1
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
2
|
Włodarczyk K, Smolińska B, Majak I. How Nano-ZnO Affect Tomato Fruits ( Solanum lycopersicum L.)? Analysis of Selected Fruit Parameters. Int J Mol Sci 2024; 25:8522. [PMID: 39126089 PMCID: PMC11313612 DOI: 10.3390/ijms25158522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Tomato (Solanum lycopersicum L.), as one of the most valuable horticulture crops, was chosen to investigate the effect of nanoparticles (NPs) in the form of nano-ZnO combined with conventional fertilizer on the quality of tomato fruits, including their antioxidant potential (total antioxidant activity, lycopene and β-carotene content), sugars content and allergenic potential (profilin and Bet v 1 content). Nano-ZnO was implemented during plant cultivation, applied by foliar spraying or directly via soil, at three different concentrations (50, 150 and 250 mg/L). The obtained results suggest that the usage of NPs during tomato plant cultivation had minor impacts on parameters such as total antioxidant activity or the content of selected allergens. Even though the total antioxidant activity was not affected by nano-ZnO, the malondialdehyde activity (MDA) content was notably decreased in fruits under nano-ZnO treatment. The content of lycopene and β-carotene was significantly affected by the use of nano-ZnO. Moreover, the usage of nano-ZnO significantly increased the total sugar content in fruits treated with nanoparticles via foliar spraying. Based on the obtained results, it can be stated that nano-ZnO, regardless of the method of application, significantly affected tomato fruits which can be beneficial for fruit production.
Collapse
Affiliation(s)
- Katarzyna Włodarczyk
- Institute of Natural Products and Cosmetics, Department of Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego 2/22 Str., 90-537 Lodz, Poland;
| | - Beata Smolińska
- Institute of Natural Products and Cosmetics, Department of Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego 2/22 Str., 90-537 Lodz, Poland;
| | - Iwona Majak
- Institute of Food Technology and Analysis, Department of Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego 2/22 Str., 90-537 Lodz, Poland;
| |
Collapse
|
3
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
4
|
Gao H, Ji Y, Chen W. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Microbiol Res 2024; 280:127568. [PMID: 38118306 DOI: 10.1016/j.micres.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.
Collapse
Affiliation(s)
- Huali Gao
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Yingrui Ji
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
6
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Yang L, Han R, Duan Y, Li J, Gou T, Zhou J, Zhu H, Xu Z, Guo J, Gong H. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108416. [PMID: 38354528 DOI: 10.1016/j.plaphy.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Silicon (Si) and selenium (Se) can improve the tolerance of plants to NaCl-induced salt stress. However, few studies are available on their regulatory effects on plants' tolerance to calcium nitrate stress, which often occurs in protected facilities, causing secondary soil salinization. In this study, we report the effects of Si (6 mM) and Se (20 μM) applied separately or in combination on the growth, photosynthesis, oxidative damage, and nitrogen metabolism of tomato plants, as well as fruit quality under calcium nitrate stress. The results showed that applications of Si or Se alone or in combination improved the plant growth and photosynthetic performance and reduced oxidative damage of the stressed plants. Applications of Si and Se did not decrease the calcium accumulation in leaves of the stressed plants. Under calcium nitrate stress, the concentrations of NO3-, NO2- and NH4+ in leaves were significantly increased, while the activities of nitrogen assimilation-related enzymes (including nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase) were decreased. Applications of Si and Se, especially their combined treatment, decreased the NO3-, NO2-, and NH4+ concentrations and enhanced the activities of nitrogen assimilation-related enzymes in the stressed plants. Applied Si and Se also decreased the nitrate and titratable acid concentrations and increased vitamin levels in tomato fruits under calcium nitrate stress. It is suggested that Si and Se improved the tomato plant growth and fruit quality under calcium nitrate stress by alleviating oxidative damage and promoting both photosynthesis and nitrogen assimilation.
Collapse
Affiliation(s)
- Lan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rong Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yaoke Duan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jiayi Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Tianyun Gou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haijia Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhongmin Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Nasiri Y, Asadi M, Zahedi SM, Venditti A. Selenium nanoparticles improved biochemical and physiological properties and antioxidant systems of savoury under drought stress. Nat Prod Res 2024:1-11. [PMID: 38258441 DOI: 10.1080/14786419.2023.2299303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
To investigate the effectiveness of selenium (Se) and Se nanoparticles (Se-NPs) in improving biochemical and physiological characteristics of savoury in drought stress conditions, a factorial experiment based on the completely randomised design with three replications was used. Results demonstrate that Se-NPs considerably enhanced several biochemical parameters, such as relative water content (RWC), antioxidant enzymes activity, and total soluble protein in drought and normal conditions. At the stress level from 100 to 40% of field capacity, a gradual decrease in chlorophyll and CARs contents was observed and under stress and normal conditions, the application of Se-NPs (10 mg L-1) led to an increase in the content of pigments. Total soluble protein, total phenolic and flavonoid contents showed significant increases in plants treated with Se-NPs under drought stress. Generally, the use of Se-NPs in drought stress conditions can be effective in improving the growth, biochemical, and physiological characteristics of savoury.
Collapse
Affiliation(s)
- Yousef Nasiri
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
9
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
10
|
Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P, Hazra S, Sarkar S, Mahanta S, Santra SC, Choudhury S, Maitra S, Mishra UN, Bhutia KL, Skalicky M, Obročník O, Bárek V, Brestic M, Hossain A. Selenium - An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115832. [PMID: 38141336 DOI: 10.1016/j.ecoenv.2023.115832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Anannya Dhar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Binaya Kumar Pattanaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies NH-52, Knowledge City, District- Namsai, Arunachal Pradesh 792103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, UP 201310, India.
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Subrata Mahanta
- Department of Chemistry, National Institute of Technology Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | - S C Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha 761211, India.
| | - Udit Nandan Mishra
- Department of Crop Physiology & Biochemistry, Faculty of Agriculture, Sri Sri University, Sri Sri Vihar, Bidyadharpur Arilo, Ward No-03, Cuttack, Odisha 754006, India.
| | - Karma L Bhutia
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), Bihar 848 125, India.
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia.
