1
|
Seddiek H, Hanna M, Hamoud AEM, Elbaset MA, Akabawy AMA, Kotb MZ, Khalifa MM. Deferiprone ameliorates cisplatin induced peripheral neurotoxicity via ferritinophagy adjustment. Sci Rep 2025; 15:4485. [PMID: 39915547 PMCID: PMC11802739 DOI: 10.1038/s41598-025-87628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Cisplatin-induced neurotoxicity is one of the limiting factors to its use especially in tumors that demand high drug dosage. One of the Cisplatin pathways is ferritinophagy which may end up in ferroptosis. So, we aimed to use iron chelator as a new strategy based on an anti-ferroptotic mechanism and to evaluate its neuroprotective effect against polyneuropathy in Cisplatin-treated rats. Twenty-four male Wistar albino rats were arranged into four groups: (I) Control group, rats were given vehicle; (II) Def group, rats received deferiprone (200 mg/kg orally once daily for 10 days); (III) Cis group, rats were injected by Cis 2 mg/Kg once daily for 3 consecutive days i.p.; and (IV) Cis + Def group, rats received deferiprone (200 mg/kg orally once daily for 10 days, rats were injected with Cis in the 4th, 5th, and 6th days). Cis increased and upregulated ferritinophagy inducers significantly including MDA, NCOA4, and IREB1 as compared to the control group. On the other hand, GSH, GPX4, SLCA11 and FTH1 were decreased and down regulated significantly compared to the control group. In addition to significant deterioration in the histopathological and immunological nerve tissue assessment using silver stain and PNCA. Embracing the cisplatin dosage with deferiprone reversed cisplatin-induced neuropathy, in which the physiological function significantly improved along with the immune and histopathology of nerve tissue. This was accompanied by down regulation of ferritinophagy inducers and enhancing ferritinophagy inhibitors. The current results concluded that rapping cisplatin with deferiprone can mitigate neurotoxicity induced by cisplatin in experimental animals through ferritinophagy pathway adjustment.
Collapse
Affiliation(s)
- Hanan Seddiek
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | | | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Mohamed Zakaria Kotb
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Brownson-Smith R, Orange ST, Cresti N, Hunt K, Saxton J, Temesi J. Effect of exercise before and/or during taxane-containing chemotherapy treatment on chemotherapy-induced peripheral neuropathy symptoms in women with breast cancer: systematic review and meta-analysis. J Cancer Surviv 2025; 19:78-96. [PMID: 37615928 DOI: 10.1007/s11764-023-01450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To systematically review and meta-analyse the efficacy of exercise interventions delivered before and/or during taxane-containing chemotherapy regimens on chemotherapy-induced peripheral neuropathy (CIPN), fatigue, and health-related quality of life (HR-QoL), in women with breast cancer. METHODS Seven electronic databases were systematically searched for randomised controlled trials (RCTs) reporting on the effects of exercise interventions in women with breast cancer receiving taxane-containing chemotherapeutic treatment. Meta-analyses evaluated the effects of exercise on CIPN symptoms, fatigue, and HR-QoL. RESULTS Ten trials involving exercise interventions ranging between 2 and 12 months were included. The combined results of four RCTs consisting of 171 participants showed a reduction in CIPN symptoms following exercise compared with usual care (standardised mean difference - 0.71, 95% CI - 1.24 to - 0.17, p = 0.012; moderate-quality evidence, I2 = 76.9%). Pooled results from six RCTs with 609 participants showed that exercise interventions before and/or during taxane-containing chemotherapy regimens improved HR-QoL (SMD 0.42, 95% CI 0.07 to 0.76, p = 0.03; moderate-quality evidence, I2 = 49.6%). There was no evidence of an effect of exercise on fatigue (- 0.39, 95% CI - 0.95 to 0.18, p = 0.15; very low-quality evidence, I2 = 90.1%). CONCLUSIONS This systematic review found reduced levels of CIPN symptoms and an improvement in HR-QoL in women with breast cancer who exercised before and/or during taxane-based chemotherapy versus usual care controls. IMPLICATIONS FOR CANCER SURVIVORS This evidence supports the role of exercise as an adjunctive treatment for attenuating the adverse effects of taxane-containing chemotherapy on CIPN symptoms and HR-QoL.
Collapse
Affiliation(s)
- Rosiered Brownson-Smith
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle uponTyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Nicola Cresti
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Katherine Hunt
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John Saxton
- School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK
| | - John Temesi
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Takasaki I, Nagashima R, Ueda T, Ashihara Y, Nakamachi T, Okada T, Toyooka N, Miyata A, Kurihara T. Spinal pituitary adenylate cyclase-activating polypeptide and PAC1 receptor signaling system is involved in the oxaliplatin-induced acute cold allodynia in mice. THE JOURNAL OF PAIN 2025; 27:104751. [PMID: 39615811 DOI: 10.1016/j.jpain.2024.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 02/10/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a type of peripheral neuropathy that develops in patients treated with certain anticancer drugs. Oxaliplatin (OXA) causes CIPN in approximately 80-90 % of patients; thus, it is necessary to elucidate its underlying mechanism and develop effective treatments and prevention methods. The purpose of this study was to determine whether the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system in the spinal dorsal horn is involved in OXA-induced acute cold allodynia and examine the effect of a PAC1 receptor antagonist. Administration of OXA induced acute cold allodynia in wild-type mice, but not in PACAP-/- mice. In the dorsal root ganglia, OXA upregulated PACAP expression, particularly in small-sized neurons. OXA-induced cold allodynia was ameliorated by intrathecal (i.t.) injection of PACAP6-38 (peptide antagonist for PACAP receptor) and PA-8 (small-molecule antagonist specific for PAC1 receptor). I.t. PACAP, but not vasoactive intestinal polypeptide, resulted in cold allodynia, which was blocked by PA-8. OXA induced the activation of spinal astrocytes in a PAC1 receptor-dependent manner. The results suggest that spinal PACAP/PAC1 receptor systems are involved in OXA-induced acute cold allodynia through astrocyte activation. Furthermore, we demonstrated that the systemic administration of PA-8 resulted in therapeutic and preventative effects on OXA-induced acute cold allodynia. Because PA-8 did not affect the anticancer effects of OXA, we propose PAC1 receptor inhibition as a new strategy for the treatment and prevention of CIPN. PERSPECTIVE: Cold allodynia is a hallmark of OXA-induced peripheral neuropathy. This study demonstrated the involvement of spinal PACAP/PAC1 receptors in OXA-induced acute cold allodynia. We propose PAC1 receptor inhibition as a new strategy for the treatment and prevention of OXA-induced acute cold allodynia.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan.
| | - Ryota Nagashima
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Ueda
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuya Ashihara
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan; Laboratory of Bio-functional Molecular Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan; Laboratory of Bio-functional Molecular Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
4
|
Hua Y, Lv J, Zhang Y, Ding Y, Chen J. LC-MS-based serum metabolomics analysis and potential biomarkers for oxaliplatin induced neurotoxicity in colorectal cancer. J Pharm Biomed Anal 2025; 252:116492. [PMID: 39366306 DOI: 10.1016/j.jpba.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Oxapliplatin-induced peripheral neuropathy (OIPN) is a significant adverse effect encountered in patients with colorectal cancer undergoing oxaliplatin therapy. However, the pathogenesis of OIPN remains unclear. This study aimed to identify potential diagnostic biomarkers for OIPN and discover the metabolic pathways associated with the disease. Serum samples were collected from 218 subjects, including patients with OIPN and control (CONT). The metabolite profiles were analyzed using nontargeted liquid chromatography-mass spectrometry (LC-MS) serum metabolomics method. Subsequently, differentially altered metabolites were identified and evaluated through multivariate statistical analyses. In this study, patients with OIPN and CONT were distinguished by ten significant metabolites. The levels of racemethionine, O-acetylcarnitine, stearolic acid, aminoadipic acid, iminoarginine, galactaric acid, and all-trans-retinoic acid were increased, whereas the levels of 3-methyl-L-tyrosine, 5-aminopentanoic acid, and erythritol compared were found to be diminished in patients with OIPN when compared to the CONT. Through receiver operating characteristic (ROC) curve analysis, racemethionine, stearolic acid, 5-aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-retinoic acid were pinpointed as promising biomarkers for OIPN. Significantly altered pathways included amino acids (arginine biosynthesis, beta-alanine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, lysine degradation, and phenylalanine, tyrosine and tryptophan biosynthesis), lipid (linoleic acid metabolism and the biosynthesis of unsaturated fatty acids), and energy metabolism. This study, by identifying serum biomarkers and dissecting metabolic pathways, offers a groundbreaking perspective on the susceptibility mechanisms underlying OIPN. It stands as an invaluable resource for the adjunctive diagnosis of OIPN, with the potential to diminish the incidence of adverse reactions and to enhance the objectivity and reliability of clinical diagnoses of OIPN.
