1
|
Li Q, Holzwarth JA, Smith B, Karaz S, Membrez M, Sorrentino V, Summers S, Spears J, Migliavacca E. Impaired renal transporter gene expression and uremic toxin excretion as aging hallmarks in cats with naturally occurring chronic kidney disease. Aging (Albany NY) 2024; 16:206176. [PMID: 39729035 DOI: 10.18632/aging.206176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Aging leads to nephron senescence and chronic kidney disease (CKD). In cats, indoxyl sulfate (IxS) has been previously quantified and associated with CKD, and little is known about tubular transporters. Two cohorts of cats aged 6 to 21 years were enrolled. Cohort 1 included 41 colony cats with 28 control and 13 CKD cats. Cohort 2 had 30 privately-owned cats with 10 control and 20 CKD cats. In cohort 1, serum concentrations of IxS, trimethylamine N-oxide (TMAO), p-cresol sulfate (PCS), and phenyl sulfate were higher in CKD vs. control cats (all P<0.05). This observation was independently validated in cohort 2. Renal cortical and medullar tissues were collected from a third cohort of cats euthanized for humane reasons unrelated to the study. We provided the evidence that renal tubular transporter genes, OAT1, OAT4, OATP4C1, and ABCC2, but not OAT3, were expressed in the kidneys of cats, and their expressions were downregulated in CKD (all FDR<0.1). Cats and humans share 90.9%, 77.8%, and 82.5% identities in OAT1, OATP4C1, and ABCC2 proteins, respectively. In healthy cats, circulating TMAO and IxS are significantly correlated with age. Our study reveals impaired uremic toxin secretion and tubular transporter expression in cats with CKD.
Collapse
Affiliation(s)
- Qinghong Li
- Nestlé Purina Research, St. Louis, MO 63102, USA
| | | | | | | | | | | | | | - Julie Spears
- Nestlé Purina Research, St. Louis, MO 63102, USA
| | | |
Collapse
|
2
|
Escudero-Saiz VJ, Cuadrado-Payán E, Rodriguez-Garcia M, Casals G, Rodas LM, Fontseré N, Salgado MDC, Bastida C, Rico N, Broseta JJ, Maduell F. The Choice of Anti-Inflammatory Influences the Elimination of Protein-Bound Uremic Toxins. Toxins (Basel) 2024; 16:545. [PMID: 39728803 DOI: 10.3390/toxins16120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Pain is a frequent and disturbing symptom among hemodialysis patients. Protein-bound uremic toxins (PBUTs) are related to cardiovascular and overall mortality, and they are difficult to remove with current hemodialysis treatments. The PBUT displacers, such as furosemide, tryptophan, or ibuprofen, may be promising new strategies for improving their clearance. This study aims to compare ibuprofen versus other analgesic drugs in PBUT removal. A prospective study was carried out in 23 patients. Patients underwent four dialysis sessions with routine dialysis parameters, except for analgesic drugs administered (lysine acetylsalicylic acid, acetaminophen, dexketoprofen, and ibuprofen). The reduction ratios (RRs) of a wide range of molecular weight molecules were assessed, including total p-cresyl sulfate and total indoxyl-sulfate. There were no complications related to the administered drug, and pain was controlled independently of the drug. There were no differences in the RR of small-size and medium-sized molecules between all four study treatments. However, indoxyl sulfate and p-cresyl sulfate RRs when ibuprofen was administered were significantly higher than lysine acetylsalicylic acid, acetaminophen, and dexketoprofen treatments. In conclusion, patients with pain may benefit from treatment with ibuprofen instead of lysine acetylsalicylic acid, paracetamol, or dexketoprofen, since in addition to improving pain, it increases the removal of PBUTs.
Collapse
Affiliation(s)
| | - Elena Cuadrado-Payán
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - María Rodriguez-Garcia
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Lida María Rodas
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Néstor Fontseré
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - María Del Carmen Salgado
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, University of Barcelona, 08036 Barcelona, Spain
| | - Nayra Rico
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - José Jesús Broseta
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Francisco Maduell
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
3
|
Canaud B, Stenvinkel P, Scheiwe R, Steppan S, Bowry S, Castellano G. The Janus-faced nature of complement in hemodialysis: interplay between complement, inflammation, and bioincompatibility unveiling a self-amplifying loop contributing to organ damage. FRONTIERS IN NEPHROLOGY 2024; 4:1455321. [PMID: 39691704 PMCID: PMC11649546 DOI: 10.3389/fneph.2024.1455321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
In hemodialysis (HD), complement activation, bioincompatibility, and inflammation are intricately intertwined. In the 1970s, as HD became a routine therapy, the observation of complement pathway activation and transient leukopenia by cellulosic dialysis membranes triggered the bioincompatibility debate and its clinical relevance. Extensive deliberations have covered definitions, assessment markers, scope, and long-term clinical consequences of membrane-dependent bioincompatibility reactions. While complement pathways' interplay with coagulation and inflammation has been delineated, HD's focus has primarily been on developing more biocompatible membranes using advanced technologies. Recent advances and understanding of the current HD delivery mode (4-hour sessions, thrice weekly) suggest that factors beyond membrane characteristics play a significant role, and a more complex, multifactorial picture of bioincompatibility is emerging. Chronic activation of the complement system and persistent low-grade "uremic inflammation" in chronic kidney disease (CKD) and HD lead to premature inflammaging of the kidney, resembling aging in the general population. Cellular senescence, modulated by complement activation and the uremic milieu, contributes to chronic inflammaging. Additionally, the formation of neutrophil extracellular traps (NETs, process of NETosis) during HD and their biological activity in the interdialytic period can lead to dialysis-induced systemic stress. Thus, complement-inflammation manifestations in HD therapies extend beyond traditional membrane-related bioincompatibility consequences. Recent scientific knowledge is reshaping strategies to mitigate detrimental consequences of bioincompatibility, both technologically and in HD therapy delivery modes, to improve dialysis patient outcomes.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
| | - Peter Stenvinkel
- Dept of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Sudhir Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | - Giuseppe Castellano
- Center for Hemolytic Uremic Syndrome (HUS) Prevention, Control, and Management at the Nephrology and Dialysis Unit, Fondazione Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Lieberman OJ, Berkowitz AL. Diagnostic Approach to the Patient with Altered Mental Status. Semin Neurol 2024; 44:579-605. [PMID: 39353612 DOI: 10.1055/s-0044-1791245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute encephalopathy is a common presenting symptom in the emergency room and complicates many hospital and intensive care unit admissions. The evaluation of patients with encephalopathy poses several challenges: limited history and examination due to the patient's mental status, broad differential diagnosis of systemic and neurologic etiologies, low yield of neurodiagnostic testing due to the high base rate of systemic causes, and the importance of identifying less common neurologic causes of encephalopathy that can be life-threatening if not identified and treated. This article discusses the differential diagnosis of acute encephalopathy, presents an approach to the history and examination in a patient with encephalopathy, reviews the literature on the yield of neurodiagnostic testing in this population, and provides a diagnostic framework for the evaluation of patients with altered mental status.
