1
|
Wang S, Zhang X, Wang Y, Wu J, Lee YW, Xu J, Yang R. NaCl Stress Stimulates Phenolics Biosynthesis and Antioxidant System Enhancement of Quinoa Germinated after Magnetic Field Pretreatment. Foods 2024; 13:3278. [PMID: 39456340 PMCID: PMC11507989 DOI: 10.3390/foods13203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Our previous study showed that magnetic field pretreatment promoted germination and phenolic enrichment in quinoa. In this study, we further investigated the effects of NaCl stress on the growth and phenolic synthesis of germinated quinoa after magnetic field pretreatment (MGQ). The results showed that NaCl stress inhibited the growth of MGQ, reduced the moisture content and weight of a single plant, but increased the fresh/dry weight. The higher the NaCl concentration, the more obvious the inhibition effect. In addition, NaCl stress inhibited the hydrolysis of MGQ starch, protein, and fat but increased the ash content. Moreover, lower concentrations (50 and 100 mM) of NaCl stress increased the content of MGQ flavonoids and other phenolic compounds. This was due to the fact that NaCl stress further increased the enzyme activities of PAL, C4H, 4CL, CHS, CHI, and CHR and up-regulated the gene expression of the above enzymes. NaCl stress at 50 and 100 mM increased the DPPH and ABTS scavenging capacity of MGQ and increased the activities of antioxidant enzymes, including SOD, POD, CAT, APX, and GSH-Px, further enhancing the antioxidant system. Furthermore, principal component analysis showed that NaCl stress at 100 mM had the greatest combined effect on MGQ. Taken together, NaCl stress inhibited the growth of MGQ, but appropriate concentrations of NaCl stress, especially 100 mM, helped to further increase the phenolic content of MGQ and enhance its antioxidant system.
Collapse
Affiliation(s)
- Shufang Wang
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Xuejiao Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Yiting Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (J.W.); (Y.-W.L.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (Y.W.)
| |
Collapse
|
2
|
Arriagada-Escamilla C, Alvarado R, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-Bentonite Encapsulation of Extremophillic Bacterial Consortia Enhances Chenopodium quinoa Tolerance to Metal Stress. Microorganisms 2024; 12:2066. [PMID: 39458375 PMCID: PMC11509983 DOI: 10.3390/microorganisms12102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the encapsulation in alginate/bentonite beads of two metal(loid)-resistant bacterial consortia (consortium A: Pseudomonas sp. and Bacillus sp.; consortium B: Pseudomonas sp. and Bacillus sp.) from the Atacama Desert (northern Chile) and Antarctica, and their influence on physiological traits of Chenopodium quinoa growing in metal(loid)-contaminated soils. The metal(loid) sorption capacity of the consortia was determined. Bacteria were encapsulated using ionic gelation and were inoculated in soil of C. quinoa. The morphological variables, photosynthetic pigments, and lipid peroxidation in plants were evaluated. Consortium A showed a significantly higher biosorption capacity than consortium B, especially for As and Cu. The highest viability of consortia was achieved with matrices A1 (3% alginate and 2% bentonite) and A3 (3% alginate, 2% bentonite and 2.5% LB medium) at a drying temperature of 25 °C and storage at 4 °C. After 12 months, the highest viability was detected using matrix A1 with a concentration of 106 CFU g-1. Further, a greenhouse experiment using these consortia in C. quinoa plants showed that, 90 days after inoculation, the morphological traits of both consortia improved. Chemical analysis of metal(loid) contents in the leaves indicated that consortium B reduced the absorption of Cu to 32.1 mg kg-1 and that of Mn to 171.9 mg kg-1. Encapsulation resulted in a significant increase in bacterial survival. This highlights the benefits of using encapsulated microbial consortia from extreme environments, stimulating the growth of C. quinoa, especially in soils with metal(loid) levels that can be a serious constraint for plant growth.
Collapse
Affiliation(s)
- Cesar Arriagada-Escamilla
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
| | - Roxana Alvarado
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javier Ortiz
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Reinaldo Campos-Vargas
- Center for Postharvest Studies, Faculty of Agricultural Sciences, Universidad de Chile, Santiago 8820808, Chile;
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Pontificia Universidad Católica de Valparaíso, La Palma, Quillota 2260000, Chile;
| |
Collapse
|
3
|
Nguyen VL, Luu HN, Phan THN, Nguyen VL, Chu DH, Bertero D, Curti N, McKeown PC, Spillane C. Genotype by environment interaction across water regimes in relation to cropping season response of quinoa (Chenopodium quinoa). PLoS One 2024; 19:e0309777. [PMID: 39378206 PMCID: PMC11460699 DOI: 10.1371/journal.pone.0309777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Genotype × environment (GxE) interaction effects are one of the major challenges in identifying cultivars with stable performance across agri-environments. In this study we analysed GE interactions to identify quinoa (Chenopodium quinoa) cultivars with high and stable yields under different soil moisture regimes, representing control conditions, waterlogging and drought. Waterlogging and drought treatments were artificially induced using normoxia, a combination of hypoxia-normoxia, and 10% PEG (Polyethylene glycol) under hydroponic growth conditions, respectively. Both waterlogging and drought conditions significantly reduced the plant height (PH), number of leaves (NoL) and number of branches (NoB), stem diameter (SD), leaf area (LA) and dry weight (DW) of quinoa genotypes. The genotype, water regime, and genotype by water regime effects all significantly affected the measured quinoa traits. Based on the additive main effects and multiplicative interaction (AMMI) model for DW, the genotypes G18, Puno, Q4, 2-Want, Puno, Real1 x Ruy937 and Titicaca were found to exhibit tolerance and were stable across water regimes. A second-stage evaluation was conducted to test genotype × environment interaction effects in crop production field trials, selecting two contrasting seasons based on soil moisture conditions involving a diverse set of genotypes (58 varieties in total). Our results demonstrate significant variations in both growth and yield among the quinoa genotypes across the cropping seasons. The GGE analysis for grain yield indicate that field conditions matched to G × E under hydroponic experimental conditions and the cultivars G18, Q1, Q4, NL-3, G28, 42-Test, Atlas and 59-ALC were classified within a range of high productivity. Our findings provide a basis for understanding the mechanisms of wide adaptation, while identifying germplasm that enhances the water stress tolerance of quinoa cultivars at early growth stages.
Collapse
Affiliation(s)
- Van Loc Nguyen
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hue Nhan Luu
- Student at Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi Hong Nhung Phan
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Viet Long Nguyen
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Duc Ha Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Hanoi, Vietnam
| | - Daniel Bertero
- Depto, de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires and IFEVA-Conicet, Buenos Aires, Argentina
| | - Néstor Curti
- Escuela de Agronomía, National University of Salta, Salta, Argentina
| | - Peter C. McKeown
- Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Charles Spillane
- Agriculture, Food Systems & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Yarzábal Rodríguez LA, Álvarez Gutiérrez PE, Gunde-Cimerman N, Ciancas Jiménez JC, Gutiérrez-Cepeda A, Ocaña AMF, Batista-García RA. Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change. Nat Commun 2024; 15:6951. [PMID: 39138171 PMCID: PMC11322326 DOI: 10.1038/s41467-024-51223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.
