1
|
Gupta A, Park JY, Choi H, Choi TH, Chung Y, Kim DH, Lee YS. Development of Alginate-Based Biodegradable Radioactive Microspheres Labeled with Positron Emitter through Click Chemistry Reaction: Stability and PET Imaging Study. Mol Pharm 2024; 21:5005-5014. [PMID: 39169803 DOI: 10.1021/acs.molpharmaceut.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Biodegradable radioactive microspheres labeled with positron emitters hold significant promise for diagnostic and therapeutic applications in cancers and other diseases, including arthritis. The alginate-based polymeric microspheres offer advantages such as biocompatibility, biodegradability, and improved stability, making them suitable for clinical applications. In this study, we developed novel positron emission tomography (PET) microspheres using alginate biopolymer radiolabeled with gallium-68 (68Ga) through a straightforward conjugation reaction. Polyethylenimine (PEI)-decorated calcium alginate microspheres (PEI-CAMSs) were fabricated and further modified using azadibenzocyclooctyne-N-hydroxysuccinimide ester (ADIBO-NHS). Subsequently, azide-functionalized NOTA chelator (N3-NOTA) was labeled with [68Ga]Ga to obtain [68Ga]Ga-NOTA-N3, which was then reacted with the surface-modified PEI-CAMSs using strain-promoted alkyne-azide cycloaddition (SPAAC) reaction to develop [68Ga]Ga-NOTA-PEI-CAMSs, a novel PET microsphere. The radiolabeling efficiency and radiochemical stability of [68Ga]Ga-NOTA-PEI-CAMSs were determined using the radio-instant thin-layer chromatography-silica gel (radio-ITLC-SG) method. The in vivo PET images were also acquired to study the in vivo stability of the radiolabeled microspheres in normal mice. The radiolabeling efficiency of [68Ga]Ga-NOTA-PEI-CAMSs was over 99%, and the microspheres exhibited high stability (92%) in human blood serum. PET images demonstrated the stability and biodistribution of the microspheres in mice for up to 2 h post injection. This study highlights the potential of biodegradable PET microspheres for preoperative imaging and targeted radionuclide therapy. Overall, the straightforward synthesis method and efficient radiolabeling technique provide a promising platform for the development of theranostic microspheres using other radionuclides such as 90Y, 177Lu, 188Re, and 64Cu.
Collapse
Affiliation(s)
- Arun Gupta
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Ji Yong Park
- Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Tae Hyeon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Yujin Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Yun-Sang Lee
- Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Cappello J, Miguet J, Dewandre A, Ergot L, Gabriele S, Septavaux J, Scheid B. Controlling the size and elastic modulus of in-aqueous alginate micro-beads. SOFT MATTER 2024; 20:7692-7702. [PMID: 39291863 DOI: 10.1039/d4sm00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The fabrication of microgels, particularly those ranging from tens to hundreds of micrometers in size, represents a thriving area of research, particularly for biologists seeking controlled and isotropic media for cell encapsulation. In this article, we present a novel and robust method for producing structurally homogeneous alginate beads with a reduced environmental footprint, employing a co-flow focusing microfluidic device. These beads can be easily recovered in an oil-free aqueous medium, making the fabrication method highly suitable for diverse applications. We demonstrate precise control over the production of perfectly spherical beads across a wide range of diameters, from about 30 to 300 μm. We then measure Young's moduli of the beads, revealing a wide accessible range from 90 Pa to 11 kPa, contingent upon controlling the type (e.g. chain length) and concentration of alginate.
Collapse
Affiliation(s)
- Jean Cappello
- Transfers, Interfaces and Processes, Université libre de Bruxelles, CP165/67, 1050 Brussels, Belgium.
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jonas Miguet
- Transfers, Interfaces and Processes, Université libre de Bruxelles, CP165/67, 1050 Brussels, Belgium.
| | | | - Lucie Ergot
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, Mons B-7000, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, Mons B-7000, Belgium
| | | | - Benoit Scheid
- Transfers, Interfaces and Processes, Université libre de Bruxelles, CP165/67, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Łętocha A, Michalczyk A, Miastkowska M, Sikora E. Effect of Encapsulation of Lactobacillus casei in Alginate-Tapioca Flour Microspheres Coated with Different Biopolymers on the Viability of Probiotic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52878-52893. [PMID: 39301782 PMCID: PMC11450766 DOI: 10.1021/acsami.4c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.
Collapse
Affiliation(s)
- Anna Łętocha
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Alicja Michalczyk
- Lukasiewicz
Research Network—Institute of Industrial Organic Chemistry, 03-236 Warsaw, Poland
| | - Małgorzata Miastkowska
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Elżbieta Sikora
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| |
Collapse
|
4
|
Chen P, Varghese P J G, Zhao K, Hu J. Mechanical investigation of a Tandem embolization-visualization system for minimally invasive procedures. J Mech Behav Biomed Mater 2024; 160:106739. [PMID: 39276435 DOI: 10.1016/j.jmbbm.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Transcatheter arterial embolization is a minimally invasive intervention process in which the blood supply to a tumor or an abnormal area of tissue is blocked. One of the most commonly used embolic agents in clinics is microsphere (MS). In order to understand the flow behavior of microspheres in arteries, it is essential to study their mechanical properties systematically. In this work, calcium-alginate MSs with varying calcium concentrations were synthesized using a coaxial airflow method. Indocyanine green (ICG) was added as a fluorescent dye. The effect of ICG concentration change on microspheres was investigated by studying morphology, imageability, rheology, and swelling behavior. Then the effect of calcium chloride concentration change on microspheres was studied by conducting rheological tests, atomic force microscopy tests, hemolysis assay, and thrombogenicity assay. Results showed that microspheres with higher ICG concentrations have longer lasting fluorescence and lower storage modulus (G'). Higher concentrations of calcium chloride led to higher G', while the local Young's modulus obtained by AFM test was not significantly affected. The MSs with and without ICG showed good hemocompatibility and thrombogenicity.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695.
| |
Collapse
|
5
|
Passannanti F, Gallo M, Lentini G, Colucci Cante R, Nigro F, Nigro R, Budelli A. Alginate Capsules: Versatile Applications and Production Techniques. Macromol Biosci 2024:e2400202. [PMID: 39233662 DOI: 10.1002/mabi.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
Collapse
Affiliation(s)
- Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, Rome, 00166, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Andrea Budelli
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- Heinz Innovation Center, Nieuwe Dukenburgseweg 19 6534 AD Nijmegen Postbus 57, Nijmegen, NL-6500, Netherlands
| |
Collapse
|
6
|
Giustra M, Sinesi G, Spena F, De Santes B, Morelli L, Barbieri L, Garbujo S, Galli P, Prosperi D, Colombo M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. CHEMSUSCHEM 2024:e202401065. [PMID: 39222323 DOI: 10.1002/cssc.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is now changing or rather having an ecological transition in which formulations such as creams, lotions, and powders for make-up, skin and hair care must not contain microplastics, now a taboo word in this field. Nowadays, many companies are intensifying their research and development (R&D) work to align with recent and future legislation that provides for their elimination to safeguard the ecosystem. The production of new eco-sustainable materials is currently a hot topic which finds its place in a market worth above 350 billion dollars which will reach more than 700 billion dollars in a very short time. This review offers an overview of the main advantages and adverse issues relating to the use of microplastics in cosmetics and of their impact, providing an insight into the properties of the polymeric materials that are currently exploited to improve the sensorial characteristics of cosmetic products. In addition, the various regulatory restrictions in the different geographical areas of the world are also described, which is matter for reflection on future direction. Finally, a prospective vision of possible solutions to replace microplastics with sustainable alternatives complete the picture of the next generation personal care products to support decision-making in the cosmetic marketplace.
