1
|
Pires JM, Negri G, Duarte-Almeida JM, Carlini EA, Mendes FR. Phytochemical analysis and investigation of analgesic, anti-inflammatory, and antispasmodic activities of hydroethanolic extracts of Alternanthera dentata, Ocimum carnosum, and Plectranthus barbatus, three species with vernacular names derived from analgesic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118508. [PMID: 38950795 DOI: 10.1016/j.jep.2024.118508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant vernacular names can provide clues about the popular use of a species in different regions and are valuable sources of information about the culture or vocabulary of a population. Several medicinal plants in Brazil have received names of medicines and brand-name products. AIM OF THE STUDY The present work aimed to evaluate the chemical composition and pharmacological activity in the central nervous system of three species known popularly by brand names of analgesic, anti-inflammatory, antispasmodic, and digestive drugs. MATERIALS AND METHODS Hydroethanolic extracts of Alternanthera dentata (AD), Ocimum carnosum (OC), and Plectranthus barbatus (PB) aerial parts were submitted to phytochemical analysis by HPLC-PAD-ESI-MS/MS and evaluated in animal models at doses of 500 and 1000 mg/kg. Mice were tested on hot plate, acetic acid-induced writing, formalin-induced licking, and intestinal transit tests. Aspirin and morphine were employed as standard drugs. RESULTS The three extracts did not change the mice's response on the hot plate. Hydroethanolic extracts of AD and PB reduced the number of writhes and licking time, while OC was only effective on the licking test at dose of 1000 mg/kg. In addition, AD and OC reduced intestinal transit, while PB increased gut motility. CONCLUSIONS Pharmacological tests supported some popular uses, suggesting peripheral antinociceptive and anti-inflammatory effects, while the phytochemical analysis showed the presence of several flavonoids in the three hydroethanolic extracts and steroids in PB, with some barbatusterol derivatives described for the first time in the species.
Collapse
Affiliation(s)
- Júlia Movilla Pires
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Giuseppina Negri
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Joaquim Mauricio Duarte-Almeida
- Centro Oeste Dona Lindu Campus / Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, MG, Brazil.
| | - Elisaldo Araújo Carlini
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Fúlvio Rieli Mendes
- Center for Natural and Human Sciences, Universidade Federal do ABC, Alameda da Universidade, SN, São Bernardo do Campo, 09606-045, SP, Brazil.
| |
Collapse
|
2
|
Vidaković V, Vujić B, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Qualitative Profiling, Antioxidant and Antimicrobial Activities of Polar and Nonpolar Basil Extracts. Foods 2024; 13:2993. [PMID: 39335921 PMCID: PMC11431458 DOI: 10.3390/foods13182993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Basil (Ocimum basilicum L.) is a widely used culinary herb. In this study, ethanol, dichloromethane, and sunflower oil were used separately as solvents with distinct polarities for the extraction of basil aerial parts to simulate the different polarity conditions in domestic food processing. The oil extract (OE) was re-extracted with acetonitrile, and the chemical composition, antioxidant potential, and antimicrobial activities of the ethanol (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts were determined. A total of 109 compounds were tentatively identified in EE, DCME, and ACNE by HPLC-DAD/ESI-ToF-MS. Fatty acids were present in all extracts. Phenolic acids and flavonoids dominated in EE. DCME was characterised by triterpenoid acids, while diterpenoids were mainly found in ACNE. The extracts were analysed for their antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME showed significant radical scavenging potential. Antimicrobial activity was explored in eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal activity, comparable to or better than that of the commercial drug nistatin. Antibacterial activities were notable for EE and ACNE, while DCME showed no activity against bacteria in the applied concentration ranges. The different polarities of the solvents led to distinctive phytochemical compositions and bioactivities in the extracts.
Collapse
Affiliation(s)
- Vera Vidaković
- Department of Ecology, University of Belgrade—Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia;
| | - Bojan Vujić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| |
Collapse
|
3
|
Podgórska-Kryszczuk I. Effect of Arthrospira platensis (Spirulina) Fortification on Physicochemical, Nutritional, Bioactive, Textural, and Sensory Properties of Vegan Basil Pesto. Nutrients 2024; 16:2825. [PMID: 39275143 PMCID: PMC11396954 DOI: 10.3390/nu16172825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The high protein content of several microalgae species makes them an excellent addition to various food products, increasing their nutritional value. In this study, vegan basil pesto was designed and enriched with 1% and 2% Arthrospira platensis (spirulina). The pesto obtained was characterized by increased protein content (up to 40% more) and had a rich mineral composition, including up to three times more iron and 25% more calcium, among others. The increase of spirulina addition in the pesto also increased the content of polyphenols (up to 50% more) and flavonoids (up to 39% more). The fortified products had higher antioxidant activity against ABTS (up to 484.56 ± 2.16 μM Trolox/g) and DPPH (up to 392.41 ± 13.58 μM Trolox/g). The addition of spirulina will affect the hardness of the sauce, while in the other texture parameters (adhesiveness, springiness, and cohesion), there were no significant differences between the control and spirulina-fortified pesto. Although the pesto with spirulina was significantly darker in color (ΔE 8.83 and 12.05), consumers still rated it highly. All quality parameters of pesto with a 1% spirulina addition were rated the highest, contributing to the highest overall rating of the product (4.56). An increase in spirulina addition to 2% resulted in a decrease in the overall pesto rating (4.01), but still remains a good result compared to the control (4.22).
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
4
|
Sant’Ana PGDS, Lima WG, Lopes GFM, de Oliveira SE, da Costa GAF, Lima LARDS, Ferreira EE, dos Santos IC, Damázio LCM, Ribeiro RIMA, Pinto FCH. Ocimum basilicum L. (basil) presents pro-apoptotic activity in an Ehrlich's experimental tumor murine model. Acta Cir Bras 2024; 39:e393924. [PMID: 39082586 PMCID: PMC11285817 DOI: 10.1590/acb393924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/22/2024] [Indexed: 08/03/2024] Open
Abstract
PURPOSE This study aimed to evaluate the therapeutic effect of an ethanol extract of Ocimum basilicum L. (EEOb) aerial parts against Ehrlich's experimental tumor (EET) in mice. METHODS Swiss mice were divided into two groups (control and treated; n = 6). On day 21, all mice were inoculated subcutaneously with 2 × 106 (0.05 mL) EET cells in the left paw for solid tumor development. This study lasted 28 days. Treatment began 24 hours after inoculation with EET. Measurements of dorsoplantar thickness were used to assess tumor growth. The paw pad was collected for histopathological analysis and stained using the argyrophilic nucleolar organizing regions (AgNOR) technique and immunohistochemistry for proliferating cell nuclear antigen, Bcl-2 and Bax. RESULTS The treatment of animals with EEOb at 100 mg/kg intraperitoneally was able to reduce the growth (Control = 3.7 ± 0.1 mm vs. EEOb = 5.7 ± 0.2 mm) and the number of AgNORs of solid Ehrlich tumor. The antitumor effect of EEOb was associated with the induction of apoptosis of tumoral cell, as suggested by the reduction of the content of Bcl-2 induced by extract. CONCLUSIONS The study demonstrated that daily administration of EEOb is able to reduce the growth of EET by induce apoptosis of tumoral cells.