Collapse
Grants
- This work was supported by Fondo Nacional de Innovación y Desarrollo Científico-Tecnológico (FONDOCYT), Ministerio de Educación Superior, Ciencia y Tecnología (MESCYT), Government of Dominican Republic: Project COD. 2022-2B2-078. This work was supported by Darwin Initiative Round 27: Partnership Project DARPP220, and Darwin Initiative Round 30: Project DIR30S2/1004. This study was also supported by funding from the Slovenian Research Agency to Infrastructural Centre Mycosmo (MRIC UL, I0-0022), programs P4-0432 and P1-0198. Authors appreciate the support received from the European Commission – Program H2020, Project GEN4OLIVE: 101000427, Topic SFS-28-2018-2019-2020 Genetic resources and pre-breeding communities. RAB-G received a Sabbatical fellowship (CVU: 389616) from the National Council of Humanities, Sciences and Technologies (CONAHCyT), Government of Mexico. This work was supported by RYC2022-037554-I project funded by MCIN/AEI/10.13039/501100011033 and FSE+.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal Rodríguez
- Carrera de Bioquímica y Farmacia. Grupo de Microbiología Molecular y Biotecnología (GI-M2YB). Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ana María Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ramón Alberto Batista-García
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
5
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Gougerdchi V, Hamedpour-Darabi M, Bagheri N, Sharma R, Vetukuri RR, Astatkie T, Dell B. Quinoa: A Promising Crop for Resolving the Bottleneck of Cultivation in Soils Affected by Multiple Environmental Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2117. [PMID: 39124236 PMCID: PMC11313704 DOI: 10.3390/plants13152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) has gained worldwide recognition for its nutritional values, adaptability to diverse environments, and genetic diversity. This review explores the current understanding of quinoa tolerance to environmental stress, focusing on drought, salinity, heat, heavy metals, and UV-B radiation. Although drought and salinity have been extensively studied, other stress factors remain underexplored. The ever-increasing incidence of abiotic stress, exacerbated by unpredictable weather patterns and climate change, underscores the importance of understanding quinoa's responses to these challenges. Global gene banks safeguard quinoa's genetic diversity, supporting breeding efforts to develop stress-tolerant varieties. Recent advances in genomics and molecular tools offer promising opportunities to improve stress tolerance and increase the yield potential of quinoa. Transcriptomic studies have shed light on the responses of quinoa to drought and salinity, yet further studies are needed to elucidate its resilience to other abiotic stresses. Quinoa's ability to thrive on poor soils and limited water resources makes it a sustainable option for land restoration and food security enterprises. In conclusion, quinoa is a versatile and robust crop with the potential to address food security challenges under environmental constraints.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | | | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 7194684471, Iran;
| | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Rahya Suchani, Samba, Jammu 181143, India;
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden;
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia;
| |
Collapse
|
6
|
Kimera F, Mugwanya M, Ahmed W, Dawood MAO, Sewilam H. Optimizing growth and yield of striped catfish (Pangasianodon hypophthalmus) and quinoa (Chenopodium quinoa) in a biosaline integrated aquaculture-agriculture systems. Sci Rep 2024; 14:17494. [PMID: 39080420 PMCID: PMC11289091 DOI: 10.1038/s41598-024-67414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Soil salinity and freshwater scarcity are among the major global threats to sustainable development owing to their adverse impacts on agricultural productivity especially in arid and semi-arid regions. There is a need to find sustainable alternatives such as salt-tolerant crops and fish to improve people's livelihoods in marginal areas. This study aimed to maximize the growth and yield of striped catfish (Pangasianodon hypophthalmus) and quinoa (Chenopodium quinoa) cultivated under a biosaline integrated aquaculture-agriculture system. The study was laid in a randomized completely block design of three saline effluent treatments under three replicates: 5000 ppm (T1), 10,000 ppm (T2), 15,000 ppm (T3), and control (T0). Agro-morphological and physiological attributes of quinoa were measured. The crop yield in biomass and mineral element composition was also studied. Additionally, fish growth performance parameters such as feed intake and efficiency, growth, and survival rate were also calculated. Our results indicated that irrigating quinoa with saline aquaculture effluents above 10,000 ppm enhanced the plant growth, yield, and nutrient content of seeds. Furthermore, rearing striped catfish in saline water reaching up to 15,000 ppm did not have adverse impacts on the growth and survival of fish. Overall, integrating catfish and quinoa production under a salinity regime of 10,000 ppm could be a potential solution to ensuring alternative food sources in marginal areas.
Collapse
Affiliation(s)
- Fahad Kimera
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Muziri Mugwanya
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Walaa Ahmed
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Mahmoud A O Dawood
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hani Sewilam
- Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Engineering Hydrology, Faculty of Civil Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
8
|
Wang S, Zhang X, Fan Y, Wang Y, Yang R, Wu J, Xu J, Tu K. Effect of magnetic field pretreatment on germination characteristics, phenolic biosynthesis, and antioxidant capacity of quinoa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108734. [PMID: 38781636 DOI: 10.1016/j.plaphy.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The development of quinoa-based functional foods with cost-effective methods has gained considerable attention. In this study, the effects of magnetic field pretreatment on the germination characteristics, phenolic synthesis, and antioxidant system of quinoa (Chenopodium quinoa Willd.) were investigated. The results showed that the parameters of magnetic field pretreatment had different effects on the germination properties of five quinoa varieties, in which Sanjiang-1 (SJ-1) was more sensitive to magnetic field pretreatment. The content of total phenolics and phenolic acids in 24-h germinated seeds increased by 20.48% and 26.54%, respectively, under the pretreatment of 10 mT magnetic fields for 10 min compared with the control. This was closely related to the activation of the phenylpropanoid pathway by increasing enzyme activities and gene expression. In addition, magnetic field improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals scavenging capacities and increased peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) activities. This study suggests that magnetic field pretreatment enhanced gene expression of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS) and chalcone isomerase (CHI), increased antioxidant enzyme activity and phenolics content. Thereby lead to an increase in the antioxidative capacity of quinoa.
Collapse
Affiliation(s)
- Shufang Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Xuejiao Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yuhan Fan
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yiting Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Jianhong Xu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Kang Tu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
9
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Natural solution for the remediation of multi-metal contamination: application of natural amino acids, Pseudomonas fluorescens and Micrococcus yunnanensis to increase the phytoremediation efficiency. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2021-2033. [PMID: 38949066 DOI: 10.1080/15226514.2024.2372688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 μg g-1, and 31.52, 60.78, 51.89, and 25.33 μg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Efficient Immobilization of heavy metals using newly synthesized magnetic nanoparticles and some bacteria in a multi-metal contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39602-39624. [PMID: 38822962 DOI: 10.1007/s11356-024-33808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Nazih A, Baghour M, Maatougui A, Aboukhalid K, Chiboub B, Bazile D. Effect of Gibberellic Acid and Mechanical Scarification on the Germination and Seedling Stages of Chenopodium quinoa Willd. under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1330. [PMID: 38794401 PMCID: PMC11125075 DOI: 10.3390/plants13101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a facultative halophyte renowned for its importance in enhancing food security, and it supports forage production across diverse climatic regions. The objective of this study is to examine the impacts of multiple pre-treatment methods on C. quinoa seed (Titicaca cultivar) germination parameters, identify the optimum pre-treatment to diminish the consequence of salinity, and promote the productivity of this crop, especially in marginal environments. For this purpose, a spectrum of sodium chloride (NaCl) concentrations spanning from 0 to 500 mM and gibberellic acid (GA3) concentrations ranging from 0 to 300 ppm were tested, and mechanical scarification (MS) was carried out. The effect of a combination of these pretreatment NaCl/GA3 and NaCl/MS on the germination parameters of C. quinoa seed was also investigated. The results showed that the total germination, vigor index, and germination index decreased progressively with an increase in salinity. Hence, salinity exhibited a notable influence on most germination parameters. Moreover, seeds scarified with 500 mM of NaCl negatively affected all measured parameters. In contrast, gibberellic acid applied at 200 ppm was effective on most of the parameters measured, particularly under 100 mM of NaCl. These findings indicate that immersing seeds in gibberellic acid could mitigate the adverse impacts of salinity.
Collapse
Affiliation(s)
- Abderrahmane Nazih
- Multidisciplinary Faculty of Nador, Mohamed 1st University, B.P. 300, Selouane 60700, Morocco; (M.B.); (B.C.)
- National Institute of Agronomic Research, CRRA Oujda, 10 Bd Mohamed VI, B.P. 428, Oujda 60000, Morocco; (A.M.); (K.A.)
| | - Mourad Baghour
- Multidisciplinary Faculty of Nador, Mohamed 1st University, B.P. 300, Selouane 60700, Morocco; (M.B.); (B.C.)
| | - Abdesselam Maatougui
- National Institute of Agronomic Research, CRRA Oujda, 10 Bd Mohamed VI, B.P. 428, Oujda 60000, Morocco; (A.M.); (K.A.)
| | - Kaoutar Aboukhalid
- National Institute of Agronomic Research, CRRA Oujda, 10 Bd Mohamed VI, B.P. 428, Oujda 60000, Morocco; (A.M.); (K.A.)
| | - Basma Chiboub
- Multidisciplinary Faculty of Nador, Mohamed 1st University, B.P. 300, Selouane 60700, Morocco; (M.B.); (B.C.)
| | - Didier Bazile
- CIRAD, UMR SENS, 34398 Montpellier, France;
- SENS, CIRAD, IRD, Université de Paul Valéry Montpellier 3, 34090 Montpellier, France
| |
Collapse
|
12
|
Ocaña-Gallegos C, Liang M, McGinty E, Zhang Z, Murphy KM, Hauvermale AL. Preharvest Sprouting in Quinoa: A New Screening Method Adapted to Panicles and GWAS Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1297. [PMID: 38794368 PMCID: PMC11124833 DOI: 10.3390/plants13101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The introduction of quinoa into new growing regions and environments is of interest to farmers, consumers, and stakeholders around the world. Many plant breeding programs have already started to adapt quinoa to the environmental and agronomic conditions of their local fields. Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy out of Washington State University. Preharvest sprouting appeared as the primary obstacle to increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions, and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines in future breeding programs aiming to incorporate tolerance to PHS.