Collapse
|
5
|
Vanholder R, Snauwaert E, Verbeke F, Glorieux G. Future of Uremic Toxin Management. Toxins (Basel) 2024; 16:463. [PMID: 39591217 PMCID: PMC11598275 DOI: 10.3390/toxins16110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
During the progression of chronic kidney disease (CKD), the retention of uremic toxins plays a key role in the development of uremic syndrome. Knowledge about the nature and biological impact of uremic toxins has grown exponentially over the past decades. However, the science on reducing the concentration and effects of uremic toxins has not advanced in parallel. Additionally, the focus has remained for too long on dialysis strategies, which only benefit the small fraction of people with CKD who suffer from advanced kidney disease, whereas uremic toxicity effects are only partially prevented. This article reviews recent research on alternative methods to counteract uremic toxicity, emphasizing options that are also beneficial in the earlier stages of CKD, with a focus on both established methods and approaches which are still under investigation or at the experimental stage. We will consequently discuss the preservation of kidney function, the prevention of cardiovascular damage, gastro-intestinal interventions, including diet and biotics, and pharmacologic interventions. In the final part, we also review alternative options for extracorporeal uremic toxin removal. The future will reveal which of these options are valid for further development and evidence-based assessment, hopefully leading to a more sustainable treatment model for CKD than the current one.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Evelien Snauwaert
- Pediatric Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium;
- European Reference Network for Rare Kidney Diseases (ERKNet)
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| |
Collapse
|
6
|
Banjarnahor S, Scherpinski LA, Keller M, König J, Maas R. Differential uptake of arginine derivatives by the human heteromeric amino acid transporter b 0,+AT-rBAT (SLC7A9-SLC3A1). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03510-z. [PMID: 39480524 DOI: 10.1007/s00210-024-03510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
L-arginine and its (patho-)physiologically active derivatives, L-homoarginine and asymmetric dimethylarginine (ADMA), show significant differences in their renal clearance. The underlying molecular mechanisms remain to be elucidated, but selective tubular transport protein-mediated mechanisms likely play a role. In the present study, we investigate the human heteromeric transporter b0,+AT-rBAT (encoded by the SLC7A9 and SLC3A1 genes) as a potential candidate because it is localized in the luminal membrane of human proximal tubule cells and capable of mediating the cellular uptake of amino acids, including L-arginine. Double-transfected Madin-Darby canine kidney (MDCK) cells stably expressing human b0,+AT-rBAT exhibited significant uptake of L-arginine and L-homoarginine, with apparent Km values of 512.6 and 197.0 μM, respectively. On the contrary, ADMA uptake was not saturated up to 4000 μM, with a transport rate > 5 nmol × mg protein-1 × min-1. With an IC50 value of 115.8 μM, L-arginine inhibited L-homoarginine uptake. Conversely, L-arginine only exhibited a partial inhibitory effect on ADMA uptake. Taken together, our data indicate that b0,+AT-rBAT may contribute to the differential renal handling of L-arginine, L-homoarginine, and ADMA.
Collapse
Affiliation(s)
- Sofna Banjarnahor
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Research Centre for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), 16911, Cibinong, Jawa Barat, Indonesia
| | - Lorenz A Scherpinski
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Universität Regensburg, 93040, Regensburg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- FAU NeW Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- FAU NeW Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Wang Z, Gui Z, Zhang L, Wang Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J Cell Physiol 2024:e31464. [PMID: 39392232 DOI: 10.1002/jcp.31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Vascular calcification (VC) is common in patients with advanced chronic kidney disease (CKD).A series of factors, such as calcium and phosphorus metabolism disorders, uremic toxin accumulation, inflammation and oxidative stress and cellular senescence, cause osteoblast-like differentiation of vascular smooth muscle cells, secretion of extracellular vesicles, and imbalance of calcium regulatory factors, which together promote the development of VC in CKD. Recent advances in epigenetics have provided better tools for the investigation of VC etiology and new approaches for finding more accurate biomarkers. These advances have not only deepened our understanding of the pathophysiological mechanisms of VC in CKD, but also provided valuable clues for the optimization of clinical predictors and the exploration of potential therapeutic targets. The aim of this article is to provide a comprehensive overview of the pathogenesis of CKD VC, especially the new advances made in recent years, including the various key factors mentioned above. Through the comprehensive analysis, we expect to provide a solid theoretical foundation and research direction for future studies targeting the specific mechanisms of CKD VC, the establishment of clinical predictive indicators and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Zebin Gui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Radiology, Affliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Montomoli M, Candía BG, Barrios AA, Bernat EP. Anticoagulation in Chronic Kidney Disease. Drugs 2024; 84:1199-1218. [PMID: 39120783 DOI: 10.1007/s40265-024-02077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The nuanced landscape of anticoagulation therapy in patients with chronic kidney disease (CKD) presents a formidable challenge, intricately balancing the dual hazards of hemorrhage and thrombosis. These patients find themselves in a precarious position, teetering on the edge of these risks due to compromised platelet functionality and systemic disturbances within their coagulation frameworks. The management of such patients necessitates a meticulous approach to dosing adjustments and vigilant monitoring to navigate the perilous waters of anticoagulant therapy. This is especially critical considering the altered pharmacokinetics in CKD, where the clearance of drugs is significantly impeded, heightening the risk of accumulation and adverse effects. In the evolving narrative of anticoagulation therapy, the introduction of direct oral anticoagulants (DOACs) has heralded a new era, offering a glimmer of hope for those navigating the complexities of CKD. These agents, with their promise of easier management and a reduced need for monitoring, have begun to reshape the contours of care, particularly for patients not yet on dialysis. However, this is not without its caveats. The application of DOACs in the context of advanced CKD remains a largely uncharted territory, necessitating a cautious exploration to unearth their true potential and limitations. Moreover, the advent of innovative strategies such as left atrial appendage occlusion (LAAO) underscores the dynamic nature of anticoagulation therapy, potentially offering a tailored solution for those at the intersection of CKD and elevated stroke risk. Yet the journey toward integrating such advancements into standard practice is laden with unanswered questions, demanding rigorous investigation to illuminate their efficacy and safety across the spectrum of kidney disease. In summary, the management of anticoagulation in CKD is a delicate dance, requiring a harmonious blend of precision, caution, and innovation. As we venture further into this complex domain, we must build upon our current understanding, embracing both emerging therapies and the need for ongoing research. Only then can we hope to offer our patients a path that navigates the narrow strait between bleeding and clotting, toward safer and more effective care.