Collapse
Affiliation(s)
- Marco Giustra
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
- Nanobiotechnologies for Health Center, NANOMIB, University of Milano-Bicocca, Via Raoul Follereau, 3, 20854, Vedano al Lambro, MB, Italy
| | - Giulia Sinesi
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Francesca Spena
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Beatrice De Santes
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Lucia Morelli
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Linda Barbieri
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Stefania Garbujo
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
- Nanobiotechnologies for Health Center, NANOMIB, University of Milano-Bicocca, Via Raoul Follereau, 3, 20854, Vedano al Lambro, MB, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milano, Italy
- Dubai Business School, University of Dubai, United Arab Emirates Goumbook, Ras Al Khaimah, 500001, United Arab Emirates
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, 12030, Maldives
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
- Nanobiotechnologies for Health Center, NANOMIB, University of Milano-Bicocca, Via Raoul Follereau, 3, 20854, Vedano al Lambro, MB, Italy
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
- Nanobiotechnologies for Health Center, NANOMIB, University of Milano-Bicocca, Via Raoul Follereau, 3, 20854, Vedano al Lambro, MB, Italy
| |
Collapse
|
7
|
Gędas A, Schmidt H, Weiss A. Identification and evaluation of Escherichia coli strain ATCC 8739 as a surrogate for thermal inactivation of enterohemorrhagic Escherichia coli in fruit nectars: Impact of applied techniques on the decimal reduction time. Food Microbiol 2024; 122:104544. [PMID: 38839230 DOI: 10.1016/j.fm.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.
Collapse
Affiliation(s)
- Astrid Gędas
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Agnes Weiss
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
8
|
Wawszczak A, Kocki J, Kołodyńska D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications-The Case Studies. J Biomed Mater Res B Appl Biomater 2024; 112:1-23. [PMID: 39269132 DOI: 10.1002/jbm.b.35475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.
Collapse
Affiliation(s)
- Alicja Wawszczak
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
9
|
Costa JB, Nascimento LGL, Martins E, De Carvalho AF. Immobilization of the β-galactosidase enzyme by encapsulation in polymeric matrices for application in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01019-1. [PMID: 39033918 DOI: 10.3168/jds.2024-24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Lactose intolerance affects approximately 65% of the global adult population, leading to the demand for lactose-free products. The enzyme β-galactosidase (βG) is commonly used in the industry to produce such products, but its recovery after lactose hydrolysis is challenging. In this scenario, the study aims to encapsulate βG within capsules, varying in dimensions and wall materials, to ensure their suitability for efficient industrial recovery. The enzyme βG was encapsulated through ionic gelation using alginate and its blends with pectin, maltodextrin, starch, or whey protein as wall materials. The capsules produced underwent evaluation for encapsulation efficiency, release profiles, activity of the βG enzyme, and the decline in enzyme activity when reused over multiple cycles. Alginate at 5% wt/vol concentrations, alone or combined with polymers such as maltodextrin, starch, or whey protein, achieved encapsulation efficiencies of approximately 98%, 98%, 80%, and 88%, respectively. The corresponding enzyme recovery rates were 34%, 19%, 31%, and 48%. Capsules made with an alginate-pectin blend exhibited no significant hydrolysis and maintained an encapsulation efficiency of 79%. Encapsulation with alginate alone demonstrated on poor retention of enzyme activity, showing a loss of 74% after just 4 cycles of reuse. Conversely, when alginate was mixed with starch or whey protein concentrate, the loss of enzyme activity was less than 40% after 4 reuses. These results highlight the benefits of combining encapsulation materials to improve enzyme recovery and reuse, offering potential economic advantages for the dairy industry.
Collapse
Affiliation(s)
- Jessiele Barbosa Costa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antônio Fernandes De Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil..
| |
Collapse
|
10
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
11
|
Hariyadi DM, Fawwaz LR, Fattah A, Purwanti T, Erawati T. Physical characteristics of quercetin pulmospheres using combination of alginate-carrageenan: Effect of polymer concentration. J Adv Pharm Technol Res 2024; 15:220-224. [PMID: 39290546 PMCID: PMC11404438 DOI: 10.4103/japtr.japtr_34_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/19/2024] Open
Abstract
Indonesia is the second country with the highest number of tuberculosis (TB) cases in the world and the first in Southeast Asia, according to WHO Global Report 2020. Quercetin has been tried as an alternative therapy and was found effective. This study aims to optimize quercetin pulmospheres using combination polymers and study its characteristics as an inhalation delivery system. Combination polymers provide the advantages of safe, mucoadhesive, and compact pulmospheres. Pulmospheres were made as formula F1, F2, and F3 (polymer ratios of 1:1, 1:2, and 1:3), respectively. Pulmospheres were made with quercetin 0.2%, alginate-carrageenan (total concentration of 1.8%), and CaCl2 0.5 M. Characterization of particle size, morphology, moisture content (MC), yield, drug loading, and entrapment efficiency (EE) were conducted. The yield range was from 83.89 to 86.30% ± 4.59%. MC range was from 4.23 to 5.12% ± 0.05%. Particle size was <3 µm (between 2.19 and 2.76 ± 0.149 µm), spherical shape and smooth surface. EE range was 60.69% ± 4.45% to 77.86% ± 1.74% and the drug loading range was 1.66-2.09% ± 0.15%. F2 formula with a polymer ratio of 1:2 was the best quercetin pulmospheres. Potential pulmospheres will then be recommended for in vitro release and in vivo study.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
| | - Lubby Razan Fawwaz
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
| | - Abdul Fattah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
| | - Tutiek Purwanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
| | - Tristiana Erawati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
12
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
13
|
Nakada M, Ishida H, Uchiyama H, Ota R, Ogura T, Namiki Y. Disaggregation and fibrillation during sol-gel transition of alginate hydrogels. Int J Biol Macromol 2024; 269:131890. [PMID: 38692534 DOI: 10.1016/j.ijbiomac.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The rheological and morphological characteristics of Ca-crosslinked alginate hydrogels with two different M/G ratios, α-L-guluronate (G)-rich and β-D-mannuronate (M)-rich, each with one alginic acid concentration, were investigated. It was found that the stiffness and elasticity of alginate hydrogels are derived from the thickness and density of the fibril network structures. In aqueous alginate solution, ball-like aggregates of alginates are present. Time-resolved small-angle X-ray scattering and time-domain nuclear magnetic resonance measurements suggest that the disaggregation of alginate aggregates and loose fibrillation occur in the early stage of the sol-gel transition. After these induction stage, direct gelation is finally caused by the formation of the egg-box junction. G-rich alginate hydrogel has a higher stiffness and a thicker and denser fibril network structure than M-rich alginate hydrogel. The former also exhibits faster and more significant changes in physical properties during the sol-gel transition.