Collapse
Affiliation(s)
- Yujiao Hua
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Juan Lv
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yongjuan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Chi R, Pan L, Yang Z, Yang X, Xia H, Lin D, Hao J, Si X, Yan D, Li H, Shi C, Wang Y, Li W. Oxaliplatin-loaded amphiphilic hyaluronic acid nanohydrogel formed via interfacial reactions enhances the therapeutic effect of targeted tumor. Int J Biol Macromol 2025; 284:138118. [PMID: 39608531 DOI: 10.1016/j.ijbiomac.2024.138118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Hyaluronic acid (HA) nanogels have attracted widespread attention, aiming to improve cancer treatment paradigms and overcome the limitations of free-form drugs. However highly hydrophilic nature of HA nanogels limits their potential application where amphiphilic interactions are required for the delivery of hydrophobic drugs. In this study, we developed amphiphilic structure oxaliplatin (OXA) loaded oligo-hyaluronic acid (oHA)-PEG-Octane nanogel using stable disulfide bonds with ultrasonic re-emulsion method. 1,8-Mercaptooctane present in the organic phase underwent crosslinking with sulfhydryl groups conjugated on oHA and PEG in the inner aqueous phase through interfacial reactions, resulting in the formation of an amphiphilic structure of the nanogels. The nanogels demonstrated uniform size, stability, excellent biocompatibility, and achieved a high drug-loading capacity of 10.8 %. OXA NGs targeted tumor cells through CD44-mediated endocytosis, disassembled under the influence of high glutathione (GSH) levels within the tumor microenvironment (TME) and released OXA inside the reductive cytosol to trigger immunogenic cell death (ICD) of tumor cells. In vivo experiments showed OXA NGs could inhibit tumor growth. Furthermore, the amphiphilic hyaluronic acid nanohydrogel may have clinical potential due to its ability to accommodate various therapeutic agents; therefore, OXA NGs are a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Runrun Chi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Luqi Pan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dan Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Yuqin Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
6
|
Kegyes D, Moisoiu V, Constantinescu C, Tanase A, Ghiaur G, Einsele H, Tomuleasa C, Lazarus HM, Gale RP. Neuro-toxicities of chemo- and immune-therapies in haematologic malignancies: from mechanism to management. Blood Rev 2025; 69:101254. [PMID: 39674687 DOI: 10.1016/j.blre.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Chemo- and immune therapies administered to treat haematologic malignancies frequently cause neurologic injury. The adverse events range from mild cognitive impairment and headaches to severe conditions such as seizures, stroke and encephalitis. We performed a comprehensive literature review and report the types, mechanisms, management and prevention of neuro-toxicity resulting from these therapies in subjects who develop these toxic effects. Our paper will not discuss radiation therapy, as it has already been extensively reviewed by many authors. Our focus will be on recently developed anti-cancer drugs.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania; Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Catalin Constantinescu
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania; Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Ghiaur
- Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Leukemia, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hermann Einsele
- Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Internal Medicine, Julius Maximilians University of Wurzburg, Wurzburg, Germany
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania; Department of Hematology / Department of Personalized Medicine and Rare Diseases - Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Peter Gale
- Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
da Motta K, Martins CC, da Rocha VME, Soares MP, Mesko MF, Luchese C, Wilhelm EA. Insights into Vincristine-Induced Peripheral Neuropathy in Aged Rats: Wallerian Degeneration, Oxidative Damage, and Alterations in ATPase Enzymes. ACS Chem Neurosci 2024; 15:3954-3969. [PMID: 39207203 PMCID: PMC11587511 DOI: 10.1021/acschemneuro.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to elucidate vincristine (VCR)-induced peripheral neuropathy in aged rats, a poorly understood neurotoxicity. Both young and old Wistar rats were administered VCR (0.1 mg/kg, intraperitoneally (i.p.)) and compared to age-matched controls (0.9% saline; 10 mg/mL, i.p.). Mechanical (MN) and thermal nociceptive (TN) responses were assessed on days 0, 6, 11, and 17. Locomotor response, cognitive ability, and anxious-like behavior were evaluated on days 14, 15, and 16. Results showed MN and TN responses in both young and old VCR-exposed rats. In old rats, VCR exacerbated MN (on days 6, 11, and 17) and TN (on days 6 and 17) responses. VCR also induced cognitive impairments and anxiety-like behavior. Histological analysis revealed Wallerian degeneration in the spinal cords of VCR-exposed rats accompanied by macrophage migration. Furthermore, VCR increased Ca2+-ATPase activity while inhibiting Na+, K+-ATPase activity in young and old rats. VCR altered the homeostasis of Mg2+-ATPase activity. Lipid peroxidation and nitrite and nitrate levels increased in young and old rats exposed to VCR. This study provides valuable insights into VCR's mechanistic pathways in aged rats, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Ketlyn
P. da Motta
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Carolina C. Martins
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Vanessa M. E. da Rocha
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Mauro P. Soares
- Regional
Diagnostic Laboratory Faculty of Veterinary Medicine, Federal University of Pelotas (UFPel), CEP, 96010-900 Pelotas, RS, Brazil
| | - Marcia F. Mesko
- Contaminant
Control Laboratory in Biomaterials (LCCBio), Federal University of Pelotas (UFPel), CEP, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| | - Ethel A. Wilhelm
- Postgraduate
Program in Biochemistry and Bioprospecting, Research Laboratory in
Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical
and Food Sciences, Federal University of
Pelotas, Box 354, CEP, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
8
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
9
|
Im S, Jeong DJ, Kim E, Choi JH, Jang HJ, Kim YY, Um JH, Lee J, Lee YJ, Lee KM, Choi D, Yoo E, Lee HS, Yun J. A novel marine-derived mitophagy inducer ameliorates mitochondrial dysfunction and thermal hypersensitivity in paclitaxel-induced peripheral neuropathy. Br J Pharmacol 2024; 181:4012-4027. [PMID: 38925168 DOI: 10.1111/bph.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model. EXPERIMENTAL APPROACH Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae. KEY RESULTS PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction. CONCLUSION AND IMPLICATIONS This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.