Collapse
Affiliation(s)
| | - William Gustavo Lima
- Universidade Federal de Minas Gerais – Faculdade de Farmácia – Belo Horizonte (MG) – Brazil
| | - Gabriela Francine Martins Lopes
- Universidade Federal de São João del-Rei – Departamento de Medicina – Laboratório de Patologia Experimental – Divinópolis (MG) – Brazil
| | - Sabrina Elisa de Oliveira
- Universidade Federal de São João del-Rei – Departamento de Ciências Naturais – Laboratório de Patologia Experimental – São João del-Rei (MG) – Brazil
| | | | | | - Elisângela Elduina Ferreira
- Universidade Federal de São João del-Rei – Departamento de Ciências Naturais – Laboratório de Patologia Experimental – São João del-Rei (MG) – Brazil
| | - Ivan Carlos dos Santos
- Universidade Federal de São João del-Rei – Departamento de Engenharia de Biossistemas – Laboratório de Biomoléculas e Biofármacos – São João del-Rei (MG) – Brazil
| | - Laila Cristina Moreira Damázio
- Universidade Federal de São João del-Rei – Departamento de Medicina – Laboratório de Reabilitação – São João del-Rei (MG) – Brazil
| | - Rosy Iara Maciel Azambuja Ribeiro
- Universidade Federal de São João del-Rei – Departamento de Medicina – Laboratório de Patologia Experimental – Divinópolis (MG) – Brazil
| | - Flávia Carmo Horta Pinto
- Universidade Federal de São João del-Rei – Departamento de Ciências Naturais – Laboratório de Patologia Experimental – São João del-Rei (MG) – Brazil
| |
Collapse
|
5
|
Kharazian N, Dehkordi FJ, Xiang CL. Metabolomics-based profiling of five Salvia L. (Lamiaceae) species using untargeted data analysis workflow. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39003613 DOI: 10.1002/pca.3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION The genus Salvia L., a member of the family Lamiaceae, is a keystone genus with a wide range of medicinal properties. It possesses a rich metabolite source that has long been used to treat different disorders. OBJECTIVES Due to a deficiency of untargeted metabolomic profiling in the genus Salvia, this work attempts to investigate a comprehensive mass spectral library matching, computational data annotations, exclusive biomarkers, specific chemotypes, intraspecific metabolite profile variation, and metabolite enrichment by a case study of five medicinal species of Salvia. MATERIAL AND METHODS Aerial parts of each species were subjected to QTRAP liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow based on untargeted metabolites. A comprehensive and multivariate analysis was acquired on the metabolite dataset utilizing MetaboAnalyst 6.0 and the Global Natural Products Social Molecular Networking (GNPS) Web Platform. RESULTS The untargeted approach empowered the identification of 117 metabolites by library matching and 92 nodes annotated by automated matching. A machine learning algorithm as substructural topic modeling, MS2LDA, was further implemented to explore the metabolite substructures, resulting in four Mass2Motifs. The automated library newly discovered a total of 23 metabolites. In addition, 87 verified biomarkers of library matching, 58 biomarkers of GNPS annotations, and 11 specific chemotypes were screened. CONCLUSION Integrative spectral library matching and automated annotation by the GNPS platform provide comprehensive metabolite profiling through a workflow. In addition, QTRAP LC-MS/MS with multivariate analysis unveiled reliable information about inter and intraspecific levels of differentiation. The rigorous investigation of metabolite profiling presents a large-scale overview and new insights for chemotaxonomy and pharmaceutical studies.
Collapse
Affiliation(s)
- Navaz Kharazian
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Jafari Dehkordi
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Department of Biotechnology, Faculty of New Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Chun-Lei Xiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Zhang M, Li Y, Wang J, Shang S, Wang H, Yang X, Lu C, Wang M, Sun X, Liu X, Wang X, Wei B, Lv W, Mu G. Integrated transcriptomic and metabolomic analyses reveals anthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.). BMC PLANT BIOLOGY 2024; 24:203. [PMID: 38509491 PMCID: PMC10953167 DOI: 10.1186/s12870-024-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.
Collapse
Affiliation(s)
- Min Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Yueyou Li
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Junling Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Shaopu Shang
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Hongxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Mei Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinbo Sun
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoqing Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Boxiang Wei
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China.
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China.
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China.
| |
Collapse
|
7
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
8
|
Oprică GM, Panaitescu DM, Usurelu CD, Vlăsceanu GM, Stanescu PO, Lixandru BE, Vasile V, Gabor AR, Nicolae CA, Ghiurea M, Frone AN. Nanocellulose Sponges Containing Antibacterial Basil Extract. Int J Mol Sci 2023; 24:11871. [PMID: 37511630 PMCID: PMC10380770 DOI: 10.3390/ijms241411871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.
Collapse
Affiliation(s)
- Gabriela Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Catalina Diana Usurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - George Mihai Vlăsceanu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Octavian Stanescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Brandusa Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Valentin Vasile
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Marius Ghiurea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
9
|
Baković M, Perković L, Matijević G, Martić A, Vujović T, Ekić S, Fumić M, Jurić S, Čož-Rakovac R, Roje M, Jokić S, Jerković I. Bioprospecting of Five Ocimum sp. Cultivars from Croatia: New Potential for Dietary and Dermatological Application with Embryotoxicity Tests. Pharmaceuticals (Basel) 2023; 16:981. [PMID: 37513893 PMCID: PMC10385215 DOI: 10.3390/ph16070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Ocimum basilicum L. is the most common Ocimum species, and it is used as an ornamental plant and in food condiments. This unique study examined the chemical composition and biological activities of six extracts from five basil cultivars, including their antimicrobial, antidiabetic, antilipidemic, neuroprotective, and anticollagenase activity. Moreover, their toxicological effects were studied using the zebrafish Danio rerio. Volatile components were determined using HS-SPME and GC-MS, while total polyphenols were detected using HPLC and the spectrophotometric Folin-Ciocalteu method. Spectrophotometric assays (DPPH, ABTS, ORAC, FRAP) were performed to determine antioxidant activity, collagenase inhibition, acetylcholinesterase inhibition, and pancreatic lipase inhibition. Antimicrobial activity was determined using the broth microdilution test. The study found that the biological activities of different basil cultivars varied depending on the proportion of active compounds, as determined by chemical analyses. All six basil extracts significantly inhibited α-amylase, while Purple basil extract most significantly inhibited the activity of collagenase, acetylcholinesterase, and pancreatic lipase. Purple basil and Dark Opal basil I extracts exhibited the highest antimicrobial activity, while the Dark Opal basil II extract had the most significant antioxidant potential. The findings in this study suggest that ethanolic basil extracts have the potential to be used as dietary drugs and implemented in antiaging products. This study is unique in its aims to compare the chemical composition and biological activities of basil cultivars from Croatia and to evaluate potential toxicological effects through embryotoxicity tests on zebrafish Danio rerio embryos, and it reports the first evidence of anticollagenase, antidiabetic, and antilipidemic activities for these cultivars.
