tamil Nadu Agricultural University, Coimbatore, India
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - John Joel
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | - D. Uma
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | | | - Firoz Hossain
- Tamil Nadu Agricultural University, Coimbatore, India
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
20
|
Joukhadar R, Thistlethwaite R, Trethowan RM, Hayden MJ, Stangoulis J, Cu S, Daetwyler HD. Genomic selection can accelerate the biofortification of spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3339-3350. [PMID: 34254178 DOI: 10.1007/s00122-021-03900-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Genomic selection enabled accurate prediction for the concentration of 13 nutritional element traits in wheat. Wheat biofortification is one of the most sustainable strategies to alleviate mineral deficiency in human diets. Here, we investigated the potential of genomic selection using BayesR and Bayesian ridge regression (BRR) models to predict grain yield (YLD) and the concentration of 13 nutritional elements in grains (B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P and Zn) using a population of 1470 spring wheat lines. The lines were grown in replicated field trials with two times of sowing (TOS) at 3 locations (Narrabri-NSW, all lines; Merredin-WA and Horsham-VIC, 200 core lines). Narrow-sense heritability across environments (locations/TOS) ranged from 0.09 to 0.45. Co, K, Na and Ca showed low to negative genetic correlations with other traits including YLD, while the remaining traits were negatively correlated with YLD. When all environments were included in the reference population, medium to high prediction accuracy was observed for the different traits across environments. BayesR had higher average prediction accuracy for mineral concentrations (r = 0.55) compared to BRR (r = 0.48) across all traits and environments but both methods had comparable accuracies for YLD. We also investigated the utility of one or two locations (reference locations) to predict the remaining location(s), as well as the ability of one TOS to predict the other. Under these scenarios, BayesR and BRR showed comparable performance but with lower prediction accuracy compared to the scenario of predicting reference environments for new lines. Our study demonstrates the potential of genomic selection for enriching wheat grain with nutritional elements in biofortification breeding.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.
| | - Rebecca Thistlethwaite
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, Australia
| | - Matthew J Hayden
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Suong Cu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Bakhite MAE, Sithole NJ, Magwaza LS, Odindo AO, Magwaza ST, Ncama K. Phosphorus application improves grain yield in low phytic acid maize synthetic populations. Heliyon 2021; 7:e07912. [PMID: 34527823 PMCID: PMC8429078 DOI: 10.1016/j.heliyon.2021.e07912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Maize mutants with low phytic acid have a compromised overall agronomic performance that results in low yields. This study was conducted to investigate the effect of P (18, 26 and 34 mg/kg) on the agronomic performance of low and high phytic acid (LPA and HPA) maize synthetic populations of tropical origin, compared to two commercial hybrids (SC701 and LS8520). Subsequently, a germination test was performed on the seeds produced from the different levels of P fertilizer application rates. The germination test was conducted in the laboratory, using a germination paper towel, while the agronomic study was conducted in a controlled environment. The measured parameters included days to 50% flowering, plant height, and grain yield, as well as the final germination and germination velocity index. The results found that the grain yield increased by 1.30, 0.51, 2.41 and 1.87 t/ha in LPA, HPA, SC701 and LS8520, from the application of 18–26 mg/kg of P, respectively. However, there were non-significant differences (p > 0.05) in the grain yields of all varieties at a P application of 26 and 34 mg/kg. The final germination increased by 4% and 2% in LPA and LS8520, respectively, with the increase in the P application rate being from 18 to 26 mg/kg. However, no significant differences (p > 0.05) were found in the final germination percentage of all varieties at 26 mg/kg of P. This study indicated that the optimum application of P at planting enhances the overall performance of the LPA maize synthetic population to a level that is comparable to commercially-grown varieties.
Collapse
Affiliation(s)
- Mohammed A E Bakhite
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Nkanyiso J Sithole
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Lembe S Magwaza
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa.,Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Alfred O Odindo
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Shirly T Magwaza
- Department of Agricultural Science, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Khayelihle Ncama
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
22
|
An insight into phytic acid biosynthesis and its reduction strategies to improve mineral bioavailability. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00371-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Metabolite profiling reveals the metabolic features of the progenies resulting from the low phytic acid rice (Oryza sativa L.) mutant. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Silva VM, Putti FF, White PJ, Reis ARD. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:132-146. [PMID: 33991859 DOI: 10.1016/j.plaphy.2021.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Phytate or phytic acid (PA), is a phosphorus (P) containing compound generated by the stepwise phosphorylation of myo-inositol. It forms complexes with some nutrient cations, such as Ca, Fe and Zn, compromising their absorption and thus acting as an anti-nutrient in the digestive tract of humans and monogastric animals. Conversely, PAs are an important form of P storage in seeds, making up to 90% of total seed P. Phytates also play a role in germination and are related to the synthesis of abscisic acid and gibberellins, the hormones involved in seed germination. Decreasing PA content in plants is desirable for human dietary. Therefore, low phytic acid (lpa) mutants might present some negative pleiotropic effects, which could impair germination and seed viability. In the present study, we review current knowledge of the genes encoding enzymes that function in different stages of PA synthesis, from the first phosphorylation of myo-inositol to PA transport into seed reserve tissues, and the application of this knowledge to reduce PA concentrations in edible crops to enhance human diet. Finally, phylogenetic data for PA concentrations in different plant families and distributed across several countries under different environmental conditions are compiled. The results of the present study help explain the importance of PA accumulation in different plant families and the distribution of PA accumulation in different foods.