Collapse
Affiliation(s)
- Sangwoo Im
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dae Jin Jeong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jae-Hyeong Choi
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hye-Ji Jang
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jihoon Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dabin Choi
- Altmedical Co., Ltd, Seoul, Republic of Korea
| | - Eunhee Yoo
- Altmedical Co., Ltd, Seoul, Republic of Korea
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| |
Collapse
|
10
|
Daniel M, Smith EL. Promising Roles of Phytocompounds and Nutrients in Interventions to Mitigate Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151713. [PMID: 39147680 DOI: 10.1016/j.soncn.2024.151713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Provide an overview of scientific reports and literature related to the role(s) of phytocompounds and nutrients in neuroprotection. Discuss how these properties may inform nutrition- and dietary interventions to mitigate chemotherapy-induced peripheral neuropathy (CIPN), for which there are no effective treatments. METHODS A literature search (2010-2023) was conducted in PubMed and Google Scholar where search terms-diet, nutrition, neuroprotection, neurodegenerative diseases, and social determinants of health-were used to narrow articles. From this search, manuscripts were reviewed to provide an overview of the neuroprotective properties of various phytocompounds and nutrients and their observed effects in neurodegenerative conditions and CIPN. Social determinant of health factors (SDOH) related to economic stability and access to nutritious foods were also reviewed as potential barriers to dietary interventions. RESULTS Twenty-eight publications were included in this literature review. Phytocompounds found in green tea (EGCG), turmeric (curcumin), cruciferous vegetables (sulforaphane), as well as certain vitamins, are promising, targeted interventions to mitigate CIPN. SDOH factors such as economic instability and limited access to nutritious foods may act as barriers to dietary interventions and limit their generalizability. CONCLUSION Dietary interventions focused on the use of phytocompounds and vitamins with known antioxidant, anti-inflammatory, and neuroprotective properties, hold promise and may provide patients with natural, non-pharmacological therapeutics for the management and/or prevention of CIPN. However, rigorous clinical trial research is needed to explore these effects in humans. IMPLICATIONS FOR NURSING PRACTICE Nurses support cancer survivors at the point-of-care, particularly during and after neurotoxic chemotherapy treatments. If future research supports dietary interventions to mitigate CIPN, nurses will ultimately be positioned to help translate this knowledge into clinical practice through educating patients on how to infuse nutrient-rich foods into their diets. Further, nurses will need to be conscious of SDOH factors that may impede access to these foods.
Collapse
Affiliation(s)
- Michael Daniel
- School of Nursing, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
11
|
Puente A, Fortea JI, Del Pozo C, Serrano M, Alonso-Peña M, Giráldez A, Tellez L, Martinez J, Magaz M, Ibañez L, Garcia J, Llop E, Alvarez-Navascues C, Romero M, Rodriguez E, Arias Loste MT, Antón A, Echavarria V, López C, Albillos A, Hernández-Gea V, Garcia-Pagán JC, Bañares R, Crespo J. Clinical and genetic factors involved in Porto-sinusoidal vascular disorder after oxaliplatin exposure. Dig Liver Dis 2024; 56:1721-1729. [PMID: 38719628 DOI: 10.1016/j.dld.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND AIMS Oxaliplatin (OX) has been described as a potential etiologic agent for porto-sinusoidal vascular disorder (PSVD). Our aim was to describe the natural history of PSVD due to OX in colon cancer (CRC) and identify risk factors for its development. METHODS We made a multicenter retrospective case-control (ratio 1:3) study with patients diagnosed of PSVD-OX. Baseline data, end of treatment, years of follow-up and diagnosis of PSVD were collected and compared to controls (without PSVD). Besides, 16 different SNPs were selected from bibliography and analyzed by genotyping in the case group to identify potential genetic risk factors. RESULTS 41 cases were identified, with a median time to PSVD diagnosis after the end of OX of 34 months. Spleen diameter was the strongest predictor of PSVD during treatment (OR 43.94 (14.48-133.336); p < 0.0001). Additionally, thrombocytopenia (<150 × 10^9) at one year was a significant disease risk marker (OR 9.35; 95% CI: 3.71-23.58; p = 0.001). We could not establish any significant association between the selected SNPs and PSVD diagnosis. CONCLUSION The increase of spleen diameter is the strongest predictor of PSVD in patients treated with OX for CRC. These patients could be candidates for a specific follow-up of portal hypertension-related complications.
Collapse
Affiliation(s)
- A Puente
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain.
| | - J I Fortea
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - C Del Pozo
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - M Serrano
- Department of Oncology. Marques de Valdecilla University Hospital. IDIVAL. Santander. Spain.
| | - M Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - A Giráldez
- Digestive Diseases Research Unit, Virgen Del Rocío University Hospital.Liver Diseases, Instituto de Biomedicina de Sevilla, IbiS. Cell Biology Department, Faculty of Biology, University of Seville, Seville, Andalusia, Spain
| | - L Tellez
- Department of Digestive Diseases. Hospital Ramón y Cajal. CIBEREHD. Madrid. Spain
| | - J Martinez
- Department of Digestive Diseases. Hospital Ramón y Cajal. CIBEREHD. Madrid. Spain
| | - M Magaz
- Barcelona Hepatic Hemodynamic Lab. Liver Unit. Hospital Clinic. IDIBAPS. University of Barcelona. Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver). CIBEREHD. Barcelona. Spain
| | - L Ibañez
- Department of Hepatology, Hospital Gregorio Marañon, Madrid, CIBEREHD, Spain
| | - J Garcia
- Department of Hepatology, Hospital Gregorio Marañon, Madrid, CIBEREHD, Spain
| | - E Llop
- Department of Digestive Diseases, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - C Alvarez-Navascues
- Department of Digestive Diseases, Hospital Central de Asturias, Oviedo, Spain
| | - M Romero
- Department of Digestive Diseases, Complejo Hospitalario de Toledo, Toledo, Spain
| | - E Rodriguez
- Digestive Diseases Research Unit, Virgen Del Rocío University Hospital.Liver Diseases, Instituto de Biomedicina de Sevilla, IbiS. Cell Biology Department, Faculty of Biology, University of Seville, Seville, Andalusia, Spain
| | - M T Arias Loste
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - A Antón
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - V Echavarria
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| | - C López
- Department of Oncology. Marques de Valdecilla University Hospital. IDIVAL. Santander. Spain
| | - A Albillos
- Department of Digestive Diseases. Hospital Ramón y Cajal. CIBEREHD. Madrid. Spain
| | - V Hernández-Gea
- Barcelona Hepatic Hemodynamic Lab. Liver Unit. Hospital Clinic. IDIBAPS. University of Barcelona. Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver). CIBEREHD. Barcelona. Spain
| | - J C Garcia-Pagán
- Barcelona Hepatic Hemodynamic Lab. Liver Unit. Hospital Clinic. IDIBAPS. University of Barcelona. Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver). CIBEREHD. Barcelona. Spain
| | - R Bañares
- Department of Hepatology, Hospital Gregorio Marañon, Madrid, CIBEREHD, Spain
| | - J Crespo
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital. Santander. Spain
| |
Collapse
|
12
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Bos PD, Damaj MI, Kabbani N. Proteomic analysis of dorsal root ganglia in a mouse model of paclitaxel-induced neuropathic pain. PLoS One 2024; 19:e0306498. [PMID: 39331687 PMCID: PMC11432834 DOI: 10.1371/journal.pone.0306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 50%) of chemotherapy induced peripheral neuropathy in patients. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Bryan D. Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Paula D. Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - M. Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
13
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
14
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
15
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Paula D Bos M, Imad Damaj M, Kabbani N. Proteomic Analysis of Dorsal Root Ganglia in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599888. [PMID: 38979383 PMCID: PMC11230256 DOI: 10.1101/2024.06.20.599888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 60%) of chemotherapy induced peripheral neuropathy. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Alexandru Graur
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bryan D Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Paula D Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
16
|
Wang Z, Xia Q, Wan W, Wang M, Zhang Z, Deng J, Jing B, Sun J, Lyu H, Jin H, Yan J, Shen D, Ge Y. Chemical sensors detect and resolve proteome aggregation in peripheral neuropathy cell model induced by chemotherapeutic agents. Bioorg Chem 2024; 148:107491. [PMID: 38788365 DOI: 10.1016/j.bioorg.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.