Collapse
Affiliation(s)
- Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Gabrijela Matijević
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Martić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Ekić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Monika Fumić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Jurić
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marin Roje
- Laboratory for Chiral Technologies, Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
10
|
Ciriello M, Cirillo V, Formisano L, De Pascale S, Romano R, Fusco GM, Nicastro R, Carillo P, Kyriacou MC, Soteriou GA, Rouphael Y. Salt-Induced Stress Impacts the Phytochemical Composition and Aromatic Profile of Three Types of Basil in a Genotype-Dependent Mode. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112167. [PMID: 37299145 DOI: 10.3390/plants12112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Basil (Ocimum basilicum L.) is among the most widely used aromatic plants of Lamiaceae, often grown in areas where salinity is an adverse factor. Most studies on the effect of salinity on basil focused on the influence of salt stress on productive traits, while few reported on how it affects the phytochemical composition and the aroma profile. Three basil cultivars (Dark Opal, Italiano Classico, and Purple Ruffles) were grown hydroponically for 34 days with two nutrient solutions that differed in NaCl concentration [no NaCl (Control) and 60 mM NaCl]. Yield, secondary metabolite concentration (β-carotene and lutein), antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reduction antioxidant power (FRAP)], and aroma profile based on composition of volatile organic compounds (VOCs) were appraised in response to salinity applications. Salt stress significantly reduced fresh yield in Italiano Classico and Dark Opal by 43.34 and 31.69%, respectively, while no effect was observed in Purple Ruffles. Furthermore, the salt-stress treatment increased β-carotene and lutein concentrations, DPPH, and FRAP activities, and the total nitrogen content of the latter cultivar. CG-MS analysis revealed significant differences in VOCs composition of the basil cultivars, with Italiano Classico and Dark Opal characterized by the predominance of linalool (average 37.52%), which, however, was negatively affected by salinity. In Purple Ruffles, the predominant VOC compound, estragole (79.50%), was not affected by the deleterious effects of NaCl-induced stress.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
11
|
Popescu L, Cojocari D, Lung I, Kacso I, Ciorîţă A, Ghendov-Mosanu A, Balan G, Pintea A, Sturza R. Effect of Microencapsulated Basil Extract on Cream Cheese Quality and Stability. Molecules 2023; 28:3305. [PMID: 37110539 PMCID: PMC10143816 DOI: 10.3390/molecules28083305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The antimicrobial and antioxidant effects of plant extracts are well known, but their use is limited because they affect the physicochemical and sensory characteristics of products. Encapsulation presents an option to limit or prevent these changes. The paper presents the composition of individual polyphenols (HPLC-DAD-ESI-MS) from basil (Ocimum basilicum L.) extracts (BE), and their antioxidant activity and inhibitory effects against strains of Staphylococcus aureus, Geobacillus stearothermophilus, Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, and Salmonella Abony. The BE was encapsulated in sodium alginate (Alg) using the drop technique. The encapsulation efficiency of microencapsulated basil extract (MBE) was 78.59 ± 0.01%. SEM and FTIR analyses demonstrated the morphological aspect of the microcapsules and the existence of weak physical interactions between the components. Sensory, physicochemical and textural properties of MBE-fortified cream cheese were evaluated over a 28-day storage time at 4 °C. In the optimal concentration range of 0.6-0.9% (w/w) MBE, we determined the inhibition of the post-fermentation process and the improvement in the degree of water retention. This led to the improvement of the textural parameters of the cream cheese, contributing to the extension of the shelf life of the product by 7 days.
Collapse
Affiliation(s)
- Liliana Popescu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova
| | - Daniela Cojocari
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Boulevard., MD-2004 Chisinau, Moldova
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Irina Kacso
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîţă
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova
| | - Greta Balan
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Boulevard., MD-2004 Chisinau, Moldova
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastus Street, 400374 Cluj-Napoca, Romania
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova
| |
Collapse
|
12
|
Joshi RK, Agarwal S, Patil P, Alagarasu K, Panda K, Cherian S, Parashar D, Roy S. Anti-Dengue Activity of Lipophilic Fraction of Ocimum basilicum L. Stem. Molecules 2023; 28:molecules28031446. [PMID: 36771120 PMCID: PMC9921342 DOI: 10.3390/molecules28031446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Ocimum basilicum L. is used to cure many types of fever in traditional medicine. This study aims to explore the antiviral activity of the lipophilic fraction of the stem of O. basilicum (LFOB) against dengue virus (DENV) and chikungunya virus (CHIKV). The LFOB was analyzed using GC-FID and GC-MS. The antiviral activity of LFOB was studied using the Vero CCL-81 cell line. The cytotoxicity assay was performed using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). In vitro antiviral activity and FFU assay were used to determine and confirm antiviral activity against DENV and CHIKV. Twenty-six compounds were identified in LFOB using GC/MS. The most abundant compounds were β-sitosterol (22.9%), stigmasterol (18.7%), and campesterol (12.9%). Significant reduction in DENV titre was observed under pre- and post-infection treatment conditions at a concentration of 3.125 µg/mL, but no anti-CHIKV activity was observed. Our earlier and the present AutoDock-Vina-based in silico docking study revealed that β-sitosterol and stigmasterol could form strong interactions with the DENV E glycoprotein and DENV RdRp domain, respectively. Our findings suggest that LFOB can inhibit DENV infection and might act as a potent prophylactic/therapeutic agent against DENV-2. In silico results suggested that β-sitosterol and stigmasterol may block the viral entry by inhibiting the fusion process and viral replication respectively.
Collapse
Affiliation(s)
- Rajesh Kumar Joshi
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, Karnataka, India
- Correspondence: (R.K.J.); (D.P.)
| | - Shivankar Agarwal
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, Karnataka, India
| | - Poonam Patil
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - Kalichamy Alagarasu
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - Kingshuk Panda
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - Sarah Cherian
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
| | - Deepti Parashar
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, Maharashtra, India
- Correspondence: (R.K.J.); (D.P.)
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, Karnataka, India
| |
Collapse
|
13
|
Ciriello M, Cirillo V, Formisano L, El-Nakhel C, Pannico A, De Pascale S, Rouphael Y. Productive, Morpho-Physiological, and Postharvest Performance of Six Basil Types Grown in a Floating Raft System: A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:486. [PMID: 36771571 PMCID: PMC9919531 DOI: 10.3390/plants12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Basil (Ocimum sp.) is one of the world's most famous culinary fresh herbs, characterized by rapid growth that makes it particularly suitable for hydroponic cultivation. This study aimed to evaluate the adaptability of six types of basil to a closed-loop hydroponic system (floating raft system) and their post-harvest performance. Twenty-three days after transplantation, productivity, morpho-physiological performance, and mineral profile (by ion chromatography) were evaluated. At 3, 6, and 9 days after harvest, the loss of water from the from leaves stored at 10 °C in the dark was evaluated. Although the total fresh production of Thai, Mexican, and Genovese did not differ significantly, the latter provided a higher fresh leaf weight (16.52 g of plant-1) despite a lower leaf number (30.06 n. of plant-1). Nine days after harvest, Thai and Mexican showed the lowest water loss. Although Mexican Purple had the lowest net CO2 assimilation, it accumulated the highest concentration of ascorbic acid (909.41 mg 100 g fw-1).