Collapse
Affiliation(s)
| | | | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | |
Collapse
|
25
|
Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJL, Parrott W, Vianna GR. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Res 2021; 30:239-249. [PMID: 33797713 DOI: 10.1007/s11248-021-00246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.
Collapse
Affiliation(s)
- Jéssica Carrijo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Peter LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nathalia Torres
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Giovanni R Vianna
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil.
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
26
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
27
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
28
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
29
|
Caproni L, Raggi L, Talsma EF, Wenzl P, Negri V. European landrace diversity for common bean biofortification: a genome-wide association study. Sci Rep 2020; 10:19775. [PMID: 33188249 PMCID: PMC7666124 DOI: 10.1038/s41598-020-76417-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Mineral deficiencies represent a global challenge that needs to be urgently addressed. An adequate intake of iron and zinc results in a balanced diet that reduces chances of impairment of many metabolic processes that can lead to clinical consequences. In plants, bioavailability of such nutrients is reduced by presence of compounds such as phytic acid, that can chelate minerals and reduce their absorption. Biofortification of common bean (Phaseolus vulgaris L.) represents an important strategy to reduce mineral deficiencies, especially in areas of the world where this crop plays a key role in the diet. In this study, a panel of diversity encompassing 192 homozygous genotypes, was screened for iron, zinc and phytate seed content. Results indicate a broad variation of these traits and allowed the identification of accessions reasonably carrying favourable trait combinations. A significant association between zinc seed content and some molecular SNP markers co-located on the common bean Pv01 chromosome was detected by means of genome-wide association analysis. The gene Phvul001G233500, encoding for an E3 ubiquitin-protein ligase, is proposed to explain detected associations. This result represents a preliminary evidence that can foster future research aiming at understanding the genetic mechanisms behind zinc accumulation in beans.
Collapse
Affiliation(s)
- Leonardo Caproni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy
| | - Lorenzo Raggi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy
| | - Elise F Talsma
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
- HarvestPlus, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia
| | - Peter Wenzl
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, Colombia
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università Degli Studi Di Perugia, Borgo XX Giugno 74, 06126, Perugia, Italy.
| |
Collapse
|
30
|
Sashidhar N, Harloff HJ, Potgieter L, Jung C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2241-2250. [PMID: 32191373 PMCID: PMC7589381 DOI: 10.1111/pbi.13380] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
Commercialization of Brassica napus. L (oilseed rape) meal as protein diet is gaining more attention due to its well-balanced amino acid and protein contents. Phytic acid (PA) is a major source of phosphorus in plants but is considered as anti-nutritive for monogastric animals including humans due to its adverse effects on essential mineral absorption. The undigested PA causes eutrophication, which potentially threatens aquatic life. PA accounts to 2-5% in mature seeds of oilseed rape and is synthesized by complex pathways involving multiple enzymes. Breeding polyploids for recessive traits is challenging as gene functions are encoded by several paralogs. Gene redundancy often requires to knock out several gene copies to study their underlying effects. Therefore, we adopted CRISPR-Cas9 mutagenesis to knock out three functional paralogs of BnITPK. We obtained low PA mutants with an increase of free phosphorus in the canola grade spring cultivar Haydn. These mutants could mark an important milestone in rapeseed breeding with an increase in protein value and no adverse effects on oil contents.
Collapse
Affiliation(s)
- Niharika Sashidhar
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| | - Hans J. Harloff
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| | - Lizel Potgieter
- Environmental GenomicsBotanical InstituteChristian‐Albrechts‐University of KielKielGermany
- Environmental GenomicsMax‐Planck‐Institute for Evolutionary BiologyPlönGermany
| | - Christian Jung
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| |
Collapse
|
31
|
Integrative Structural and Computational Biology of Phytases for the Animal Feed Industry. Catalysts 2020. [DOI: 10.3390/catal10080844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistance to high temperature, acidic pH and proteolytic degradation during the pelleting process and in the digestive tract are important features of phytases as animal feed. The integration of insights from structural and in silico analyses into factors affecting thermostability, acid stability, proteolytic stability, catalytic efficiency and specific activity, as well as N-glycosylation, could improve the limitations of marginal stable biocatalysts with trade-offs between stability and activity. Synergistic mutations give additional benefits to single substitutions. Rigidifying the flexible loops or inter-molecular interactions by reinforcing non-bonded interactions or disulfide bonds, based on structural and roof mean square fluctuation (RMSF) analyses, are contributing factors to thermostability. Acid stability is normally achieved by targeting the vicinity residue at the active site or at the neighboring active site loop or the pocket edge adjacent to the active site. Extending the positively charged surface, altering protease cleavage sites and reducing the affinity of protease towards phytase are among the reported contributing factors to improving proteolytic stability. Remodeling the active site and removing steric hindrance could enhance phytase activity. N-glycosylation conferred improved thermostability, proteases degradation and pH activity. Hence, the integration of structural and computational biology paves the way to phytase tailoring to overcome the limitations of marginally stable phytases to be used in animal feeds.