Collapse
Affiliation(s)
- Marco Montomoli
- Nephrology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
9
|
Al-Dajani AR, Kiang TKL. A high-throughput liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of p-cresol sulfate, p-cresol glucuronide, indoxyl sulfate, and indoxyl glucuronide in HepaRG culture medium and the demonstration of mefenamic acid as a potent and selective detoxifying agent. Expert Opin Drug Metab Toxicol 2024:1-13. [PMID: 39323391 DOI: 10.1080/17425255.2024.2409257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND p-cresol and indole are uremic compounds which undergo sulfonation to generate the highly toxic p-cresol sulfate (pCS) and indoxyl sulfate (IxS). They are also subjected to glucuronidation to produce the less toxic p-cresol glucuronide (pCG) and indoxyl glucuronide (IG). We developed and validated an assay to quantify these metabolites in HepaRG cells. We also tested the effects of mefenamic acid on their in-situ formations in relation to the development of cellular necrosis. RESEARCH DESIGN AND METHODS HepaRG cells were exposed to p-cresol or indole (0-1 mM) with mefenamic acid (0-3000 nM) for 24 hours to generate uremic metabolites. Cells were also exposed to 0.5 mM p-cresol or indole with/without 30 nM mefenamic acid to characterize lactate dehydrogenase (LDH) release. RESULTS The assay exhibited high sensitivity and wide calibration ranges covering human concentrations. HepaRG cells also generated physiologically-relevant concentrations of each metabolite. Mefenamic acid inhibited pCS formation in a concentration-dependent manner without affecting pCG, IxS, or IG. Mefenamic acid also reduced LDH release from p-cresol (by 50.12±5.86%) or indole (56.26±3.58%). CONCLUSIONS This novel assay is capable of quantifying these metabolites in HepaRG cells. Our novel findings suggest that mefenamic acid can be potentially utilized therapeutically to attenuate pCS-associated toxicities.
Collapse
Affiliation(s)
- Ala'a R Al-Dajani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
10
|
Summers S, Quimby J. Insights into the gut-kidney axis and implications for chronic kidney disease management in cats and dogs. Vet J 2024; 306:106181. [PMID: 38897377 DOI: 10.1016/j.tvjl.2024.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) in cats and dogs presents significant clinical challenges, with emerging research highlighting the pivotal role of the gut-kidney axis in its pathogenesis and management. Gut dysbiosis, characterized by alterations in the gut microbiome composition and function, contributes to microbial dysmetabolism of key nutrients causing uremic toxin accumulation and disruptions in amino acid, bile acid and fatty acid profiles. These disturbances in turn exacerbate renal dysfunction and systemic inflammation. Recent research in veterinary medicine, particularly in cats, supports the gut microbiome and microbial-derived metabolites as novel therapeutic targets. Potential therapeutic strategies targeting the gut microbiome and microbial dysmetabolism, including dietary management, probiotics, adsorbents, and addressing constipation, offer promising avenues for intervention to restore metabolic balance and preserve renal function. This review highlights the microbial influence on renal health and focuses on potential therapeutic strategies available to veterinarians to optimize the management of CKD in cats and dogs.
Collapse
Affiliation(s)
- Stacie Summers
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University Oregon, Magruder Hall, 700 SW 30th St, Corvallis 97331, USA.
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Dr., Columbus, OH, USA
| |
Collapse
|
11
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
12
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
14
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
15
|
Wulczyn KE, Shafi T, Anderson A, Rincon-Choles H, Clish CB, Denburg M, Feldman HI, He J, Hsu CY, Kelly T, Kimmel PL, Mehta R, Nelson RG, Ramachandran V, Ricardo A, Shah VO, Srivastava A, Xie D, Rhee EP, Kalim S. Metabolites Associated With Uremic Symptoms in Patients With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2024; 84:49-61.e1. [PMID: 38266973 PMCID: PMC11193655 DOI: 10.1053/j.ajkd.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
RATIONALE & OBJECTIVE The toxins that contribute to uremic symptoms in patients with chronic kidney disease (CKD) are unknown. We sought to apply complementary statistical modeling approaches to data from untargeted plasma metabolomic profiling to identify solutes associated with uremic symptoms in patients with CKD. STUDY DESIGN Cross-sectional. SETTING & PARTICIPANTS 1,761 Chronic Renal Insufficiency Cohort (CRIC) participants with CKD not treated with dialysis. PREDICTORS Measurement of 448 known plasma metabolites. OUTCOMES The uremic symptoms of fatigue, anorexia, pruritus, nausea, paresthesia, and pain were assessed by single items on the Kidney Disease Quality of Life-36 instrument. ANALYTICAL APPROACH Multivariable adjusted linear regression, least absolute shrinkage and selection operator linear regression, and random forest models were used to identify metabolites associated with symptom severity. After adjustment for multiple comparisons, metabolites selected in at least 2 of the 3 modeling approaches were deemed "overall significant." RESULTS Participant mean estimated glomerular filtration rate was 43mL/min/1.73m2, with 44% self-identifying as female and 41% as non-Hispanic Black. The prevalence of uremic symptoms ranged from 22% to 55%. We identified 17 metabolites for which a higher level was associated with greater severity of at least one uremic symptom and 9 metabolites inversely associated with uremic symptom severity. Many of these metabolites exhibited at least a moderate correlation with estimated glomerular filtration rate (Pearson's r≥0.5), and some were also associated with the risk of developing kidney failure or death in multivariable adjusted Cox regression models. LIMITATIONS Lack of a second independent cohort for external validation of our findings. CONCLUSIONS Metabolomic profiling was used to identify multiple solutes associated with uremic symptoms in adults with CKD, but future validation and mechanistic studies are needed. PLAIN-LANGUAGE SUMMARY Individuals living with chronic kidney disease (CKD) often experience symptoms related to CKD, traditionally called uremic symptoms. It is likely that CKD results in alterations in the levels of numerous circulating substances that, in turn, cause uremic symptoms; however, the identity of these solutes is not known. In this study, we used metabolomic profiling in patients with CKD to gain insights into the pathophysiology of uremic symptoms. We identified 26 metabolites whose levels were significantly associated with at least one of the symptoms of fatigue, anorexia, itchiness, nausea, paresthesia, and pain. The results of this study lay the groundwork for future research into the biological causes of symptoms in patients with CKD.