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia; Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| |
Collapse
|
11
|
Gautam A, Rusli LS, Yaacob JS, Kumar V, Guleria P. Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2024. [DOI: 10.1007/s10098-023-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2025]
|
12
|
Deng C, Protter CR, Wang Y, Borgatta J, Zhou J, Wang P, Goyal V, Brown HJ, Rodriguez-Otero K, Dimkpa CO, Hernandez R, Hamers RJ, White JC, Elmer WH. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167799. [PMID: 37838047 DOI: 10.1016/j.scitotenv.2023.167799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Connor R Protter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jingyi Zhou
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Peiying Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Hannah J Brown
- Agronomy Department, University of Florida, Gainesville, FL 32603, United States
| | | | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| |
Collapse
|
13
|
Hanif M, Munir N, Abideen Z, Dias DA, Hessini K, El-Keblawy A. Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118830-118854. [PMID: 37922085 DOI: 10.1007/s11356-023-30626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Using green synthesis methods to produce halophytic nanoparticles presents a promising and cost-effective approach for enhancing plant growth in saline environments, offering agricultural resilience as an alternative to traditional chemical methods. This study focuses on synthesizing zinc oxide (ZnO) nanoparticles derived from the halophyte Withania somnifera, showcasing their potential in ameliorating tomato growth under salinity stress. The biosynthesis of ZnO nanoparticles was initially optimized (i.e., salt concentration, the amount of plant extract, pH, and temperature) using a central composite design (CCD) of response surface methodology (RSM) together with UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS) to comprehensively characterize the biosynthesized ZnO NPs. The central composite design (CCD) based response surface methodology (RSM) was used to optimize the biosynthesis of ZnO nanoparticles (NPs) by adjusting salt concentration, plant extract, pH, and temperature. The ZnO NPs were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). FT-IR showed an absorption peak of ZnO between 400 and 600 cm-1, while SEM showed irregular shapes ranging between 1.3 and 6 nm. The data of EDX showed the presence of Zn (77.52%) and O (22.48%) levels, which exhibited the high purity synthesized ZnO under saline conditions. Introducing ZnO nanoparticles to tomato plants resulted in a remarkable 2.3-fold increase in shoot length in T23 (100 mg/L ZnO nanoparticles + 50 mM NaCl). There was an observable increase in foliage at T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl). Tomato plants treated with T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl) improved root elongation compared to the control plant group. Both fresh and dry leaf masses were significantly improved in T1 (10 mg L-1 ZnO) by 7.1-fold and T12 (10 mg L-1 ZnO-NPs + 100 mM NaCl) by 0.8-fold. The concentration of Zn was higher in T12 (10 mg L-1 ZnO NPs + 100 mM NaCl) among all treatments. Our findings prove that utilizing ZnO nanoparticles under saline conditions effectively promotes tomato plants' growth, thereby mitigating the negative impacts of salt stress.
Collapse
Affiliation(s)
- Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - Daniel Anthony Dias
- School of Exercise and Nutritional Sciences, Faculty of Health, CASS Food Research Centre, Deakin University, Burwood, VIC, 3125, Australia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Tavan M, Hanachi P, Mirjalili MH. Biochemical changes and enhanced accumulation of phenolic compounds in cell culture of Perilla frutescens (L.) by nano-chemical elicitation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108151. [PMID: 37931559 DOI: 10.1016/j.plaphy.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 μM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
15
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Ge X, Zhang J, He L, Yu N, Pan C, Chen Y. Integration of metabolomics and transcriptomics analyses reveals the mechanism of nano-selenium treated to activate phenylpropanoid metabolism and enhance the antioxidant activity of peach. J Food Sci 2023; 88:4529-4543. [PMID: 37872835 DOI: 10.1111/1750-3841.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.
Collapse
Affiliation(s)
- Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
17
|
Dorjee L, Gogoi R, Kamil D, Kumar R, Mondal TK, Pattanayak S, Gurung B. Essential oil-grafted copper nanoparticles as a potential next-generation fungicide for holistic disease management in maize. Front Microbiol 2023; 14:1204512. [PMID: 37485521 PMCID: PMC10361667 DOI: 10.3389/fmicb.2023.1204512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Sustainable food production is necessary to meet the demand of the incessantly growing human population. Phytopathogens pose a major constraint in food production, and the use of conventional fungicides to manage them is under the purview of criticism due to their numerous setbacks. In the present study, essential oil-grafted copper nanoparticles (EGC) were generated, characterized, and evaluated against the maize fungal pathogens, viz., Bipolaris maydis, Rhizoctonia solani f. sp. sasakii, Macrophomina phaseolina, Fusarium verticillioides, and Sclerotium rolfsii. The ED50 for the fungi under study ranged from 43 to 56 μg ml-1, and a significant inhibition was observed at a low dose of 20 μg ml-1 under in vitro conditions. Under net house conditions, seed treatment + foliar spray at 250 and 500 mg L-1 of EGC performed remarkably against maydis leaf blight (MLB), with reduced percent disease index (PDI) by 27.116 and 25.292%, respectively, in two Kharif seasons (May-Sep, 2021, 2022). The activity of enzymatic antioxidants, viz., β-1, 3-glucanase, PAL, POX, and PPO, and a non-enzymatic antioxidant (total phenolics) was increased in treated maize plants, indicating host defense was triggered. The optimum concentrations of EGC (250 mg L-1 and 500 mg L-1) exhibited improved physiological characteristics such as photosynthetic activity, shoot biomass, plant height, germination percentage, vigor index, and root system traits. However, higher concentrations of 1,000 mg L-1 rendered phytotoxicity, reducing growth, biomass, and copper bioaccumulation to high toxic levels, mainly in the foliar-sprayed maize leaves. In addition, EGC and copper nanoparticles (CuNPs) at 1,000 mg L-1 reduced the absorption and concentration of manganese and zinc indicating a negative correlation between Cu and Mn/Zn. Our study proposes that the CuNPs combined with EO (Clove oil) exhibit astounding synergistic efficacy against maize fungal pathogens and optimized concentrations can be used as an alternative to commercial fungicides without any serious impact on environmental health.
Collapse
Affiliation(s)
- Lham Dorjee
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tapan Kumar Mondal
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudeepta Pattanayak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishal Gurung
- Division of Forecasting and Agricultural Systems Modelling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
18
|
Gautam A, Sharma P, Ashokhan S, Yaacob JS, Kumar V, Guleria P. Magnesium oxide nanoparticles improved vegetative growth and enhanced productivity, biochemical potency and storage stability of harvested mustard seeds. ENVIRONMENTAL RESEARCH 2023; 229:116023. [PMID: 37121351 DOI: 10.1016/j.envres.2023.116023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
A field study was conducted to investigate the influence of MgO-NPs priming on growth and development of mustard. Priming of mustard seeds before sowing with MgO-NPs at concentration 10, 50, 100, and 150 μg/ml enhanced the vegetative parameters of plants, with considerable increase in leaf area. MgO-NPs exposure increased the photosynthetic pigment accumulation in mustard that led to increase in biomass, carbohydrate content, and the yield in terms of total grain yield. Increased chlorophyll has simultaneously increased the oxidative stress in plants, and hence stimulated their antioxidant potential. A consistent increase was observed in the content of mustard polyphenols and activity of SOD, CAT, and APX on MgO-NPs exposure. MgO-NPs induced oxidative stress further reduced the protein content and bioavailability in mustard. We further, evaluated the influence of MgO-NPs on the quality of mustard harvested seeds. The seeds harvested from nanoprimed mustard possessed increased antioxidant potential and reduced oxidative stress. The carbohydrate and protein accumulation was significantly enhanced in response to nanopriming. Reduced chlorophyll content in seeds obtained from nanoprimed mustard indicated their potential for disease resistance and stability on long term storage. Therefore, the seeds harvested from MgO-NPs primed mustard were biochemically rich and more stable. Therefore, MgO-NPs priming can be potentially used as a novel strategy for growth promotion in plants where leaves are economically important and a strategy to enhance the seed quality under long term storage conditions.
Collapse
Affiliation(s)
- Ayushi Gautam
- Plant Biotechnology & Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| | - Priya Sharma
- Plant Biotechnology & Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| | - Sharmilla Ashokhan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Biotechnology, School of Biotechnology, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144111, India.
| | - Praveen Guleria
- Plant Biotechnology & Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
19
|
Nagdalian AA, Blinov AV, Siddiqui SA, Gvozdenko AA, Golik AB, Maglakelidze DG, Rzhepakovsky IV, Kukharuk MY, Piskov SI, Rebezov MB, Shah MA. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci Rep 2023; 13:6453. [PMID: 37081125 PMCID: PMC10119286 DOI: 10.1038/s41598-023-33581-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.