Collapse
|
32
|
Pramitha JL, Jeeva G, Ravikesavan R, Joel AJ, Vinothana NK, Meenakumari B, Raveendran M, Uma D, Hossain F, Kumar B, Rakshit S. Environmental impact of phytic acid in Maize ( Zea mays. L) genotypes for the identification of stable inbreds for low phytic acid. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1477-1488. [PMID: 32647462 PMCID: PMC7326876 DOI: 10.1007/s12298-020-00818-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Phytic acid is a ubiquitous compound that chelates the micronutrients in food and hinder their absorption. Hence, breeding for low phytate content for producing stable low phytic acid (lpa) hybrids is essential. Phytic acid content in maize grains has been found to vary across environments and its stable expression has yet to be explored. In a view of this, forty inbreds were screened with two checks viz., CO-6 and CO-H(M)-8 across three locations. Twenty morphological and three quality traits were observed to identify the stable lines for low phytic acid with higher free inorganic phosphorous and starch. Among all the lines, UMI-467, LPA-2-285, LPA-2-395 and UMI-447 recorded a stable performance in both AMMI and GGE biplot analysis for low phytic acid (2.52-3.32 mg/g). These lines also had a higher free inorganic phosphorous, ensuring its bioavailability (1.78-1.88 mg/g). There were perturbations in yield, starch and seed characteristics of the stable low phytic acid lines due to their lower phytic acid concentrations. This stated the role of phytic acid in plant physiology and established the constraints to be faced in breeding for low phytic acid in maize. Among the lpa lines, LPA-2-285 (57.83%) and UMI-447 (55.78%) had the highest average starch content. The lowest stable phytic acid content was observed in UMI-467 (2.52 mg/g) and this line had severe reductions in yield parameters. Considering the seed and yield characteristics, LPA-2-285, LPA-2-395 and UMI-447 performed better than UMI-467. Although these four stable lines were poor in their adaptability among all the genotypes, they could be utilised as promising stable donors to facilitate the development of stable lpa hybrids.
Collapse
Affiliation(s)
| | - G. Jeeva
- Centre for Plant Breeding and Genetics, TNAU, Coimbatore, India
| | | | - A. John Joel
- Tamil Nadu Rice Research Institute, Aduthurai, TNAU, Aduthurai, India
| | | | - B. Meenakumari
- Agricultural Research Station, Bhavanisagar, TNAU, Bhavanisagar, India
| | - M. Raveendran
- Centre for Plant Molecular Biology and Biotechnology, TNAU, Coimbatore, India
| | - D. Uma
- Department of Biochemistry, CPMB & B, TNAU, Coimbatore, India
| | - Firoz Hossain
- Indian Council of Agricultural Research, New Delhi, India
| | | | - Sujay Rakshit
- Indian Institute of Maize Research, ICAR, Hyderabad, India
| |
Collapse
|
33
|
Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. PLANTS 2020; 9:plants9050553. [PMID: 32357504 PMCID: PMC7285160 DOI: 10.3390/plants9050553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Mineral deficiencies, particularly for iron and zinc, affect over two billion people worldwide, mainly in developing countries where diets are based on the consumption of staple crops. Mineral biofortification includes different approaches aimed to increase mineral concentration and to improve mineral bioavailability in the edible parts of plants, particularly the seeds. A multidisciplinary approach, including agronomic, genetic, physiological, and molecular expertise, is necessary to obtain detailed knowledge of the complex homeostatic mechanisms that tightly regulate seed mineral concentrations and the molecules and mechanisms that determine mineral bioavailability, necessary to reach the biofortification objectives. To increase bioavailability, one strategy is to decrease seed content of phytic acid, a highly electronegative molecule present in the cell that chelates positively charged metal ions, many of which are important for human nutrition. All the contributions of the current Special Issue aim at describing new results, reviewing the literature, and also commenting on some of the economic and sociological aspects concerning biofortification research. A number of contributions are related to the study of mineral transport, seed accumulation, and approaches to increase seed micronutrient concentration. The remaining ones are mainly focused on the study of low phytic acid mutants.