Collapse
Affiliation(s)
- Masaru Nakada
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan.
| | - Hiroyuki Ishida
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Hironobu Uchiyama
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Rena Ota
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Yusuke Namiki
- KIMICA Corporation, 2-1-1 Yaesu, Chuo-ku, 104-0028 Tokyo, Japan
| |
Collapse
|
14
|
Colin C, Akpo E, Perrin A, Cornu D, Cambedouzou J. Encapsulation in Alginates Hydrogels and Controlled Release: An Overview. Molecules 2024; 29:2515. [PMID: 38893391 PMCID: PMC11173704 DOI: 10.3390/molecules29112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This review aims to gather the current state of the art on the encapsulation methods using alginate as the main polymeric material in order to produce hydrogels ranging from the microscopic to macroscopic sizes. The use of alginates as an encapsulation material is of growing interest, as it is fully bio-based, bio-compatible and bio-degradable. The field of application of alginate encapsulation is also extremely broad, and there is no doubt it will become even broader in the near future considering the societal demand for sustainable materials in technological applications. In this review, alginate's main properties and gelification mechanisms, as well as some factors influencing this mechanism, such as the nature of the reticulation cations, are first investigated. Then, the capacity of alginate gels to release matter in a controlled way, from small molecules to micrometric compounds, is reported and discussed. The existing techniques used to produce alginates beads, from the laboratory scale to the industrial one, are further described, with a consideration of the pros and cons with each techniques. Finally, two examples of applications of alginate materials are highlighted as representative case studies.
Collapse
|
15
|
Mergulhão NLON, Bulhões LCG, Silva VC, Duarte IFB, Basílio-Júnior ID, Freitas JD, Oliveira AJ, Goulart MOF, Barbosa CV, Araújo-Júnior JX. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:599. [PMID: 38794169 PMCID: PMC11124181 DOI: 10.3390/ph17050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate encapsulates loaded with clove essential oil (CEO) were prepared by ionic gelation, with subsequent freeze-drying. The objective of the present work was to develop a product with the ability to protect CEO against its easy volatility and oxidation. The following techniques were used to characterize the formulations: eugenol release, degree of swelling, GC/MS, TGA/DSC, and SEM. The alginate solution (1.0%) containing different concentrations of CEO (LF1: 1.0%; LF2: 0.5%; LF3: 0.1%) was dropped into a 3.0% CaCl2 solution. After lyophilization, the encapsulated samples were wrinkled and rigid, with high encapsulation power (LF3: 76.9% ± 0.5). Three chemical components were identified: eugenol (the major one), caryophyllene, and humulene. The antioxidant power (LF1: DPPH IC50 18.1 µg mL-1) was consistent with the phenol content (LF1: 172.2 mg GAE g-1). The encapsulated ones were thermally stable, as shown by analysis of FTIR peaks, eugenol molecular structure was kept unaltered. The degree of swelling was 19.2% (PBS). The release of eugenol (92.5%) in the PBS solution was faster than in the acidic medium. It was concluded that the low-cost technology used allows the maintenance of the content and characteristics of CEO in the three concentrations tested, offering a basis for further research with essential oil encapsulates.
Collapse
Affiliation(s)
- Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Laisa C. G. Bulhões
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Valdemir C. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
- Estácio de Alagoas Faculty, Maceió 57035-225, Brazil
| | - Ilza F. B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Irinaldo D. Basílio-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - Johnnatan D. Freitas
- Department of Food Chemistry, Federal Institute of Alagoas, Maceió 57020-600, Brazil;
| | - Adeildo J. Oliveira
- Department of Exact Sciences, Federal University of Alagoas, Arapiraca 57309-005, Brazil;
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| | - Círia V. Barbosa
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
| | - João X. Araújo-Júnior
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (N.L.O.N.M.); (L.C.G.B.); (I.D.B.-J.); (C.V.B.)
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil;
| |
Collapse
|
16
|
Gupta S, Saud A, Munira N, Allal A, Preud'homme H, Shomar B, Zaidi SJ. Removal of heavy metals from wastewater by aerogel derived from date palm waste. ENVIRONMENTAL RESEARCH 2024; 245:118022. [PMID: 38151152 DOI: 10.1016/j.envres.2023.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Cellulose that has been sourced from date palm leaves as a primary component was utilised. This cellulose served as the foundational material for the development of an aerogel composite. During this process, MXene (Ti3C2Tx) played a pivotal role in enhancing the overall composition of the aerogel. To ensure the stability and durability of the resulting aerogel structure, calcium ions were introduced to the mix. These ions facilitated the cross-linking process of sodium alginate molecules, ultimately leading to the formation of calcium alginate. This cross-linking step is crucial for the enhanced mechanical and chemical stability of the aerogel. Incorporating alginate and Ti3C2Tx into the cellulose aerogel enhanced its structural integrity in aqueous conditions and increased its adsorption capacity. When evaluated with synthetic wastewater, this composite exhibited remarkable adsorption capacities of 72.9, 114.4, 92.9, and 123.9 mg/g for As, Cd, Ni, and Zn ions, respectively. A systematic study was carried out to see the effect of various parameters, including contact time, MXene concentration, pH, and temperature on the adsorption of these elements. Peak adsorption was achieved at 60 min, favoring a pH range between 6 and 8 and exhibited optimal sorption efficiency at lower temperatures. The adsorption kinetics adhered closely to a pseudo-second-order, while the Freundlich model adeptly described the adsorption isotherms. An interesting result of this research was the aerogel's regenerative potential. After undergoing a basic acid treatment, the MXene/cellulose/alginate aerogel composite could be restored and reused for up to three cycles, all while maintaining its core performance capabilities even after the rigorous cross-linking processes. In three consecutive cycles, the removal percentages for As, Cd, Ni, and Zn were 48.15%, 80.38%, 56.51%, and 86.12% in cycle 1; 37.35%, 65.63%, 45.97%, and 78.42% in cycle 2; and 28.60%, 56.22%, 34.70%, and 65.83% in cycle 3, respectively. The composite was tested in conditions resembling seawater salinity. Impressively, the aerogel continued to demonstrate a significant ability to adsorb metals, reinforcing its potential utility in real-world aquatic scenarios. These findings suggest that the composite aerogel, integrating MXene, cellulose, and alginate, is an effective medium for the targeted removal of heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Soumya Gupta
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar; IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Asif Saud
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nazmin Munira
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Ahmed Allal
- IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, 2 Avenue Angot, 64053, Pau, Cedex, France
| | - Basem Shomar
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Syed Javaid Zaidi
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
17
|
Vila MMDC, Cinto EC, Pereira AO, Baldo DÂ, Oliveira JM, Balcão VM. An Edible Antibacterial Coating Integrating Lytic Bacteriophage Particles for the Potential Biocontrol of Salmonella enterica in Ripened Cheese. Polymers (Basel) 2024; 16:680. [PMID: 38475362 DOI: 10.3390/polym16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The goal of this research was to create an antibacterial biopolymeric coating integrating lytic bacteriophages against Salmonella enterica for use in ripened cheese. Salmonella enterica is the main pathogen that contaminates food products and the food industry. The food sector still uses costly and non-selective decontamination and disease control methods. Therefore, it is necessary to look for novel pathogen biocontrol technologies. Bacteriophage-based biocontrol seems like a viable option in this situation. The results obtained show promise for food applications since the edible packaging developed (EdiPhage) was successful in maintaining lytic phage viability while preventing the contamination of foodstuff with the aforementioned bacterial pathogen.