Collapse
Affiliation(s)
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.v.), Prof.-Von-Klitzing-Straße 7, 49610, Quakenbrück, Germany
| | | | | | | | | | | | | | - Maksim Borisovich Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Post Box 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.
| |
Collapse
|
20
|
Hernández-Fuentes AD, Arroyo-Aguilar JE, Gutiérrez-Tlahque J, Santiago-Saenz YO, Quintero-Lira A, Reyes-Fuentes M, López-Palestina CU. Application of Cu Nanoparticles in Chitosan-PVA Hydrogels in a Native Tomato Genotype: Evaluation of the Postharvest Behavior of the Physicochemical and Bioactive Components of the Fruits. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
21
|
Shahbaz M, Akram A, Raja NI, Mukhtar T, Mehak A, Fatima N, Ajmal M, Ali K, Mustafa N, Abasi F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One 2023; 18:e0274679. [PMID: 36749754 PMCID: PMC9904489 DOI: 10.1371/journal.pone.0274679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 02/08/2023] Open
Abstract
Plant extract-based green synthesis of nanoparticles is an emerging class of nanotechnology that has revolutionized the entire field of biological sciences. Green synthesized nanoparticles are used as super-growth promoters and antifungal agents. In this study, selenium nanoparticles (SeNPs) were synthesized using Melia azedarach leaves extract as the main reducing and stabilizing agent and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and fourier transform infrared spectrometer (FTIR). The green synthesized SeNPs were exogenously applied on Mangifera indica infected with mango malformation disease. The SeNPs at a concentration of 30 μg/mL were found to be the best concentration which enhanced the physiological (chlorophyll and membrane stability index), and biochemical (proline and soluble sugar) parameters. The antioxidant defense system was also explored, and it was reported that green synthesized SeNPs significantly reduced the biotic stress by enhancing enzymatic and non-enzymatic activities. In vitro antifungal activity of SeNPs reported that 300 μg/mL concentration inhibited the Fusarium mangiferae the most. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs to improve the health of mango malformation-infected plants and effective management strategy to inhibit the growth of F. mangifera.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Asma Mehak
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Maryam Ajmal
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- * E-mail: (KA); (MA)
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Doha, Qatar
- * E-mail: (KA); (MA)
| | - Nilofar Mustafa
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Fozia Abasi
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
22
|
El-Bialy SM, El-Mahrouk ME, Elesawy T, Omara AED, Elbehiry F, El-Ramady H, Áron B, Prokisch J, Brevik EC, Solberg SØ. Biological Nanofertilizers to Enhance Growth Potential of Strawberry Seedlings by Boosting Photosynthetic Pigments, Plant Enzymatic Antioxidants, and Nutritional Status. PLANTS (BASEL, SWITZERLAND) 2023; 12:302. [PMID: 36679014 PMCID: PMC9865313 DOI: 10.3390/plants12020302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Strawberry production presents special challenges due the plants' shallow roots. The rooting stage of strawberry is a crucial period in the production of this important crop. Several amendments have been applied to support the growth and production of strawberry, particularly fertilizers, to overcome rooting problems. Therefore, the current investigation was carried out to evaluate the application of biological nanofertilizers in promoting strawberry rooting. The treatments included applying two different nanofertilizers produced biologically, nano-selenium (i.e., 25, 50, 75, and 100 mg L-1) and nano-copper (i.e., 50 and 100 mg L-1), plus a control (untreated seedlings). The rooting of strawberry seedlings was investigated by measuring the vegetative growth parameters (root weight, seedling weight, seedling length, and number of leaves), plant enzymatic antioxidants (catalase, peroxidase, and polyphenol oxidase activity), and chlorophyll content and its fluorescence and by evaluating the nutritional status (content of nutrients in the fruit and their uptake). The results showed that the applied nanofertilizers improved the growth, photosynthetic pigments, antioxidant content, and nutritional status of the seedlings compared to the control. A high significant increase in nutrient contents reached to more than 14-fold, 6-fold, 5-folf, and 4-fold for Cu, Mn, N, and Se contents, respectively, due to the applied nanofertilizers compared with the control. The result was related to the biological roles of both Se and CuO in activating the many plant enzymes. Comparing the Se with the CuO nanofertilizer, Cu had the strongest effect, which was shown in the higher values in all studied properties. This study showed that nanofertilizers are useful to stimulate strawberry seedling growth and most likely would also be beneficial for other horticultural crops. In general, the applied 100 ppm of biological nano-Se or nano-CuO might achieve the best growth of strawberry seedlings under growth conditions in greenhouses compared to the control. Along with the economic dimension, the ecological dimension of biological nanofertilizers still needs more investigation.
Collapse
Affiliation(s)
- Said M. El-Bialy
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed E. El-Mahrouk
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Taha Elesawy
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), Kafr El-Sheikh 33717, Egypt
| | - Fathy Elbehiry
- Department of Basic and Applied Sciences, Higher Institute for Agricultural Cooperation, Cairo 11241, Egypt
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Béni Áron
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Svein Ø. Solberg
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2401 Elverum, Norway
| |
Collapse
|
23
|
Thapa M, Sadhukhan R, Mukherjee A, Biswas PK. Effects of nZnS vs. nZnO and ZnCl 2 on mungbean [Vigna radiata (L.) R. Wilczek] plant and Bradyrhizobium symbiosis: A life cycle study. NANOIMPACT 2023; 29:100440. [PMID: 36442836 DOI: 10.1016/j.impact.2022.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Scarce of knowledge of using Zinc (Zn) nanoparticles (NPs) to augment plant growth, Zn availability to plants and its potential toxicity warrants more NPs-plant life cycle studies. The main objectives of this study were to compare nano zinc sulphide (nZnS) with nano zinc oxide (nZnO) and ionic Zn i.e., ZnCl2, as a source of Zn, as well as to establish physiological impact of NPs on growth, yield and symbiosis of mungbean [Vigna radiata (L.) R. Wilczek] plants at different concentrations (0, 0.01, 0.1, 1 and 10 mg kg-1 of soil). In this study, mungbean plants were grown for 60 days (life cycle study) in natural soil infested with Bradyrhizobium. Effects of Zn compounds (nZnS, nZnO and ZnCl2) on plant height, dry biomass, number of nodules per plant, yield and fruit agronomical parameters along with micronutrient assessment were determined. Impact of Zn compounds on Bradyrhizobium-mungbean symbiosis was also unravelled. Results showed that both the NPs, (nZnS and nZnO) were more effective than ZnCl2 in promoting growth and yield up to a critical concentration and above which phytotoxic effects were observed. Both the NPs were more effective than ZnCl2 at increasing fruit Zn content also. Whereas, nZnS treatment was found to be better than nZnO in improving overall plant growth. Bradyrhizobium-mungbean symbiosis was not affected at lower NPs concentrations, while higher concentration revealed toxicity by damaging bacterial morphology and nodule formation. There was no nano specific toxicity found while, ZnCl2 showed relatively more toxicity than both the NPs. The present investigation demonstrated the concept of nano-micronutrient as well as NPs phytotoxicity by understanding NPs-plant interactions in the soil environment.