Collapse
|
34
|
Omoruyi FO, Stennett D, Foster S, Dilworth L. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules 2020; 25:E1720. [PMID: 32290029 PMCID: PMC7212753 DOI: 10.3390/molecules25071720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inositol, or myo-inositol, and associated analog molecules, including myo-inositol hexakisphosphate, are known to possess beneficial biomedical properties and are now being widely studied. The impact of these compounds in improving diabetic indices is significant, especially in light of the high cost of treating diabetes mellitus and associated disorders globally. It is theorized that, within ten years, the global population of people with the disease will reach 578 million individuals, with the cost of care projected to be approximately 2.5 trillion dollars. Natural alternatives to pharmaceuticals are being sought, and this has led to studies involving inositol, and myo-inositol-hexakisphosphate, also referred to as IP6. It has been reported that IP6 can improve diabetic indices and regulate the activities of some metabolic enzymes involved in lipid and carbohydrate metabolism. Current research activities have been focusing on the mechanisms of action of inositol and IP6 in the amelioration of the indices of diabetes mellitus. We demonstrated that an IP6 and inositol combination supplement may regulate insulin secretion, modulate serum leptin concentrations, food intake, and associated weight gain, which may be beneficial in both prediabetic and diabetic states. The supplement attenuates vascular damage by reducing red cell distribution width. Serum HDL is increased while serum triglycerides tend to decrease with consumption of the combination supplement, perhaps due to the modulation of lipogenesis involving reduced serum lipase activity. We also noted increased fecal lipid output following combination supplement consumption. Importantly, liver function was found to be preserved. Concurrently, serum reactive oxygen species production was reduced, indicating that inositol and IP6 supplement consumption may reduce free radical damage to tissues and organs as well as serum lipids and blood glucose by preserving liver function. This review provides an overview of the findings associated with inositol and IP6 supplementation in the effective treatment of diabetes with a view to proposing the potential mechanisms of action.
Collapse
Affiliation(s)
- Felix O. Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA;
| | - Dewayne Stennett
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Shadae Foster
- Department of Basic Medical Sciences, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica; (D.S.); (S.F.)
| | - Lowell Dilworth
- Department of Pathology, The University of the West Indies Mona Campus, Kingston 7, Mona, Jamaica
| |
Collapse
|
35
|
Cominelli E, Galimberti M, Pongrac P, Landoni M, Losa A, Paolo D, Daminati MG, Bollini R, Cichy KA, Vogel-Mikuš K, Sparvoli F. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds. Food Chem 2020; 321:126680. [PMID: 32247181 DOI: 10.1016/j.foodchem.2020.126680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Abstract
Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem. We quantified the HTC phenotype of lpa1 common beans with three genetic backgrounds. The HTC phenotype in the lpa1 black bean line correlated with the redistribution of calcium particularly in the cell walls, providing support for the "phytase-phytate-pectin" theory of the HTC mechanism. Furthermore, the excess of free cations in the lpa1 mutation in combination with different PHA alleles affected the stability of PHA-L lectin.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Michela Galimberti
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy
| | - Paula Pongrac
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Michela Landoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Alessia Losa
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Maria Gloria Daminati
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Roberto Bollini
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Karen A Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of Agriculture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States.
| | - Katarina Vogel-Mikuš
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
36
|
Sharma A, Prasad S, Arun Kumar R, Jaiswal S, Agrawal P, Kant L, Bhatt J. Analytical assessment of maize kernels for Fe, Zn, and β-carotene dense cultivars with low phytate contents. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present paper reports that significant genetic variability was evident in Fe, Zn, β-carotene, and phytic acid (phytate, PA) contents in a set of 39 diverse maize genotypes collected from maize breeding programme of hill agriculture, India. The Fe, Zn, β-carotene, and PA concentrations were found to be in the range 19.31–50.64 mg kg−1, 12.60–37.18 mg kg−1, 0.17–8.27 µg g−1, and 6.59–7.13 g kg−1, respectively. The genotypes V335, V420, V393, V416, V414, V372, and V351 were identified to have higher concentration of β-carotene, Fe, and Zn but lower amount of PA. Possible availability of the minerals Fe and Zn was determined using molar ratio between PA as inhibitor and β-carotene as promoter for their absorption. The micronutrient molar ratio showed that Fe and Zn traits could be dependent of each other. Low R2 value revealed relation between β-carotene and kernel colour. The selected genotypes could be considered as potential sources of favourable genes for further breeding programs to develop micronutrient enriched maize cultivars.