Collapse
Affiliation(s)
- Kendra E Wulczyn
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts.
| | - Tariq Shafi
- Division of Nephrology, Department of Medicine, Houston Methodist Hospital, Houston, Texas
| | - Amanda Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Hernan Rincon-Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michelle Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Pediatric Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California, San Francisco, School of Medicine, San Francisco, California; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Tanika Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Rupal Mehta
- Division of Nephrology, Northwestern University, Chicago, Illinois
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Vasan Ramachandran
- Department of Epidemiology and Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Public Health, Boston, Massachusetts
| | - Ana Ricardo
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Vallabh O Shah
- Department of Internal Medicine and Biochemistry, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dawei Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts; Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Desloovere A, Polderman N, Renken-Terhaerdt J, Shaw V, Anderson C, Greenbaum LA, Nelms CL, Qizalbash L, Stabouli S, Tuokkola J, Warady BA, Vande Walle J, Paglialonga F, Shroff R, Snauwaert E. The Management of Dietary Fiber Intake in Children With Chronic Kidney Disease - Clinical Practice Recommendations From the Pediatric Renal Nutrition Taskforce. J Ren Nutr 2024:S1051-2276(24)00095-5. [PMID: 38866350 DOI: 10.1053/j.jrn.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The benefits of dietary fiber are widely accepted. Nevertheless, a substantial proportion of children fail to meet the recommended intake of dietary fiber. Achieving adequate fiber intake is especially challenging in children with chronic kidney disease (CKD). An international team of pediatric renal dietitians and pediatric nephrologists from the Pediatric Renal Nutrition Taskforce (PRNT) has developed clinical practice recommendations (CPRs) for the dietary intake of fiber in children and adolescents with CKD. In this CPR paper, we propose a definition of fiber, provide advice on the requirements and assessment of fiber intake, and offer practical guidance on optimizing dietary fiber intake in children with CKD. In addition, given the paucity of available evidence and to achieve consensus from international experts, a Delphi survey was performed in which all the clinical practice recommendations were reviewed.
Collapse
Affiliation(s)
- An Desloovere
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium
| | - Nonnie Polderman
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - José Renken-Terhaerdt
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vanessa Shaw
- Department of Pediatric Nephrology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Anderson
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Larry A Greenbaum
- Department of Pediatric Nephrology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Christina L Nelms
- Department of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Leila Qizalbash
- Department of Pediatric Nephrology, Great Northern Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Stella Stabouli
- Pediatric Nephrology Unit, 1st Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jetta Tuokkola
- Children's Hospital and Clinical Nutrition Unit, Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Bradley A Warady
- Department of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium
| | - Fabio Paglialonga
- Department of Pediatric Nephrology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- Department of Pediatric Nephrology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien Snauwaert
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium.
| |
Collapse
|
17
|
Frąk W, Dąbek B, Balcerczyk-Lis M, Motor J, Radzioch E, Młynarska E, Rysz J, Franczyk B. Role of Uremic Toxins, Oxidative Stress, and Renal Fibrosis in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:687. [PMID: 38929126 PMCID: PMC11200916 DOI: 10.3390/antiox13060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Affecting millions of people worldwide, chronic kidney disease is a serious medical problem. It results in a decrease in glomerular filtration rate below 60 mL/min/1.73 m, albuminuria, abnormalities in urine sediment and pathologies detected by imaging studies lasting a minimum of 3 months. Patients with CKD develop uremia, and as a result of the accumulation of uremic toxins in the body, patients can be expected to suffer from a number of medical consequences such as progression of CKD with renal fibrosis, development of atherosclerosis or increased incidence of cardiovascular events. Another key element in the pathogenesis of CKD is oxidative stress, resulting from an imbalance between the production of antioxidants and the production of reactive oxygen species. Oxidative stress contributes to damage to cellular proteins, lipids and DNA and increases inflammation, perpetuating kidney dysfunction. Additionally, renal fibrogenesis involving the accumulation of fibrous tissue in the kidneys occurs. In our review, we also included examples of forms of therapy for CKD. To improve the condition of CKD patients, pharmacotherapy can be used, as described in our review. Among the drugs that improve the prognosis of patients with CKD, we can include: GLP-1 analogues, SGLT2 inhibitors, Finerenone monoclonal antibody-Canakinumab and Sacubitril/Valsartan.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Motor
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
18
|
Snauwaert E, De Buyser S, Van Biesen W, Raes A, Glorieux G, Collard L, Van Hoeck K, Van Dyck M, Godefroid N, Walle JV, Eloot S. Indoxyl Sulfate Contributes to Impaired Height Velocity in (Pre)School Children. Kidney Int Rep 2024; 9:1674-1683. [PMID: 38899199 PMCID: PMC11184389 DOI: 10.1016/j.ekir.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Growth failure is considered the most important clinical outcome parameter in childhood chronic kidney disease (CKD). Central to the pathophysiology of growth failure is the presence of a chronic proinflammatory state, presumed to be partly driven by the accumulation of uremic toxins. In this study, we assessed the association between uremic toxin concentrations and height velocity in a longitudinal multicentric prospective pediatric CKD cohort of (pre)school-aged children and children during pubertal stages. Methods In a prospective, multicentric observational study, a selection of uremic toxin levels of children (aged 0-18 years) with CKD stage 1 to 5D was assessed every 3 months (maximum 2 years) along with clinical growth parameters. Linear mixed models with a random slope for age and a random intercept for child were fitted for height (in cm and SD scores [SDS]). A piecewise linear association between age and height was assumed. Results Data analysis included data from 560 visits of 81 children (median age 9.4 years; 2/3 male). In (pre)school aged children (aged 2-12 years), a 10% increase in concurrent indoxyl sulfate (IxS, total) concentration resulted in an estimated mean height velocity decrease of 0.002 SDS/yr (P < 0.05), given that CKD stage, growth hormone (GH), bicarbonate concentration, and dietary protein intake were held constant. No significant association with height velocity was found in children during pubertal stages (aged >12 years). Conclusion The present study demonstrated that, especially IxS contributes to a lower height velocity in (pre)school children, whereas we could not find a role for uremic toxins with height velocity during pubertal stages.
Collapse
Affiliation(s)
- Evelien Snauwaert
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Stefanie De Buyser
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Ann Raes
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Laure Collard
- Department of Pediatric Nephrology, CHC Liège, Ghent, Belgium
| | - Koen Van Hoeck
- Department of Pediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Maria Van Dyck
- Department of Pediatric Nephrology, University Hospital Leuven, Leuven, Belgium
| | - Nathalie Godefroid
- Department of Pediatric Nephrology, University Hospital Saint-Luc, Brussels, Belgium
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
19
|
Al-Dajani AR, Hou QK, Kiang TKL. Liquid Chromatography-Mass Spectrometry Analytical Methods for the Quantitation of p-Cresol Sulfate and Indoxyl Sulfate in Human Matrices: Biological Applications and Diagnostic Potentials. Pharmaceutics 2024; 16:743. [PMID: 38931865 PMCID: PMC11206749 DOI: 10.3390/pharmaceutics16060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Indoxyl sulfate (IxS) and p-cresyl sulfate (pCS) are toxic uremic compounds with documented pathological outcomes. This review critically and comprehensively analyzes the available liquid chromatography-mass spectrometry methods quantifying IxS and pCS in human matrices and the biological applications of these validated assays. Embase, Medline, PubMed, Scopus, and Web of Science were searched until December 2023 to identify assays with complete analytical and validation data (N = 23). Subsequently, citation analysis with PubMed and Scopus was utilized to identify the biological applications for these assays (N = 45). The extraction methods, mobile phase compositions, chromatography, and ionization methods were evaluated with respect to overall assay performance (e.g., sensitivity, separation, interference). Most of the assays focused on human serum/plasma, utilizing acetonitrile or methanol (with ammonium acetate/formate or formic/acetic acid), liquid-liquid extraction, reverse phase (e.g., C18) chromatography, and gradient elution for analyte separation. Mass spectrometry conditions were also consistent in the identified papers, with negative electrospray ionization, select multiple reaction monitoring transitions and deuterated internal standards being the most common approaches. The validated biological applications indicated IxS and/or pCS were correlated with renal disease progression and cardiovascular outcomes, with limited data on central nervous system disorders. Methods for reducing IxS and/or pCS concentrations were also identified (e.g., drugs, natural products, diet, dialysis, transplantation) where inconsistent findings have been reported. The clinical monitoring of IxS and pCS is gaining significant interest, and this review will serve as a useful compendium for scientists and clinicians.