Collapse
Affiliation(s)
- Mala Thapa
- Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India; Biological Science Division, Agricultural and Ecological Research Unit (AERU), Indian Statistical Institute, Giridih 815301, Jharkhand, India.
| | - Raghunath Sadhukhan
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, West Bengal, India
| | - Abhishek Mukherjee
- Biological Science Division, Agricultural and Ecological Research Unit (AERU), Indian Statistical Institute, Giridih 815301, Jharkhand, India
| | - Prasanta Kumar Biswas
- Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
24
|
Kamali-Andani N, Fallah S, Peralta-Videa JR, Golkar P. Selenium nanoparticles reduce Ce accumulation in grains and ameliorate yield attributes in mung bean (Vigna radiata) exposed to CeO 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120638. [PMID: 36370974 DOI: 10.1016/j.envpol.2022.120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Exposure of crops to CeO2 nanoparticles (nCeO2) in agricultural environments impact crop quality and human health. In this regard, the effects of selenium nanoparticles (nSe) on the yield and quality of Vigna radiata (L.) exposed to nCeO2 were investigated. The experiment was carried out as a factorial with two factors: NPs (nCeO2, and nSe) as factor one and concentrations as factor two [(0, 250, 500 and 1000 mg/L nCeO2; 0, 25, 50 and 75 mg/L nSe)]. Nanoparticles were foliar applied to 45-day old mung bean shoot in two steps and one-week interval. At 250-1000 mg/L, nCeO2 increased P, protein and Ce accumulation in grain. Additionally, at 1000 mg/L, the nCeO2, significantly decreased seed number, yield, Fe, and Zn storage in seeds. Conversely, at 25 and 50 mg/L, nSe stimulated the growth and yield of mung bean, and significantly increased P, Fe, Zn, and Se in seeds, but reduced the protein content in seeds. The Se25+Ce250 and Se50+Ce250 significantly increased pod number, seed number, grain weight, yield, Fe, Zn and Se storage in grains. In contrast, the Ce accumulation in seeds decreased in all combination treatments (nCeO2 + nSe) compared to their respective single nCeO2 treatments. Moreover, in the plants exposed to high nCeO2 concentrations, nSe application resulted in undamaged vacuoles, less starch granules' accumulation, significant yield improvement, and elevated Fe, Se, and Zn in seeds. Data suggest that selenium nanoparticles prevent nCeO2 stress in mung bean and improve grain production and quality.
Collapse
Affiliation(s)
- Najmeh Kamali-Andani
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Jose R Peralta-Videa
- Department of Chemistry & Biochemistry, Chemistry and Computer Science Building, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran. Research Institute for Biotechnology and Bioengineering, Isfahan, University of Technology, Iran
| |
Collapse
|
25
|
Effects of brown seaweed extract, silicon, and selenium on fruit quality and yield of tomato under different substrates. PLoS One 2022; 17:e0277923. [PMID: 36480512 PMCID: PMC9731418 DOI: 10.1371/journal.pone.0277923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022] Open
Abstract
Tomatoes (Lycopersicun esculentum L.) are an important group of vegetable crops that have high economical and nutritional value. The use of fertilizers and appropriate substrates is one of the important strategies that can assist in increasing the yield and quality of fruits. The present study aimed to investigate the effects of exogenous seaweed extract (Nizamuddinia zanardinii), silicon (Na2SiO3), and selenium (Na2SeO3) on quality attributes and fruit yield (FY) of tomato under palm peat + perlite and coco peat + perlite substrates. Seaweed extract significantly improved several of the fruit quality attributes such as total carbohydrate content, total soluble solids (TSS), and pH as well as the FY. The results showed that silicon (Si) (75 mg) was the best foliar spray treatment to enhance the fruit firmness (30.46 N), fruit volume (196.8 cm3), and FY (3320.5 g). The highest amount of plant yield (3429.33 g) was obtained by the interaction effects of silicon (75 mg L-1) under the effect of palm peat. The use of selenium (Se) led to improvements in flavor index (TSS/TA). Also, the application of palm peat + perlite substrate caused an increase in vitamin C (16.62 mg/100g FW), compared to other substrates (14.27 mg/100g FW). The present study suggested that foliar spray with seaweed extract and Si had beneficial effects on the quality and FY of tomatoes. Also, the palm peat substrate can be used as a good alternative to the coco peat substrate in the hydroponic system.
Collapse
|
26
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
|
27
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Mo X, Chen C, Riaz M, Moussa MG, Chen X, Wu S, Tan Q, Sun X, Zhao X, Shi L, Hu C. Fruit Characteristics of Citrus Trees Grown under Different Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:2943. [PMID: 36365397 PMCID: PMC9657546 DOI: 10.3390/plants11212943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The effects of the increased soil copper (Cu) on fruit quality due to the overuse of Cu agents have been a hot social issue. Seven representative citrus orchards in Guangxi province, China, were investigated to explore the fruit quality characteristics under different soil Cu levels and the relationship between soil-tree Cu and fruit quality. These results showed that pericarp color a value, titratable acid (TA), and vitamin C (Vc) were higher by 90.0, 166.6, and 22.4% in high Cu orchards and by 50.5, 204.2, and 55.3% in excess Cu orchards, compared with optimum Cu orchards. However, the ratio of total soluble solids (TSS)/TA was lower by 68.7% in high Cu orchards and by 61.6% in excess Cu orchards. With the increase of soil Cu concentrations, pericarp color a value and Vc were improved, TA with a trend of rising first then falling, and TSS/TA with a trend of falling first then rising were recorded. As fruit Cu increased, pericarp color a value and TSS reduced and as leaf Cu increased, TSS/TA decreased while Vc was improved. Moreover, a rise in soil Cu enhanced leaf Cu accumulation, and a rise in leaf Cu improved fruit Cu accumulation. Fruit Cu accumulation reduced fruit quality by direct effects, leaf Cu improved fruit quality by direct and indirect effects. Soil Cu affected fruit quality by indirect effects by regulating leaf Cu and fruit Cu. Therefore, reasonable regulation and control of soil Cu concentrations can effectively increase pericarp color, sugar, and acid accumulation in citrus fruit.
Collapse
Affiliation(s)
- Xiaorong Mo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mohamed G. Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiangling Chen
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Libiao Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
30
|
Liu R, Deng Y, Zheng M, Liu Y, Wang Z, Yu S, Nie Y, Zhu W, Zhou Z, Diao J. Nano selenium repairs the fruit growth and flavor quality of tomato under the stress of penthiopyrad. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:126-136. [PMID: 35640519 DOI: 10.1016/j.plaphy.2022.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study explored the repair effect of Selenium nanoparticles (Se-NPs) on tomato under the stress of Penthiopyrad (Pen), and expected to select out the optimal concentration and the application time of Se-NPs, to maximize the repair effect without causing phytotoxicity. The results showed that Pen induced severe oxidative stress on tomato and inhibited the growth and flavor quality of fruit. Compared with the control, the application of 1 mg/L Se-NPs at the immature green stage significantly improved the antioxidant capacity of tomato to reduce the MDA content. Besides, the plant hormones were synthesized normally, the contents of soluble sugars, volatile compounds and nutrients were increased, and the contents of organic acids were decreased in the 1 mg/L Se-NPs + Pen treatment group, which finally repaired the fruit flavor and quality. Therefore, the application of 1 mg/L Se-NPs and at the immature green stage represented a promising strategy for repairing the inhibitory effect of Pen on tomato fruit growth and flavor quality.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Meiling Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
31
|
Zapata-Sifuentes G, Hernandez-Montiel LG, Saenz-Mata J, Fortis-Hernandez M, Blanco-Contreras E, Chiquito-Contreras RG, Preciado-Rangel P. Plant Growth-Promoting Rhizobacteria Improve Growth and Fruit Quality of Cucumber under Greenhouse Conditions. PLANTS 2022; 11:plants11121612. [PMID: 35736761 PMCID: PMC9227633 DOI: 10.3390/plants11121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Cucumber fruit is rich in fiber, carbohydrates, protein, magnesium, iron, vitamin B, vitamin C, flavonoids, phenolic compounds, and antioxidants. Agrochemical-based production of cucumber has tripled yields; however, excessive synthetic fertilization has caused problems in the accumulation of salts in the soil and has increased production costs. The objective of this study was to evaluate the effect of three strains of plant growth-promoting rhizobacteria (PGPR) on cucumber fruit growth and quality under greenhouse conditions. The rhizobacteria Pseudomonas paralactis (KBendo6p7), Sinorhizobium meliloti (KBecto9p6), and Acinetobacter radioresistens (KBendo3p1) was adjusted to 1 × 108 CFU mL−1. The results indicated that the inoculation with PGPR improved plant height, stem diameter, root length, secondary roots, biomass, fruit size, fruit diameter, and yield, as well as nutraceutical quality and antioxidant capacity, significantly increasing the response of plants inoculated with A.radioresistens and S.meliloti in comparison to the control. In sum, our findings showed the potential functions of the use of beneficial bacteria such as PGPR for crop production to reduce costs, decrease pollution, and achieve world food safety and security.