Collapse
Affiliation(s)
- Zhiming Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiuxuan Xia
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Wan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenduo Zhang
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jintai Deng
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Biao Jing
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jialu Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haochen Lyu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Jin
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Yan
- The Second Hospital of Dalian Medical University, Dalian 116023, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yusong Ge
- The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
17
|
Kim JH, Cetinkaya-Fisgin A, Zahn N, Sari MC, Hoke A, Barman I. Label-Free Visualization and Morphological Profiling of Neuronal Differentiation and Axonal Degeneration through Quantitative Phase Imaging. Adv Biol (Weinh) 2024; 8:e2400020. [PMID: 38548657 PMCID: PMC11090721 DOI: 10.1002/adbi.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 05/15/2024]
Abstract
Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aysel Cetinkaya-Fisgin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Noah Zahn
- Department Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mehmet Can Sari
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
18
|
Marques GVL, Braga AV, Silva IR, de Souza ARB, Kohlhoff M, César IC, Machado RR, Oliveira RB. Synthesis and Antiallodynic Activity of Cannabidiol Analogue on Peripheral Neuropathy in Mice. Chem Biodivers 2024; 21:e202301935. [PMID: 38363210 DOI: 10.1002/cbdv.202301935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Cannabidiol (CBD) is a substance that exerts several therapeutic actions, including analgesia. CBD is generally administered orally, but its poor water solubility and metabolism impair its bioavailability. Thus, the development of molecules with better pharmacokinetic profile from cannabidiol becomes an interesting strategy for the design of novel analgesic drugs for the relief of painful conditions that are difficult to manage clinically, such as neuropathic pain. In the present study, an unprecedented analogue of CBD (1) was synthesized and some of its physicochemical properties were evaluated in silico as well as its stability in an acid medium. Additionally, its effect was investigated in a model of neuropathic pain induced by the chemotherapy drug paclitaxel in mice, in comparison with cannabidiol itself. Cannabidiol (20 mg/kg), pregabalin (30 mg/kg), or analogue 1 (5, 10, and 20 mg/kg), administered on the 14th day after the first administration of paclitaxel, attenuated the mechanical allodynia of the sensitized animals. The antinociceptive activity of analogue 1 was attenuated by previous administration of a cannabinoid CB1 receptor antagonist, AM 251, which indicates that its mechanism of action is related to the activation of CB1 receptors. In conclusion, the CBD analogue 1 developed in this study shows great potential to be used in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Gabriel V L Marques
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alysson V Braga
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iara R Silva
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adna R B de Souza
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos, Instituto René Rachou - FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela C César
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata B Oliveira
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Kacem H, Cimini A, d’Angelo M, Castelli V. Molecular and Cellular Involvement in CIPN. Biomedicines 2024; 12:751. [PMID: 38672107 PMCID: PMC11048589 DOI: 10.3390/biomedicines12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Many anti-cancer drugs, such as taxanes, platinum compounds, vinca alkaloids, and proteasome inhibitors, can cause chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a frequent and harmful side effect that affects the sensory, motor, and autonomic nerves, leading to pain, numbness, tingling, weakness, and reduced quality of life. The causes of CIPN are not fully known, but they involve direct nerve damage, oxidative stress, inflammation, DNA damage, microtubule dysfunction, and altered ion channel activity. CIPN is also affected by genetic, epigenetic, and environmental factors that modulate the risk and intensity of nerve damage. Currently, there are no effective treatments or prevention methods for CIPN, and symptom management is mostly symptomatic and palliative. Therefore, there is a high demand for better understanding of the cellular and molecular mechanisms involved in CIPN, as well as the development of new biomarkers and therapeutic targets. This review gives an overview of the current knowledge and challenges in the field of CIPN, focusing on the biological and molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (H.K.); (A.C.); (V.C.)
| | | |
Collapse
|
20
|
Maia JRLCB, Machado LKA, Fernandes GG, Vitorino LC, Antônio LS, Araújo SMB, Colodeti LC, Fontes-Dantas FL, Zeidler JD, Saraiva GN, Da Poian AT, Figueiredo CP, Passos GF, da Costa R. Mitotherapy prevents peripheral neuropathy induced by oxaliplatin in mice. Neuropharmacology 2024; 245:109828. [PMID: 38158014 DOI: 10.1016/j.neuropharm.2023.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXA) is an antineoplastic agent used for the treatment of cisplatin-resistant tumours, presenting lower incidence of nephrotoxicity and myelotoxicity than other platinum-based drugs. However, OXA treatment is highly associated with painful peripheral neuropathy, a well-known and relevant side effect caused by mitochondrial dysfunction. The transfer of functional exogenous mitochondria (mitotherapy) is a promising therapeutic strategy for mitochondrial diseases. We investigated the effect of mitotherapy on oxaliplatin-induced painful peripheral neuropathy (OIPN) in male mice. OIPN was induced by i.p. injections of oxaliplatin (3 mg/kg) over 5 consecutive days. Mechanical (von Frey test) and cold (acetone drop test) allodynia were evaluated between 7 and 17 days after the first OXA treatment. Mitochondria was isolated from donor mouse livers and mitochondrial oxidative phosphorylation was assessed with high resolution respirometry. After confirming that the isolated mitochondria were functional, the organelles were administered at the dose of 0.5 mg/kg of mitochondrial protein on days 1, 3 and 5. Treatment with OXA caused both mechanical and cold allodynia in mice that were significant 7 days after the initial injection of OXA and persisted for up to 17 days. Mitotherapy significantly prevented the development of both sensory alterations, and attenuated body weight loss induced by OXA. Mitotherapy also prevented spinal cord ERK1/2 activation, microgliosis and the increase in TLR4 mRNA levels. Mitotherapy prevented OIPN by inhibiting neuroinflammation and the consequent cellular overactivity in the spinal cord, presenting a potential therapeutic strategy for pain management in oncologic patients undergoing OXA treatment.
Collapse
Affiliation(s)
- João R L C B Maia
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Loreena K A Machado
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel G Fernandes
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Louise C Vitorino
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Letícia S Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Maria B Araújo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lilian C Colodeti
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabrícia L Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julianna D Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia N Saraiva
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Giselle F Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Lam BWS, Xiang P, Peng B, Soon LJJ, Yam ATY, Lim CMH, Zheng Y, Nguyen LN, Herr DR, Le MTN. Activation of S1P 2 is protective against cisplatin-induced peripheral neuropathy. Cell Prolif 2024; 57:e13549. [PMID: 37727014 PMCID: PMC10849780 DOI: 10.1111/cpr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ping Xiang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Boya Peng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ling Jun Joshua Soon
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Amelia Ting Yu Yam
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Claudine Ming Hui Lim
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yu Zheng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Deron R. Herr
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Translational Neuroscience InitiativeSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Minh T. N. Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
22
|
Xie S, Gao Z, Zhang J, Xing C, Dong Y, Wang L, Wang Z, Li Y, Li G, Han G, Gong T. Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation. Neurotox Res 2024; 42:8. [PMID: 38194189 DOI: 10.1007/s12640-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.
Collapse
Affiliation(s)
- Shun Xie
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhenfang Gao
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Cong Xing
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Medicine, Henan University, Kaifeng, 475004, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Lanyin Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhiding Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Yuxiang Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China.
| | - Taiqian Gong
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China.
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
23
|
Zhao G, Zhang T, Li J, Li L, Chen P, Zhang C, Li K, Cui C. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol 2024; 326:C214-C228. [PMID: 38073486 PMCID: PMC11192483 DOI: 10.1152/ajpcell.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.