Collapse
Affiliation(s)
| | | | | | | | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| |
Collapse
|
13
|
Matías J, Cruz V, Rodríguez MJ, Calvo P, Maestro-Gaitán I, Reguera M. Evaluating Yield, Nutritional Quality, and Environmental Impact of Quinoa Straws across Mediterranean Water Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:751. [PMID: 38592749 PMCID: PMC10974331 DOI: 10.3390/plants13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a promising and versatile crop due to its remarkable adaptability to diverse environments and the exceptional nutritional value of its seeds. Nevertheless, despite the recent extensive research on quinoa seeds, the straw associated with this crop has received comparatively little attention. The valorisation of this by-product provides an opportunity to improve the overall outcomes of quinoa cultivation. In this work, three quinoa varieties were evaluated for two years (2019 and 2020) under three different Mediterranean water environments (irrigation, fresh rainfed, and hard rainfed), aiming to assess the straw yield and nutritional quality and to study the changes in the crop nutritional uptake associated with different water environmental conditions. The nutritional analysis included the quantification of the ash, crude protein, crude fat, minerals (P, K, Ca, Mg), and fibre (gross fibre (GF), acid detergent fibre (ADF), neutral detergent fibre (NDF), acid detergent lignin (ADL), hemicellulose, cellulose) contents. As the results reveal, most of the parameters evaluated were susceptible to change mainly with the water environment but also with the genotype (or their interaction), including the yield, crude protein, relative feed value (RFV), and mineral content, which generally decreased under water-limiting conditions. Moreover, a comparative analysis revealed that straw Ca, Mg, and K contents were generally higher than in seeds. Overall, this study demonstrates that quinoa straw quality is genotypic and environmentally dependent, and these factors should be considered when aiming at improving straw feed value for livestock nutrition.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Badajoz, Spain;
| | - Verónica Cruz
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Badajoz, Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), 06007 Badajoz, Spain; (M.J.R.); (P.C.)
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), 06007 Badajoz, Spain; (M.J.R.); (P.C.)
| | - Isaac Maestro-Gaitán
- Department of Biology, Campus de Cantoblanco, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain;
| | - María Reguera
- Department of Biology, Campus de Cantoblanco, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain;
| |
Collapse
|
14
|
Flórez‐Martínez DH, Rodríguez‐Cortina J, Chavez‐Oliveros LF, Aguilera‐Arango GA, Morales‐Castañeda A. Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Sci Nutr 2024; 12:1479-1501. [PMID: 38455196 PMCID: PMC10916554 DOI: 10.1002/fsn3.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024] Open
Abstract
Currently, the demand for healthy consumption and the use of alternatives to dairy proteins for the development of foods with good nutritional value are growing. Quinoa has received much attention because it contains a high content of proteins, essential amino acids, essential fatty acids, minerals, vitamins, dietary fibers, and bioactive compounds. Nevertheless, this content and the bioavailability of specific compounds of interest are related to the genotype, the agri-environmental conditions, and management practices where quinoa is grown and postharvest management. This article aimed to analyze the research trends for three knowledge areas: quinoa plant breeding for nutraceutical properties, plant-soil relations focused on abiotic stresses, and postharvest and value-added transformation activities. To this end, a specific methodological design based on bibliometrics and scientometrics methods was used. Through these analyses based on publications' keywords, titles, abstracts, and conclusions sections, for each knowledge area, the key research trends (scope and main topics), the classification of trends based on their development and relevance degree, and the core of knowledge were established. The trends comprise the current state of research. Finally, analyzing the conclusions, recommendations, and future research sections of key publications, a strong correlation among plant breeding research to obtain varieties with tolerance to biotic and abiotic stresses, nutritional and functional compounds of interest for food safety, and the development of products with higher added value established interest in further research on the potential bioactivity of quinoa and the verification of health benefits to humans.
Collapse
Affiliation(s)
| | - Jader Rodríguez‐Cortina
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—Centro de Investigación TibaitatáMosqueraColombia
| | | | - Germán Andrés Aguilera‐Arango
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—Centro de Investigación PalmiraPalmiraValle del CaucaColombia
| | | |
Collapse
|
15
|
Olmos E, Jimenez-Perez B, Roman-Garcia I, Fernandez-Garcia N. Salt-tolerance mechanisms in quinoa: Is glycinebetaine the missing piece of the puzzle? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108276. [PMID: 38118328 DOI: 10.1016/j.plaphy.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Salinization of arable land has been progressively increasing, which, along with the effects of climate change, poses a serious risk to food production. Quinoa is a halophyte species that grows and is productive in highly saline soils. This study addresses the mechanisms of response and adaptation to high salinity. We show that the differential distribution of sodium in plants depends on the variety, observing that varieties such as Pandela Rosada limit the passage transit of sodium to the aerial part of the plant, a mechanism that seems to be regulated by sodium transporters such as HKT1s or SOS1. Like other halophytes of the Amaranthaceae family, quinoa plants have salt glands (bladder cells), which have been reported to play an important role in salt tolerance. However, our study shows that the contribution of bladder glands to salt accumulation is rather low. The 1H-NMR metabolome study of quinoa subjected to salt stress showed important modifications in the contents of amino acids, sugars, organic acids, and quaternary ammonium compounds (glycinebetaine). The compound with a higher presence was glycinebetaine, which makes up 6% of the leaf dry matter under saline conditions. Our findings suggest that glycinebetaine can act as an osmolyte and/or osmoprotectant, facilitating plant development under high saline ambient.
Collapse
Affiliation(s)
- E Olmos
- Departamento de Biología del Estrés y Patología Vegetal. CEBAS-CSIC Campus Universitario de Espinardo, Edificio 25, 30100 Murcia Spain.
| | - B Jimenez-Perez
- Departamento de Biología del Estrés y Patología Vegetal. CEBAS-CSIC Campus Universitario de Espinardo, Edificio 25, 30100 Murcia Spain.
| | - I Roman-Garcia
- Departamento de Biología del Estrés y Patología Vegetal. CEBAS-CSIC Campus Universitario de Espinardo, Edificio 25, 30100 Murcia Spain.
| | - N Fernandez-Garcia
- Departamento de Biología del Estrés y Patología Vegetal. CEBAS-CSIC Campus Universitario de Espinardo, Edificio 25, 30100 Murcia Spain.
| |
Collapse
|
16
|
Vergara-Diaz O, Velasco-Serrano E, Invernón-Garrido A, Katamadze A, Yoldi-Achalandabaso A, Serret MD, Vicente R. Quinoa panicles contribute to carbon assimilation and are more tolerant to salt stress than leaves. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154161. [PMID: 38142485 DOI: 10.1016/j.jplph.2023.154161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Contribution of inflorescences to seed filling have attracted great attention given the resilience of this photosynthetic organ to stressful conditions. However, studies have been almost exclusively focused to small grain cereals. In this study, we aimed to explore these responses in quinoa, as a climate resilient seed crop of elevated economic and nutritious potential. We compared the physiological and metabolic performance of panicles and leaves of two quinoa cultivars growing under contrasting salinity levels. Plant growth, photosynthetic and transpiratory gas exchange and chlorophyll fluorescence were monitored in inflorescences and leaves throughout the experiment. At flowering stage, young and mature leaves and panicles were sampled for key metabolic markers related to carbon, nitrogen and secondary metabolisms. When subjected to salt stress, panicles showed attenuated declines on photosynthesis, water use, pigments, amino acids, and protein levels as compared to leaves. In fact, the assimilation rates, together with a high hexose content evidenced an active photosynthetic role of the panicle under optimal and salt stress conditions. Moreover, we also found significant genotypic variability for physiological and metabolic traits of panicles and leaves, which emphasizes the study of genotype-dependent stress responses at the whole plant level. We conclude that quinoa panicles are less affected by salt stress than leaves, which encourages further research and exploitation of this organ for crop improvement and stress resilience considering the high natural diversity.
Collapse
Affiliation(s)
- Omar Vergara-Diaz
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| | - Elena Velasco-Serrano
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Alicia Invernón-Garrido
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Artūrs Katamadze
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| | - Ander Yoldi-Achalandabaso
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal; FisioClimaCO(2) Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
| | - Maria Dolores Serret
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| |
Collapse
|
17
|
Feng Y, Yan X, Guo F, Wang S, Liu Z, Long W. Identification, expression analysis of quinoa betalain biosynthesis genes and their role in seed germination and cold stress. PLANT SIGNALING & BEHAVIOR 2023; 18:2250891. [PMID: 37616475 PMCID: PMC10453985 DOI: 10.1080/15592324.2023.2250891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Betalains provide Chenopodium quinoa bright color, and the key enzyme genes for betalain biosynthesis include CYP76AD, DODA, and GTs. In this study, 59 CqCYP76AD, CqDODA and CqGTs genes in quinoa were identified and characterized by gene structural characteristics, phylogenetic relationships and gene expression patterns. The CqCYP76AD genes were divided into ɑ, β and γ types, CqDODA into ɑ and β types, and CqGTs into CqcDOPA5GT, CqB5GT and CqB6GT types according to phylogenetic relationships. The analysis of co-linearity identified eight pairs of duplicated genes which were subjected to purifying selection during evolution. CqCYP76AD and CqDODA, as well as CqcDOPA5GT and CqB5GT may have been evolutionarily linked in genetic inheritance, based on gene location and gene structure study. The tissue expression specificity of CqCYP76AD, CqDODA, and CqGTs genes in response to seed germination and cold stress was studied by RNA-Seq data. The genes CqCYP76AD, CqDODA, and CqGTs were involved in betalain biosynthesis and cold stress. CqCYP76AD, CqDODA, CqcDOPA5GT and CqB5GT gene sequences were consistent in the eight quinoa samples and showed significant variations in expression. In contrast, the inconsistency between changes in gene expression and betalain accumulation indicates that other factors may influence betalain biosynthesis in quinoa. This study offers the theoretical basis for the roles of the CqCYP76AD, CqDODA, and CqGTs genes in betalain biosynthesis and cold stress in quinoa, as well as a guide for the full utilization of betalains in quinoa plants.