Collapse
|
14
|
Comprehensive Metabolomic Fingerprinting Combined with Chemometrics Identifies Species- and Variety-Specific Variation of Medicinal Herbs: An Ocimum Study. Metabolites 2023; 13:metabo13010122. [PMID: 36677046 PMCID: PMC9862730 DOI: 10.3390/metabo13010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Identification of plant species is a crucial process in natural products. Ocimum, often referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for various health benefits due to it having a wide variety of pharmacological activities. Despite there being significant global demand for this medicinal herb, rapid and comprehensive metabolomic fingerprinting approaches for species- and variety-specific classification are limited. In this study, metabolomic fingerprinting of five Ocimum species (Ocimum basilicum L., Ocimum sanctum L., Ocimum africanum Lour., Ocimum kilimandscharicum Gurke., and Hybrid Tulsi) and their varieties was performed using LC-MS, GC-MS, and the rapid fingerprinting approach FT-NIR combined with chemometrics. The aim was to distinguish the species- and variety-specific variation with a view toward developing a quality assessment of Ocimum species. Discrimination of species and varieties was achieved using principal component analysis (PCA), partial least squares discriminate analysis (PLS-DA), data-driven soft independent modelling of class analogy (DD-SIMCA), random forest, and K-nearest neighbours with specificity of 98% and sensitivity of 99%. Phenolics and flavonoids were found to be major contributing markers for species-specific variation. The present study established comprehensive metabolomic fingerprinting consisting of rapid screening and confirmatory approaches as a highly efficient means to identify the species and variety of Ocimum, being able to be applied for the quality assessment of other natural medicinal herbs.
Collapse
|
15
|
Gonda I, Abu-Abied M, Adler C, Milavski R, Tal O, Davidovich-Rikanati R, Faigenboim A, Kahane-Achinoam T, Shachter A, Chaimovitsh D, Dudai N. Two independent loss-of-function mutations in anthocyanidin synthase homeologous genes are responsible for the all-green phenotype of sweet basil. PHYSIOLOGIA PLANTARUM 2023; 175:e13870. [PMID: 36724166 DOI: 10.1111/ppl.13870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.
Collapse
Affiliation(s)
- Itay Gonda
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Mohamad Abu-Abied
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Chen Adler
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Renana Milavski
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| | - Ofir Tal
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Rachel Davidovich-Rikanati
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Adi Faigenboim
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Tali Kahane-Achinoam
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - David Chaimovitsh
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat-Yishay, Israel
- The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel
| |
Collapse
|
16
|
Chaves RPF, de Araújo AL, Lopes AS, Pena RDS. Convective Drying of Purple Basil ( Ocimum basilicum L.) Leaves and Stability of Chlorophyll and Phenolic Compounds during the Process. PLANTS (BASEL, SWITZERLAND) 2022; 12:127. [PMID: 36616256 PMCID: PMC9824209 DOI: 10.3390/plants12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the effect of convective drying on the degradation of color and phenolic compounds of purple basil (Ocimum basilicum L.) leaves, and the hygroscopic behavior of dried leaves. The fresh leaves underwent drying at 40 °C, 50 °C, 60 °C, and 70 °C. Degradation of chlorophyll, flavonoids, and phenolic compounds were evaluated during drying and the hygroscopicity was evaluated through the moisture sorption isotherms. The drying mathematical modeling and the moisture sorption data were performed. The effective diffusivity for the drying increased from 4.93 × 10−10 m2/s at 40 °C to 18.96 × 10−10 m2/s at 70 °C, and the activation energy value (39.30 kJ/mol) showed that the leaves present temperature sensibility. The leaves dried at 40 °C had less degradation of phenolic compounds and color variation, but the drying process was too slow for practical purposes. Modified Page, Diffusion Approximation, and Verna models had excellent accuracy in drying kinetics. The isotherms showed that, in environments with relative humidity above 50%, the purple basil leaves are more susceptible to water gain, and at 8.83 g H2O/100 g db moisture, it guarantees the microbiological stability of the dried leaves. The Oswin model was the most suitable for estimating the moisture sorption isotherms of the dried leaves.
Collapse
Affiliation(s)
- Rosane Patricia Ferreira Chaves
- Graduated Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Adriano Lucena de Araújo
- Graduated Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Alessandra Santos Lopes
- Graduated Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Rosinelson da Silva Pena
- Graduated Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| |
Collapse
|
17
|
Ebrahimi V, Mohammadi Nafchi A, Bolandi M, Baghaei H. Fabrication and characterization of a pH-sensitive indicator film by purple basil leaves extract to monitor the freshness of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Mishra A, Kumar V, Singh A. Deciphering the anti-filarial potential of bioactive compounds from Ocimum sanctum: a combined experimental and computational study. PHARMACEUTICAL BIOLOGY 2022; 60:2237-2252. [PMID: 36415158 PMCID: PMC9704100 DOI: 10.1080/13880209.2022.2132030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT The anthelminthic effect of Ocimum species (Lamiaceae) has been reported, however, its anti-filarial effect has not been explored to date. OBJECTIVE This study evaluates the effect of Ocimum sanctum L. (OS) against lymphatic filarial parasites. MATERIAL AND METHODS The ethanol extract of OS (EOS) leaves was tested for anti-filarial activity against Setaria cervi. Equal size and number (n = 10) of adult female S. cervi worms were incubated in 125, 250 or 375 μg/mL EOS extract for 6 h at 37 °C. The OS bioactive components were identified by UPLC-ESI-MS/MS and subjected to docking and molecular dynamics (MD) simulation against filarial antioxidant proteins. RESULTS The EOS significantly inhibited the motility of adult female S. cervi after 6 h of incubation. The motility was found to be reduced by 53.7% in 375 µg/mL and 43.8% in 250 µg/mL EOS after 6 h of treatment. The UPLC-ESI-MS/MS analysis of ethanol extract of O. sanctum revealed the presence of 13 bioactive compounds. The docking analysis showed eight OS bioactive compounds to have high binding affinity (> 4.8 kcal/mol) towards antioxidant proteins of filarial parasites. Additionally, MD simulation studies showed significant impact of (RMSD ≤ 10 Å) chlorogenic acid, luteolin and ursolic acid on filarial antioxidant enzymes/proteins. To our knowledge, this is the first report of the anti-filarial activity of Ocimum sanctum. DISCUSSION AND CONCLUSIONS The effect of EOS and OS bioactive components on human filarial parasites can be further evaluated for the development of new anti-filarial formulations.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Shoeib NA, Al-Madboly LA, Ragab AE. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. PHARMACEUTICAL BIOLOGY 2022; 60:1969-1980. [PMID: 36226757 PMCID: PMC9578474 DOI: 10.1080/13880209.2022.2127791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of β-lactamases by O. basilicum. OBJECTIVE To assess β-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for β-lactamase inhibition and investigated by docking. RESULTS O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL β-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard β-lactamase inhibitor. DISCUSSION AND CONCLUSIONS This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against β-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for β-lactamase inhibition.