Collapse
Affiliation(s)
- Marta M D C Vila
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Edjane C Cinto
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Arthur O Pereira
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Denicezar  Baldo
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - José M Oliveira
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Victor M Balcão
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Avlani D, Shivakumar HN, Kumar A, Prajila A, Baraka BBH, Bhagya V. Pre-exposure prophylactic mucoadhesive sodium alginate microsphere laden pessaries for intravaginal delivery of tenofovir disoproxil fumarate. Int J Biol Macromol 2024; 258:128816. [PMID: 38114000 DOI: 10.1016/j.ijbiomac.2023.128816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The research aimed to develop novel bioadhesive sodium alginate (Na-Alg) microspheres laden pessaries for intravaginal delivery of tenofovir disoproxil fumarate (TDF), to overcome limitations of conventional dosage forms. Twelve batches of microspheres formulated by emulsification gelation method indicated that drug-polymer ratios and polymer type affected particle size, drug release, and entrapment efficiency (%EE). Microspheres of batch EH-8 with drug: polymer ratio of 1:4 containing equal amounts of Na-Alg and HPMC K100M displayed optimal %EE (62.09 ± 1.34 %) and controlled drug release (97.02 ± 4.54 % in 12 h). Particle size analysis in Matersizer indicated that microspheres (EH-8) displayed a surface-mean diameter of 11.06 ± 0.18 μm. Ex-vivo mucoadhesion studies on rabbit mucosa indicated that microspheres (EH-8) adhered well for 12 h. Microspheres integrated into pessaries displayed a sustained release profile (95.31 ± 1.37 % in 12 h) in simulated vaginal fluid. In vivo studies in rabbits indicated that pessaries displayed a significantly higher Cmax (41.18 ± 3.57 ng/mL) (P < 0.005) and reduced Tmax (1.00 ± 0.01 h) (P < 0.0001) of TDF concentrations in vaginal fluid compared to oral tablets. The microparticulate pessaries with the ability to elicit higher vaginal fluid levels in the crucial initial hours of insertion demonstrates a potential novel platform to offer better self-protection to HIV-negative women against HIV during sexual intercourse.
Collapse
Affiliation(s)
- Dhruti Avlani
- Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India
| | - H N Shivakumar
- Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India.
| | - Avichal Kumar
- Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India
| | - A Prajila
- Department of Pharmaceutics, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India
| | - Babiker Bashir Haroun Baraka
- Department of Pharmacology, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India
| | - V Bhagya
- Department of Pharmacology, Dr. Prabhakar B Kore Basic Science Research Center, Off-campus, KLE College of Pharmacy (A constituent unit of KAHER-Belagavi), Rajajinagar, Bengaluru 560010, Karnataka, India
| |
Collapse
|
19
|
Cea-Pavez I, Manteca-Bautista D, Morillo-Gomar A, Quirantes-Piné R, Quiles JL. Influence of the Encapsulating Agent on the Bioaccessibility of Phenolic Compounds from Microencapsulated Propolis Extract during In Vitro Gastrointestinal Digestion. Foods 2024; 13:425. [PMID: 38338558 PMCID: PMC10855809 DOI: 10.3390/foods13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this work is to develop different encapsulated propolis ingredients by spray-drying and to evaluate their bioaccessibility using simulated in vitro digestion. To achieve these goals, first, microparticles of a propolis extract with inulin as the coating polymer were prepared under the optimal conditions previously determined. Then, a fraction of inulin was replaced with other encapsulating agents, namely sodium alginate, pectin, and chitosan, to obtain different ingredients with controlled release properties in the gastrointestinal tract. The analysis of the phenolic profile in the propolis extract and microparticles showed 58 compounds tentatively identified, belonging mainly to phenolic acid derivatives and flavonoids. Then, the behavior of the free extract and the formulated microparticles under gastrointestinal conditions was studied through an in vitro gastrointestinal digestion process using the INFOGEST protocol. Digestion of the free extract resulted in the degradation of most compounds, which was minimized in the encapsulated formulations. Thus, all developed microparticles could be promising strategies for improving the stability of this bioactive extract under gastrointestinal conditions, thereby enhancing its beneficial effect.
Collapse
Affiliation(s)
- Inés Cea-Pavez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
| | - David Manteca-Bautista
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
| | - Alejandro Morillo-Gomar
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - José L. Quiles
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| |
Collapse
|
20
|
Azad AK, Lai J, Sulaiman WMAW, Almoustafa H, Alshehade SA, Kumarasamy V, Subramaniyan V. The Fabrication of Polymer-Based Curcumin-Loaded Formulation as a Drug Delivery System: An Updated Review from 2017 to the Present. Pharmaceutics 2024; 16:160. [PMID: 38399221 PMCID: PMC10892401 DOI: 10.3390/pharmaceutics16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
Turmeric contains curcumin, a naturally occurring compound with noted anti-inflammatory and antioxidant properties that may help fight cancer. Curcumin is readily available, nontoxic, and inexpensive. At high doses, it has minimal side effects, suggesting it is safe for human use. However, curcumin has extremely poor bioavailability and biodistribution, which further hamper its clinical applications. It is commonly administered through oral and transdermal routes in different forms, where the particle size is one of the most common barriers that decreases its absorption through biological membranes on the targeted sites and limits its clinical effectiveness. There are many studies ongoing to overcome this problem. All of this motivated us to conduct this review that discusses the fabrication of polymer-based curcumin-loaded formulation as an advanced drug delivery system and addresses different approaches to overcoming the existing barriers and improving its bioavailability and biodistribution to enhance the therapeutic effects against cancer and other diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, Kuala Lumpur 68100, Malaysia;
| | - Joanne Lai
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | | | - Hassan Almoustafa
- Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur 50603, Malaysia;
| | | | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
21
|
Pizzetti F, Massobrio G, Riva S, Vangosa FB, Rossi F. Biphasic Porous Bijel-Like Structures with Hydrogel Domains as Controlled Drug Delivery Systems. Gels 2024; 10:72. [PMID: 38247794 PMCID: PMC10815427 DOI: 10.3390/gels10010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Bijels are a peculiar type of Pickering emulsion that have a bicontinuous morphology and are stabilised by a jammed layer of nanoparticles (NPs). Due to their double nature, their usage has increased in recent years in various fields, such as biological and food applications. In fact, they can release both hydrophilic and hydrophobic compounds simultaneously. An improvement to this structure is the use of a hydrophobic monomer like polycaprolactone as the organic phase, which is able to polymerise during the formation of the structure. Unfortunately, the structures formed in this way always have some drawbacks, such as their thermal stability or degradation when submerged in an aqueous medium. A number of studies have been carried out in which some parameters, such as the NPs or the monomer, were changed and their effect on the final product evaluated. In this work, the effect of modifying the aqueous phase was studied. In particular, the effect of adding alginate, a biopolymer capable of forming a stable hydrogel in the presence of divalent cations, was analysed, as was the difference between soaking or not in CaCl2, the final system. Specific attention was paid to their swelling behaviour (150% vs. 25% of the blank sample), rheological properties (G' 100 kPa vs. 20 kPa of the blank sample) and their release performances. In this framework, complete release of hydrophilic drug vs. 20% in the blank sample was observed together with improved release of the hydrophobic one with 35% in 8 h vs. 5% in the case of the blank sample. This strategy has been proven to influence bijels' properties, opening the doors to many different uses.