Collapse
Affiliation(s)
| | | | - Tony K. L. Kiang
- Katz Group Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.R.A.-D.); (Q.K.H.)
| |
Collapse
|
20
|
Lazarevic V, Teta D, Pruijm M, Stoermann C, Marangon N, Mareschal J, Solano R, Wurzner-Ghajarzadeh A, Gaïa N, Cani PD, Dizdar OS, Herrmann FR, Schrenzel J, Genton L. Gut microbiota associations with chronic kidney disease: insights into nutritional and inflammatory parameters. Front Microbiol 2024; 15:1298432. [PMID: 38835485 PMCID: PMC11148242 DOI: 10.3389/fmicb.2024.1298432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction The gut barrier, comprising gut microbiota, plays a pivotal role in chronic kidney disease (CKD) progression and nutritional status. This study aimed to explore gut barrier alterations in hemodialyzed (HD) patients, non-HD (NHD) CKD patients, and healthy volunteers. Methods Our cross-sectional study enrolled 22 HD patients, 11 NHD patients, and 11 healthy volunteers. We evaluated fecal microbiota composition (assessed via bacterial 16S rRNA gene sequencing), fecal IgA levels, surrogate markers of gut permeability, serum cytokines, appetite mediators, nutritional status, physical activity, and quality of life. Results HD patients exhibited significant alterations in fecal microbiota composition compared to healthy volunteers, with observed shifts in taxa known to be associated with dietary patterns or producing metabolites acting on human host. In comparison to healthy volunteers, individuals with HD patients exhibited elevated levels of inflammatory markers (CRP, IL-6 and TNF-α), glucagon-like peptide-2, and potential anorexigenic markers (including leptin and peptide YY). NHD patients had increased levels of CRP and peptide YY. Overall fecal microbiota composition was associated with height, soft lean mass, resting energy expenditure, handgrip strength, bone mineral content and plasma albumin and TNF-α. Discussion Compared to healthy volunteers, HD patients have an altered fecal microbiota composition, a higher systemic inflammation, and a modification in plasma levels of appetite mediators. While some differences align with previous findings, heterogeneity exists likely due to various factors including lifestyle and comorbidities. Despite limitations such as sample size, our study underscores the multifaceted interplay between gut microbiota, physiological markers, and kidney function, warranting further investigation in larger cohorts.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel Teta
- Nephrology, Hospital of Sion, Sion, Switzerland
| | - Menno Pruijm
- Nephrology, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Catherine Stoermann
- Nephrology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Nicola Marangon
- Department of Nephrology, Geneva University Hospitals and Clinique of Champel, Geneva, Switzerland
| | - Julie Mareschal
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Nadia Gaïa
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Oğuzhan S Dizdar
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Internal Medicine and Clinical Nutrition Unit, Kayseri City Training and Research Hospital, University of Health Sciences, Kayseri, Türkiye
| | - François R Herrmann
- Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Nasrallah OG, Herrera MT, Heidar NFA, Mahdi JH, Nasr RW. Impact of kidney disease on perioperative outcomes of endoscopic BPH surgery: a propensity score matched analysis from the NSQIP database. World J Urol 2024; 42:337. [PMID: 38762841 DOI: 10.1007/s00345-024-05039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
INTRODUCTION To assess the impact of kidney function in patients with BPH undergoing surgery prior to Transurethral resection of prostate (TURP), Laser enucleation of the prostate (LEP), and Laser Vaporization of the prostate (LVP) on operative and post-operative outcomes using the ACS-NSQIP database. METHODS The ACS-NSQIP database was reviewed for patients that underwent TURP, LEP and LVP for treatment of patients with BPH between the years of 2008 and 2021. Demographics, comorbidities, bleeding disorders, operative time, and surgical procedure performed were collected for comparison between Kidney function groups: G1, normal/high function; G2-G3, mild/moderate kidney disease; and G4-G5, severe kidney disease. The 30-day peri-operative complications were measured and a multivariate logistic regression analysis was performed while adjusting for all confounding variables. Propensity score matching was performed between the G1 and G4-G5 cohorts. RESULTS A total of 83,020 patients were included. On multivariable regression, in the G2-G3 cohort, patients were at significantly increased risk for renal complications with OR = 2.43[1.56-3.79]. After propensity score matching, the G4-G5 cohort showed increased odds of pneumonia OR = 4.02[1.343-12.056], renal complications with OR = 7.62[2.283-25.411], cardiac complications OR = 4.53[1.531-13.411], and sepsis/septic shock OR = 1.76[1.091-2.834]. They also had a higher need for blood transfusion OR = 3.58[2.242-5.714], and prolonged hospital stay with OR = 1.49[1.296-1.723]. CONCLUSION Pre-operative kidney disease may pose an increased risk of complications for patients undergoing endoscopic BPH surgery. The literature lacks information on the effect of pre-operative kidney disease on endoscopic BPH surgeries. Further studies are required to compare post-operative outcomes of LEP and LVP as compared to TURP across kidney function status.
Collapse
Affiliation(s)
- Oussama G Nasrallah
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maya T Herrera
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nassib F Abou Heidar
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana H Mahdi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Rami W Nasr
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
22
|
Lee H, Liu KH, Yang YH, Liao JD, Lin BS, Wu ZZ, Chang AC, Tseng CC, Wang MC, Tsai YS. Advances in uremic toxin detection and monitoring in the management of chronic kidney disease progression to end-stage renal disease. Analyst 2024; 149:2784-2795. [PMID: 38647233 DOI: 10.1039/d4an00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Patients with end-stage kidney disease (ESKD) rely on dialysis to remove toxins and stay alive. However, hemodialysis alone is insufficient to completely remove all/major uremic toxins, resulting in the accumulation of specific toxins over time. The complexity of uremic toxins and their varying clearance rates across different dialysis modalities poses significant challenges, and innovative approaches such as microfluidics, biomarker discovery, and point-of-care testing are being investigated. This review explores recent advances in the qualitative and quantitative analysis of uremic toxins and highlights the use of innovative methods, particularly label-mediated and label-free surface-enhanced Raman spectroscopy, primarily for qualitative detection. The ability to analyze uremic toxins can optimize hemodialysis settings for more efficient toxin removal. Integration of multiple omics disciplines will also help identify biomarkers and understand the pathogenesis of ESKD, provide deeper understanding of uremic toxin profiling, and offer insights for improving hemodialysis programs. This review also highlights the importance of early detection and improved understanding of chronic kidney disease to improve patient outcomes.