Collapse
Affiliation(s)
- Yang Feng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xingzhu Yan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shiyi Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenhong Long
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Maestro‐Gaitán I, Granado‐Rodríguez S, Redondo‐Nieto M, Battaglia A, Poza‐Viejo L, Matías J, Bolaños L, Reguera M. Unveiling changes in rhizosphere-associated bacteria linked to the genotype and water stress in quinoa. Microb Biotechnol 2023; 16:2326-2344. [PMID: 37712602 PMCID: PMC10686115 DOI: 10.1111/1751-7915.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Drought is among the main abiotic factors causing agronomical losses worldwide. To minimize its impact, several strategies have been proposed, including the use of plant growth-promoting bacteria (PGPBs), as they have demonstrated roles in counteracting abiotic stress. This aspect has been little explored in emergent crops such as quinoa, which has the potential to contribute to reducing food insecurity. Thus, here we hypothesize that the genotype, water environment and the type of inoculant are determining factors in shaping quinoa rhizosphere bacterial communities, affecting plant performance. To address this, two different quinoa cultivars (with contrasting water stress tolerance), two water conditions (optimal and limiting water conditions) and different soil infusions were used to define the relevance of these factors. Different bacterial families that vary among genotypes and water conditions were identified. Certain families were enriched under water stress conditions, such as the Nocardioidaceae, highly present in the water-sensitive cultivar F15, or the Pseudomonadaceae, Burkholderiaceae and Sphingomonadaceae, more abundant in the tolerant cultivar F16, which also showed larger total polyphenol content. These changes demonstrate that the genotype and environment highly contribute to shaping the root-inhabiting bacteria in quinoa, and they suggest that this plant species is a great source of PGPBs for utilization under water-liming conditions.
Collapse
Affiliation(s)
| | | | | | | | - Laura Poza‐Viejo
- Departamento de BiologíaUniversidad Autónoma de MadridMadridSpain
| | - Javier Matías
- Agrarian Research Institute “La Orden‐Valdesequera” of Extremadura (CICYTEX)BadajozSpain
| | - Luis Bolaños
- Departamento de BiologíaUniversidad Autónoma de MadridMadridSpain
| | - Maria Reguera
- Departamento de BiologíaUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
19
|
Zou X, Zhang J, Cheng T, Guo Y, Zhang L, Han X, Liu C, Wan Y, Ye X, Cao X, Song C, Zhao G, Xiang D. New strategies to address world food security and elimination of malnutrition: future role of coarse cereals in human health. FRONTIERS IN PLANT SCIENCE 2023; 14:1301445. [PMID: 38107010 PMCID: PMC10722300 DOI: 10.3389/fpls.2023.1301445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.
Collapse
Affiliation(s)
- Xin Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yangyang Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiao Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Chao Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
20
|
Moog MW, Yang X, Bendtsen AK, Dong L, Crocoll C, Imamura T, Mori M, Cushman JC, Kant MR, Palmgren M. Epidermal bladder cells as a herbivore defense mechanism. Curr Biol 2023; 33:4662-4673.e6. [PMID: 37852262 DOI: 10.1016/j.cub.2023.09.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The aerial surfaces of quinoa (Chenopodium quinoa) and common ice plant (Mesembryanthemum crystallinum) are covered with a layer of epidermal bladder cells (EBCs), which are modified non-glandular trichomes previously considered to be key to the extreme salt and drought tolerance of these plants. Here, however, we find that EBCs of these plants play only minor roles, if any, in abiotic stress tolerance and in fact are detrimental under conditions of water deficit. We report that EBCs instead function as deterrents to a broad range of generalist arthropod herbivores, through their combined function of forming both a chemical and a physical barrier, and they also serve a protective function against a phytopathogen. Our study overturns current models that link EBCs to salt and drought tolerance and assigns new functions to these structures that might provide novel possibilities for protecting crops from arthropod pests.
Collapse
Affiliation(s)
- Max W Moog
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Xiuyan Yang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Amalie K Bendtsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Lin Dong
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa 921-8836, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1, Nonoichi, Ishikawa 921-8836, Japan
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV 89557-0014, USA
| | - Merijn R Kant
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
21
|
Matías J, Rodríguez MJ, Cruz V, Calvo P, Granado-Rodríguez S, Poza-Viejo L, Fernández-García N, Olmos E, Reguera M. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1268014. [PMID: 38023922 PMCID: PMC10662129 DOI: 10.3389/fpls.2023.1268014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Climate change is considered a serious threat to agriculture and food security. It is linked to rising temperatures and water shortages, conditions that are expected to worsen in the coming decades. Consequently, the introduction of more drought-tolerant crops is required. Quinoa (Chenopodium quinoa Willd.) has received great attention worldwide due to the nutritional properties of its seeds and its tolerance to abiotic stress. In this work, the agronomic performance and seed nutritional quality of three quinoa varieties were studied during two consecutive years (2019-2020) under three water environmental conditions of Southwestern Europe (irrigated conditions, fresh rainfed, and hard rainfed) with the goal of determining the impact of rainfed conditions on this crop performance. High precipitations were recorded during the 2020 growing season resulting in similar grain yield under irrigation and fresh rainfed conditions. However, in 2019, significant yield differences with penalties under water-limiting conditions were found among the evaluated environmental conditions. Furthermore, nutritional and metabolomic differences were observed among seeds harvested from different water environments including the progressive accumulation of glycine betaine accompanied by an increase in saponin and a decrease in iron with water limitation. Generally, water-limiting environments were associated with increased protein contents and decreased yields preserving a high nutritional quality despite particular changes. Overall, this work contributes to gaining further knowledge about how water availability affects quinoa field performance, as it might impact both seed yield and quality. It also can help reevaluate rainfed agriculture, as water deficit can positively impact the nutritional quality of seeds.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | - Verónica Cruz
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | | | - Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Chen Y, Lin Y, Zhang S, Lin Z, Chen S, Wang Z. Genome-Wide Identification and Characterization of the HAK Gene Family in Quinoa ( Chenopodium quinoa Willd.) and Their Expression Profiles under Saline and Alkaline Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3747. [PMID: 37960103 PMCID: PMC10650088 DOI: 10.3390/plants12213747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.
Collapse
Affiliation(s)
- Yanqiong Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yingfeng Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
23
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
McGinty EM, Craine EB, Miller ND, Ocana-Gallegos C, Spalding EP, Murphy KM, Hauvermale AL. Evaluating relationships between seed morphological traits and seed dormancy in Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2023; 14:1161165. [PMID: 37929178 PMCID: PMC10623317 DOI: 10.3389/fpls.2023.1161165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Introduction Quinoa is a high-value, nutritious crop that performs well in variable environments, marginal soils, and in diverse crop rotations. Quinoa's many attributes make it an ideal crop for supporting human health in global communities and economies. To date, quinoa research has largely focused on traits in adult plants important for enhancing plant phenotypic plasticity, abiotic stress, disease resistance, and yield. Fewer studies have evaluated quinoa seed dormancy and suggest that most modern quinoa varieties have weak or no seed dormancy, and a narrow window of seed viability post-harvest. In other crops, diminished seed dormancy is a major risk factor for preharvest sprouting (PHS; germination on the panicle due to rain prior to harvest) and may also pose a similar risk for quinoa. Methods This study (1) developed a dormancy screening assay to characterize seed dormancy strength in a large collection of quinoa varieties, (2) investigated if morphological variables including seed coat color, seed coat thickness, seed shape including eccentricity which evaluates the roundness or flatness of a seed, and other agronomic traits like crude protein content and seed moisture, contribute to quinoa seed dormancy, and (3) evaluated the use of a phenetic modeling approach to explore relationships between seed morphology and seed dormancy. Results Dormancy screening indicated seed dormancy ranges in quinoa varieties from none to strong dormancy. Further, phenetic modeling approaches indicate that seed coat thickness and eccentricity are important morphological variables that impact quinoa seed dormancy strength. Conclusions While dormancy screening and phenetic modeling approaches do not provide a direct solution to preventing PHS in quinoa, they do provide new tools for identifying dormant varieties as well as morphological variables contributing to seed dormancy.