Collapse
Affiliation(s)
- Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.M.); (S.R.); (F.B.V.)
| | | | | | | | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.M.); (S.R.); (F.B.V.)
| |
Collapse
|
22
|
Rispo F, De Negri Atanasio G, Demori I, Costa G, Marchese E, Perera-Del-Rosario S, Serrano-Candelas E, Palomino-Schätzlein M, Perata E, Robino F, Ferrari PF, Ferrando S, Letasiova S, Markus J, Zanotti-Russo M, Grasselli E. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front Cell Dev Biol 2024; 11:1305835. [PMID: 38250328 PMCID: PMC10798251 DOI: 10.3389/fcell.2023.1305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.
Collapse
Affiliation(s)
- Francesca Rispo
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Marchese
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Simón Perera-Del-Rosario
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
| | | | | | | | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | | | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), Napoli, Italy
| |
Collapse
|
23
|
Wang X, Zhang H, Zhang X, Shen C, Liu M, Liu S, Han Y, He T. A comparison study on effects of polyglycerols on physical properties of alginate films. Int J Biol Macromol 2024; 254:127879. [PMID: 37944722 DOI: 10.1016/j.ijbiomac.2023.127879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The water solubility and brittleness of unplasticized sodium alginate (SA) films hinder their widely application. Glycerol (GLY), the most commonly used plasticizer, is compatible with alginate due to the formation of hydrogen bonding owing to the hydroxyl functional groups. However, GLY is a small water-soluble molecule, and the resulting leaching problem may lead to decline in mechanical properties of SA films. Aimed at better plasticizers for alginate (ALG) films, this work focuses on the effects of polymerization degree of polyglycerol on physical properties of ALG films. The cross-sectional morphology, crystallinity, mechanical and thermal properties, water solubility, water content and barrier property of ALG films plasticized with GLY, triglycerol (TG) and decaglycerol (DG) were characterized and discussed. Results illustrated that owing to the long molecular chains of TG and DG and their strong interactions with ALG matrix, the plasticized films possessed better mechanical properties, higher water content and lower water solubility. Moreover, it was worth mentioning that even after water treatment, the mechanical properties of ALG-TG and ALG-DG films were superior than that plasticized with GLY. The results of this study were believed to provide particular insights into the plasticization mechanism and the improvement in performance of SA films in packaging applications.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Huiling Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Chang Shen
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Man Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Shanshan Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China
| | - Yanyang Han
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, No. 30 Qingquan Road, 264005, PR China.
| |
Collapse
|
24
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
25
|
Yerramathi BB, Muniraj BA, Kola M, Konidala KK, Arthala PK, Sharma TSK. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int J Biol Macromol 2023; 253:127067. [PMID: 37748595 DOI: 10.1016/j.ijbiomac.2023.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Alginate-based biopolymer products have gained attention for protecting and delivering bioactive components in nutraceuticals and functional foods. These naturally abundant anionic, unbranched, and linear copolymers are also produced commercially by microorganisms. Alone or in combination with other copolymers, they efficiently transport bioactive molecules in food and nutraceutical products. This review aims to provide an in-depth understanding of alginate-based products and structures, emphasizing their role in delivering functional molecules in various formulations and delivery systems. These include edible coatings/films, gels/emulsions, beads/droplets, microspheres/particles, and engineered nanostructures where alginates have been used potentially. By exploring these applications, readers gain insights into the benefits of these products. Because, alginate-based biopolymer products have shown promise in delivering bioactive compounds like vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., which are chief contributors to treating specific/overall nutritional and chronic metabolic disorders. So, this review summarizes the potential of alginate-based structures/products in various forms for delivering a wide range of functional food ingredients and nutraceutical components that offer promising perspectives for future investigations.
Collapse
Affiliation(s)
- Babu Bhagath Yerramathi
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Beulah Annem Muniraj
- Integrated Food Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Manjula Kola
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kranthi Kumar Konidala
- Bioinformatics, Department of Zoology, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Praveen Kumar Arthala
- Department of Microbiology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | | |
Collapse
|
26
|
Mendoza-Muñoz N, Leyva-Gómez G, Piñón-Segundo E, Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Prado Audelo ML, Urbán-Morlán Z. Trends in biopolymer science applied to cosmetics. Int J Cosmet Sci 2023; 45:699-724. [PMID: 37402111 DOI: 10.1111/ics.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.
Collapse
Affiliation(s)
- Néstor Mendoza-Muñoz
- Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad de Colima, Colima, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Piñón-Segundo
- Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, L13, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - María L Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli, Mexico
| | | | - Zaida Urbán-Morlán
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
27
|
Flórez-Fernández N, Ferreira-Anta T, Queffelec J, Ingrez IB, Buján M, Muiños A, Domínguez H, Torres MD. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Mar Drugs 2023; 21:618. [PMID: 38132939 PMCID: PMC10744486 DOI: 10.3390/md21120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald-de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4-6 °C.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Tania Ferreira-Anta
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Julie Queffelec
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Isa B. Ingrez
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Herminia Domínguez
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - María Dolores Torres
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| |
Collapse
|
28
|
Kulig D, Bobak Ł, Jarmoluk A, Szmaja A, Król-Kilińska Ż, Zimoch-Korzycka A. Effect of Chemical Degradation of Sodium Alginate on Capsaicin Encapsulation. Molecules 2023; 28:7844. [PMID: 38067573 PMCID: PMC10708439 DOI: 10.3390/molecules28237844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Capsaicin is known as an oily extract of paprika that is characterized by pungent taste and bioactivity. It also may cause irritation to the mouth and stomach which is why is so important to immobilize capsaicin on a carrier to prevent it. The usage of alginate oligomers, which has an antioxidant potential compared to alginate, is of benefit because it may be used in the immobilization of bioactive substances that are fragile to oxidation. The purpose of this study was to use sodium alginate oligomers as a coating material in the encapsulation process of paprika oleoresin. Alginate oligomers were produced by chemical degradation with hydrogen peroxide. The characteristics of the samples were obtained by measuring the viscosity, the contact angle of the surface, and the surface tension of solutions. The obtained solution of alginate oligomers served as the carrier material for the immobilization of capsaicin. Capsules were prepared by ionic gelation using a calcium chloride solution as a crosslinking agent. In this way, capsules without and with the core (capsaicin) were prepared and their ability to scavenge free radicals (DPPH) and iron-reducing properties (FRAP) were determined. The stability of the capsules was examined by thermal decomposition and under conditions of the gastric and small intestine, and capsaicin content was detected using high-performance liquid chromatography. It was found that alginate oligomers could be used in the encapsulation of bioactive compounds and the efficiency was above 80%. Capsule production from alginate oligomers affected their thermal stability. The use of alginate derivatives as a carrier increased the antioxidant properties of the finished product, as well as its ability to reduce iron ions. The use of alginate oligomers as a coating material prevented the active substance from being released too early in the conditions of the small intestine, prolonged the stability of the capsules, and supported their durability in gastric conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Zimoch-Korzycka
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland; (D.K.); (Ł.B.); (A.J.); (A.S.); (Ż.K.-K.)
| |
Collapse
|
29
|
Bennacef C, Desobry S, Jasniewski J, Leclerc S, Probst L, Desobry-Banon S. Influence of Alginate Properties and Calcium Chloride Concentration on Alginate Bead Reticulation and Size: A Phenomenological Approach. Polymers (Basel) 2023; 15:4163. [PMID: 37896406 PMCID: PMC10610877 DOI: 10.3390/polym15204163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Two types of alginates, AlgLF and AlgP, were used in this study to produce alginate beads by electro-vibratory extrusion. AlgLF and AlgP exhibited different Mannuronate/Guluronate (M/G) ratios and molecular weights as measured by NMR and SEC-MALS. The calcium chloride concentration was found to have the greatest effect on bead size. Higher concentrations resulted in smaller beads. AlgLF with a higher molecular weight and a lower proportion of G blocks showed smaller beads. For both alginates, the bead size was also influenced by the flow rate and vibration frequency. Alginate solution aging showed a minimal effect. Alginate reticulation was modeled using a mathematical equation. The study provides insights for the optimization of alginate-based materials in different applications by shedding light on the main factors influencing bead size. The importance of the molecular weight, M/G ratio and calcium ion concentration in the gelling process is highlighted, providing opportunities for the tailoring of alginate materials through a phenomenological model.