Collapse
Affiliation(s)
- A. Sharma
- a ICAR-Directorate of Rapeseed Mustard Research, Bharatpur, Rajsthan-321303. India
- cCrop Improvement Division, Indian Council of Agricultural Research (ICAR), Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora 263601, Uttarakhand. India
| | - S. Prasad
- bSchool of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva. Fiji
| | - R. Arun Kumar
- d ICAR-Sugarcane Breeding Institute, Coimbatore-641007, Tamil Nadu. India
| | - S. Jaiswal
- a ICAR-Directorate of Rapeseed Mustard Research, Bharatpur, Rajsthan-321303. India
| | - P.K. Agrawal
- a ICAR-Directorate of Rapeseed Mustard Research, Bharatpur, Rajsthan-321303. India
| | - L. Kant
- a ICAR-Directorate of Rapeseed Mustard Research, Bharatpur, Rajsthan-321303. India
| | - J.C. Bhatt
- a ICAR-Directorate of Rapeseed Mustard Research, Bharatpur, Rajsthan-321303. India
| |
Collapse
|
37
|
Sashidhar N, Harloff HJ, Jung C. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large-scale screening of mutant populations through amplicon sequencing. THE NEW PHYTOLOGIST 2020; 225:2022-2034. [PMID: 31651044 DOI: 10.1111/nph.16281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/11/2019] [Indexed: 05/18/2023]
Abstract
Brassica napus (oilseed rape) is an important oil crop in temperate regions, which originated from hybridization of Brassica oleracea and Brassica rapa. Owing to its polyploidy, the functional study of single genes is cumbersome. Phytic acid is considered as an antinutritive compound, and we aimed to knock out the underlying synthesis and transporter genes to identify low phytic acid mutants. We implemented a high-throughput next-generation sequencing screening protocol for an ethylmethane sulfonate population of 7680 plants in six gene families (BnMIPS, BnMIK, Bn2-PGK, BnIPK1, BnIPK2, and BnMRP5) with two paralogues for each gene. A total of 1487 mutations were revealed, and the vast majority (96%) were confirmed by Sanger sequencing. Furthermore, the characterization of double mutants of Bn.2-PGK2 showed a significant reduction of phytic acid contents. We propose to use three-dimensional pooling combined with amplicon stacking and next-generation sequencing to identify mutations in polyploid oilseed rape in a fast and cost-effective manner for complex metabolic pathways. Furthermore, the mutants identified in Bn2-PGK2 might be a very valuable resource for industrial production of oilseed rape protein for human consumption.
Collapse
Affiliation(s)
- Niharika Sashidhar
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| |
Collapse
|
38
|
Galindo FS, Teixeira Filho MCM, Buzetti S, Santini JMK, Boleta EHM, Rodrigues WL. Macronutrient accumulation in wheat crop (Triticum aestivum L.) with Azospirillum brasilense associated with nitrogen doses and sources. JOURNAL OF PLANT NUTRITION 2020. [DOI: 10.1080/01904167.2020.1727511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fernando Shintate Galindo
- Department of Plant Health, Rural Engineering, and Soils, São Palo State University, Ilha Solteira, SP, Brazil
| | | | - Salatiér Buzetti
- Department of Plant Health, Rural Engineering, and Soils, São Palo State University, Ilha Solteira, SP, Brazil
| | - José Mateus Kondo Santini
- Department of Plant Health, Rural Engineering, and Soils, São Palo State University, Ilha Solteira, SP, Brazil
| | | | - Willian Lima Rodrigues
- Department of Plant Health, Rural Engineering, and Soils, São Palo State University, Ilha Solteira, SP, Brazil
| |
Collapse
|
39
|
Pramitha JL, Joel AJ, Srinivas S, Sreeja R, Hossain F, Ravikesavan R. Enumerating the phytic acid content in maize germplasm and formulation of reference set to enhance the breeding for low phytic acid. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:353-365. [PMID: 32158140 PMCID: PMC7036383 DOI: 10.1007/s12298-019-00725-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Phytic acid (Myoinositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is a ubiquitous compound present in plants. It is an important constituent in seed reducing the bioavailability of phosphorous and mineral nutrients when fed to monogastric animals like swine, poultry, fish etc. Hence, identification of maize germplasm with reduced phytic acid content is imperative to formulate the breeding programs to evolve low phytate lines. Towards this, three hundred and thirty-eight maize germplasm accessions available at Department of Millets, TNAU, were raised and screened for phytic acid content which varied from 2.77 to 16.70 mg/g of seed. Based on the variability present, a reference set with fifty-eight genotypes for phytic acid was formulated. The reference set was formed with random genotypes selected from the base population to follow a normal distribution (skewness; 0.17, kurtosis; 0.61 and K-S test for normality Dn = 0.70) for phytic acid. The non-significant difference between the means of the base and the reference ensured the entire representation of the base in the formulated reference for phytic acid. Among all the lines in the reference set, the lowest phytic acid content were observed in the lines UMI-113 (2.77 mg/g) followed by UMI-300-1 (3.17 mg/g), UMI-467 (5.50 mg/g) and UMI-158 (6.58 mg/g) could be used as donors for low phytic acid in breeding programs. The principal component analysis for studying the extent of variability in the reference, revealed six major principal components that exhibited 80.40% of variation with flowering traits, ear height and phytic acid as a major contributor for variability. The characters namely plant stand, germination percentage, kernel yield, ear length, ear diameter and number of kernels per row were found to be positively correlated with the phytic acid and this emphasizes the negative pleiotropic effects of low phytic acid lines in germination and seed set. Thus this formulated reference set enables the breeders to handle minimum population for further grouping the genotypes to analyse their heterotic potential combined with low phytic acid.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Center for Plant Breeding and Genetics, TNAU, Coimbatore, 641003 India