Collapse
Affiliation(s)
- Guoqing Zhao
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Te Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiannan Li
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Longyun Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Chen
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunlu Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Cancan Cui
- Radiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Qing X, Dou R, Wang P, Zhou M, Cao C, Zhang H, Qiu G, Yang Z, Zhang J, Liu H, Zhu S, Liu X. Ropivacaine-loaded hydrogels for prolonged relief of chemotherapy-induced peripheral neuropathic pain and potentiated chemotherapy. J Nanobiotechnology 2023; 21:462. [PMID: 38041074 PMCID: PMC10693114 DOI: 10.1186/s12951-023-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Chemotherapy can cause severe pain for patients, but there are currently no satisfactory methods of pain relief. Enhancing the efficacy of chemotherapy to reduce the side effects of high-dose chemotherapeutic drugs remains a major challenge. Moreover, the treatment of chemotherapy-induced peripheral neuropathic pain (CIPNP) is separate from chemotherapy in the clinical setting, causing inconvenience to cancer patients. In view of the many obstacles mentioned above, we developed a strategy to incorporate local anesthetic (LA) into a cisplatin-loaded PF127 hydrogel for painless potentiated chemotherapy. We found that multiple administrations of cisplatin-loaded PF127 hydrogels (PFC) evoked severe CIPNP, which correlated with increased pERK-positive neurons in the dorsal root ganglion (DRG). However, incorporating ropivacaine into the PFC relieved PFC-induced CIPNP for more than ten hours and decreased the number of pERK-positive neurons in the DRG. Moreover, incorporating ropivacaine into the PFC for chemotherapy is found to upregulate major histocompatibility complex class I (MHC-I) expression in tumor cells and promote the infiltration of cytotoxic T lymphocytes (CD8+ T cells) in tumors, thereby potentiating chemotherapy efficacy. This study proposes that LA can be used as an immunemodulator to enhance the effectiveness of chemotherapy, providing new ideas for painless cancer treatment.
Collapse
Affiliation(s)
- Xin Qing
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Renbin Dou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Peng Wang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Mengni Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chenchen Cao
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Huiwen Zhang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Gaolin Qiu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Zhilai Yang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Jiqian Zhang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Hu Liu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Shasha Zhu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xuesheng Liu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Toraman E, Bayram C, Sezen S, Özkaraca M, Hacımüftüoğlu A, Budak H. Parthenolide as a potential analgesic in the treatment of paclitaxel-induced neuropathic pain: the rat modeling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3707-3721. [PMID: 37306715 DOI: 10.1007/s00210-023-02568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
In this study, we determined the therapeutic effect of parthenolide (PTL), the active component of Tanacetum parthenium, on neuropathic pain caused by paclitaxel (PTX), a chemotherapeutic drug frequently used in cancer treatment, at the gene and protein levels. To this end, 6 groups were formed: control, PTX, sham, 1 mg/PTL, 2 mg/kg PTL, and 4 mg/kg PTL. Pain formation was tested by Randall-Selitto analgesiometry and locomotor activity behavioral analysis. Then, PTL treatment was performed for 14 days. After the last dose of PTL was taken, Hcn2, Trpa1, Scn9a, and Kcns1 gene expressions were measured in rat brain (cerebral cortex/CTX) tissues. In addition, changes in the levels of SCN9A and KCNS1 proteins were determined by immunohistochemical analysis. Histopathological hematoxylin-eosin staining was also performed to investigate the effect of PTL in treating tissue damage on neuropathic pain caused by PTX treatment. When the obtained data were analyzed, pain threshold and locomotor activity decreased in PTX and sham groups and increased with PTL treatment. In addition, it was observed that the expression of the Hcn2, Trpa1, and Scn9a genes decreased while the Kcns1 gene expression increased. When protein levels were examined, it was determined that SCN9A protein expression decreased and the KCNS1 protein level increased. It was determined that PTL treatment also improved PTX-induced tissue damage. The results of this study demonstrate that non-opioid PTL is an effective therapeutic agent in the treatment of chemotherapy-induced neuropathic pain, especially when used at a dose of 4 mg/kg acting on sodium and potassium channels.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Türkiye
| | - Cemil Bayram
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Atatürk University, Erzurum, Türkiye
| | - Selma Sezen
- Faculty of Medicine, Department of Medical Pharmacology, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Mustafa Özkaraca
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Cumhuriyet University, Sivas, Türkiye
| | - Ahmet Hacımüftüoğlu
- Faculty of Medicine, Department of Medical Pharmacology, Atatürk University, Erzurum, Türkiye
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
26
|
Lu ZP, Zou JQ, Lian WY, Lei HY, Xu SY. Intrathecal rapamycin attenuates the mechanical hyperalgesia of paclitaxel-induced peripheral neuropathy in mice. Neuroreport 2023; 34:713-719. [PMID: 37556589 DOI: 10.1097/wnr.0000000000001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Paclitaxel is an extensively used chemotherapy antitumor drug and paclitaxel-induced peripheral neuropathy (PIPN) is one of the most common side effect. Rapamycin, originally used as an adjuvant drug for chemotherapy, has recently been found to possess potential neuroprotective activities. Our purposes of this study are to verify the effect of rapamycin on PIPN, which contributes to a new target for PIPN treatment. Mice were given paclitaxel or rapamycin with different injection methods. Paw withdrawal threshold was tested at different time points for mechanical sensitivity assessment. Administration of paclitaxel, both 2 mg/kg and 5 mg/kg, could induce mechanical hypersensitivity. 0.01 mg intrathecal injection of rapamycin showed the best effect on attenuate the mechanical hyperalgesia of PIPN. Intrathecal injection of only rapamycin would not induce the mechanical hyperalgesia while when rapamycin and paclitaxel were used together the mechanical hyperalgesia induced by paclitaxel could be attenuated. Paclitaxel could induce mechanical hyperalgesia in mice and rapamycin could attenuate such mechanical hyperalgesia of PIPN.
Collapse
Affiliation(s)
- Ze-Peng Lu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Jia-Qi Zou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Wan-Yi Lian
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Hong-Yi Lei
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
27
|
McNeish BL, Kolb N. Toxic Neuropathies. Continuum (Minneap Minn) 2023; 29:1444-1468. [PMID: 37851038 DOI: 10.1212/con.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE The purpose of this article is to provide an overview and update on the most clinically relevant toxic neuropathies. LATEST DEVELOPMENTS Broadly, toxic neuropathies were previously quite rare with the notable exception of neuropathy from alcohol or older chemotherapeutics. The development of newer therapies, particularly immunotherapy to treat malignancy, has resulted in a substantial increase in the occurrence of toxic neuropathies that require timely recognition and treatment. The understanding of other toxic neuropathies continues to evolve, such as statin-induced neuropathy, which new evidence suggests is much less common than previously suspected. ESSENTIAL POINTS Toxic neuropathies can be caused by medications, supplements, and recreational substances that injure peripheral nerves. Medications have evolved in the past 2 decades, as have the types of neuropathies that can be seen as related toxicities. In some areas of medicine, new classes and generations of drugs are associated with a lower incidence of toxic neuropathy.