Collapse
Affiliation(s)
| | | | - Amany E. Ragab
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Dharsono HDA, Putri SA, Kurnia D, Dudi D, Satari MH. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022; 27:6350. [PMID: 36234883 PMCID: PMC9573401 DOI: 10.3390/molecules27196350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/08/2022] Open
Abstract
Infection by bacteria is one of the main problems in health. The use of commercial antibiotics is still one of the treatments to overcome these problems. However, high levels of consumption lead to antibiotic resistance. Several types of antibiotics have been reported to experience resistance. One solution that can be given is the use of natural antibacterial products. There have been many studies reporting the potential antibacterial activity of the Ocimum plant. Ocimum is known to be one of the medicinal plants that have been used traditionally by local people. This plant contains components of secondary metabolites such as phenolics, flavonoids, steroids, terpenoids, and alkaloids. Therefore, in this paper, we will discuss five types of Ocimum species, namely O. americanum, O. basilicum, O. gratissimum, O. campechianum, and O. sanctum. The five species are known to contain many chemical constituents and have good antibacterial activity against several pathogenic bacteria.
Collapse
Affiliation(s)
- Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dudi Dudi
- Department of Livestock Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
21
|
Sęczyk Ł, Ozdemir FA, Kołodziej B. In vitro bioaccessibility and activity of basil (Ocimum basilicum L.) phytochemicals as affected by cultivar and postharvest preservation method - Convection drying, freezing, and freeze-drying. Food Chem 2022; 382:132363. [PMID: 35158270 DOI: 10.1016/j.foodchem.2022.132363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
The effects of convection drying, freezing, and freeze-drying, on phytochemicals content, in vitro activity and bioaccessibility of sweet basil, cinnamon basil, red rubin basil, and lemon basil were investigated. For evaluation of bioaccessibility, rosmarinic acid content, phenolic content, and antioxidant potential of samples before and after gastric and intestinal steps of digestion were determined. Results showed that the content, activity and bioaccessibility of basil phytochemicals varied depending on the cultivar as well as the applied postharvest preservation. It was found that the frozen and freeze-dried plant materials were characterized by a higher phenolic level and antioxidant activity compared to the convection dried. However, in general, convection drying allows obtaining samples with higher bioaccessibility of phytochemicals compared to the low-temperature processed samples. These findings highlight the need for evaluation of basil cultivars and postharvest preservation methods regarding phytochemicals bioaccessibility, which might help in the classification in terms of pro-health quality.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey.
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| |
Collapse
|
22
|
Differential Nutrition-Health Properties of Ocimum basilicum Leaf and Stem Extracts. Foods 2022; 11:foods11121699. [PMID: 35741897 PMCID: PMC9222536 DOI: 10.3390/foods11121699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ocimum basilicum L. is an aromatic medicinal plant of the Lamiaceae family known as sweet basil. It is used in traditional medicine for its beneficial effects on gastrointestinal disorders, inflammation, immune system, pyrexia or cancer among others. Ocimum basilicum (OB) leaf extracts contain many phytochemicals bearing the plant health effects but no reports is available on the potential bioactivity of stem extracts. Our investigation aimed at assessing the differential biological activity between basil leaf and stem to promote this co-product valorization. (2) Method: For this purpose we explored phytochemical composition of both parts of the plant. Antioxidant activity was evaluated through total polyphenol content measure, DPPH and ORAC tests. Anti-inflammatory markers on stimulated macrophages, including NO (nitric oxide), TNFa (tumor necrosis factor alpha), IL-6 (interleukin 6), MCP1 (monocyte attractant protein 1) and PGE-2 (prostaglandin E2), were evaluated. In addition, we investigated OB effects on jejunum smooth muscle contractility. (3) Results: OB extracts from leaves and stems demonstrated a different biological activity profile at the level of both antioxidant, anti-inflammatory and smooth muscle relaxation effects. (4) Conclusion: Taken together our results suggest that Ocimum basilicum extracts from co-product stems, in addition to leaves, may be of interest at the nutrition-health level with specific therapeutic potential.
Collapse
|
23
|
Beltrán-Noboa A, Proaño-Ojeda J, Guevara M, Gallo B, Berrueta LA, Giampieri F, Perez-Castillo Y, Battino M, Álvarez-Suarez JM, Tejera E. Metabolomic profile and computational analysis for the identification of the potential anti-inflammatory mechanisms of action of the traditional medicinal plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem Toxicol 2022; 164:113039. [PMID: 35461962 DOI: 10.1016/j.fct.2022.113039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Ocimum basilicum and Ocimum tenuiflorum are two basil species widely used medicinally as an anti-inflammatory, antimicrobial and cardioprotective agent. This study focuses on the chemical characterization of the majoritarian compounds of both species and their anti-inflammatory potential. Up to 22 compounds such as various types of salvianolic acids, derivatives of rosmaniric acid and flavones were identified in both plants. The identified compounds were very similar between both plants and are consistent with previous finding in other studies in Portugal and Italy. Based on the identified molecules a consensus target prediction was carried out. Among the main predicted target proteins, we found a high representation of the carbonic anhydrase family (CA2, CA7 and CA12) and several key proteins from the arachidonic pathway (LOX5, PLA2, COX1 and COX2). Both pathways are well related to inflammation. The interaction between the compounds and these targets were explored through molecular docking and molecular dynamics simulation. Our results suggest that some molecules present in both plants can induce an anti-inflammatory response through a non-steroidal mechanism of action connected to the carbon dioxide metabolism.
Collapse
Affiliation(s)
- Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - John Proaño-Ojeda
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Mabel Guevara
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Grupo de Investigación en Polifenoles. Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Blanca Gallo
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Luis A Berrueta
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yunierkis Perez-Castillo
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Escuela de Ciencias Físicas y Matemáticas. Universidad de Las Américas, Quito, Ecuador
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - José M Álvarez-Suarez
- Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Eduardo Tejera
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
24
|
Darrag HM, Almuhanna HT, Hakami EH. Secondary Metabolites in Basil, Bio-Insecticide, Inhibition Effect, and In Silico Molecular Docking against Proteolytic Enzymes of the Red Palm Weevil (Rhynchophorus ferrugineus). PLANTS 2022; 11:plants11081087. [PMID: 35448815 PMCID: PMC9027599 DOI: 10.3390/plants11081087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
The purpose of this work was to determine the secondary metabolites generated by O. basilicum cell suspensions, as well as their insecticide and inhibitory activity against R. ferrugineus. The growth kinetics with inoculation Verticillium dahliae were determined and identified using LC-MS. Determination of total phenolic components (TFC), flavonoids (TF), and condensed tannins (TCT) were measured. Insecticidal activity of O. basilicum extract against R. ferrugineus (larva and adult) and proteolytic enzymes activity were assessed (in vitro and in vivo). The O.basilicum extract had an LC50 of 1238 µg/mL and an LD50 of 13.4 µg/larva. The LC50 of chicoric acid, ursolic acid, salvigenin, quercetin-3-O-rutinoside, rosmarinyl glucoside, and nepetoidin B demonstrated activity at an LC50 of 1132, 1167, 1189, 1214, 1275, and 1317 µg/mL, respectively. Chicoric acid, salvigenin, nepetoidin B, and rosmarinic acid demonstrated an LD50 activity of 10.23, 11.4, 11.9, and 12.4 µg/larva, respectively. The active extract of O. basilicum inhibited total protease, trypsin-like serine proteinases, elastase, cysteine, and metalloprotease activity with an IC50 (in vitro) of 119.4, 91, 102.4, 76.4, and 52.4 µg/mL, respectively. In silico studies of compounds were conducted, such as molecular docking and ADMET analysis. The study proposes using an efficient cell suspension technique to produce O. basilicum extract containing active secondary metabolites and accessible using as bio-insecticide.