Collapse
Affiliation(s)
- Gerardo Zapata-Sifuentes
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (G.Z.-S.); (M.F.-H.)
- Departamento de Agroecología, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Carretera Periférico s/n, Col. Valle Verde, Torreón 27054, Mexico;
| | - Luis G. Hernandez-Montiel
- Nanotechnology & Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo Santa Rita, La Paz 23090, Mexico
- Correspondence: (L.G.H.-M.); (P.P.-R.)
| | - Jorge Saenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n, Col. Filadelfia, Gómez Palacio 35010, México;
| | - Manuel Fortis-Hernandez
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (G.Z.-S.); (M.F.-H.)
| | - Eduardo Blanco-Contreras
- Departamento de Agroecología, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Carretera Periférico s/n, Col. Valle Verde, Torreón 27054, Mexico;
| | - Roberto G. Chiquito-Contreras
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Circuito Universitario Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91090, Mexico;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (G.Z.-S.); (M.F.-H.)
- Correspondence: (L.G.H.-M.); (P.P.-R.)
| |
Collapse
|
32
|
Piñero MC, Otálora G, Collado-González J, López-Marín J, Del Amor FM. Effects triggered by foliar selenium application on growth, enzyme activities, mineral nutrients and carbohydrates in lettuce under an aquaculture system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:1-8. [PMID: 35364374 DOI: 10.1016/j.plaphy.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Se has beneficial effects on plants, through the stimulation of plant productivity, the reduction of abiotic stresses, and the improvement in N metabolism. Therefore, we investigated the effect of the foliar application of different concentrations of Se (0, 4, 8 and 16 μmol L-1) on lettuce plants grown in an aquaponics system (fish water) compared with a control (conventional soilless fertigation). The NO3- concentration supplied by the fish water was 47% of the control solution. The results showed a reduction in the fresh weight of lettuce plants irrigated with the fish water mixture treatment, along with an increase in sugar concentration. However, the application of Se at 4 and 16 μmol L-1, prompted a relief of this stress, reducing both lipid peroxidation and the sugar content, and increasing the nitrate concentration. In addition, in the case of the highest concentration of Se (16 μmol L-1), the values of nitrate were comparable those control plants. We show the importance of sprayed Se in increasing the efficiency of N utilization, in addition to lessening environmental issues for aquaponics culture.
Collapse
Affiliation(s)
- María Carmen Piñero
- Department of Crop Production and Agri-Technology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/Mayor s/n, 30150, Murcia, Spain.
| | - Ginés Otálora
- Department of Crop Production and Agri-Technology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/Mayor s/n, 30150, Murcia, Spain
| | - Jacinta Collado-González
- Department of Crop Production and Agri-Technology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/Mayor s/n, 30150, Murcia, Spain
| | - Josefa López-Marín
- Department of Crop Production and Agri-Technology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/Mayor s/n, 30150, Murcia, Spain
| | - Francisco M Del Amor
- Department of Crop Production and Agri-Technology, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/Mayor s/n, 30150, Murcia, Spain
| |
Collapse
|
33
|
Garza-García JJO, Hernández-Díaz JA, Zamudio-Ojeda A, León-Morales JM, Guerrero-Guzmán A, Sánchez-Chiprés DR, López-Velázquez JC, García-Morales S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol Trace Elem Res 2022; 200:2528-2548. [PMID: 34328614 DOI: 10.1007/s12011-021-02847-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.
Collapse
Affiliation(s)
- Jorge J O Garza-García
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - José A Hernández-Díaz
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Adalberto Zamudio-Ojeda
- Physics, Universidad de Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, 44430, Jalisco, Guadalajara, México
| | - Janet M León-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México
| | - Andrea Guerrero-Guzmán
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - David R Sánchez-Chiprés
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - Julio C López-Velázquez
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Soledad García-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México.
| |
Collapse
|
34
|
Hussein HAA, Alshammari SO, Kenawy SKM, Elkady FM, Badawy AA. Grain-Priming with L-Arginine Improves the Growth Performance of Wheat ( Triticum aestivum L.) Plants under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091219. [PMID: 35567220 PMCID: PMC9100063 DOI: 10.3390/plants11091219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.
Collapse
Affiliation(s)
- Hebat-Allah A. Hussein
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
- Biology Department, University College of Nairiyah, University of Hafr Al-Batin, Nairiyah 31991, Saudi Arabia
| | - Shifaa O. Alshammari
- Biology Department, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Sahar K. M. Kenawy
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
| | - Fatma M. Elkady
- National Research Centre, Department of Botany, Dokki, Giza 12311, Egypt;
| | - Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: ; Tel.: +20-1006069161
| |
Collapse
|
35
|
Wang Z, Le X, Cao X, Wang C, Chen F, Wang J, Feng Y, Yue L, Xing B. Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. NANOMATERIALS 2022; 12:nano12081341. [PMID: 35458049 PMCID: PMC9028851 DOI: 10.3390/nano12081341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/25/2022]
Abstract
Flavonoids contribute to fruit sensorial and nutritional quality. They are also highly beneficial for human health and can effectively prevent several chronic diseases. There is increasing interest in developing alternative food sources rich in flavonoids, and nano-enabled agriculture provides the prospect for solving this action. In this study, triiron tetrairon phosphate (Fe7(PO4)6) nanomaterials (NMs) were synthesized and amended in soils to enhance flavonoids accumulation in tomato fruits. 50 mg kg−1 of Fe7(PO4)6 NMs was the optimal dose based on its outstanding performance on promoting tomato fruit flavonoids accumulation. After entering tomato roots, Fe7(PO4)6 NMs promoted auxin (IAA) level by 70.75 and 164.21% over Fe-EDTA and control, and then up-regulated the expression of genes related to PM H+ ATPase, leading to root proton ef-flux at 5.87 pmol cm−2 s−1 and rhizosphere acidification. More Mg, Fe, and Mn were thus taken up into plants. Subsequently, photosynthate was synthesized, and transported into fruits more rapidly to increase flavonoid synthesis potential. The metabolomic and transcriptomic profile in fruits further revealed that Fe7(PO4)6 NMs regulated sucrose metabolism, shi-kimic acid pathway, phenylalanine synthesis, and finally enhanced flavonoid biosynthesis. This study implies the potential of NMs to improve fruit quality by enhancing flavonoids synthesis and accumulation.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xiehui Le
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jing Wang
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Yan Feng
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- School of Environment and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, China; (Z.W.); (X.L.); (X.C.); (C.W.); (F.C.); (J.W.); (Y.F.)