Collapse
Affiliation(s)
- Chanez Bennacef
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
- Cookal Company, 19 Avenue de la Meurthe, 54320 Maxéville, France;
| | - Stéphane Desobry
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| | - Jordane Jasniewski
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| | - Sébastien Leclerc
- Université de Lorraine, CNRS, LEMTA, Faculty of Science and Technology, 54000 Nancy, France;
| | - Laurent Probst
- Cookal Company, 19 Avenue de la Meurthe, 54320 Maxéville, France;
| | - Sylvie Desobry-Banon
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| |
Collapse
|
30
|
Xi Y, Frank BD, Tatas A, Pavlovic M, Zeininger L. Multicompartment calcium alginate microreactors to reduce substrate inhibition in enzyme cascade reactions. SOFT MATTER 2023; 19:7541-7549. [PMID: 37750330 DOI: 10.1039/d3sm00816a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The formation of macromolecularly enriched condensates through associative or segregative liquid-liquid phase separation phenomena is known to play a central role in controlling various cellular functions in nature. The potential to spatially and temporally modulate multistep chemical reactions and pathways has inspired the use of phase-separated systems for the development of various synthetic colloidal micro- and nanoreactor systems. Here, we report a rational and synthetically minimal design strategy to emulate intended spatiotemporal functions in morphologically intricate and structurally defined calcium alginate hydrogel microreactors possessing multicompartmentalized internal architectures. Specifically, we implement a thermal phase separation protocol to achieve fine-control over liquid-liquid phase separation inside complex aqueous emulsion droplet templates that are loaded with hydrophilic polymer mixtures. Subsequent gelation of alginate-containing droplet templates using a novel freeze-thaw approach that can be applied to both scalable batch production or more precise microfluidic methods yields particle replicas, in which subcompartmentalized architectures can be retained. Larger active components can be enriched in the internal compartments due to their preferential solubility, and we show that selective sequestration of enzymes serves to create desired microenvironments to control and tune the reaction kinetics of a multistep enzyme cascade by reducing their mutual interference. This demonstration of mitigating substrate inhibition that is based primarily on optimizing the multicompartmentalized hydrogel particle morphology offers new opportunities for the simple and synthetically-minimal batch generation of hydrogel-based synthesis microreactors.
Collapse
Affiliation(s)
- Yongkang Xi
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | - Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | - Apostolos Tatas
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | - Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
- Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
31
|
Novoskoltseva OA, Litmanovich EA, Loiko NG, Nikolaev YA, Yaroslavov AA. Biodegradable Water-Soluble Matrix for Immobilization of Biocidal 4-Hexylresorcinol. Int J Mol Sci 2023; 24:14717. [PMID: 37834163 PMCID: PMC10572309 DOI: 10.3390/ijms241914717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cationic quaternized hydroxyethyl cellulose ethoxylate. Non-stoichiometric polycomplexes with a 5-fold excess of the cationic polymer were used for immobilizing hydrophobic biocidal 4-hexylresorcinol (HR). Being dispersed in water, the polycomplex particles were capable of absorbing a tenfold excess of HR in relation to the polycation. After deposition onto the plastic surface and drying, the aqueous polycomplex-HR composite formulation forms a transparent homogeneous coating, which swells slightly in water. The interpolyelectrolyte complex (IPEC) is substantially non-toxic. The incorporation of HR in the IPEC imparts antimicrobial activity to the resulting composite, in both aqueous solutions and coatings, against Gram-negative and Gram-positive bacteria and yeast. The polysaccharide-based polycomplexes with embedded HR are promising for the fabrication of biocidal films and coatings.
Collapse
Affiliation(s)
- Olga A. Novoskoltseva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.A.N.); (E.A.L.)
| | - Ekaterina A. Litmanovich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.A.N.); (E.A.L.)
| | - Nataliya G. Loiko
- Department of Microbiology, Federal Research Center “Fundamentals of Biotechnology” RAS, 119071 Moscow, Russia; (N.G.L.); (Y.A.N.)
| | - Yury A. Nikolaev
- Department of Microbiology, Federal Research Center “Fundamentals of Biotechnology” RAS, 119071 Moscow, Russia; (N.G.L.); (Y.A.N.)
| | - Alexander A. Yaroslavov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.A.N.); (E.A.L.)
| |
Collapse
|
32
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
33
|
Reig-Vano B, Huck-Iriart C, de la Flor S, Trojanowska A, Tylkowski B, Giamberini M. Structural and mechanical analysis on mannuronate-rich alginate gels and xerogels beads based on Calcium, Copper and Zinc as crosslinkers. Int J Biol Macromol 2023; 246:125659. [PMID: 37406917 DOI: 10.1016/j.ijbiomac.2023.125659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Beads based on a mannuronate(M)-rich alginate (86 % M units) were prepared by adding the polysaccharide solution to a crosslinking bath containing different concentrations (0.5, 2 and 10 wt%) of XCl2 where X = Ca, Cu or Zn. Primarily focus was on Zn, due to its antioxidant, anti-inflammatory and anti-microbial capabilities. The beads were characterized by Field-Emission Scanning Electron Microscopy (FESEM), Fourier-Transform Infra-Red spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Small-Angle X-ray Scattering (SAXS) and compression tests. The crosslinking agent significantly influenced the properties of the resulting beads. Specifically, Ca-based beads exhibited a smoother surface, while Cu- and Zn-based beads appeared rougher. Interestingly, Zn-based beads displayed a core-shell structure. Young moduli ranged from 3500 and 7000 MPa, with the highest values observed for Zn-beads. SAXS investigation at 0.5 wt% XCl2 suggested increase in the densely packed domains amount in the order: Ca < Cu < Zn. Extended X-ray Absorption Fine Structure (EXAFS) showed that the coordination number was 4.3 ± 0.4 for Cu, and 4.0 ± 0.2 and 1.1 ± 0.1 for Zn in 0.5 wt% XCl2 alginate xerogels, in agreement with reported Density Functional Calculations on Cu2+- and Zn2+-MM complexes. The results from FT-IR, compositional analysis and EXAFS collectively suggested a bridging coordination for these systems.