| | - A. John Joel
- Center for Plant Breeding and Genetics, TNAU, Coimbatore, 641003 India
| | - Srisaila Srinivas
- Center for Plant Breeding and Genetics, TNAU, Coimbatore, 641003 India
| | - R. Sreeja
- Center for Plant Breeding and Genetics, TNAU, Coimbatore, 641003 India
| | - Firoz Hossain
- Indian Council of Agricultural Research, Delhi, 110012 India
| | - R. Ravikesavan
- Department of Millets, CPBG, TNAU, Coimbatore, 641003 India
| |
Collapse
|
40
|
Cominelli E, Pilu R, Sparvoli F. Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants. PLANTS 2020; 9:plants9010069. [PMID: 31948109 PMCID: PMC7020491 DOI: 10.3390/plants9010069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023]
Abstract
Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation of different cellular processes. From a nutritional point of view, it is considered an antinutritional compound because, being a cation chelator, its presence reduces mineral bioavailability from the diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative sulfate transporters, and phosphate transporters. In the present review, we summarize advances in the characterization of these transporters in cereals and legumes. Particularly, we describe genes, proteins, and mutants for these different transporters, and we report data of in silico analysis aimed at identifying the putative orthologs in some other cereal and legume species. Finally, we comment on the advantage of using such types of mutants for crop biofortification and on their possible utility to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis crosstalk).
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-022-369-9421
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy;
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| |
Collapse
|
41
|
Colombo F, Paolo D, Cominelli E, Sparvoli F, Nielsen E, Pilu R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1301. [PMID: 32973854 PMCID: PMC7481554 DOI: 10.3389/fpls.2020.01301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) represents the major storage form of seed phosphate (P). During seed maturation, it accumulates as phytate salts chelating various mineral cations, therefore reducing their bioavailability. During germination, phytase dephosphorylates PA releasing both P and cations which in turn can be used for the nutrition of the growing seedling. Animals do not possess phytase, thus monogastric animals assimilate only 10% of the phytate ingested with feed, whilst 90% is excreted and may contribute to cause P pollution of the environment. To overcome this double problem, nutritional and environmental, in the last four decades, many low phytic acid (lpa) mutants (most of which affect the PA-MRP transporters) have been isolated and characterized in all major crops, showing that the lpa trait can increase the nutritional quality of foods and feeds and improve P management in agriculture. Nevertheless, these mutations are frequently accompanied by negative pleiotropic effects leading to agronomic defects which may affect either seed viability and germination or plant development or in some cases even increase the resistance to cooking, thus limiting the interest of breeders. Therefore, although some significant results have been reached, the isolation of lpa mutants improved for their nutritional quality and with a good field performance remains a goal so far not fully achieved for many crops. Here, we will summarize the main pleiotropic effects that have been reported to date in lpa mutants affected in PA-MRP transporters in five productive agronomic species, as well as addressing some of the possible challenges to overcome these hurdles and improve the breeding efforts for lpa mutants.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Roberto Pilu,
| |
Collapse
|
42
|
Sashidhar N, Harloff HJ, Jung C. Knockout of MULTI-DRUG RESISTANT PROTEIN 5 Genes Lead to Low Phytic Acid Contents in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2020; 11:603. [PMID: 32528494 PMCID: PMC7264376 DOI: 10.3389/fpls.2020.00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 05/08/2023]
Abstract
Understanding phosphate uptake and storage is interesting to optimize the plant performance to phosphorus fluctuations. Phytic acid (PA) is the major source of inorganic phosphorus (Pi) in plants. Genetic analyses of PA pathway transporter genes (BnMRP5) and their functional characterization might provide clues in better utilizing the available phosphate resources. Furthermore, the failure to assimilate PA by monogastric animals results in its excess accumulation in manure, which ultimately causes groundwater eutrophication. As a first step toward breeding low PA mutants in oilseed rape (Brassica napus L.), we identified knockout mutants in PA biosynthesis and transporter genes. The obtained M3 single mutants of Bn.MRP5.A10 and Bn.MRP5.C09 were combined by crossing to produce double mutants. Simultaneously, crosses were performed with the non-mutagenized EMS donor genotype to reduce the background mutation load. Double mutants identified from the F2 progeny of direct M3 crosses and BC1 plants showed 15% reduction in PA contents with no significant differences in Pi. We are discussing the function of BnMRP5 paralogs and the benefits for breeding Bnmrp5 mutants in respect to low PA, yield, and stress tolerances.