Collapse
Affiliation(s)
- Emma M. McGinty
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | | | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Cristina Ocana-Gallegos
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
25
|
Youssef SM, Shaaban A, Abdelkhalik A, Abd El Tawwab AR, Abd Al Halim LR, Rabee LA, Alwutayd KM, Ahmed RMM, Alwutayd R, Hemida KA. Compost and Phosphorus/Potassium-Solubilizing Fungus Effectively Boosted Quinoa's Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3071. [PMID: 37687318 PMCID: PMC10489913 DOI: 10.3390/plants12173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution for bioorganic fertilization of plants grown in calcareous soil. A 2-year field experiment was conducted to investigate the effect of compost (20 t ha-1) with Aspergillus niger through soil drenching (C-AN) along with partial substitution of PK fertilization on quinoa performance in normal and calcareous soils. Treatments included PK100% (72 kg P2O5 ha-1 + 60 kg K2O ha-1 as conventional rate), PK100%+C-AN, PK75%+C-AN, PK50%+C-AN, PK25%+C-AN, and only C-AN in normal and calcareous soils. Results showed that C-AN and reduced PK fertilization (up to 75 or 50%) increased photosynthetic pigments and promoted nutrient acquisition in quinoa grown in calcareous soil. Reduced PK fertilization to 75 or 50% plus C-AN in calcareous soil increased osmoprotectants, nonenzymatic antioxidants, and DPPH scavenging activity of quinoa's leaves compared to the PK0%+C-AN treatment. The integrative application of high PK levels and C-AN enhanced the quinoa's seed nutritional quality (i.e., lipids, carbohydrates, mineral contents, total phenolics, total flavonoids, half maximal inhibitory concentration, and antiradical power) in calcareous soil. At reduced PK fertilization (up to 75 or 50%), application of compost with Aspergillus niger through soil drenching increased plant dry weight by 38.7 or 53.2%, hectoliter weight by 3.0 or 2.4%, seed yield by 49.1 or 39.5%, and biological yield by 43.4 or 33.6%, respectively, compared to PK0%+C-AN in calcareous soil. The highest P-solubilizing microorganism's population was found at PK0%+C-AN in calcareous soil, while the highest Azotobacter sp. population was observed under high PK levels + C-AN in normal soil. Our study recommends that compost with Aspergillus niger as a bioorganic fertilization treatment can partially substitute PK fertilization and boost quinoa's tolerance to salt calcareous-affected soil.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Abdelsattar Abdelkhalik
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed R. Abd El Tawwab
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Laila R. Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Laila A. Rabee
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Reda M. M. Ahmed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Rahaf Alwutayd
- Department of Information Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Khaulood A. Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
26
|
Han H, Qu Y, Wang Y, Zhang Z, Geng Y, Li Y, Shao Q, Zhang H, Ma C. Transcriptome and Small RNA Sequencing Reveals the Basis of Response to Salinity, Alkalinity and Hypertonia in Quinoa ( Chenopodium quinoa Willd.). Int J Mol Sci 2023; 24:11789. [PMID: 37511549 PMCID: PMC10380837 DOI: 10.3390/ijms241411789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous cereal that is rich in nutrients. This important crop has been shown to have significant tolerance to abiotic stresses such as salinization and drought. Understanding the underlying mechanism of stress response in quinoa would be a significant advantage for breeding crops with stress tolerance. Here, we treated the low-altitude quinoa cultivar CM499 with either NaCl (200 mM), Na2CO3/NaHCO3 (100 mM, pH 9.0) or PEG6000 (10%) to induce salinity, alkalinity and hypertonia, respectively, and analyzed the subsequent expression of genes and small RNAs via high-throughput sequencing. A list of known/novel genes were identified in quinoa, and the ones responding to different stresses were selected. The known/novel quinoa miRNAs were also identified, and the target genes of the stress response ones were predicted. Both the differently expressed genes and the targets of differently expressed miRNAs were found to be enriched for reactive oxygen species homeostasis, hormone signaling, cell wall synthesis, transcription factors and some other factors. Furthermore, we detected changes in reactive oxygen species accumulation, hormone (auxin and ethylene) responses and hemicellulose synthesis in quinoa seedlings treated with stresses, indicating their important roles in the response to saline, alkaline or hyperosmotic stresses in quinoa. Thus, our work provides useful information for understanding the mechanism of abiotic stress responses in quinoa, which would provide clues for improving breeding for quinoa and other crops.
Collapse
Affiliation(s)
- Huanan Han
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yusen Qu
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yingcan Wang
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Zaijie Zhang
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yuhu Geng
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yuanyuan Li
- CAS Center for Excellence in Molecular Plant Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Qun Shao
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Hui Zhang
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| |
Collapse
|
27
|
Wang X, Shen C, Chen T, Zhou X, Li Y. Geographical equations of Swertia mussotii bioactivities: evidence from the western Sichuan region of China. FRONTIERS IN PLANT SCIENCE 2023; 14:1112164. [PMID: 37448873 PMCID: PMC10338117 DOI: 10.3389/fpls.2023.1112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Swertia mussotii is the most authentic raw material used in Tibetan medicine in China for its various bioactivities. This natural medicine resource is at risk of being exhausted due to the double interference of climate change and anthropogenic over-collection. Little is known about habitat characteristics and the crucial environmental factors that influence the levels of active ingredients. The goal of this study is to understand the variability in the bioactive compound content of a wide range of wild S. mussotii as it adapts to changing environmental conditions. The target compound content of the whole plant material was analyzed with the environmental explanatory variables of the field sample sites using a constrained ordination method for their correlation analysis. The results show that 16.3 percent of the sampled wild S. mussotii populations with the highest bioactive content can be grouped into the elite type. The most prominent environmental variables affecting the content of major bioactive products include altitude, aspect, soil TK content, Fe content, and C/N and N/P ratios. Altitude and aspect put indirect effects that are mediated by plant height and density, N/P ratio puts a direct effect, while soil TK content, Fe content and C/N ratio have both direct and indirect effects on the bioactivity of S. mussotii. In addition to the total negative effects of altitude and C/N ratio, the remaining factors play a driving role. These findings demonstrate variation by geographical conditions across S. mussotii accessions for physiologic responses and secondary compounds in wild populations. The knowledge gained from this study can be used for environmental and plant physiology research, efficient collection of naturally active compounds, and conservation strategies for rare natural plant resources.
Collapse
Affiliation(s)
- Xiaobo Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China
| | - Xiaodan Zhou
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China
| |
Collapse
|
28
|
Mulaudzi T, Sias G, Nkuna M, Ndou N, Hendricks K, Ikebudu V, Koo AJ, Ajayi RF, Iwuoha E. Seed Priming with MeJa Prevents Salt-Induced Growth Inhibition and Oxidative Damage in Sorghum bicolor by Inducing the Expression of Jasmonic Acid Biosynthesis Genes. Int J Mol Sci 2023; 24:10368. [PMID: 37373514 DOI: 10.3390/ijms241210368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Gershwin Sias
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Kaylin Hendricks
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vivian Ikebudu
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rachel F Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
29
|
Vila-López MV, Pallarés N, Ferrer E, Tolosa J. Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins (Basel) 2023; 15:379. [PMID: 37368680 DOI: 10.3390/toxins15060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, pseudo-cereals' consumption is increasing due to their health benefits as they possess an excellent nutrient profile. Whole pseudo-cereal grains are rich in a wide range of compounds, namely flavonoids, phenolic acids, fatty acids, and vitamins with known beneficial effects on human and animal health. Mycotoxins are common contaminants in cereals and by-products; however, the study of their natural occurrence in pseudo-cereals is currently scarce. Pseudo-cereals are similar to cereal grains; thus, mycotoxin contamination is expected to occur in pseudo-cereals. Indeed, mycotoxin-producing fungi have been reported in these matrices and, consequently, mycotoxin contents have been reported too, especially in buckwheat samples, where ochratoxin A and deoxynivalenol reached levels up to 1.79 μg/kg and 580 μg/kg, respectively. In comparison to cereal contamination, mycotoxin levels detected in pseudo-cereal samples are lower; however, more studies are necessary in order to describe the mycotoxin pattern in these samples and to establish maximum levels that ensure human and animal health protection. In this review, mycotoxin occurrence in pseudo-cereal samples as well as the main extraction methods and analytical techniques to determine them are described, showing that mycotoxins can be present in pseudo-cereal samples and that the most employed techniques for their determination are liquid and gas chromatography coupled to different detectors.
Collapse
Affiliation(s)
- María Vanessa Vila-López
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Noelia Pallarés
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Emilia Ferrer
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Josefa Tolosa
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
30
|
Xie H, Zhang P, Jiang C, Wang Q, Guo Y, Zhang X, Huang T, Liu J, Li L, Li H, Wang H, Qin P. Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings. BMC PLANT BIOLOGY 2023; 23:292. [PMID: 37264351 DOI: 10.1186/s12870-023-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) originates in high altitude areas, such as the Andes, and has some inherent characteristics of cold, drought, and salinity tolerance, but is sensitive to high temperature. RESULTS To gain insight into the response mechanism of quinoa to high temperature stress, we conducted an extensive targeted metabolomic study of two cultivars, Dianli-3101 and Dianli-3051, along with a combined transcriptome analysis. A total of 794 metabolites and 54,200 genes were detected, in which the genes related to photosynthesis were found down-regulated at high temperatures, and two metabolites, lipids and flavonoids, showed the largest changes in differential accumulation. Further analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and transcription factors revealed that quinoa inhibits photosynthesis at high temperatures, and the possible strategies being used for high temperature stress management are regulation of heat stress transcription factors (HSFs) to obtain heat tolerance, and regulation of purine metabolism to enhance stress signals for rapid response to high temperature stress. The tolerant genotype could have an enhanced response through lower purine levels. The induction of the stress response could be mediated by HSF transcription factors. The results of this study may provide theoretical references for understanding the response mechanism of quinoa to high temperature stress, and for screening potential high temperature tolerant target genes and high temperature tolerant strains. CONCLUSIONS These findings reveal the regulation of the transcription factor family HSF and the purinergic pathway in response to high temperature stress to improve quinoa varieties with high temperature tolerance.