Collapse
Affiliation(s)
- Han Lee
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Kuan-Hung Liu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yu-Hsuan Yang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Jiunn-Der Liao
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Bo-Shen Lin
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Zheng-Zhe Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Alice Chinghsuan Chang
- Center for Measurement Standards, Industrial Technology Research Institute, No. 321, Kuang Fu Road, Section 2, Hsinchu 300, Taiwan.
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yau-Sheng Tsai
- Center for Clinical Medicine Research, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| |
Collapse
|
23
|
Saleh TA, Whitson JA, Keiser P, Prasad P, Jenkins BC, Sodeinde T, Mann C, Rabinovitch PS, McReynolds MR, Sweetwyne MT. Metabolite accumulation from oral NMN supplementation drives aging-specific kidney inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588624. [PMID: 38645109 PMCID: PMC11030441 DOI: 10.1101/2024.04.09.588624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mitochondrial-rich renal tubule cells are key regulators of blood homeostasis via excretion and reabsorption of metabolic waste. With age, tubules are subject to increasing mitochondrial dysfunction and declining nicotinamide adenine dinucleotide (NAD+) levels, both hampering ATP production efficiency. We tested two mitochondrial interventions in young (6-mo) and aged (26-mo) adult male mice: elamipretide (ELAM), a tetrapeptide in clinical trials that improves mitochondrial structure and function, and nicotinamide mononucleotide (NMN), an NAD+ intermediate and commercially available oral supplement. Kidneys were analyzed from young and aged mice after eight weeks of treatment with ELAM (3 mg/kg/day), NMN (300 mg/kg/day), or from aged mice treated with the two interventions combined (ELAM+NMN). We hypothesized that combining pharmacologic treatments to ameliorate mitochondrial dysfunction and boost NAD+ levels, would more effectively reduce kidney aging than either intervention alone. Unexpectedly, in aged kidneys, NMN increased expression of genetic markers of inflammation (IL-1-beta; and Ccl2) and tubule injury (Kim-1). Metabolomics of endpoint sera showed that NMN-treated aged mice had higher circulating levels of uremic toxins than either aged controls or young NMN-treated mice. ELAM+NMN-treated aged mice accumulated uremic toxins like NMN-only aged mice, but reduced IL-1-beta; and Ccl2 kidney mRNA. This suggests that pre-existing mitochondrial dysfunction in aged kidney underlies susceptibility to inflammatory signaling with NMN supplementation in aged, but not young, mice. These findings demonstrate age and tissue dependent effects on downstream metabolic accumulation from NMN and highlight the need for targeted analysis of aged kidneys to assess the safety of anti-aging supplements in older populations.
Collapse
|
24
|
Krüger T, Dellanna F, Kleophas W, Flader O, McClure C, Caiazzo M, Manfredini S. Safety and performance of the Clearum™ high flux hemodialyzer. Artif Organs 2024; 48:365-374. [PMID: 37962073 DOI: 10.1111/aor.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Clearum™ is a high flux steam sterilized dialyzer for patients with hemodialysis or hemodiafiltration. This study evaluated the safety and performance of the Clearum high flux steam sterilized hemodialyzer in the removal of small and middle-sized toxins. METHODS A prospective, interventional, nonrandomized study enrolled twenty end-stage renal disease patients undergoing hemodialysis. The Clearum high flux steam sterilized dialyzer was compared to Fresenius FX dialyzers for baseline comparison. The duration of the trial was 2 weeks for the FX dialyzer and 6 weeks with the Clearum high flux steam sterilized dialyzer. In vitro studies with dextrans of varying sizes were performed to compare the membrane characteristics and sieving coefficient curves for the two dialyzers. RESULTS The primary objective of a mean urea reduction ratio >65% was met, with no significant difference in mean urea reduction ratio between the Clearum high flux steam sterilized and Fresenius FX-series of dialyzers (p = 0.86). No dialyzer-related adverse events were reported in the study. β-2-microglobulin reduction with the Clearum high flux steam sterilized dialyzer was statistically higher than the FX-series dialyzer (66.5% vs. 53.6%; p < 0.0001). Predialysis interleukin-6 and C-reactive protein concentrations, blood-rest scores (residual blood after blood restitution), and thrombin-anti-thrombin values were comparable. Albumin remained stable during the 6 weeks of Clearum high flux steam sterilized dialyzer use, with no appreciable differences compared to the Fresenius FX-series. CONCLUSION The Clearum high flux steam sterilized dialyzer showed good mid-term effectivity for small and middle molecule removal with no reported dialyzer-related adverse events.
Collapse
Affiliation(s)
- Thilo Krüger
- Department of Nephrology, University Clinic of the RWTH Aachen, Aachen, Germany
- MVZ DaVita Geilenkirchen GmbH, Geilenkirchen, Germany
| | | | | | - Ons Flader
- MVZ DaVita Rhein-Ruhr GmbH, Duesseldorf, Germany
| | - Candace McClure
- North American Science Associates, Inc., Northwood, Ohio, USA
| | | | | |
Collapse
|
25
|
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci 2024; 25:3745. [PMID: 38612557 PMCID: PMC11012052 DOI: 10.3390/ijms25073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
26
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Zwaenepoel B, De Backer T, Glorieux G, Verbeke F. Predictive value of protein-bound uremic toxins for heart failure in patients with chronic kidney disease. ESC Heart Fail 2024; 11:466-474. [PMID: 38041505 PMCID: PMC10804180 DOI: 10.1002/ehf2.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS This retrospective cohort study aimed to be the first to evaluate the association between plasma protein-bound uremic toxins (PBUTs) concentrations, echocardiographic parameters of heart failure (HF), and incident HF events in patients with chronic kidney disease (CKD) not on dialysis. METHODS AND RESULTS Retrospective, single-centre, cohort study at the Ghent University Hospital, Belgium. Adults with CKD stages G1-G5, not on dialysis, could be included. Exclusion criteria were ongoing pregnancy, age <18 years, active acute infection, active malignancy, history of transplantation, or a cardiovascular event within 3 months prior to inclusion. Free and total concentrations of five PBUTs were quantified at baseline: indoxyl sulfate (IxS), p-cresyl sulfate (pCS), p-cresyl glucuronide (pCG), indole-3 acetic acid (IAA), and hippuric acid (HA). Patients were grouped into three echocardiographic categories: normal left ventricular ejection fraction (LVEF) and normal left ventricular end-diastolic pressure (LVEDP), normal LVEF and increased LVEDP, and reduced LVEF, based on available echocardiographic data in a time interval of ±6 months around the plasma sample collection. A total of 523 patients were included between January 2011 and January 2014. Echocardiographic data within the predefined timeframe were available for 210 patients (40% of patients). Levels of pCG and pCS were significantly higher in patients with reduced (<50%) versus normal LVEF (P < 0.05). After a median follow-up 5.5 years, 43 (8.4%) patients reached the composite endpoint of hospitalization or mortality due to HF. Free fractions of IxS, pCS, and pCG showed the strongest association with clinical outcome: free IxS: HR 1.71 (95% CI 1.11-2.63; P = 0.015), free pCS: HR 1.82 (95% CI 1.11-3.01; P = 0.019), and free pCG: HR 1.67 (95% CI 1.08-2.58; P = 0.020), and these results were independent of age, gender, body mass index, diabetes, and systolic blood pressure. In models that were also adjusted for serum creatinine, the free fractions of these PBUTs remained significant. CONCLUSIONS Elevated free concentrations of IxS, pCG, and pCS were independently associated with an increased risk of HF events in non-dialysed CKD patients. Further research is necessary to confirm these findings and investigate the potential impact of PBUT-lowering interventions on HF events in this patient group.