Collapse
|
28
|
da Motta KP, Martins CC, Macedo VM, Dos Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. The Antinociceptive Responses of MTDZ to Paclitaxel-Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches. Pharmaceuticals (Basel) 2023; 16:1217. [PMID: 37765025 PMCID: PMC10534544 DOI: 10.3390/ph16091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The efficacy of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ) in mitigating paclitaxel (PTX)-induced peripheral neuropathy was investigated in male and female Swiss mice. The study examined the effects of MTDZ on various pathways, including transient receptor potential cation channel subfamily V member 1 (TRPV1), glutamatergic, nitrergic, guanylate cyclase (cGMP), serotonergic, and opioidergic. Mice received intraperitoneal PTX (2 mg/kg) or vehicle on days 1, 2, and 3, followed by oral MTDZ (1 mg/kg) or vehicle from days 3 to 14. Mechanical and thermal sensitivities were assessed using Von Frey and hot plate tests on days 8, 11, and 14. The open field test evaluated locomotion and exploration on day 12. On day 15, nitrite and nitrate (NOx) levels and Ca2+-ATPase activity in the cerebral cortex and spinal cord were measured after euthanizing the animals. MTDZ administration reversed the heightened mechanical and thermal sensitivities induced by PTX in male and female mice without affecting locomotion or exploration. MTDZ also modulated multiple pathways, including glutamatergic, NO/L-arginine/cGMP, serotonergic (5-HT1A/1B), opioid, and TRPV1 pathways. Additionally, MTDZ reduced NOx levels and modulated Ca2+-ATPase activity. In conclusion, MTDZ effectively alleviated PTX-induced peripheral neuropathy and demonstrated multi-targeted modulation of pain-related pathways. Its ability to modulate multiple pathways, reduce NOx levels, and modulate Ca2+-ATPase activity makes it a potential pharmacological candidate for peripheral neuropathy, acute nociceptive, and inflammatory conditions. Further research is needed to explore its therapeutic potential in these areas.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Carolina C Martins
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Vanessa M Macedo
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Beatriz F Dos Santos
- Organic Catalysis and Biocatalysis Laboratory, LACOB, Federal University of Grande Dourados, UFGD, P.O. Box 533, Dourados 79804-970, MS, Brazil
| | - Nelson Luís De C Domingues
- Organic Catalysis and Biocatalysis Laboratory, LACOB, Federal University of Grande Dourados, UFGD, P.O. Box 533, Dourados 79804-970, MS, Brazil
| | - Cristiane Luchese
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Biochemical Pharmacology Research Laboratory, LaFarBio, CCQFA, Federal University of Pelotas, UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil
| |
Collapse
|
29
|
Cheng F, Zhang R, Sun C, Ran Q, Zhang C, Shen C, Yao Z, Wang M, Song L, Peng C. Oxaliplatin-induced peripheral neurotoxicity in colorectal cancer patients: mechanisms, pharmacokinetics and strategies. Front Pharmacol 2023; 14:1231401. [PMID: 37593174 PMCID: PMC10427877 DOI: 10.3389/fphar.2023.1231401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc.), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
31
|
Time dependent cisplatin dosing differences on hypoalgesia focusing on oxidative stress. Eur J Pharmacol 2023; 942:175519. [PMID: 36682481 DOI: 10.1016/j.ejphar.2023.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Although cisplatin is a key drug in cancer chemotherapy, it often causes sensory peripheral neuropathy, presenting as allodynia in the early stage and hypoalgesia in the serious stage. Chronotherapy has previously been shown to ameliorate cisplatin-induced peripheral neuropathy that was severe enough to cause hypoalgesia in rats. It also has adverse effects such as renal dysfunction and ototoxicity, which are induced by oxidative stress. Here, we show that oxidative stress causes severe cisplatin-induced peripheral neuropathy, and that differences in oxidative stress occur depending on the dosing time of cisplatin. Cisplatin was administered to rats at 5:00 or 17:00 every seven days for four weeks. The antioxidant agent, 1,3-Dimethylthiourea (DMTU), was administered before and after the administration of cisplatin. The hot plate test was used to assess hypoalgesia. Oxidative stress in the sciatic nerve was assessed from thiobarbituric acid reactive substances (TBARs) and superoxide dismutase (SOD) activity. Nerve apoptosis was analysed with qRT-PCR. We observed an increase in TBARs and a decrease in SOD activity with the development of cisplatin-induced hypoalgesia, which was ameliorated by DMTU treatment. Furthermore, differences in the dosing time of cisplatin caused differences in oxidative stress which were correlated with cisplatin-induced hypoalgesia. Severe oxidative stress caused cisplatin-induced hypoalgesia, and chronotherapy with cisplatin ameliorated hypoalgesia by reducing oxidative stress. In the future, chronotherapy with cisplatin may contribute to the treatment of cancer in humans.
Collapse
|
32
|
Ouyang X, Zhu D, Huang Y, Zhao X, Xu R, Wang J, Li W, Shen X. Khellin as a selective monoamine oxidase B inhibitor ameliorated paclitaxel-induced peripheral neuropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154673. [PMID: 36716674 DOI: 10.1016/j.phymed.2023.154673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Treatment of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is full of challenges because of the unclear pathogenesis of PIPN. Herbal folk medicine Khellin (Khe) is a natural compound extracted from Ammi visnaga for treatment of renal colics and muscle spasms. PURPOSE Here, we aimed to assess the potential of Khe in ameliorating PIPN-like pathology in mice and investigate the underlying mechanisms. METHODS PIPN model mice were conducted by injection of PTX based on the published approach. The capability of Khe in ameliorating the PTX-induced neurological dysfunctions was assayed by detection of nociceptive hypersensitivities including mechanical hyperalgesia, thermal hypersensitivity, and cold allodynia in mice. The underlying mechanisms were investigated by assays against the PIPN mice with MAOB-specific knockdown in spinal cord and dorsal root ganglion (DRG) tissues by injection of adeno-associated virus (AAV)-MAOB-shRNA. RESULTS We determined that MAOB not MAOA is highly overexpressed in the spinal cord and DRG tissues of PIPN mice and Khe as a selective MAOB inhibitor improved PIPN-like pathology in mice. Khe promoted neurite outgrowth, alleviated apoptosis, and improved mitochondrial dysfunction of DRG neurons by targeting MAOB. Moreover, Khe inhibited spinal astrocytes activation and suppressed neuroinflammation of spinal astrocytes via MAOB/NF-κB/NLRP3/ASC/Caspase1/IL-1β pathway. CONCLUSION Our work might be the first to report that MAOB not MAOA is selectively overexpressed in the spinal cord and DRG tissues of PIPN mice, and all findings have highly addressed the potency of selective MAOB inhibitor in the amelioration of PIPN-like pathology and highlighted the potential of Khe in treating PTX-induced side effects.
Collapse
Affiliation(s)
- Xingnan Ouyang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Danyang Zhu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Huang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuejian Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Xu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenjun Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China..
| |
Collapse
|
33
|
Huot JR, Baumfalk D, Resendiz A, Bonetto A, Smuder AJ, Penna F. Targeting Mitochondria and Oxidative Stress in Cancer- and Chemotherapy-Induced Muscle Wasting. Antioxid Redox Signal 2023; 38:352-370. [PMID: 36310444 PMCID: PMC10081727 DOI: 10.1089/ars.2022.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 12/31/2022]
Abstract
Significance: Cancer is frequently associated with the early appearance of cachexia, a multifactorial wasting syndrome. If not present at diagnosis, cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing the direct cause of death in up to one-third of all cancer patients. Cachexia, within its multiorgan affection, is characterized by severe loss of muscle mass and function, representing the most relevant subject of preclinical and clinical investigation. Recent Advances: The pathogenesis of muscle wasting in cancer- and chemotherapy-induced cachexia is complex, and encompasses heightened protein catabolism and reduced anabolism, disrupted mitochondria and energy metabolism, and even neuromuscular junction dismantling. The mechanisms underlying these alterations are still controversial, especially concerning the molecular drivers that could be targeted for anticachexia therapies. Inflammation and mitochondrial oxidative stress are among the principal candidates; the latter being extensively discussed in the present review. Critical Issues: Several approaches have been tested to modulate the redox homeostasis in tumor hosts, and to counteract cancer- and chemotherapy-induced muscle wasting, from exercise training to distinct classes of direct or indirect antioxidants. We herein report the most relevant results obtained from both preclinical and clinical trials. Future Directions: Including the assessment and the treatment of altered redox balance in the clinical management of cancer patients is still a big challenge. The available evidence suggests that fortifying the antioxidant defenses by either pharmacological or nonpharmacological strategies will likely improve cachexia and eventually the outcome of a broad cancer patient population. Antioxid. Redox Signal. 38, 352-370.