Collapse
|
43
|
Sacchi GA, Nocito FF. Plant Sulfate Transporters in the Low Phytic Acid Network: Some Educated Guesses. PLANTS (BASEL, SWITZERLAND) 2019; 8:E616. [PMID: 31861241 PMCID: PMC6963184 DOI: 10.3390/plants8120616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
A few new papers report that mutations in some genes belonging to the group 3 of plant sulfate transporter family result in low phytic acid phenotypes, drawing novel strategies and approaches for engineering the low-phytate trait in cereal grains. Here, we shortly review the current knowledge on phosphorus/sulfur interplay and sulfate transport regulation in plants, to critically discuss some hypotheses that could help in unveiling the physiological links between sulfate transport and phosphorus accumulation in seeds.
Collapse
Affiliation(s)
| | - Fabio Francesco Nocito
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
44
|
Powers SE, Thavarajah D. Checking Agriculture's Pulse: Field Pea ( Pisum Sativum L.), Sustainability, and Phosphorus Use Efficiency. FRONTIERS IN PLANT SCIENCE 2019; 10:1489. [PMID: 31803218 PMCID: PMC6873872 DOI: 10.3389/fpls.2019.01489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/28/2019] [Indexed: 05/10/2023]
Abstract
Investigations regarding the incorporation of better sustainable production strategies into current agricultural-food systems are necessary to grow crops that reduce negative impacts on the environment yet will meet the production and nutritional demand of 10 billion people by 2050. The introduction of organic, alternative staple food crops, such as nutrient-dense field pea (Pisum sativum L.), to the everyday diet, may alleviate micronutrient malnutrition and incorporate more sustainable agriculture practices globally. Varieties are grown in organic systems currently yield less than conventionally produced foods, with less bioavailable nutrients, due to poor soil nutrient content. One of the most limiting nutrients for field pea is phosphorus (P) because this legume crop requires significant inputs for nodule formation. Therefore, P use efficiency (PUE) should be a breeding target for sustainable agriculture and biofortification efforts; the important role of the soil microbiome in nutrient acquisition should also be examined. The objectives of this review are to highlight the benefits of field pea for organic agriculture and human health, and discuss nutritional breeding strategies to increase field pea production in organic systems. Field pea and other pulse crops are underrepresented in agricultural research, yet are important crops for a sustainable future and better food systems. Furthermore, because field pea is consumed globally by both developed and at-risk populations, research efforts could help increase global health overall and combat micronutrient malnutrition.
Collapse
Affiliation(s)
| | - Dil Thavarajah
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, United States
| |
Collapse
|
45
|
Borlini G, Rovera C, Landoni M, Cassani E, Pilu R. lpa1-5525: A New lpa1 Mutant Isolated in a Mutagenized Population by a Novel Non-Disrupting Screening Method. PLANTS 2019; 8:plants8070209. [PMID: 31284582 PMCID: PMC6681281 DOI: 10.3390/plants8070209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Phytic acid, or myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the main storage form of phosphorus in plants. It is localized in seeds, deposited as mixed salts of mineral cations in protein storage vacuoles; during germination, it is hydrolyzed by phytases to make available P together with all the other cations needed for seed germination. When seeds are used as food or feed, phytic acid and the bound cations are poorly bioavailable for human and monogastric livestock due to their lack of phytase activity. Therefore, reducing the amount of phytic acid is one strategy in breeding programs aimed to improve the nutritional properties of major crops. In this work, we present data on the isolation of a new maize (Zea mays L.) low phytic acid 1 (lpa1) mutant allele obtained by transposon tagging mutagenesis with the Ac element. We describe the generation of the mutagenized population and the screening to isolate new lpa1 mutants. In particular, we developed a fast, cheap and non-disrupting screening method based on the different density of lpa1 seed compared to the wild type. This assay allowed the isolation of the lpa1-5525 mutant characterized by a new mutation in the lpa1 locus associated with a lower amount of phytic phosphorus in the seeds in comparison with the wild type.