Collapse
Affiliation(s)
- Hossam Moustafa Darrag
- Department of Research and Training, Research and Training Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- Correspondence: ; Tel.: +966-508299027
| | - Hani Taher Almuhanna
- Research and Training Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (H.T.A.); (E.H.H.)
| | - Emadaldeen Hamad Hakami
- Research and Training Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (H.T.A.); (E.H.H.)
| |
Collapse
|
25
|
An Appraisal of Critical Factors Configuring the Composition of Basil in Minerals, Bioactive Secondary Metabolites, Micronutrients and Volatile Aromatic Compounds. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Magara G, Prearo M, Vercelli C, Barbero R, Micera M, Botto A, Caimi C, Caldaroni B, Bertea CM, Mannino G, Barceló D, Renzi M, Gasco L, Re G, Dondo A, Elia AC, Pastorino P. Modulation of Antioxidant Defense in Farmed Rainbow Trout ( Oncorhynchus mykiss) Fed with a Diet Supplemented by the Waste Derived from the Supercritical Fluid Extraction of Basil ( Ocimum basilicum). Antioxidants (Basel) 2022; 11:antiox11020415. [PMID: 35204297 PMCID: PMC8869336 DOI: 10.3390/antiox11020415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Phytotherapy is based on the use of plants to prevent or treat human and animal diseases. Recently, the use of essential oils and polyphenol-enriched extracts is also rapidly increasing in the aquaculture sector as a means of greater industrial and environmental sustainability. Previous studies assessed the antibacterial and antiparasitic effects of these bioactive compounds on fish. However, studies on the modulation of oxidative stress biomarkers are still scant to date. Thus, in this study, the modulation of antioxidant defense against oxidative stress exerted by fish diets supplemented with a basil supercritical extract (F1-BEO) was assessed in rainbow trout Oncorhynchus mykiss. The F1-BEO extracted with supercritical fluid extraction was added to the commercial feed flour (0.5, 1, 2, 3% w/w) and mixed with fish oil to obtain a suitable compound for pellet preparation. Fish were fed for 30 days. The levels of stress biomarkers such as superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I, glyoxalase II, lactate dehydrogenase, glutathione and malondialdehyde showed a boost in the antioxidant pathway in fish fed with a 0.5% F1-BEO-supplemented diet. Higher F1-BEO supplementation led to a failure of activity of several enzymes and the depletion of glutathione levels. Malondialdehyde concentration suggests a sufficient oxidative stress defense against lipid peroxidation in all experimental groups, except for a 3% F1-BEO-supplemented diet (liver 168.87 ± 38.79 nmol/mg prot; kidney 146.86 ± 23.28 nmol/mg prot), compared to control (liver 127.76 ± 18.15 nmol/mg prot; kidney 98.68 ± 15.65 nmol/mg prot). Our results suggest supplementing F1-BEO in fish diets up to 0.5% to avoid potential oxidative pressure in farmed trout.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (M.P.); (A.D.)
| | - Cristina Vercelli
- Department of Veterinary Sciences, University of Torino, Grugliasco, 10095 Turin, Italy; (C.V.); (G.R.)
| | - Raffaella Barbero
- ASL TO4, Servizio Veterinario-Igiene Degli Allevamenti e Delle Produzioni Zootecniche, Settimo Torinese, 10036 Turin, Italy;
| | - Marco Micera
- Exenia Group S.R.L, Pinerolo, 10064 Turin, Italy; (M.M.); (A.B.)
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Alfonso Botto
- Exenia Group S.R.L, Pinerolo, 10064 Turin, Italy; (M.M.); (A.B.)
| | - Christian Caimi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, 10095 Turin, Italy; (C.C.); (L.G.)
| | - Barbara Caldaroni
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | | | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
- Correspondence: (G.M.); (P.P.); Tel.: +39-0116706362 (G.M.); +39-0112686251 (P.P.)
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, 10095 Turin, Italy; (C.C.); (L.G.)
| | - Giovanni Re
- Department of Veterinary Sciences, University of Torino, Grugliasco, 10095 Turin, Italy; (C.V.); (G.R.)
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (M.P.); (A.D.)
| | - Antonia Concetta Elia
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (M.P.); (A.D.)
- Correspondence: (G.M.); (P.P.); Tel.: +39-0116706362 (G.M.); +39-0112686251 (P.P.)
| |
Collapse
|
27
|
Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basils of the genus Ocimum are aromatic plants grown widely throughout the tropical and temperate regions. The essential oils obtained from their aerial parts are enriched with volatile organic compounds with high market demand for food and pharmaceutical industries. The volatile organic compounds have been shown to exhibit biological activities. Therefore, their novel applications have been extensively explored in the last few decades. The most widely available basils in the tropical areas include white holy basil (O. sanctum var. Shyama), red holy basil (O. sanctum var. Rama), Thai basil (O. basilicum var. thyrsiflorum), lemon basil (O. citriodorum), and tree basil (O. gratissimum). Over 60 volatiles of different classes have been exclusively described, and some of them could be useful as biomarkers for genotype specification. The major volatile ingredient is the phenylpropanoids, such as methyl eugenol, which has the potential as a natural product for mitigating Oriental fruit fly (Bactrocera dorsalis) during tropical fruit production. Moreover, basil essential oils are also used to control diseases of the fruits during post-harvest storage. As a result, the application of basil essential oils as a sustainable defect control strategy for tropical fruit value chains seems intriguing. This review provides comprehensive information on plant taxonomy and volatile compositions of the essential oil fractions from different basil species. Their biological activities and applications are also discussed, mainly during the pre- and post-production of tropical fruits. Additionally, the available techniques to enhance the efficacy of the volatile active compounds are also described.