Collapse
Affiliation(s)
- Joshua R. Huot
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dryden Baumfalk
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Aridai Resendiz
- Department of Oncology, Surgical Oncology and Digestive Surgery Unit, S Luigi University Hospital, University of Torino, Torino, Italy
| | - Andrea Bonetto
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Otolaryngology–Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
35
|
Alberti P, Salvalaggio A, Argyriou AA, Bruna J, Visentin A, Cavaletti G, Briani C. Neurological Complications of Conventional and Novel Anticancer Treatments. Cancers (Basel) 2022; 14:cancers14246088. [PMID: 36551575 PMCID: PMC9776739 DOI: 10.3390/cancers14246088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Various neurological complications, affecting both the central and peripheral nervous system, can frequently be experienced by cancer survivors after exposure to conventional chemotherapy, but also to modern immunotherapy. In this review, we provide an overview of the most well-known adverse events related to chemotherapy, with a focus on chemotherapy induced peripheral neurotoxicity, but we also address some emerging novel clinical entities related to cancer treatment, including chemotherapy-related cognitive impairment and immune-mediated adverse events. Unfortunately, efficacious curative or preventive treatment for all these neurological complications is still lacking. We provide a description of the possible mechanisms involved to drive future drug discovery in this field, both for symptomatic treatment and neuroprotection.
Collapse
Affiliation(s)
- Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | | | - Andreas A. Argyriou
- Neurology Department, Agios Andreas State General Hospital of Patras, 26335 Patras, Greece
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neurosciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
36
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
37
|
Snavely AR, Heo K, Petrova V, Ho TSY, Huang X, Hermawan C, Kagan R, Deng T, Singeç I, Chen L, Barret LB, Woolf CJ. Bortezomib-induced neurotoxicity in human neurons is the consequence of nicotinamide adenine dinucleotide depletion. Dis Model Mech 2022; 15:dmm049358. [PMID: 36398590 PMCID: PMC9789399 DOI: 10.1242/dmm.049358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The proteosome inhibitor bortezomib has revolutionized the treatment of multiple hematologic malignancies, but in many cases, its efficacy is limited by a dose-dependent peripheral neuropathy. We show that human induced pluripotent stem cell (hiPSC)-derived motor neurons and sensory neurons provide a model system for the study of bortezomib-induced peripheral neuropathy, with promising implications for furthering the mechanistic understanding of and developing treatments for preventing axonal damage. Human neurons in tissue culture displayed distal-to-proximal neurite degeneration when exposed to bortezomib. This process coincided with disruptions in mitochondrial function and energy homeostasis, similar to those described in rodent models of bortezomib-induced neuropathy. Moreover, although the degenerative process was unaffected by inhibition of caspases, it was completely blocked by exogenous nicotinamide adenine dinucleotide (NAD+), a mediator of the SARM1-dependent axon degeneration pathway. We demonstrate that bortezomib-induced neurotoxicity in relevant human neurons proceeds through mitochondrial dysfunction and NAD+ depletion-mediated axon degeneration, raising the possibility that targeting these changes might provide effective therapeutics for the prevention of bortezomib-induced neuropathy and that modeling chemotherapy-induced neuropathy in human neurons has utility.
Collapse
Affiliation(s)
- Andrew R. Snavely
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keungjung Heo
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Veselina Petrova
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Szu-Yu Ho
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuan Huang
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Crystal Hermawan
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ruth Kagan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Long Chen
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lee B. Barret
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Program in Neurobiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
39
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
40
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 2022; 93:112-127. [PMID: 36152729 DOI: 10.1016/j.neuro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chemotherapy-induced neurotoxicity is one of the most prevalent side effects in cancer patients and survivors. Cognitive decline and peripheral neuropathy are the most common chemotherapy-induced neurotoxic symptoms. These symptoms lead not only to the limiting of the dose of chemotherapy given to cancer patients, but also have an impact on the quality of life of cancer survivors. Although the exact mechanisms involved in chemotherapy-induced neurotoxicity are still unclear, neuroinflammation is widely regarded as being one of the major causes involved in chemotherapy-induced neurotoxicity. It is known that Toll-like receptor 4 (TLR4) plays a critical role in the inflammatory process, and it has been recently reported that it is associated with chemotherapy-induced neurotoxicity. In this review, we summarize and discuss all available evidence regarding the activation of the TLR4 signaling pathway in various models of chemotherapy-induced neurotoxicity. This review also emphasizes the evidence pertinent to TLR4 inhibition on chemotherapy-induced neurotoxicity in rodent studies. Understanding the role of the TLR4 signaling pathway behind chemotherapy-induced neurotoxicity is crucial for improving treatments and ensuring the long-term survival of cancer patients.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
41
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|
42
|
Eid SA, Savelieff MG, Eid AA, Feldman EL. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid Redox Signal 2022; 37:613-630. [PMID: 34861780 PMCID: PMC9634986 DOI: 10.1089/ars.2021.0135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G. Savelieff
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Brenneman DE, Kinney WA, McDonnell ME, Zhao P, Abood ME, Ward SJ. Anti-Inflammatory Properties of KLS-13019: a Novel GPR55 Antagonist for Dorsal Root Ganglion and Hippocampal Cultures. J Mol Neurosci 2022; 72:1859-1874. [PMID: 35779192 PMCID: PMC9398971 DOI: 10.1007/s12031-022-02038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/04/2022] [Indexed: 11/28/2022]
Abstract
KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1β and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1β areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-β-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Pingei Zhao
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
44
|
Wu J, Li X, Zhang X, Wang W, You X. What role of the cGAS-STING pathway plays in chronic pain? Front Mol Neurosci 2022; 15:963206. [PMID: 35979145 PMCID: PMC9376357 DOI: 10.3389/fnmol.2022.963206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic pain interferes with daily functioning and is frequently accompanied by depression. Currently, traditional clinic treatments do not produce satisfactory analgesic effects and frequently result in various adverse effects. Pathogen recognition receptors (PRRs) serve as innate cellular sensors of danger signals, sense invading microorganisms, and initiate innate and adaptive immune responses. Among them, cGAS-STING alerts on the presence of both exogenous and endogenous DNA in the cytoplasm, and this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection, and cancer. An increasing numbers of evidence suggest that cGAS-STING pathway involves in the chronic pain process; however, its role remains controversial. In this narrative review, we summarize the recent findings on the involvement of the cGAS-STING pathway in chronic pain, as well as several possible mechanisms underlying its activation. As a new area of research, this review is unique in considering the cGAS-STING pathway in sensory neurons and glial cells as a part of a broader understanding of pain, including potential mechanisms of inflammation, immunity, apoptosis, and autophagy. It will provide new insight into the treatment of pain in the future.
Collapse
Affiliation(s)
- Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xingji You
| |
Collapse
|
45
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
46
|
Melin N, Yarahmadov T, Sanchez-Taltavull D, Birrer FE, Brodie TM, Petit B, Felser A, Nuoffer JM, Montani M, Vozenin MC, Herrmann E, Candinas D, Aebersold DM, Stroka D. A new mouse model of radiation-induced liver disease reveals mitochondrial dysfunction as an underlying fibrotic stimulus. JHEP Rep 2022; 4:100508. [PMID: 35712694 PMCID: PMC9192810 DOI: 10.1016/j.jhepr.2022.100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 10/26/2022] Open
Abstract
Background & Aims High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.