Collapse
Affiliation(s)
- Bert Zwaenepoel
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Tine De Backer
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Griet Glorieux
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Francis Verbeke
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| |
Collapse
|
28
|
Ibos KE, Bodnár É, Dinh H, Kis M, Márványkövi F, Kovács ZZA, Siska A, Földesi I, Galla Z, Monostori P, Szatmári I, Simon P, Sárközy M, Csabafi K. Chronic kidney disease may evoke anxiety by altering CRH expression in the amygdala and tryptophan metabolism in rats. Pflugers Arch 2024; 476:179-196. [PMID: 37989901 DOI: 10.1007/s00424-023-02884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Chronic kidney disease (CKD) is associated with anxiety; however, its exact mechanism is not well understood. Therefore, the aim of the present study was to assess the effect of moderate CKD on anxiety in rats. 5/6 nephrectomy was performed in male Wistar rats. 7 weeks after, anxiety-like behavior was assessed by elevated plus maze (EPM), open field (OF), and marble burying (MB) tests. At weeks 8 and 9, urinalysis was performed, and blood and amygdala samples were collected, respectively. In the amygdala, the gene expression of Avp and the gene and protein expression of Crh, Crhr1, and Crhr2 were analyzed. Furthermore, the plasma concentration of corticosterone, uremic toxins, and tryptophan metabolites was measured by UHPLC-MS/MS. Laboratory tests confirmed the development of CKD. In the CKD group, the closed arm time increased; the central time and the total number of entries decreased in the EPM. There was a reduction in rearing, central distance and time in the OF, and fewer interactions with marbles were detected during MB. CKD evoked an upregulation of gene expression of Crh, Crhr1, and Crhr2, but not Avp, in the amygdala. However, there was no alteration in protein expression. In the CKD group, plasma concentrations of p-cresyl-sulfate, indoxyl-sulfate, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid, picolinic acid, and quinolinic acid increased. However, the levels of tryptophan, tryptamine, 5-hydroxytryptophan, serotonin, and tyrosine decreased. In conclusion, moderate CKD evoked anxiety-like behavior that might be mediated by the accumulation of uremic toxins and metabolites of the kynurenine pathway, but the contribution of the amygdalar CRH system to the development of anxiety seems to be negligible at this stage.
Collapse
Affiliation(s)
- Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary.
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| | - Hoa Dinh
- Department of Biochemistry, Bach Mai Hospital, 78 Giai Phong Street, Phuong Mai, Dong Da, Hanoi, 100000, Vietnam
| | - Merse Kis
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6 Semmelweis utca, Szeged, H-6725, Hungary
| | - Zsolt Galla
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - Péter Monostori
- Metabolic and Newborn Screening Laboratory, Department of Pediatrics, Albert Szent-Györgyi Medical School, University of Szeged, 35-36 Temesvári körút, Szeged, H-6726, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Péter Simon
- Institute of Pharmaceutical Chemistry and HUN-REN-SZTE Stereochemistry Research Group, University of Szeged, 6 Eötvös utca, Szeged, H-6720, Hungary
| | - Márta Sárközy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, 9 Dóm tér, University of Szeged, Szeged, H-6720, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, 1 Semmelweis utca, Szeged, H-6725, Hungary
| |
Collapse
|
29
|
Jones A, Swan D, Lisman T, Barnes GD, Thachil J. Anticoagulation in chronic kidney disease: current status and future perspectives. J Thromb Haemost 2024; 22:323-336. [PMID: 37778512 DOI: 10.1016/j.jtha.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Chronic kidney disease (CKD) is being diagnosed increasingly worldwide. It is often identified in individuals with comorbidities, which may increase the already heightened risk of thrombosis and hemorrhage associated with CKD. Oral anticoagulation is an effective means of reducing rates of ischemic stroke and systemic embolism in patients with atrial fibrillation and minimizes the morbidity and mortality caused by venous thromboembolic disease. Despite the proven benefits in the majority of patients, these have not been so clearly realized in patients with CKD due to the precarious balance between bleeding and thromboembolic complications. In this review, the current status of anticoagulant utilization in CKD is examined, and some practical recommendations are put forward to assist in the decision-making process of safely anticoagulating patients with CKD diagnosed with atrial fibrillation and venous thromboembolism.
Collapse
Affiliation(s)
- Alfred Jones
- Department of Haematology, Beaumont Hospital, Dublin, Ireland
| | - Dawn Swan
- Department of Haematology, Beaumont Hospital, Dublin, Ireland.
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geoffrey D Barnes
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jecko Thachil
- Department of Haematology, Manchester University Hospitals, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
30
|
Schildboeck C, Harm S, Hartmann J. In vitro Removal of Protein-Bound Retention Solutes by Extracorporeal Blood Purification Procedures. Blood Purif 2024; 53:231-242. [PMID: 38262384 DOI: 10.1159/000534906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION When the kidneys or liver fail, toxic metabolites accumulate in the patient's blood, causing cardiovascular and neurotoxic complications and increased mortality. Conventional membrane-based extracorporeal blood purification procedures cannot remove these toxins efficiently. The aim of this in vitro study was to determine whether commercial hemoperfusion adsorbers are suitable for removing protein-bound retention solutes from human plasma and whole blood as well as to compare the removal to conventional hemodialysis. METHODS For in vitro testing of the removal of protein-bound substances, whole blood and plasma were spiked with uremic retention solutes (homocysteine, hippuric acid, indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and the toxins of liver failure (bilirubin, cholic acid, tryptophan, phenol). Subsequently, the protein binding of each retention solute was determined. The adsorption characteristics of the hemoperfusion adsorbers, Jafron HA and Biosky MG, both approved for the adsorption of protein-bound uremic retention solutes and Cytosorb, an adsorber recommended for adsorption of cytokines, were tested by incubating them in spiked whole blood or plasma for 1 h. Subsequently, the adsorption characteristics of the adsorbers were tested in a dynamic system. For this purpose, a 6-h in vitro hemoperfusion treatment was compared with an equally long in vitro hemodialysis treatment. RESULTS Hippuric acid, homocysteine, indoxyl sulfate, and tryptophan were most effectively removed by hemodialysis. Bilirubin and cholic acid were removed best by hemoperfusion with Cytosorb. A treatment with Jafron HA and Biosky MG showed similar results for the adsorption of the tested retention solutes and were best for removing phenol. 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid could not be removed with any treatment method. DISCUSSION/CONCLUSION A combination of hemodialysis with hemoperfusion seems promising to improve the removal of some toxic metabolites in extracorporeal therapies. However, some very strongly protein-bound metabolites cannot be removed adequately with the adsorbers tested.