Collapse
Affiliation(s)
- Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunhe Jiang
- Academic Affairs Office, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuesong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
31
|
Souid A, Bellani L, Tassi EL, Ben Hamed K, Longo V, Giorgetti L. Early Physiological, Cytological and Antioxidative Responses of the Edible Halophyte Chenopodium quinoa Exposed to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12051060. [PMID: 37237926 DOI: 10.3390/antiox12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a plant of South American origin recently valorized for its nutritional and nutraceutical properties in human diet. Quinoa is cultivated in many parts of the world, with a selection of varieties with good adaptability to extreme climatic conditions and salt stress. The variety Red Faro, native to southern Chile but harvested in Tunisia, was considered for salt stress resistance, considering its seed germination and 10-day seedling growth at increasing doses of NaCl (0, 100, 200 and 300 mM). Seedlings were spectrophotometrically analyzed for antioxidant secondary metabolites (polyphenols, flavonoids, flavonols and anthocyanins), antioxidant capacity (ORAC, oxygen radical absorbance capacity, DPPH*, 2,2-diphenyl-1-pic-rylhydrazyl), antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and catalase (CAT)) and mineral nutrient content in root and shoot tissues. Cytogenetic analysis of root tip was performed to check for meristematic activity and the possible presence of chromosomal abnormalities induced by salt stress. The results indicated a general increase in antioxidant molecules and antioxidant enzymes NaCl dose-dependent, no effects on seed germination but negative effects on seedling growth, and little effect on root meristems mitotic activity. These results indicated that stress conditions can induce an increase in biologically active molecules that could be used for nutraceutical purposes.
Collapse
Affiliation(s)
- Aymen Souid
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Vincenzo Longo
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
| |
Collapse
|
32
|
Saini KC, Gupta K, Sharma S, Gautam AK, Shamim S, Mittal D, Kundu P, Bast F. First report of Planomicrobium okeanokoites associated with Himantothallus grandifolius (Desmarestiales, Phaeophyta) from Southern Hemisphere. PLoS One 2023; 18:e0282516. [PMID: 37058520 PMCID: PMC10104341 DOI: 10.1371/journal.pone.0282516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
Gram-positive, aerobic, motile, rod-shaped, mesophilic epiphytic bacterium Planomicrobium okeanokoites was isolated from the surface of endemic species Himantothallus grandifolius in Larsemann Hills, Eastern Antarctica. The diversity of epiphytic bacterial communities living on marine algae remains primarily unexplored; virtually no reports from Antarctic seaweeds. The present study used morpho-molecular approaches for the macroalgae and epiphytic bacterium characterization. Phylogenetic analysis was performed using mitochondrial genome encoded COX1 gene; chloroplast genome encodes rbcL; nuclear genome encoded large subunit ribosomal RNA gene (LSU rRNA) for Himantothallus grandifolius and ribosomal encoded 16S rRNA for Planomicrobium okeanokoites. Morphological and molecular data revealed that the isolate is identified as Himantothallus grandifolius, which belongs to Family Desmarestiaceae of Order Desmarestiales in Class Phaeophyceae showing 99.8% similarity to the sequences of Himantothallus grandifolius, from King George Island, Antarctica (HE866853). The isolated bacterial strain was identified on the basis of chemotaxonomic, morpho-phylogenetic, and biochemical assays. A phylogenetic study based on 16S rRNA gene sequences revealed that the epiphytic bacterial strain SLA-357 was closest related to the Planomicrobium okeanokoites showing 98.7% sequence similarity. The study revealed the first report of this species from the Southern Hemisphere to date. Also, there has been no report regarding the association between the Planomicrobium okeanokoites and Himantothallus grandifolius; however, there are some reports on this bacterium isolated from sediments, soils, and lakes from Northern Hemisphere. This study may open a gateway for further research to know about the mode of interactions and how they affect the physiology and metabolism of each other.
Collapse
Affiliation(s)
- Khem Chand Saini
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Kriti Gupta
- Department of Botany, DAV College, Bathinda, Punjab, India
| | - Sheetal Sharma
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay K. Gautam
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Samrin Shamim
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Divya Mittal
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pushpendu Kundu
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
33
|
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep 2023; 13:4951. [PMID: 36973333 PMCID: PMC10043034 DOI: 10.1038/s41598-023-32114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | | | - Verónica Cruz
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
34
|
Craine EB, Davies A, Packer D, Miller ND, Schmöckel SM, Spalding EP, Tester M, Murphy KM. A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1101547. [PMID: 36875583 PMCID: PMC9978749 DOI: 10.3389/fpls.2023.1101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa's total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.
Collapse
Affiliation(s)
| | - Alathea Davies
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| | - Daniel Packer
- Sustainable Seed Systems Laboratory, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Sandra M. Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kevin M. Murphy
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
35
|
Egea I, Estrada Y, Faura C, Egea-Fernández JM, Bolarin MC, Flores FB. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 14:1092885. [PMID: 36818835 PMCID: PMC9935836 DOI: 10.3389/fpls.2023.1092885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.
Collapse
Affiliation(s)
- Isabel Egea
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Yanira Estrada
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Celia Faura
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | | | - Maria C. Bolarin
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| | - Francisco B. Flores
- Department Of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
36
|
Unique nutritional features that distinguish Amaranthus cruentus L. and Chenopodium quinoa Willd seeds. Food Res Int 2023; 164:112160. [PMID: 36737889 DOI: 10.1016/j.foodres.2022.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Univariate (Analysis of Variance_ANOVA) and multivariate (Principal Component Analysis (PCA) and Canonical Discriminant Analysis (CDA)) analyses were performed in order to classify and authenticate the seeds from different varieties of quinoa (Chenopodium quinoa Will.), and amaranth (Amaranthus cruentus L.). The univariate analysis showed differences between species for sucrose, K, Ca, unsaturated fatty acids, and the ω6/ω3 ratio. Nevertheless, to strengthen this classification, a PCA was applied separating the samples in 2 groups; group 1, formed by quinoa seeds, presented higher contents of margaroleic, eicosadienoic, behenic, erucic, linolenic, linoleic, and gadoleic acids, proteins, sucrose, and total sugars. Group 2, formed by amaranth seeds, showed positive values for Mn, Mg, Fe, P, Zn, Ca, fiber, glucose, and ω6/ω3 ratio. Furthermore, the CDA models developed resulted in a probability of event of 100% when classifying the samples in the groups quinoa or amaranth, highlighting the good sensitivity of the models used.
Collapse
|
37
|
Chaudhary N, Walia S, Kumar R. Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Ain QT, Siddique K, Bawazeer S, Ali I, Mazhar M, Rasool R, Mubeen B, Ullah F, Unar A, Jafar TH. Adaptive mechanisms in quinoa for coping in stressful environments: an update. PeerJ 2023; 11:e14832. [PMID: 36883058 PMCID: PMC9985901 DOI: 10.7717/peerj.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.
Collapse
Affiliation(s)
- Qura Tul Ain
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Kiran Siddique
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sami Bawazeer
- Faculty of Pharmacy, Department of Pharmacognosy, Umm Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University, New York, United States.,Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| | - Maham Mazhar
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Farman Ullah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Ahsanullah Unar
- School of Life Sciences, University of Science & Technology, China, Hefei, China
| | | |
Collapse
|
39
|
Sehgal A, Reddy KR, Walne CH, Barickman TC, Brazel S, Chastain D, Gao W. Climate Stressors on Growth, Yield, and Functional Biochemistry of two Brassica Species, Kale and Mustard. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101546. [PMID: 36294981 PMCID: PMC9605623 DOI: 10.3390/life12101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
Due to climate change, the attainment of global food security is facing serious challenges in meeting the growing food demand. Abiotic stresses are the foremost limiting factors for agricultural productivity. However, not much information is available on the effect of multiple abiotic stresses on the morphological and biochemical aspects of kale and mustard. Therefore, an experiment was designed to study the effects of UV-B radiation, CO2 concentration, and high temperature on the growth, yield, and biochemistry of two Brassica species, namely B. oleracea L. var. acephala Winterbor F1 (hybrid kale) and B. juncea var. Green wave O.G. (mustard greens), which were grown under optimal nutrients and soil moisture conditions in soil-plant-atmosphere-research (SPAR) units. Two levels of UV-B radiation (0 and 10 kJ m-2 d-1), two concentrations of CO2 (420 and 720 ppm), and two different temperature treatments (25/17 °C and 35/27 °C) were imposed 12 days after sowing (DAS). Several morphological and biochemical parameters were measured at harvest (40 DAS) in both species. All the traits declined considerably under individual and multi-stress conditions in both species except under elevated CO2 levels, which had a positive impact. Marketable fresh weight decreased by 64% and 58% in kale and mustard plants, respectively, growing under UV-B treatment. A slight increase in the chlorophyll content was observed in both species under the UV-B treatment alone and in combination with high temperature and elevated CO2. Understanding the impacts of high temperature, CO2, and UV-B radiation treatments on leafy vegetables, such as kale and mustard, can help to improve existing varieties to enhance resilience towards environmental stresses while simultaneously improving yield, morphology, and biochemistry in plants.