Collapse
Affiliation(s)
- Belen Reig-Vano
- Department of Chemical Engineering, Universitat Rovira I Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Cristian Huck-Iriart
- ALBA SYNCHROTRON LIGHT SOURCE, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Silvia de la Flor
- Department of Mechanical Engineering, Universitat Rovira I Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Anna Trojanowska
- Department of Chemical Engineering, Universitat Rovira I Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira I Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain.
| |
Collapse
|
34
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
35
|
Sodré MTC, Ferraz FA, Alencar AKV, Silva KF, Silva DHDS, Silva LDS, Araújo Carneiro JSDS, Monteiro CA, Silva LCN, Monteiro ADS. The Potential of Lactiplantibacillus plantarum ATCC 14917 in the Development of Alginate-Based Gel Formulations with Anti- Staphylococcus aureus Properties. Pharmaceuticals (Basel) 2023; 16:1112. [PMID: 37631027 PMCID: PMC10458396 DOI: 10.3390/ph16081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/04/2023] [Accepted: 06/15/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to evaluate the potential of lactic acid bacteria (LAB) in developing alginate-based gel formulations to inhibit Staphylococcus aureus. Initially, the antagonistic actions of three lactic acid bacteria (LAB) (Lacticaseibacillus rhamnosus ATCC 10863, Lactiplantibacillus plantarum ATCC 14917, Limosilactobacillus fermentum ATCC 23271) were evaluated against S. aureus ATCC 25923. All tested LAB inhibited S. aureus, but the highest activity was observed for L. plantarum ATCC 14917 (p < 0.05). The antimicrobial effects of L. plantarum ATCC 14917 cell suspensions, sonicate cells extract, and cell-free supernatants (pH 5 or 7) were analyzed using a broth-based assay. The cell suspensions inhibited S. aureus at concentrations ≥ 10%, and these effects were confirmed by a time-kill assay. Alginate-based gels were formulated with cell suspensions, sonicate cells extract, and cell-free supernatant (pH 5). These formulations inhibited S. aureus growth. Based on the results, the alginate gel with cell suspensions at 10% was selected for further characterization. L. plantarum ATCC 14917 survived in the alginate-based gel, especially when stored at 5 °C. At this temperature, the L. plantarum-containing alginate gel was stable, and it was in compliance with microbiological standards. These findings suggest it can be a promising agent for the topical treatment of infections induced by S. aureus.
Collapse
Affiliation(s)
| | | | | | - Karinny Farias Silva
- Laboratory of Applied Microbiology, CEUMA University, São Luís 65075-120, MA, Brazil
| | | | | | | | - Cristina Andrade Monteiro
- Laboratory of Microbiology Research, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís 65030-005, MA, Brazil
| | | | | |
Collapse
|
36
|
Ferreira-Anta T, Torres MD, Dominguez H, Flórez-Fernández N. Formulation of Polymeric Microparticles Using Eco-Friendly Extracted Crude Fucoidans from Edible Brown Seaweed Undaria pinnatifida. Foods 2023; 12:foods12091859. [PMID: 37174397 PMCID: PMC10178044 DOI: 10.3390/foods12091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Several bioactive compounds that hold a potential interest in the food industry as phenolic compounds, polysaccharides, proteins and vitamins, among others, are present in seaweeds. Green extraction technologies are the preferred way to obtain these compounds. Pressurized hot water extraction, from 160 to 220 °C, was tested to achieve high yields of these components from the edible brown seaweed, Undaria pinnatifida. The maximum fucoidan content was recovered at 160 °C, while the phloroglucinol content and antioxidant activity were maximum at 220 °C. The possibility of encapsulating these bioactive fractions using mannitol was assessed. The highest production yield of the polymeric particles was found using the 220 °C fraction (close to 75%). In order to formulate microparticles with bioactive potential, several ratios of liquid phases were assessed, 3:1, 1:1 and 1:3 (w:w), using the liquid fractions obtained at 160 °C and 220 °C. The yield production was always above 67%, being in the 1:3 ratio (160 °C:220 °C) and close to 75%. The rheological results indicated that the presence of microparticles enhanced the apparent viscosity of the aqueous dispersions with non-Newtonian profiles, achieving the highest viscosity for those formulated with microparticles from 160 °C:200 °C (3:1).
Collapse
Affiliation(s)
- Tania Ferreira-Anta
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Maria Dolores Torres
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Herminia Dominguez
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| | - Noelia Flórez-Fernández
- CINBIO, Department of Chemical Engineering, Campus Ourense, Edificio Politécnico, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
37
|
Bennacef C, Desobry S, Probst L, Desobry-Banon S. Alginate Based Core-Shell Capsules Production through Coextrusion Methods: Recent Applications. Foods 2023; 12:foods12091788. [PMID: 37174326 PMCID: PMC10177967 DOI: 10.3390/foods12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Encapsulation is used in various industries to protect active molecules and control the release of the encapsulated materials. One of the structures that can be obtained using coextrusion encapsulation methods is the core-shell capsule. This review focuses on coextrusion encapsulation applications for the preservation of oils and essential oils, probiotics, and other bioactives. This technology isolates actives from the external environment, enhances their stability, and allows their controlled release. Coextrusion offers a valuable means of preserving active molecules by reducing oxidation processes, limiting the evaporation of volatile compounds, isolating some nutrients or drugs with undesired taste, or stabilizing probiotics to increase their shelf life. Being environmentally friendly, coextrusion offers significant application opportunities for the pharmaceutical, food, and agriculture sectors.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Stéphane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Sylvie Desobry-Banon
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
38
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Alginate Core-Shell Capsules Production through Coextrusion Methods: Principles and Technologies. Mar Drugs 2023; 21:md21040235. [PMID: 37103374 PMCID: PMC10143073 DOI: 10.3390/md21040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
This paper provides an overview of coextrusion methods for encapsulation. Encapsulation involves the coating or entrapment of a core material such as food ingredients, enzymes, cells, or bioactives. Encapsulation can help compounds add to other matrices, stabilize compounds during storage, or enable controlled delivery. This review explores the principal l coextrusion methods available that can be used to produce core-shell capsules through the use of coaxial nozzles. Four methods for encapsulation by coextrusion are examined in detail, including dripping, jet cutting, centrifugal, and electrohydrodynamic systems. The targeted capsule size determines the appropriate parameters for each method. Coextrusion technology is a promising encapsulation technique able to generate core-shell capsules in a controlled manner, which can be applied to cosmetic, food, pharmaceutical, agriculture, and textile industries. Coextrusion is an excellent way to preserve active molecules and present a significant economic interest.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Nancy, France
| | - Sylvie Desobry-Banon
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Nancy, France
| | - Stéphane Desobry
- Laboratoire D'ingenierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
39
|
Alobaidi DS, Alwared AI. Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon 2023; 9:e14851. [PMID: 37025864 PMCID: PMC10070660 DOI: 10.1016/j.heliyon.2023.e14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, sodium alginate-immobilised Chlorophyta algae were evaluated for phenol uptake. The algae/alginate bead (AAB) characteristics were analysed by means of BET-BJH, FTIR, and SEM-EDX methods, while the adsorption performance of AABs with respect to phenol removal was investigated using batch studies. The parameters found to affect the biosorption capacity of AABs included pH, contact time, initial phenol concentration, adsorbent dosage, stirring rate, particle size, and temperature, with the optimal operating variables identified as a pH of 6, an initial phenol concentration of 50 mg/L, AAB dosage of 5 g/L, and a 200 rpm stirring rate. The adsorption process in such cases reached equilibrium within 120 min, demonstrating a maximum phenol elimination capacity of 9.56 mg/g at 30 °C. The isotherm and kinetic models used to determine this were evaluated using the Chi-square test (X2), the coefficient of determination (R2), and the value of equilibrium capacity, with results that revealed that the Freundlich isotherm provides the best fit for the relevant equilibrium data, as shown by its high R2 value (0.96) and low X2 value (1.16135); the theoretical data produced by that model were thus closer to the experimental data than that from the Langmuir model. Kinetic analysis showed that the phenol adsorption followed a pseudo-second-order kinetic model. The thermodynamic parameters were thus explored, revealing that the phenol biosorption process is based on spontaneous physisorption with an exothermic reaction due to negative (ΔG°) and (ΔH°) values. The low cost, natural origin, biodegradability, and eco-friendliness of algae/alginate bead sorbents also make them ideally suited for phenol removal in aqueous solutions.