Collapse
|
28
|
Machado RMA, Alves-Pereira I, Faty Y, Perdigão S, Ferreira R. Influence of Nitrogen Sources Applied by Fertigation to an Enriched Soil with Organic Compost on Growth, Mineral Nutrition, and Phytochemicals Content of Coriander ( Coriandrum sativum L.) in Two Successive Harvests. PLANTS (BASEL, SWITZERLAND) 2021; 11:22. [PMID: 35009025 PMCID: PMC8747198 DOI: 10.3390/plants11010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of nitrogen source applied by fertigation to an enriched soil with organic compost on plant growth, mineral nutrition, and phytochemical contents in two successive harvests in coriander. The treatments were as follows: unfertilized soil, soil enriched with organic compost, and soil enriched with organic compost to which 60 kg N ha-1 as ammonium nitrate and as ammonium sulfate applied by fertigation were added. Ammonium nitrate addition allowed to obtain a high total fresh yield (3.6 kg m-2) with a low inorganic nitrogen input. Ammonium nitrate increased plant shoot dry weight; fresh yield; and shoot N, K, and Ca uptake in the first harvest. Ammonium nitrate relative to organic compost and to ammonium sulfate increased fresh yield by approximately 57 and 25%, respectively. However, ammonium sulfate in the first harvest greatly increased shoot total phenols, from 137 mgGAE/100 g FW in ammonium nitrate to 280.4 mgGAE/100 g FW. Coriander's fresh yield, in the second harvest, was unaffected by nitrogen addition. However, ammonium nitrate increased shoot total phenols and FRAP activity. Overall, the shoot phytochemical accumulation in the second harvest was lower than in the first. The combined application of ammonium nitrate and organic compost is a strategy to reduce inorganic nitrogen application.
Collapse
Affiliation(s)
- Rui M. A. Machado
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal
| | - Isabel Alves-Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal;
| | - Yasmin Faty
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal; (Y.F.); (S.P.)
| | - Sara Perdigão
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal; (Y.F.); (S.P.)
| | - Rui Ferreira
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal;
| |
Collapse
|
29
|
Głuchowski A, Czarniecka-Skubina E, Tambor K, Jariené E. Fresh Basil Infusion: Effect of Sous-Vide Heat Treatment on Their Volatile Composition Profile, Sensory Profile, and Color. Molecules 2021; 27:5. [PMID: 35011238 PMCID: PMC8746197 DOI: 10.3390/molecules27010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Herbs, including basil, are used to enhance the flavor of food products around the world. Its potential is influenced by the quality of fresh herbs and processing practices, wherein conditions of heat treatment play an important role. The aim of the research was to determine the effect of sous-vide heat treatment on the volatile compounds profile, sensory quality, and color of basil infusions. The material used for research was aqueous basil infusion prepared conventionally at 100 °C, and using the sous-vide method (65, 75, and 85 °C). The composition of volatile compounds was identified by GC/MS analysis, the sensory profile was assessed using a group of trained panelists, while the color was instrumentally assessed in the CIE Lab system. No significant differences were found in the intensity of the taste and aroma of basil infusions at different temperatures. Seventy headspace volatile compounds were identified in the analyzed samples, ten of which exceeded 2% of relative area percentage. The most abundant compounds were eucalyptol (27.1%), trans-ocimene (11.0%), β-linalool (9.2%), and β-myrcene (6.7%). Most of the identified compounds belonged to the terpenes and alcohols groups. Our findings show that the conventional herbal infusion was more like a sous-vide infusion prepared at the lowest temperature SV65, while SV75 and SV85 were similar to each other but different from the conventional. However, a smaller number of volatile compounds in the samples heated at higher temperatures of sous-vide were identified. The sous-vide samples showed a higher content of alkanes. The sous-vide method (p ≤ 0.05) resulted in darker, less green, and less yellow basil leaves than fresh and traditionally steeped ones. Long heat treatment under vacuum at higher temperatures causes a pronounced change in the aroma composition.
Collapse
Affiliation(s)
- Artur Głuchowski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-778 Warsaw, Poland; (A.G.); (K.T.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-778 Warsaw, Poland; (A.G.); (K.T.)
| | - Krzysztof Tambor
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-778 Warsaw, Poland; (A.G.); (K.T.)
| | - Elvyra Jariené
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Mangus University, LT-53361 Kaunas, Lithuania;
| |
Collapse
|
30
|
Mahmoud E, Starowicz M, Ciska E, Topolska J, Farouk A. Determination of volatiles, antioxidant activity, and polyphenol content in the postharvest waste of Ocimum basilicum L. Food Chem 2021; 375:131692. [PMID: 34865924 DOI: 10.1016/j.foodchem.2021.131692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/23/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
The treatment of postharvest wastes is an integral part of the food value chain. Therefore, Ocimum basilicum L. residues were dried in an oven and a microwave. Volatiles were extracted using hydrodistillation, headspace solid-phase microextraction (HS-SPME) and then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Thirty volatiles were identified in raw material, with β-linalool, methyleugenol, methylcinnamate, and estragole predominating. Meanwhile, 24 and 18 volatiles were detected in the oven- and microwave-dried samples, with a significant decrease of methyleugenol content. The highest radical scavenging ability and total phenolic content were achieved for microwaved wastes using photochemiluminescence, DPPH, and Folin-Ciocalteu test. Moreover, 8 phenolic acids and 9 flavonoids were identified in the LC-MS/MS analysis, with significant contents of rosmarinic acid and luteolin (1042.45 and 11.68 µg/g of dry matter, respectively) in the microwaved basil. This experiment pointed out that microwaved basil wastes could be re-used in the food, pharmacy and/or cosmetic industries.
Collapse
Affiliation(s)
- Engy Mahmoud
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Ewa Ciska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
31
|
Sengupta P, Bose A, Sen K. Liposomal Encapsulation of Phenolic Compounds for Augmentation of Bio‐Efficacy: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priti Sengupta
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Adity Bose
- Department of Chemistry Presidency University 86/1 College Street Kolkata 700073 India
| | - Kamalika Sen
- Department of Chemistry University of Calcutta 92, APC Road Kolkata 700009 India
| |
Collapse
|
32
|
The Effect of Antagonist Abiotic Stress on Bioactive Compounds from Basil (Ocimum basilicum). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drought and flooding are some of the most common stressful conditions for plants. Due to the recent climate changes, they can occur one after another. This study is focused on the effect of antagonistic abiotic stress such as drought and flooding on the different metabolites from Ocimum basilicum leaves. Six-week-old plants of Ocimum basilicum were exposed to drought or flooding stress for 15 days, followed by antagonist stress for 14 days. The assimilation rates decrease drastically for plants under consecutive stresses from 18.9 to 0.25 µmol m−2 s−1 starting at day 3 of treatment. The stomatal conductance to water vapor gs was also reduced from 86 to 29 mmol m−2 s−1. The emission of green leaf volatiles compounds increases from 0.14 to 2.48 nmol m−2 s−1, and the emission of monoterpenes increased from 2.00 to 7.37 nmol m−2 s−1. The photosynthetic pigment concentration (chlorophyll a and b, and β-carotene), the flavonoid content, and total phenolic content decrease for all stressed plants. The results obtained in this study could indicate that the water status (drought and/or flooding) directly impacts basil plants’ physiological parameters and secondary metabolites.