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85911911
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
36
|
Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, Langaya S, Balyan P, Singh KP, Xing B, White JC, Dhankher OP, Kumar U. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NANOIMPACT 2022; 26:100407. [PMID: 35594741 DOI: 10.1016/j.impact.2022.100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 05/16/2023]
Abstract
Nutrient deficiency in food crops severely compromises human health, particularly in under privileged communities. Globally, billions of people, particularly in developing nations, have limited access to nutritional supplements and fortified foods, subsequently suffering from micronutrient deficiency leading to a range of health issues. The green revolution enhanced crop production and provided food to billions of people but often falls short with respect to the nutritional quality of that food. Plants may assimilate nutrients from synthetic chemical fertilizers, but this approach generally has low nutrient delivery and use efficiency. Further, the overexposure of chemical fertilizers may increase the risk of neoplastic diseases, render food crops unfit for consumption and cause environmental degradation. Therefore, to address these challenges, more research is needed for sustainable crop yield and quality enhancement with minimum use of chemical fertilizers. Complex nutritional disorders and 'hidden hunger' can be addressed through biofortification of food crops. Nanotechnology may help to improve food quality via biofortification as plants may readily acquire nanoparticle-based nutrients. Nanofertilizers are target specific, possess controlled release, and can be retained for relatively long time periods, thus prevent leaching or run-off from soil. This review evaluates the recent literature on the development and use of nanofertilizers, their effects on the environment, and benefits to food quality. Further, the review highlights the potential of nanomaterials on plant genetics in biofortification, as well as issues of affordability, sustainability, and toxicity.
Collapse
Affiliation(s)
- Prexha Kapoor
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rahul Kumar Dhaka
- Department of Chemistry & Centre for Bio-Nanotechnology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sheetal Mehla
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sonu Langaya
- Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
37
|
Bouyahya A, El Omari N, Hakkour M, El Menyiy N, Benali T, Kulikov D, Karpukhin M, Shariati MA, Venkidasamy B, Thiruvengadam M, Chamkhi I. A review on transcriptomic and metabolomic responses of plants to nanopollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22913-22929. [PMID: 35064510 DOI: 10.1007/s11356-022-18659-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are tiny substances that can exist in the soil with different forms at different concentrations. In general, they present enormous effects on the growth, physiology, and molecular responses in plants. Indeed, they can penetrate the roots, stem, and leaves via different ways like stomata, plasmodesmata, xylem, and phloem and through transporter proteins like aquaporins. Once entered the plants, NPs induce reactive oxygen species (ROS) formation, and the plants respond to ROS by stimulates the production of antioxidants and antioxidant enzymes as well as the production of various primary and secondary metabolites like flavonoids and phenolic compounds. In addition, NPs have significantly affected the distribution of mineral profiles in plants. NPs considerably affect plant growth and yield in a dose-dependent fashion. At higher concentrations, they induced potent cytotoxicity and genotoxicity and thus reduced the growth and development of plants in turn decrease the yield. NPs exert potent changes in the transcriptome and metabolome pattern of plants to counteract the ROS imposed by NPs. This review depicts the overview of transcriptomic and metabolomic responses of plants towards nanopollution.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Raba, Morocco
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Dmitriy Kulikov
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Mikhail Karpukhin
- Department of vegetable growing and fruit growing of the prof. N.F. Konyaev, Ural State Agrarian University, 42 K.Liebknecht st, 620075, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641062, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, 05029, Seoul, Republic of Korea.
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite Et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique Rabat, Rabat, Morocco
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| |
Collapse
|
38
|
Gaucin-Delgado JM, Ortiz-Campos A, Hernandez-Montiel LG, Fortis-Hernandez M, Reyes-Pérez JJ, Gonzáles-Fuentes JA, Preciado-Rangel P. CuO-NPs Improve Biosynthesis of Bioactive Compounds in Lettuce. PLANTS (BASEL, SWITZERLAND) 2022; 11:912. [PMID: 35406891 PMCID: PMC9002383 DOI: 10.3390/plants11070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL-1) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds.
Collapse
Affiliation(s)
- Jazmín M. Gaucin-Delgado
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Adriel Ortiz-Campos
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo Santa Rita, La Paz 23090, Mexico
| | - Manuel Fortis-Hernandez
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador;
| | - José A. Gonzáles-Fuentes
- Horticulture Department, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de Mexico, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Torreón 27170, Mexico; (J.M.G.-D.); (A.O.-C.); (M.F.-H.)
| |
Collapse
|
39
|
El-Badri AM, Hashem AM, Batool M, Sherif A, Nishawy E, Ayaad M, Hassan HM, Elrewainy IM, Wang J, Kuai J, Wang B, Zheng S, Zhou G. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J Nanobiotechnology 2022; 20:163. [PMID: 35351148 PMCID: PMC8962572 DOI: 10.1186/s12951-022-01370-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 01/13/2023] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear. Herein, we investigated the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions. Our findings showed that the range between optimal and toxic levels of bioSeNPs was wider than Se (IV), which increased the plant’s ability to reduce salinity-induced oxidative stress. BioSeNPs improved the phenotypic characteristics of rapeseed seedlings without the sign of toxicity, markedly elevated germination, growth, photosynthetic efficiency and osmolyte accumulation versus Se (IV) under normal and salt stress conditions. In addition to modulation of Na+ and K+ uptake, bioSeNPs minimized the ROS level and MDA content by activating the antioxidant enzymes engaged in ROS detoxification by regulating these enzyme-related genes expression patterns. Importantly, the main effect of bioSeNPs and Se (IV) on plant growth appeared to be correlated with the change in the expression levels of Se-related genes. Our qRT-PCR results revealed that the genes involved in Se detoxification in root tissue were upregulated upon Se (IV) treated seedlings compared to NPs, indicating that bioSeNPs have a slightly toxic effect under higher concentrations. Furthermore, bioSeNPs might improve lateral root production by increasing the expression level of LBD16. Taken together, transamination and selenation were more functional methods of Se detoxification and proposed different degradation pathways that synthesized malformed or deformed selenoproteins, which provided essential mechanisms to increase Se tolerance at higher concentrations in rapeseed seedlings. Current findings could add more knowledge regarding the mechanisms underlying bioSeNPs induced plant growth.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ahmed M Hashem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ahmed Sherif
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Elsayed Nishawy
- Desert Research Center, Genetics Resource Department, Egyptian Deserts Gene Bank, Cairo, 11735, Egypt
| | - Mohammed Ayaad
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Abo Zaabal, Cairo, 13795, Egypt
| | - Hamada M Hassan
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ibrahim M Elrewainy
- Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
40
|
Zhu L, Chen L, Gu J, Ma H, Wu H. Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. PLANTS (BASEL, SWITZERLAND) 2022; 11:511. [PMID: 35214844 PMCID: PMC8874462 DOI: 10.3390/plants11040511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/05/2023]
Abstract
Nano-enabled agriculture is now receiving increasing attentions. Among the used nanomaterials, carbon-based nanomaterials are good candidates for sustainable agriculture. Previous review papers about the role of carbon-based nanomaterials in agriculture are either focused on one type of carbon-based nanomaterial or lack systematic discussion of the potential wide applications in agriculture. In this review, different types of carbon-based nanomaterials and their applications in light converters, nanosensors, and delivery tools in agriculture are summarized. Possible knowledge gaps are discussed. Overall, this review helps to better understand the role and the potential of carbon-based nanomaterials for nano-enabled agriculture.