Collapse
Affiliation(s)
- Akanksha Sehgal
- Department of Plant and Soil Sciences, Mississippi State University, P.O. Box 9555, Mississippi State, MS 39762, USA
- Correspondence: (A.S.); (K.R.R.)
| | - Kambham Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, P.O. Box 9555, Mississippi State, MS 39762, USA
- Correspondence: (A.S.); (K.R.R.)
| | - Charles Hunt Walne
- Department of Plant and Soil Sciences, Mississippi State University, P.O. Box 9555, Mississippi State, MS 39762, USA
| | - T. Casey Barickman
- North Mississippi Research and Extension Center, P.O. Box 1690, Verona, MS 38879, USA
| | - Skyler Brazel
- North Mississippi Research and Extension Center, P.O. Box 1690, Verona, MS 38879, USA
| | - Daryl Chastain
- USDA ARS Sustainable Water Management, 4006 Old Leland Road, Stoneville, MS 38756, USA
| | - Wei Gao
- USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
40
|
Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Genes (Basel) 2022; 13:genes13081455. [PMID: 36011366 PMCID: PMC9408038 DOI: 10.3390/genes13081455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I–VIII). The exon–intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1–4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Huaqi Cao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
- Correspondence: ; Tel.: +86-186-0346-2517
| |
Collapse
|
41
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
42
|
Jiang W, Li C, Li L, Li Y, Wang Z, Yu F, Yi F, Zhang J, Zhu JK, Zhang H, Li Y, Zhao C. Genome-Wide Analysis of CqCrRLK1L and CqRALF Gene Families in Chenopodium quinoa and Their Roles in Salt Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:918594. [PMID: 35873972 PMCID: PMC9302450 DOI: 10.3389/fpls.2022.918594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Chenopodium quinoa is a halophyte with exceptional nutritional qualities, and therefore it is potentially an ideal crop to grow in saline soils, not only addressing the problem of land salinization, but also providing nutrient food for the health of humans. Currently, the molecular mechanisms underlying salt tolerance in quinoa are still largely unknown. In Arabidopsis thaliana, Catharanthus roseus receptor-like kinase (CrRLK1Ls) FERONIA (FER) and its ligands rapid alkalinization factors (RALFs) have been reported that participate in the regulation of salt tolerance. Here, we performed a genome-wide analysis and identified 26 CqCrRLK1L and 18 CqRALF family genes in quinoa genome. Transcriptomic profiling of the leaf, root, stamen, and pistil tissues of quinoa reveals that different CqCrRLK1L and CqRALF genes exhibit tissue-specific expression patterns, which is consistent with that observed in other plant species. RNA-seq data show that three CqCrRLK1L genes are highly up-regulated after salt treatment, suggesting that some CqCrRLK1L family genes are transcriptionally responsive to salt stress in quinoa. Biochemical study indicates that CqRALF15, a paralog of Arabidopsis RALF22, is physically associated with CrRLK1L proteins CqFER and AtFER. CqRALF15 and AtRALF22 are functionally conserved in inducing the internalization of AtFER and in triggering root growth inhibition in both quinoa and Arabidopsis. Moreover, overexpression of CqRALF15 in Arabidopsis results in enhanced leaf bleaching under salt stress, indicating that CqRALF15 is involved in salt stress response. Together, our study characterizes CqCrRLK1L and CqRALF family genes in quinoa at genomic, transcriptional, and protein levels, and provides evidence to support their roles in salt stress response.
Collapse
Affiliation(s)
- Wei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Leiting Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yali Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhihao Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyu Yu
- The Bright Seed Industry Company, Shanghai, China
| | - Feng Yi
- Agricultural Technology Center of Bright Rice (Group) Co., Ltd., Shanghai, China
| | - Jianhan Zhang
- Agricultural Technology Center of Bright Rice (Group) Co., Ltd., Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
43
|
Agirresarobe A, Miranda-Apodaca J, Odriozola I, Muñoz-Rueda A, Pérez-López U. Photosynthesis is not the unique useful trait for discriminating salt tolerance capacity between sensitive and tolerant quinoa varieties. PLANTA 2022; 256:20. [PMID: 35751708 PMCID: PMC9233658 DOI: 10.1007/s00425-022-03928-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Growth was not strictly linked to photosynthesis performance under salinity conditions in quinoa. Other key traits, which were varieties-specific, rather than photosynthesis explained better growth performance. Phenotyping for salinity stress tolerance in quinoa is of great interest to select traits contributing to overall salinity tolerance and to understand the response mechanisms to salinity at a whole plant level. The objective of this work was to dissect the responses of specific traits and analyse relations between these traits to better understand growth response under salinity conditions in quinoa. Growth response to salinity was mostly related to differences in basal values of biomass, being reduced the most in plants with higher basal biomass. Regarding the relationship between growth and specific traits, in Puno variety, better photosynthetic performance was related to a better maintenance of growth. Nevertheless, in the rest of the varieties other traits rather than photosynthesis could better explain growth response. In this way, the development of succulence in F-16 and Collana varieties, also the osmotic adjustment but in smaller dimensions in Pasankalla, Marisma and S-15-15 helped to maintain better growth. Besides, smaller increases of Cl- could have caused a limited nitrate uptake reducing more growth in Vikinga. Ascorbate was considered a key trait as a noticeable fall of it was also related to higher reductions in growth in Titicaca. These results suggest that, due to the genetic variability of quinoa and the complexity of salinity tolerance, no unique and specific traits should be taken into consideration when using phenotyping for analysing salinity tolerance in quinoa.
Collapse
Affiliation(s)
- Aitor Agirresarobe
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain.
| | - Jon Miranda-Apodaca
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Iñaki Odriozola
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Alberto Muñoz-Rueda
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Usue Pérez-López
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| |
Collapse
|
44
|
Tabatabaei I, Alseekh S, Shahid M, Leniak E, Wagner M, Mahmoudi H, Thushar S, Fernie AR, Murphy KM, Schmöckel SM, Tester M, Mueller-Roeber B, Skirycz A, Balazadeh S. The diversity of quinoa morphological traits and seed metabolic composition. Sci Data 2022; 9:323. [PMID: 35725573 PMCID: PMC9209433 DOI: 10.1038/s41597-022-01399-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476, Potsdam, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Mohammad Shahid
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mateusz Wagner
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Sumitha Thushar
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Kevin M Murphy
- Washington State University, Sustainable Seed Systems Lab, 273 Johnson Hall, PO Box 646420, Pullman, WA, 99164-6420, USA
| | - Sandra M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany.
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY, 14853, USA.
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, 14476, Potsdam, Germany.
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
45
|
Trends and Limits for Quinoa Production and Promotion in Pakistan. PLANTS 2022; 11:plants11121603. [PMID: 35736754 PMCID: PMC9227182 DOI: 10.3390/plants11121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Quinoa is known as a super food due to its extraordinary nutritional qualities and has the potential to ensure future global food and nutritional security. As a model plant with halophytic behavior, quinoa has potential to meet the challenges of climate change and salinization due to its capabilities for survival in harsh climatic conditions. The quinoa crop has received worldwide attention due to its adoption and production expanded in countries out of the native Andean region. Quinoa was introduced to Pakistan in 2009 and it is still a new crop in Pakistan. The first quinoa variety was registered in 2019, then afterward, its cultivation started on a larger scale. Weed pressure, terminal heat stress, stem lodging, bold grain size, and an unstructured market are the major challenges in the production and promotion of the crop. The potential of superior features of quinoa has not been fully explored and utilized. Hence, there is a need to acquire more diverse quinoa germplasm and to establish a strong breeding program to develop new lines with higher productivity and improved crop features for the Pakistan market. Mechanized production, processing practices, and a structured market are needed for further scaling of quinoa production in Pakistan. To achieve these objectives, there is a dire need to create an enabling environment for quinoa production and promotion through the involvement of policymakers, research institutions, farmers associations, and the private sector.