Collapse
Affiliation(s)
- Giulia Borlini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Cesare Rovera
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Landoni
- Department of Biosciences-Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elena Cassani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
46
|
Kumar A, Kumar V, Krishnan V, Hada A, Marathe A, C P, Jolly M, Sachdev A. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Sci Rep 2019; 9:7744. [PMID: 31123331 PMCID: PMC6533290 DOI: 10.1038/s41598-019-44255-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Phytic acid (PA), the major phosphorus reserve in soybean seeds (60-80%), is a potent ion chelator, causing deficiencies that leads to malnutrition. Several forward and reverse genetics approaches have ever since been explored to reduce its phytate levels to improve the micronutrient and phosphorous availability. Transgenic technology has met with success by suppressing the expression of the PA biosynthesis-related genes in several crops for manipulating their phytate content. In our study, we targeted the disruption of the expression of myo-inositol-3-phosphate synthase (MIPS1), the first and the rate limiting enzyme in PA biosynthesis in soybean seeds, by both antisense (AS) and RNAi approaches, using a seed specific promoter, vicilin. PCR and Southern analysis revealed stable integration of transgene in the advanced progenies. The transgenic seeds (T4) of AS (MS14-28-12-29-3-5) and RNAi (MI51-32-22-1-13-6) soybean lines showed 38.75% and 41.34% reduction in phytate levels respectively, compared to non-transgenic (NT) controls without compromised growth and seed development. The electron microscopic examination also revealed reduced globoid crystals in the Protein storage vacoules (PSVs) of mature T4 seeds compared to NT seed controls. A significant increase in the contents of Fe2+ (15.4%, 21.7%), Zn2+ (7.45%, 11.15%) and Ca2+ (10.4%, 15.35%) were observed in MS14-28-12-29-3-5 and MI51-32-22-1-13-6 transgenic lines, respectively, compared to NT implicating improved mineral bioavailability. This study signifies proof-of-concept demonstration of seed-specific PA reduction and paves the path towards low phytate soybean through pathway engineering using the new and precise editing tools.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Varun Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, (H.P.), India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Alkesh Hada
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ashish Marathe
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Parameswaran C
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Monica Jolly
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
47
|
Kishor DS, Lee C, Lee D, Venkatesh J, Seo J, Chin JH, Jin Z, Hong SK, Ham JK, Koh HJ. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLoS One 2019; 14:e0209636. [PMID: 30870429 PMCID: PMC6417671 DOI: 10.1371/journal.pone.0209636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in mineral deficiencies among brown rice consumers. Therefore, considerable efforts have been focused on the development of low PA (LPA) rice cultivars. In this study, we performed genetic and molecular analyses of OsLpa1, a major PA biosynthesis gene, in Sanggol, a low PA mutant variety developed via chemical mutagenesis of Ilpum rice cultivar. Genetic segregation and sequencing analyses revealed that a recessive allele, lpa1-3, at the OsLpa1 locus (Os02g0819400) was responsible for a significant reduction in seed PA content in Sanggol. The lpa1-3 gene harboured a point mutation (C623T) in the fourth exon of the predicted coding region, resulting in threonine (Thr) to isoleucine (Ile) amino acidsubstitution at position 208 (Thr208Ile). Three-dimensional analysis of Lpa1 protein structure indicated that myo-inositol 3-monophosphate [Ins(3)P1] could bind to the active site of Lpa1, with ATP as a cofactor for catalysis. Furthermore, the presence of Thr208 in the loop adjacent to the entry site of the binding pocket suggests that Thr208Ile substitution is involved in regulating enzyme activity via phosphorylation. Therefore, we propose that Thr208Ile substitution in lpa1-3 reduces Lpa1 enzyme activity in Sanggol, resulting in reduced PA biosynthesis.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Choonseok Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Joong Hyoun Chin
- Graduate School of Integrated Bioindustry, Sejong University, Seoul, Republic of Korea
| | - Zhuo Jin
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kwan Hong
- Division of Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Kwan Ham
- Gangwon provincial Agricultural Research & Extension Services, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
48
|
Transcriptome approach to address low seed germination in Cyclobalanopsis gilva to save forest ecology. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Zhou C, Tan Y, Goßner S, Li Y, Shu Q, Engel KH. Impact of cross-breeding of low phytic acid rice (Oryza sativa L.) mutants with commercial cultivars on the phytic acid contents. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3192-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Boncompagni E, Orozco-Arroyo G, Cominelli E, Gangashetty PI, Grando S, Kwaku Zu TT, Daminati MG, Nielsen E, Sparvoli F. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 2018; 13:e0198394. [PMID: 29856884 PMCID: PMC5983567 DOI: 10.1371/journal.pone.0198394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/22/2018] [Indexed: 02/02/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important "orphan" cereal and the most widely grown of all the millet species worldwide. It is also the sixth most important cereal in the world after wheat, rice, maize, barley, and sorghum, being largely grown and used in West Africa as well as in India and Pakistan. The present study was carried out in the frame of a program designed to increase benefits and reduce potential health problems deriving from the consumption of pearl millet. The specific goal was to provide a database of information on the variability existing in pearl millet germplasm as to the amounts of phytate, the most relevant antinutrient compound, and the goitrogenic compounds C-glycosylflavones (C-GFs) accumulated in the grain.Results we obtained clearly show that, as indicated by the range in values, a substantial variability subsists across the investigated pearl millet inbred lines as regards the grain level of phytic acid phosphate, while the amount of C-GFs shows a very high variation. Suitable potential parents to be used in breeding programs can be therefore chosen from the surveyed material in order to create new germplasm with increased nutritional quality and food safety. Moreover, we report novel molecular data showing which genes are more relevant for phytic acid biosynthesis in the seeds as well as a preliminary analysis of a pearl millet orthologous gene for C-GFs biosynthesis. These results open the way to dissect the genetic determinants controlling key seed nutritional phenotypes and to the characterization of their impact on grain nutritional value in pearl millet.
Collapse
Affiliation(s)
| | | | | | - Prakash Irappa Gangashetty
- ICRISAT Sahelian Center, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - Stefania Grando
- ICRISAT Patancheru, International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India
| | | | | | - Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|