Collapse
|
40
|
Dusso D, Salomon CJ. Solving the delivery of Lactococcus lactis: Improved survival and storage stability through the bioencapsulation with different carriers. J Food Sci 2023; 88:1495-1505. [PMID: 36939001 DOI: 10.1111/1750-3841.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Probiotics are live microorganisms that confer beneficial effects on the health of the host if administered in adequate amounts (106 CFU viable microorganisms/g of food). As the most frequent route of administration of these microorganisms is oral, the number of them that remains viable through the gastrointestinal tract decreases substantially. Thus, in this research work, we developed a series of alginate-based microparticles using different adjuvants such as methylcellulose, carboxymethylcellulose, chitosan, carbopol, β-cyclodextrin, starch, carrageenan, and Eudragit® RS 100 as carriers for improving the survival of Lactococcus lactis. The alginate-based formulations exhibited very good drug encapsulation efficiency, up to 90%. Release studies from selected microparticles revealed that almost 100% of bacteria were in solution at 30 min. By scanning electron microscopy, irregular nonporous particles with a size between 200 and 500 µm were seen. In particular, microparticles formulated with alginate-carboxymethylcellulose and alginate-methylcellulose exhibited the best protection for the bacterial cells against both simulated gastric juice and simulated intestinal juice. In addition, those microparticulate systems were able to maintain the viability of the encapsulated bacteria in large numbers for at least 24 weeks. Thus, the present study confirmed that these alginate-based microparticles are a valuable approach for keeping the viability and storage stability of L. lactis.
Collapse
Affiliation(s)
- Diego Dusso
- Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Rosario, Argentina
| | - Claudio J Salomon
- Pharmacy Department, Faculty of Pharmaceutical and Biochemical Sciences, National University of Rosario, Rosario, Argentina.,Institute of Chemistry, IQUIR-CONICET, National Council Research, Rosario, Argentina
| |
Collapse
|
41
|
OSPANOV A, VELYAMOV S, TLEVLESSOVA D, SCHETININA E, KAIRBAYEVA A, MAKEEVA R, TASTANOVA R. Survival of lactic acid bacteria when using the developed yogurt from the milk of small cattle under in-vitro conditions. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Assan OSPANOV
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | - Shukhrat VELYAMOV
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | | | | | | | - Raushan MAKEEVA
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| | - Raushan TASTANOVA
- LLP Kazakh Research Institute of Processing and Food Industry, Kazakhstan
| |
Collapse
|
42
|
Mancera-López ME, Barrera-Cortés J, Mendoza-Serna R, Ariza-Castolo A, Santillan R. Polymeric Encapsulate of Streptomyces Mycelium Resistant to Dehydration with Air Flow at Room Temperature. Polymers (Basel) 2022; 15:polym15010207. [PMID: 36616556 PMCID: PMC9823993 DOI: 10.3390/polym15010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Encapsulation is one of the technologies applied for the formulation of biological control agents. The function of the encapsulating matrix is to protect the biological material from environmental factors, while dehydration allows for its viability to be prolonged. An advantage of dehydrated encapsulation formulations is that they can be stored for long periods. However, vegetative cells require low-stress dehydration processes to prevent their loss of viability. Herein we describe the fabrication of a dehydrated encapsulate of the Streptomyces CDBB1232 mycelium using sodium alginate with a high concentration of mannuronic acid; sodium alginate was added with YGM medium for mycelium protection purposes. The encapsulation was carried out by extrusion, and its dehydration was carried out in a rotating drum fed with air at room temperature (2-10 L min-1). The drying of the capsules under air flows higher than 4 L min-1 led to viability loss of the mycelium. The viability loss can be decreased up to 13% by covering the alginate capsules with gum arabic. Compared to conventional dehydration processes, air moisture removal can be lengthy, but it is a low-cost method with the potential to be scaled.
Collapse
Affiliation(s)
- María Elena Mancera-López
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| | - Josefina Barrera-Cortés
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
- Correspondence: ; Tel.: +52-5557473800 (ext. 4380)
| | - Roberto Mendoza-Serna
- Career of Chemical Engineering, Multidisciplinary Experimental Research Unit (UMIEZ), Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Armando Ariza-Castolo
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| | - Rosa Santillan
- Chemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Zacatenco Unit, Mexico City 07360, Mexico
| |
Collapse
|
43
|
Lertwimol T, Sonthithai P, Hankamolsiri W, Kaewkong P, Uppanan P. Development of chondrocyte-laden alginate hydrogels with modulated microstructure and properties for cartilage regeneration. Biotechnol Prog 2022; 39:e3322. [PMID: 36564904 DOI: 10.1002/btpr.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Alginate hydrogel is an attractive biomaterial for cell microencapsulation. The microarchitecture of hydrogels can regulate cellular functions. This study aims to investigate the applicability of sodium citrate buffer (SCB) as a culture medium supplement for modulating the microstructure of alginate microbeads to provide a favorable microenvironment for chondrogenic induction. The chondrocyte-laden microbeads, with and without TGF-β3 incorporation, were produced through an encapsulator. The obtained small-sized microbeads (~300 μm) were exposed to a treatment medium containing SCB, composed of varied concentrations of sodium citrate (1.10-1.57 mM), sodium chloride (3.00-4.29 mM), and ethylenediaminetetraacetic acid (0.60-0.86 mM) to partially degrade their crosslinked structure for 3 days, followed by culture in a normal medium until day 21. Scanning electron microscope micrographs demonstrated a loose hydrogel network with an enhanced pore size in the SCB-treated microbeads. Increasing the concentration of SCB in the treatment medium reduced the calcium content of the microbeads via a Na+ /Ca2+ exchange process and improved the water absorption of the microbeads, resulting in a higher swelling ratio. All the tested SCB concentrations were non-cytotoxic. Increases in aggrecan and type II collagen gene expression and their corresponding extracellular matrix accumulation, glycosaminoglycans, and type II collagen were vividly detected in the TGF-β3-containing microbeads with increasing SCB concentrations in the treatment medium. Our findings highlighted that the combination of SCB treatment and TGF-β3 incorporation in the chondrocyte-laden microbeads is a promising strategy for enhancing cartilage regeneration, which may contribute to a versatile application in cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Tareerat Lertwimol
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pacharapan Sonthithai
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Weerawan Hankamolsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Paweena Uppanan
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
44
|
Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, Nunes N, Gouveia CSS, Alves S, Borges JP, Pinheiro de Carvalho MÂA. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010055. [PMID: 36616183 PMCID: PMC9823467 DOI: 10.3390/plants12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.
Collapse
Affiliation(s)
- David Jíménez-Arias
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, Avenida, Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Spain
| | - Patrícia Silva
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Henrique Carrêlo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Gonçalves
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - José Filipe Teixeira Ganança
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nuno Nunes
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carla S. S. Gouveia
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sónia Alves
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - João Paulo Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Miguel Â. A. Pinheiro de Carvalho
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|