Collapse
|
46
|
Liu X, Wu H, Zeng Y, Deng Z, Wang X, Liang D. The dynamic changes of tracheary elements in an intraspecific quinoa (Chenopodium quinoa) graft. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153691. [PMID: 35483247 DOI: 10.1016/j.jplph.2022.153691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Vascular connection is key to successful graft. Little study has been devoted to the behavior of tracheary elements (TEs), the basic component of vascular bundles, during vascular connection between scion and rootstock. Here we report the structural changes of TEs at the graft interface between two quinoa cultivars, Qaidam White-1 (QW1) and Qaidam Red-1 (QR1). Our results showed that TEs in ungrafted plants developed following an ontogenetic sequence, i.e., the annular vessel, helical vessel, scalariform vessel, reticulate vessel, and pitted vessel. However, this process was greatly accelerated in grafted plants, resulting in quick developmental transition of TE wall patterning. At the early stage of intraspecific grafting (e.g., 5 days after grafting), the membrane-like cellular patches were heavily accumulated at the graft interface but quickly retreated within 2-4 days, suggesting an early emergency response to grafting. The TE length in both scion and rootstock was significantly shorter (more than 50% on average, nTE = 747) than the ungrafted plants in the same period. These short TEs were gradually integrated into a long, continuous conduit, thereby enabling the functional vasculature at the graft union. In addition, the pit size was gradually reduced, for example, for the surface area of outer pit aperture, from 12.73 ± 3.15 to 5.40 ± 0.30 μm2, or for the surface area of inner pit aperture, from 9.34 ± 3.33 to 1.96 ± 1.04 μm2, in 18 days (npits = 2830). Taken together, the morphological changes of TEs and cellular responses to grafting in the intraspecific grafts seemed to be conservative to other homografts and heterografts, implying that these behavioral changes are highly adaptive to the scion-rootstock interaction.
Collapse
Affiliation(s)
- Xiaofang Liu
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Huiyan Wu
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Yu Zeng
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Zhuying Deng
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Xue Wang
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Dacheng Liang
- Hubei Hongshan Laboratory, School of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023, China.
| |
Collapse
|
47
|
Castillo SE, Tovar JC, Shamin A, Gutirerrez J, Pearson P, Gehan MA. A protocol for Chenopodium quinoa pollen germination. PLANT METHODS 2022; 18:65. [PMID: 35585546 PMCID: PMC9118578 DOI: 10.1186/s13007-022-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Quinoa is an increasingly popular seed crop frequently studied for its tolerance to various abiotic stresses as well as its susceptibility to heat. Estimations of quinoa pollen viability through staining methods have resulted in conflicting results. A more effective alternative to stains is to estimate pollen viability through in vitro germination. Here we report a method for in vitro quinoa pollen germination that could be used to understand the impact of various stresses on quinoa fertility and therefore seed yield or to identify male-sterile lines for breeding. RESULTS A semi-automated method to count germinating pollen was developed in PlantCV, which can be widely used by the community. Pollen collected on day 4 after first anthesis at zeitgeber time 5 was optimum for pollen germination with an average germination of 68% for accession QQ74 (PI 614886). The optimal length of pollen incubation was found to be 48 h, because it maximizes germination rates while minimizing contamination. The pollen germination medium's pH, boric acid, and sucrose concentrations were optimized. The highest germination rates were obtained with 16% sucrose, 0.03% boric acid, 0.007% calcium nitrate, and pH 5.5. This medium was tested on quinoa accessions QQ74, and cherry vanilla with 68%, and 64% germination efficiencies, respectively. CONCLUSIONS We provide an in vitro pollen germination method for quinoa with average germination rates of 64 and 68% on the two accessions tested. This method is a valuable tool to estimate pollen viability in quinoa, and to test how stress affects quinoa fertility. We also developed an image analysis tool to semi-automate the process of counting germinating pollen. Quinoa produces many new flowers during most of its panicle development period, leading to significant variation in pollen maturity and viability between different flowers of the same panicle. Therefore, collecting pollen at 4 days after first anthesis is very important to collect more uniformly developed pollen and to obtain high germination rates.
Collapse
Affiliation(s)
| | - Jose C Tovar
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | | | - Paige Pearson
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
48
|
Amjad M, Iqbal MM, Abbas G, Farooq ABU, Naeem MA, Imran M, Murtaza B, Nadeem M, Jacobsen SE. Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1487-1500. [PMID: 33528680 DOI: 10.1007/s10653-021-00826-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Soil contamination with Cd and Pb is a worldwide problem which not only degrades the environment but also poses a serious threat for human and animal health. Phytoremediation of these contaminated soils using halophytic plants like quinoa presents an opportunity to clean the soils and use them for crop production. The current experiment was performed to evaluate the Cd and Pb tolerance potential of quinoa and subsequently its implications for human health. Three weeks old quinoa seedlings were exposed to Cd (30, 60 and 90 mg kg-1) and Pb (50, 100 and 150 mg kg-1) levels along with a control. The results revealed that plant height decreased at highest levels of soil Cd and Pb. Shoot, root and seed dry weight decreased with increasing levels of soil Cd and Pb. Tissue Cd and Pb concentrations increased with increasing levels of Cd and Pb in soil, the highest Cd was found in roots while the lowest in seeds. The highest Pb concentration was found in shoots at low Pb level, while in roots at high level of Pb. Increasing levels of Cd and Pb stimulated the activities of measured antioxidant enzymes and decreased membrane stability index. The health risk assessments of Cd and Pb revealed that hazard quotient was < 1 for both the metals. However, the results of total hazard quotient showed that value was < 1 for Pb and 1.19 for Cd showing potential carcinogenicity. This study demonstrates that quinoa has good phytoremediation potential for Cd and Pb however, the risk of Cd toxicity is challenging for human health.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan.
| | - Muhammad Mohsin Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Abu Bakar Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehar, Pakistan
| | - Sven-Erik Jacobsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Quinoa Quality, Teglvaerksvej 10, 4420, Regstrup, Denmark
| |
Collapse
|
49
|
Yan H, Nie Y, Cui K, Sun J. Integrative Transcriptome and Metabolome Profiles Reveal Common and Unique Pathways Involved in Seed Initial Imbibition Under Artificial and Natural Salt Stresses During Germination of Halophyte Quinoa. FRONTIERS IN PLANT SCIENCE 2022; 13:853326. [PMID: 35498713 PMCID: PMC9039654 DOI: 10.3389/fpls.2022.853326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 05/31/2023]
Abstract
Salt stress is a major environmental factor that seriously restricts quinoa seed germination. However, the key regulatory mechanisms underlying the effect of salt stress on the initial imbibition stage of quinoa seeds are unclear. In this study, dry seeds (0 h) and imbibed (8 h) seeds with 450 mM NaCl (artificial salt) and 100% brackish water of Yellow River Estuary (BW, natural salt) were used to assess the key salt responses based on germination, transcriptome, and metabolome analyses. The results indicated that the capacity of germinating seeds to withstand these two salt stresses was similar due to the similarities in the germination percentage, germination index, mean germination time, and germination phenotypes. Combined omics analyses revealed that the common and unique pathways were induced by NaCl and BW. Starch and sucrose metabolism were the only commonly enriched pathways in which the genes were significantly changed. Additionally, amino sugar and nucleotide sugar metabolism, and ascorbate and aldarate metabolism were preferably enriched in the NaCl group. However, glutathione metabolism tended to enrich in the BW group where glutathione peroxidase, peroxiredoxin 6, and glutathione S-transferase were significantly regulated. These findings suggest that the candidates involved in carbohydrate metabolism and antioxidant defense can regulate the salt responses of seed initial imbibition, which provide valuable insights into the molecular mechanisms underlying the effect of artificial and natural salt stresses.
Collapse
Affiliation(s)
| | | | | | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Habiyaremye C, Ndayiramije O, D'Alpoim Guedes J, Murphy KM. Assessing the Adaptability of Quinoa and Millet in Two Agroecological Zones of Rwanda. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.850280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) and millet species (including Eleusine coracana, Panicum miliaceum, and Setaria italica) are nutritionally valuable seed crops with versatile applications in food production and consumption. Both quinoa and millet have the potential to provide drought-tolerant, nutritious complementary crops to maize that is predominantly cultivated in Rwanda. This study evaluated quinoa and millet genotypes and assessed their agronomic performance in two agroecological zones of Rwanda. Twenty quinoa and fourteen millet cultivars were evaluated for grain yield, emergence, days to heading, flowering, and maturity, and plant height in 2016 and 2017 in Musanze, a highland region (2,254 m above sea level), and Kirehe, in the Eastern lowlands of Rwanda (1,478 m above sea level). Quinoa yield ranged from 189 to 1,855 kg/ha in Musanze and from 140 to 1,259 kg/ha in Kirehe. Millet yield ranged from 16 to 1,536 kg/ha in Musanze and from 21 to 159 kg/ha in Kirehe. Mean cultivar plant height was shorter in Kirehe (μ = 73 and 58 cm for quinoa and millets, respectively), than Musanze (μ = 93 and 76 cm for quinoa and millets, respectively). There was a genotype × environment interaction for maturity in quinoa and millet in both years. Across locations, “Titicaca” and “Earlybird” (Panicum miliaceum) were the earliest maturing quinoa and millet varieties, respectively, both with an average of 91 days to maturity. The results suggest that quinoa and millet have potential as regional crops for inclusion in the traditional dryland cropping rotations in Rwanda, thereby contributing to increased cropping system diversity and food security.
Collapse
|