Collapse
Key Words
- 4HNE, 4-hydroxynonenal
- CV, central vein
- ECM, extracellular matrix
- ETC, electron transfer chain
- GSH, reduced glutathione (glutathione)
- GSSG, oxidized glutathione (glutathione disulfide)
- HSCs, hepatic stellate cells
- IGRT, image-guided radiation therapy
- IHC, immunohistochemistry
- IMC, imaging mass cytometry
- MDA, malondialdehyde
- RILD, radiation-induced liver disease
- RNAseq, RNA sequencing
- ROS
- ROS, reactive oxygen species
- RT, radiation therapy
- SASP, senescence-associated secretory phenotype
- SNP, single nucleotide polymorphism
- SOS, sinusoidal obstruction syndrome
- fibrosis
- image guided radiation therapy (IGRT)
- mitochondrial dysfunction
- mitochondrial-DNA
- mouse model
- mtDNA, mitochondrial DNA
- mtROS, mitochondrial reactive oxygen species
- p53
- radiation-induced liver disease (RILD)
- rcf, relative centrifuge force
- senescence
- sinusoidal obstruction syndrome
Collapse
Affiliation(s)
- Nicolas Melin
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Daniel Sanchez-Taltavull
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Fabienne E. Birrer
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Tess M. Brodie
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Andrea Felser
- Institute of Clinical Chemistry, University of Bern, Switzerland
| | | | - Matteo Montani
- Department of Pathology, University of Bern, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Evelyn Herrmann
- Department of Radiation Oncology, Department for BioMedical Research, University of Bern, Bern University Hospital, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Department for BioMedical Research, University of Bern, Bern University Hospital, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| |
Collapse
|
47
|
Rattanakrong N, Siriphorn A, Boonyong S. Incidence density and factors associated with peripheral neuropathy among women with breast cancer during taxane-based chemotherapy. Sci Rep 2022; 12:10632. [PMID: 35739233 PMCID: PMC9226074 DOI: 10.1038/s41598-022-14870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
This work aimed to determine the incidence density of taxane-induced peripheral neuropathy (TIPN) and its risk factors among women with breast cancer. One hundred and forty-one women with breast cancer participated in this cohort study. TIPN symptoms were evaluated with the European Organization for Research and Treatment of Cancer CIPN specific self-report questionnaire (EORTC QOL-CIPN20) at five-time points throughout chemotherapy treatment. Over three months, 125 (89%) and 59 (44.03%) women with breast cancer were identified with sensory and motor neuropathy, respectively. The sensory neuropathy incidence density was 21 per 1000 person-days. The motor neuropathy incidence density was 6 per 1000 person-days. This study discovered a significant link between age and the incidence density of sensory neuropathy (HR = 1.02; 95% CI: 1.01-1.05) as well as motor neuropathy (HR = 1.05; 95% CI: 1.01-1.08). These findings imply that screening may be necessary to detect early TIPN symptoms and provide appropriate rehabilitation programs, particularly for elderly persons.
Collapse
Affiliation(s)
- Nida Rattanakrong
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Road, Wangmai, Pathumwan, Bangkok, Thailand
- Department of Rehabilitation Medicine, Physical Therapy Unit, Chulabhorn Hospital, Bangkok, Thailand
| | - Akkradate Siriphorn
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Road, Wangmai, Pathumwan, Bangkok, Thailand
| | - Sujitra Boonyong
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Road, Wangmai, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
48
|
Valentine T, Hardowar L, Elphick-Ross J, Hulse RP, Paul-Clark M. The Role of Vascular-Immune Interactions in Modulating Chemotherapy Induced Neuropathic Pain. Front Pharmacol 2022; 13:887608. [PMID: 35814225 PMCID: PMC9257211 DOI: 10.3389/fphar.2022.887608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Chemotherapy causes sensory disturbances in cancer patients that results in neuropathies and pain. As cancer survivorships has dramatically increased over the past 10 years, pain management of these patients is becoming clinically more important. Current analgesic strategies are mainly ineffective and long-term use is associated with severe side effects. The issue being that common analgesic strategies are based on ubiquitous pain mediator pathways, so when applied to clinically diverse neuropathic pain and neurological conditions, are unsuccessful. This is principally due to the lack of understanding of the driving forces that lead to chemotherapy induced neuropathies. It is well documented that chemotherapy causes sensory neurodegeneration through axonal atrophy and intraepidermal fibre degeneration causing alterations in pain perception. Despite the neuropathological alterations associated with chemotherapy-induced neuropathic pain being extensively researched, underlying causes remain elusive. Resent evidence from patient and rodent studies have indicated a prominent inflammatory cell component in the peripheral sensory nervous system in effected areas post chemotherapeutic treatment. This is accompanied by modulation of auxiliary cells of the dorsal root ganglia sensory neurons such as activation of satellite glia and capillary dysfunction. The presence of a neuroinflammatory component was supported by transcriptomic analysis of dorsal root ganglia taken from mice treated with common chemotherapy agents. With key inflammatory mediators identified, having potent immunoregulatory effects that directly influences nociception. We aim to evaluate the current understanding of these immune-neuronal interactions across different cancer therapy drug classes. In the belief this may lead to better pain management approaches for cancer survivors.
Collapse
|
49
|
Li T, Shi L, Liu W, Hu X, Hui Y, Di M, Xue S, Zheng Y, Yao M, Li C, Meng K. Aloe-Emodin Induces Mitochondrial Dysfunction and Pyroptosis by Activation of the Caspase-9/3/Gasdermin E Axis in HeLa Cells. Front Pharmacol 2022; 13:854526. [PMID: 35662735 PMCID: PMC9157280 DOI: 10.3389/fphar.2022.854526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited proliferation and migration and triggered caspase-dependent cell death of HeLa cells in a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed extensive changes in gene expressions in cellular pathways, including MAPK, p53, and PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.
Collapse
Affiliation(s)
- Tonghui Li
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Liuliu Shi
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Wenqiang Liu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Xuhao Hu
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Yuanjian Hui
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Shen Xue
- Department of Obstetrics and Gynecology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Department of Pharmacy, Hubei Aerospace Hospital, Xiaogan, China
| | - Mengjuan Yao
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
50
|
Nasser AH, Gendy AM, El-Yamany MF, El-Tanbouly DM. Upregulation of neuronal progranulin mediates the antinociceptive effect of trimetazidine in paclitaxel-induced peripheral neuropathy: Role of ERK1/2 signaling. Toxicol Appl Pharmacol 2022; 448:116096. [PMID: 35662665 DOI: 10.1016/j.taap.2022.116096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Neuronal progranulin (PGRN) overexpression is an endogenous adaptive pain defense following nerve injury. It allows the survival of injured neurons to block enhanced nociceptive responses. Trimetazidine (TMZ) is widely used by cardiac patients as an anti-anginal drug, reflecting its anti-ischemic property. TMZ promotes axonal regeneration of sciatic nerves after crush injury. This study explored the interplay between PGRN and extracellular signal-regulated kinases (ERK1/2) to address mechanisms underlying neuropathic pain alleviation following paclitaxel (PTX) administration. Rats were given four injections of PTX (2 mg/kg, i.p.) every other day. Two days after the last dose, rats received TMZ (25 mg/kg) with or without the ERK inhibitor, PD98059, daily for 21 days. TMZ preserved the integrity of myelinated nerve fibers, as evidenced by an obvious reduction in axonal damage biomarkers. Accordingly, it alleviated PTX-evoked thermal, cold, and mechanical hyperalgesia/allodynia. TMZ also promoted ERK1/2 phosphorylation with a profound upsurge in PGRN content. These effects were associated with a substantial increase in Notch1 receptor gene expression and a prominent anti-inflammatory effect with a marked increase in mRNA expression of secretory leukocyte protease inhibitor. Further, TMZ decreased oxidative stress and caspase-3 activity in the sciatic nerve. Conversely, co-administration of PD98059 completely abolished these beneficial effects. Thus, the robust antinociceptive effect of TMZ is largely attributed to upregulating PGRN and Notch1 receptors via ERK1/2 activation.
Collapse
Affiliation(s)
- Asmaa H Nasser
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Abdallah M Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|