Collapse
|
33
|
Yilmaz A, Alibas I. The impact of drying methods on quality parameters of purple basil leaves. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aslihan Yilmaz
- Department of Biosystems Engineering Faculty of Agriculture Bursa Uludag University Bursa Turkey
| | - Ilknur Alibas
- Department of Biosystems Engineering Faculty of Agriculture Bursa Uludag University Bursa Turkey
| |
Collapse
|
34
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 08/26/2024] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 48.7% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection with an encapsulation efficiency value of 71.58%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
35
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 49.5% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection and antioxidant activity with an encapsulation efficiency value of 71.58% and 80.5%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product for a functional food and pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
36
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 08/26/2024] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 49.5% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection and antioxidant activity with an encapsulation efficiency value of 71.58% and 80.5%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product for a functional food and pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
37
|
Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microgreens are innovative products in the horticultural sector. They are appreciated by consumers thanks to their novelty and health-related benefits, having a high antioxidant concentration. This produce can be adopted for indoor production using hydroponic systems. The aim of the present work was to investigate the influence of three growing media (vermiculite, coconut fiber, and jute fabric) on yield and quality parameters of two basil varieties (Green basil—Ocimum basilicum L., Red basil—Ocimum basilicum var. Purpurecsens) and rocket (Eruca sativa Mill.) as microgreens. Microgreens were grown in floating, in a Micro Experimental Growing (MEG®) system equipped with LED lamps, with modulation of both energy and spectra of the light supplied to plants. Results showed high yield, comprised from 2 to 3 kg m−2. Nutritional quality varied among species and higher antioxidant compounds were found in red basil on vermiculite and jute. Coconut fiber allowed the differentiation of crop performance in terms of sucrose and above all nitrate. In particular, our results point out that the choice of the substrate significantly affected the yield, the dry matter percentage and the nitrate concentration of microgreens, while the other qualitative parameters were most influenced by the species.
Collapse
|
38
|
Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M, Iqbal Yatoo M, Thakur P, Iqbal HM, Chaicumpa W, Michalak I, Elnesr SS, Farag MR. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1900230] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mudasir B. Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesDeen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar, Srinagar, Jammu and Kashmir, India
| | - Pallavi Thakur
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hafiz M.N. Iqbal
- Tecnologico De Monterrey, School of Engineering and Sciences, Campus Monterrey, Mexico
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
39
|
Ciriello M, Formisano L, El-Nakhel C, Kyriacou MC, Soteriou GA, Pizzolongo F, Romano R, De Pascale S, Rouphael Y. Genotype and Successive Harvests Interaction Affects Phenolic Acids and Aroma Profile of Genovese Basil for Pesto Sauce Production. Foods 2021; 10:278. [PMID: 33573127 PMCID: PMC7911349 DOI: 10.3390/foods10020278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its distinctive aroma. Genovese basil leaves are used to prepare "pesto", a condiment that has always caught the interest of consumers and producers. Usually, basil for industrial processing is harvested more than once to extract a higher yield. However, successive cuts can affect quality traits that play a crucial role in defining the product's final sensory profile. This research was aimed to evaluate the impact of cut on the quantitative and qualitative properties of three Genovese basil cultivars (Aroma 2, Eleonora and Italiano Classico) grown in an open field. Nitrate content, phenolic acids and aromatic profile were determined by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography coupled to a mass spectrometer (GC/MS) analysis, respectively. The second harvest increased fresh biomass and total phenolic acids content by 172% and 413%, respectively, with Italiano Classico recording the highest values. The combination of second-cut Aroma 2 yielded the lowest nitrate (473.8 mg kg-1 of fresh weight) and Eugenol (2.4%) levels. In the second harvest, Eleonora showed an increase in eugenol and trans-α-bergamotene of 75.3% and 48.2%, respectively; whereas, eucalyptol and β-cis-ocimene decreased by 34.4% and 51.6%, respectively. Although successive harvests may increase basil yield and quality overall, the cultivar-dependent response to successive cuts needs to be accounted for in order to accomplish standardization of industrial "pesto" sauce.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Georgios A. Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| |
Collapse
|
40
|
Ciriello M, Pannico A, El-Nakhel C, Formisano L, Cristofano F, Duri LG, Pizzolongo F, Romano R, De Pascale S, Colla G, Cardarelli M, Rouphael Y. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1786. [PMID: 33339286 PMCID: PMC7767113 DOI: 10.3390/plants9121786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m-1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m-1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m-1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (-44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Giuseppe Duri
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, 84098 Pontecagnano Faiano, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| |
Collapse
|
41
|
Altemimi AB, Mohammed MJ, Yi-Chen L, Watson DG, Lakhssassi N, Cacciola F, Ibrahim SA. Optimization of Ultrasonicated Kaempferol Extraction from Ocimum basilicum Using a Box-Behnken Design and Its Densitometric Validation. Foods 2020; 9:foods9101379. [PMID: 33003426 PMCID: PMC7600635 DOI: 10.3390/foods9101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022] Open
Abstract
Kaempferol (KA) is a natural flavonol that can be found in plants and plant-derived foods with a plethora of different pharmacological properties. In the current study, we developed an efficient extraction method for the isolation of KA from ultrasonicated basil leaves (Ocimum basilicum). We successfully employed a Box-Behnken design (BBD) in order to investigate the effect of different extraction variables including methanol concentration (40-80%), extraction temperature (40-60 °C), and extraction time (5-15 min). The quantification of KA yield was carried out by employing a validated densitometric high performance thin layer chromatography in connection with ultraviolet detection (HPTLC-VIS). The obtained data showed that the quadratic polynomial model (R2 = 0.98) was the most appropriate. The optimized ultrasonic extraction yielded 94.7 ng/spot of KA when using methanol (79.99%) at 60 °C for 5 min. When using toluene-ethyl acetate-formic acid (70:30:1 v/v/v) as a solvent, KA was detected in basil leaves at an Retention factor (Rf) value of 0.26 at 330 nm. Notably, the analytical method was successfully validated with a linear regression of R2 = 0.99, which reflected a good linear relationship. The developed HPTLC-VIS method in this study was precise, accurate, and robust due to the lower obtained results from both the percent relative standard deviation (%RSD) and SEM of the O. basilicum. The antioxidant activity of KA (half maximal inhibitory concentration (IC50) = 0.68 μg/mL) was higher than that of the reference ascorbic acid (IC50 = 0.79 μg/mL) and butylated hydroxytoluene (BHT) (IC50 = 0.88 μg/mL). The development of economical and efficient techniques is very important for the extraction and quantification of important pharmaceutical compounds such as KA.
Collapse
Affiliation(s)
- Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- Correspondence: (A.B.A.); (F.C.); Tel.: +964-773-5640-090 (A.B.A.); +39-090-676570 (F.C.)
| | - Muthanna J. Mohammed
- Department of Biology, College of Education for Pure Sciences, University of Mosul, Mosul 41002, Iraq;
| | - Lee Yi-Chen
- School of Agricultural Sciences, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA; (L.Y.-C.); (D.G.W.); (N.L.)
| | - Dennis G. Watson
- School of Agricultural Sciences, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA; (L.Y.-C.); (D.G.W.); (N.L.)
| | - Naoufal Lakhssassi
- School of Agricultural Sciences, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA; (L.Y.-C.); (D.G.W.); (N.L.)
| | - Francesco Cacciola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.B.A.); (F.C.); Tel.: +964-773-5640-090 (A.B.A.); +39-090-676570 (F.C.)
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A & T State University, Greensboro, NC 27411, USA;
| |
Collapse
|