Collapse
Affiliation(s)
- Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (L.C.); (H.M.)
| | - Lingling Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (L.C.); (H.M.)
| | - Jiangjiang Gu
- School of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Huixin Ma
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (L.C.); (H.M.)
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (L.C.); (H.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 511464, China
- Shenzhen Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| |
Collapse
|
41
|
Ashraf H, Anjum T, Riaz S, Batool T, Naseem S, Li G. Sustainable synthesis of microwave-assisted IONPs using Spinacia oleracea L. for control of fungal wilt by modulating the defense system in tomato plants. J Nanobiotechnology 2022; 20:8. [PMID: 34983521 PMCID: PMC8725286 DOI: 10.1186/s12951-021-01204-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Changing climate enhances the survival of pests and pathogens, which eventually affects crop yield and reduces its economic value. Novel approaches should be employed to ensure sustainable food security. Nano-based agri-chemicals provide a distinctive mechanism to increase productivity and manage phytopathogens, with minimal environmental distress. In vitro and in greenhouse studies were conducted to evaluate the potential of green-synthesized iron-oxide nanoparticles (IONPs) in suppressing wilt infection caused by Fusarium oxysporum f. sp. lycospersici, and improving tomato growth (Solanum lycopersicum) and fruit quality. RESULTS Various microwave powers (100-1000 W) were used to modulate the properties of the green-synthesized IONPs, using spinach as a starting material. The IONPs stabilized with black coffee extract were substantively characterized using X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy, dielectric and impedance spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM, respectively), and magnetization analysis. XRD revealed a cubic magnetite (Fe3O4) phase with super-paramagnetic nature, detected at all microwave powers. The binding energies of Fe 2p3/2 (710.9 eV) and Fe 2p1/2 (724.5 eV) of Fe3O4 NPs were confirmed using XPS analysis at a microwave power of 1000 W. Uniform, spherical/cubical-shaped particles with an average diameter of 4 nm were confirmed using SEM and TEM analysis. A significant reduction in mycelial growth and spore germination was observed upon exposure to different IONP treatments. Malformed mycelium, DNA fragmentation, alternation in the cell membrane, and ROS production in F. oxysporum indicated the anti-microbial potential of the IONPs. The particles were applied both through the root (before transplantation) and by means of foliar application (after two weeks) to the infected seedlings. IONPs significantly reduced disease severity by an average of 47.8%, resulting in increased plant growth variables after exposure to 12.5 µg/mL of IONPs. Analysis of photosynthetic pigments, phenolic compounds, and anti-oxidant enzymes in the roots and shoots showed an increasing trend after exposure to various concentrations of IONPs. Correspondingly, lycopene, vitamin C, total flavonoids, and protein content were substantially improved in tomato fruits after treatment with IONPs. CONCLUSION The findings of the current investigation suggested that the synthesized IONPs display anti-fungal and nutritional properties that can help to manage Fusarium wilt disease, resulting in enhanced plant growth and fruit quality.
Collapse
Affiliation(s)
- Hina Ashraf
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Centre of Excellence in Solid-State-Physics, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Saira Riaz
- Centre of Excellence in Solid-State-Physics, University of the Punjab, Lahore, Pakistan
| | - Tanzeela Batool
- Centre of Excellence in Solid-State-Physics, University of the Punjab, Lahore, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid-State-Physics, University of the Punjab, Lahore, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
42
|
NGUYEN MH, XIAO H, TAN X, CHEN F, SHI X. Comparative growth, biochemical and sensory analyses reveal the feasibility of large-scale development of selenium-enriched Tartary buckwheat sprouts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Abd-Elsalam KA. Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. COPPER NANOSTRUCTURES: NEXT-GENERATION OF AGROCHEMICALS FOR SUSTAINABLE AGROECOSYSTEMS 2022:1-14. [DOI: 10.1016/b978-0-12-823833-2.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
44
|
Sardar R, Ahmed S, Shah AA, Yasin NA. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. CHEMOSPHERE 2022; 287:132332. [PMID: 34563771 DOI: 10.1016/j.chemosphere.2021.132332] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
Nanotechnology has become a valuable novel approach to manage several environmental challenges through providing innovative and effective solutions. Heavy metal stress is an important abiotic limiting factor. Seed priming with selenium (Se) alleviates various kinds of environmental stresses; yet, the potential of seed priming with selenium nanoparticles (SeNPs) under cadmium (Cd) stress for coriander crop has never been evaluated. This research work was designed to explore the effects of seed priming with three levels (0, 5, 10 and 15 mg L-1) of SeNPs solution on the physio-biochemical characteristics, nutrition, antioxidative defense system and growth of coriander under Cd stress. Cadmium toxicity reduced chlorophyll content, photosynthetic activity and growth of treated plants. Moreover, Cd stressed plants exhibited modulations in proline level, together with decreased water potential, and leaf osmotic potential. However, SeNPs increased growth attributes, chlorophyll content, total soluble sugars, leaf relative water content, and gas exchange parameters in treated plants which were conversely decreased by Cd toxicity. The seeds priming with SeNPs promoted antioxidant response by increasing catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) activity and safeguarding cellular structures through scavenging free radicals and reactive oxygen species. Furthermore, Cd stressed plants displayed an upper level of MDA (1.91 fold) while SeNPs improved membranous integrity through detoxification of hydrogen peroxide. Additionally, SeNPs enhanced nutrients contents (P, K, Ca, Mg, Zn), metal tolerance index and diminished Cd content in plants resulting in the improved growth and development of Cd affected coriander plants.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | |
Collapse
|
45
|
Wang C, Liu X, Li J, Yue L, Yang H, Zou H, Wang Z, Xing B. Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117912. [PMID: 34365243 DOI: 10.1016/j.envpol.2021.117912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The innovative and sustainable technologies are highly needed to decrease serious environmental problems from current agriculture. Herein, the green and biosafe copper-based nano-agriculture was described for tomato production. Prepared Cu nanoclusters (NCs) showed small size (3.0 ± 0.5 nm) and high bioavailability. At low concentration (1 mg kg-1) in soil, Cu NCs improved the activities of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) in the tomato plants, which could help to slow down leaf aging, increase photosynthesis and carbohydrates content by 19.4 % and 14.9 %, respectively. Cu NCs promoted the roots' growth, especially increasing the root tip' number, which might contribute to the increase in absorption of macronutrients (K, Mg and P) and micronutrients (B, Mn, Cu and Zn). The Cu NCs (1 mg kg-1) promoted tomato growth and increased the tomato fruit yields by 12.2 % compared to the control. Moreover, the tomato fruit qualities had been improved meanwhile the accumulation of Cu in fruits was not observed. These findings indicate that the Cu NCs have potential to be safely applied for tomato production.
Collapse
Affiliation(s)
- Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hanyue Yang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Zou
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
46
|
El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-Ur-Rehman M. Nano-biofortification of different crops to immune against COVID-19: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112500. [PMID: 34274837 PMCID: PMC8270734 DOI: 10.1016/j.ecoenv.2021.112500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?
Collapse
Affiliation(s)
- Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Neama Abdalla
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Center, 12622 Cairo, Egypt.
| | - Heba Elbasiouny
- Department of Environmental and Biological Sciences, Home Economy faculty, Al-Azhar University, 31732 Tanta, Egypt.
| | - Fathy Elbehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Megahed Amer
- Soils Improvement Department, Soils, Water and Environment Research Institute (SWERI), Sakha Station, Agricultural Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Yousry Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tarek A Shalaby
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Yahya Eid
- Poultry Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
47
|
Jardón-Maximino N, Pérez-Alvarez M, Cadenas-Pliego G, Lugo-Uribe LE, Cabello-Alvarado C, Mata-Padilla JM, Barriga-Castro ED. Synthesis of Copper Nanoparticles Stabilized with Organic Ligands and Their Antimicrobial Properties. Polymers (Basel) 2021; 13:polym13172846. [PMID: 34502886 PMCID: PMC8433709 DOI: 10.3390/polym13172846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the synthesis of copper nanoparticles (Cu NPs), employing the chemical reduction method in an aqueous medium. We used copper sulfate pentahydrate (CuSO4·5H2O) as a metallic precursor; polyethylenimine (PEI), allylamine (AAM), and 4-aminobutyric acid (AABT) as stabilizing agents; and hydrated hydrazine as a reducing agent. The characterization of the obtained nanoparticles consisted of X-ray, TEM, FTIR, and TGA analyses. Through these techniques, it was possible to detect the presence of the used stabilizing agents on the surface of the NPs. Finally, a zeta potential analysis was performed to differentiate the stability of the nanoparticles with a different type of stabilizing agent, from which it was determined that the most stable nanoparticles were the Cu NPs synthesized in the presence of the PEI/AAM mixture. The antimicrobial activity of Cu/PEI/AABT toward P. aeruginosa and S. aureus bacteria was high, inhibiting both bacteria with low contact times and copper concentrations of 50–200 ppm. The synthesis method allowed us to obtain Cu NPs free of oxides, stable to oxidation, and with high yields. The newly functionalized Cu NPs are potential candidates for antimicrobial applications.
Collapse
Affiliation(s)
- Noemi Jardón-Maximino
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- Correspondence: (M.P.-A.); (G.C.-P.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- Correspondence: (M.P.-A.); (G.C.-P.)
| | - Luis E. Lugo-Uribe
- Centro de Tecnología Avanzada CIATEQ, Lerma 52004, Estado de México, Mexico;
| | - Christian Cabello-Alvarado
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
- CONACYT-Centro de Investigación y de Innovación del Estado de Tlaxcala, Tlaxcala C.P. 90000, Tlaxcala, Mexico
| | - José M. Mata-Padilla
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (N.J.-M.); (C.C.-A.); (J.M.M.-P.); (E.D.B.-C.)
| |
Collapse
|
48
|
El-Saadony MT, Saad AM, Najjar AA, Alzahrani SO, Alkhatib FM, Shafi ME, Selem E, Desoky ESM, Fouda SE, El-Tahan AM, Hassan MA. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J Biol Sci 2021; 28:4461-4471. [PMID: 34354431 PMCID: PMC8325029 DOI: 10.1016/j.sjbs.2021.04.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022] Open
Abstract
Fusarium species threaten wheat crops around the world and cause global losses. The global trend is toward using biological materials such as selenium (Se) in nano form to control these fungi. Bulk selenium is toxic and harmful at high doses; however, selenium nanoparticles are safe; therefore, the aim of this study to employ the biological selenium nanoparticles (BioSeNPs) synthesized by Lactobacillus acidophilus ML14 in controlling wheat crown and root rot diseases (CRDs) induced by Fusarium spp., especially Fusarium culmorum and Fusarium graminearum, and their reflection on the growth and productivity of wheat. The ability of BioSeNPs to suppress the development and propagation of F. culmorum and F. graminearum and the CRDs incidence were also investigated. The obtained BioSeNPs were spherical with a size of 46 nm and a net charge of -23.48. The BioSeNPs significantly scavenged 88 and 92% of DPPḢ and ABTṠ radicals and successfully inhibited the fungal growth in the range of 20-40 µg/mL; these biological activities were related to the small size of BioSeNPs and the phenolic content in their suspension. Under greenhouse conditions, the wheat supplemented with BioSeNPs (100 µg/mL) was significantly reduced the incidence of CRDs by 75% and considerably enhanced plant growth, grain quantity and quality by 5-40%. Also, photosynthetic pigments and gas exchange parameters were significantly increased as compared to chemical selenium nanoparticles (Che-SeNPs) and control. This study results could be recommended the use of BioSeNPs (100 µg/mL) in reducing CRDs incidence and severity in wheat plants, enhancing their tolerance with drought and heat stress, and increasing their growth and productivity as compared to control and Che-SeNPs.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Azhar A. Najjar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seraj O. Alzahrani
- Department of Chemistry, College of Science, Taibah University, P.O. Box 344, Medina, Saudi Arabia
| | - Fatmah M. Alkhatib
- Department of Chemistry, Faculty of Applied Science, Umm Al–Qura University, Makkah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman Selem
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Sarah E.E. Fouda
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mokhles A.A. Hassan
- Agricultural Botany Department (Microbiology), Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| |
Collapse
|
49
|
Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. PLANTS 2021; 10:plants10061221. [PMID: 34203954 PMCID: PMC8232821 DOI: 10.3390/plants10061221] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Abiotic stress in plants is a crucial issue worldwide, especially heavy-metal contaminants, salinity, and drought. These stresses may raise a lot of issues such as the generation of reactive oxygen species, membrane damage, loss of photosynthetic efficiency, etc. that could alter crop growth and developments by affecting biochemical, physiological, and molecular processes, causing a significant loss in productivity. To overcome the impact of these abiotic stressors, many strategies could be considered to support plant growth including the use of nanoparticles (NPs). However, the majority of studies have focused on understanding the toxicity of NPs on aquatic flora and fauna, and relatively less attention has been paid to the topic of the beneficial role of NPs in plants stress response, growth, and development. More scientific attention is required to understand the behavior of NPs on crops under these stress conditions. Therefore, the present work aims to comprehensively review the beneficial roles of NPs in plants under different abiotic stresses, especially heavy metals, salinity, and drought. This review provides deep insights about mechanisms of abiotic stress alleviation in plants under NP application.
Collapse
|
50
|
Jardón-Maximino N, Cadenas-Pliego G, Ávila-Orta CA, Comparán-Padilla VE, Lugo-Uribe LE, Pérez-Alvarez M, Tavizón SF, Santillán GDJS. Antimicrobial Property of Polypropylene Composites and Functionalized Copper Nanoparticles. Polymers (Basel) 2021; 13:1694. [PMID: 34067323 PMCID: PMC8196837 DOI: 10.3390/polym13111694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25-5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.
Collapse
Affiliation(s)
- Noemi Jardón-Maximino
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Carlos A. Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Víctor Eduardo Comparán-Padilla
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Luis E. Lugo-Uribe
- Centro de Tecnología Avanzada CIATEQ, Lerma, Estado de México 542004, Mexico;
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | - Salvador Fernández Tavizón
- Centro de Investigación en Química Aplicada (CIQA), Saltillo, Coahuila 25294, Mexico; (N.J.-M.); (C.A.Á.-O.); (V.E.C.-P.); (M.P.-A.); (S.F.T.)
| | | |
Collapse
|