Collapse
Affiliation(s)
- Claudia Schildboeck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Jens Hartmann
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
31
|
Kawanishi H. Middle Molecular Uremic Toxin and Blood Purification Therapy. J Clin Med 2024; 13:647. [PMID: 38337341 PMCID: PMC10856111 DOI: 10.3390/jcm13030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The purpose of blood purification therapy is to remove uremic toxins, and middle molecules (MMs) are a specific target. An MM is defined as a solute that passes through the glomerulus with a molecular weight in the range of 0.5-58 kDa, and new classifications of "small-middle 0.5-15 kDa," "medium-middle 15-25 kDa," and "large-middle 25-58 kDa" were proposed. In Japan, the removal of α1-microglobulin (αMG) in the large-middle range has been the focus, but a new theory of removal has been developed, emphasizing the antioxidant effect of αMG as a physiological function. Clinical proof of this mechanism will lead to further development of blood purification therapies.
Collapse
Affiliation(s)
- Hideki Kawanishi
- Tsuchiya General Hospital, 3-30 Nakajima-cho Naka-ku, Hiroshima 730-8655, Japan
| |
Collapse
|
32
|
Wulczyn KE, Forfang D, Kalim S. Symptom Science in Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:13-20. [PMID: 38403388 DOI: 10.1053/j.akdh.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 02/27/2024]
Abstract
Physical and emotional symptoms are highly prevalent among patients with kidney disease and are directly linked to impaired health-related quality of life. Symptom science is a field of research aimed at advancing knowledge of the holistic mechanisms driving symptoms, how best to assess symptoms accurately, and developing novel and patient-centered approaches to symptom management. Patients with kidney disease have identified symptom science as a top research priority, and opportunities abound for ongoing patient engagement in symptom-related research efforts and clinical care. This review describes the burden of symptoms experienced by patients with kidney disease, explores the spectrum of patient engagement in symptom care and research, and discusses approaches for symptom assessment and management, taking into consideration the multitude of factors that may contribute to symptoms.
Collapse
Affiliation(s)
- Kendra E Wulczyn
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Derek Forfang
- National Forum of ESRD Networks Kidney Patient Advisory Council, Burlingame, CA; National Kidney Foundation Public Policy Committee, New York, NY
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
33
|
Martino FK, Novara G, Nalesso F, Calò LA. Conservative Management in End-Stage Kidney Disease between the Dialysis Myth and Neglected Evidence-Based Medicine. J Clin Med 2023; 13:41. [PMID: 38202048 PMCID: PMC10779521 DOI: 10.3390/jcm13010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In the last few decades, the aging of the general population has significantly increased the number of elderly patients with end-stage kidney disease (ESKD) who require renal replacement therapy. ESKD elders are often frail and highly comorbid with social issues and seem to not benefit from dialysis in terms of survival and quality of life. Conservative management (CM) could represent a valid treatment option, allowing them to live for months to years with a modest impact on their habits. Despite these possible advantages, CM remains underused due to the myth of dialysis as the only effective treatment option for all ESKD patients regardless of its impact on quality of life and survival. Both CM and dialysis remain valid alternatives in the management of ESKD. However, assessing comorbidities, disabilities, and social context should drive the choice of the best possible treatment for ESKD, while in elderly patients with short life expectancies, referring them to palliative care seems the most reasonable choice.
Collapse
Affiliation(s)
- Francesca K. Martino
- Nephrology, Dialysis, Transplantation Unit, Department of Medicine (DIMED), University of Padova, 35124 Padua, Italy; (F.K.M.); (F.N.)
| | - Giacomo Novara
- Department of Surgery, Oncology and Gastroenterology, Urology Clinic University of Padua, 35124 Padua, Italy
| | - Federico Nalesso
- Nephrology, Dialysis, Transplantation Unit, Department of Medicine (DIMED), University of Padova, 35124 Padua, Italy; (F.K.M.); (F.N.)
| | - Lorenzo A. Calò
- Nephrology, Dialysis, Transplantation Unit, Department of Medicine (DIMED), University of Padova, 35124 Padua, Italy; (F.K.M.); (F.N.)
| |
Collapse
|
34
|
Khreba N, Khedr D, Abdel-Baky A, Kannishy GE, Samaan E. Nephron index rather than serum FGF 23 predicts endothelial dysfunction in early but not advanced chronic kidney disease patients. Int Urol Nephrol 2023; 55:3159-3165. [PMID: 37043155 PMCID: PMC10611818 DOI: 10.1007/s11255-023-03589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Endothelial dysfunction is the primary step for the development of CKD-related cardiovascular disease. Early prediction and management can influence patient survival. Serum testing of FGF 23 hormone and urinary phosphate excretion were studied as predictors of all-cause cardiovascular morbidity in CKD patients; however, their relation to endothelial dysfunction is controversial. A combination of both in one index is hypothesized to increase their sensitivity in detecting endothelial dysfunction, especially in the early stages of CKD before the dominance of hyperphosphatemia, the original risk. METHODS A cross-sectional comparative analysis between thirty CKD stage 3 patients and sixty stage 4-5 CKD patients was conducted. All patients were tested for markers of mineral bone disorders including serum FGF 23 and 24-h urinary phosphate excretion. A combination of both in one index (nephron index) is calculated and hypothesized to correlate with nephron number. Endothelial dysfunction was assessed by measuring the post-occlusion brachial flow-mediated dilatation (FMD). RESULTS In univariate and multivariate regression analyses, the nephron index was the only predictor of endothelial dysfunction in individuals with stage 3 CKD (r = 0.74, P 0.01). This was not applied to stage 4-5 CKD patients where serum phosphorus (r = - 0.53, P 0.001), intact PTH (r = - 0.53, P 0.001), uric acid (r = - 0.5, P 0.001), and measured GFR (r = 0.59, P 0.001) were the highest correlates to FMD; the Nephron index had the weakest correlation (r = 0.28, P = 0.02) and is not predictive of endothelial dysfunction. CONCLUSION Nephron index calculation showed better correlation with endothelial dysfunction than using any of its determinants alone in early stages of CKD when FGF 23 levels are just beginning to rise. In advanced CKD patients, hyperphosphatemia, hyperparathyroidism, hyperuricemia, and measured GFR are more reliable than nephron index.
Collapse
Affiliation(s)
- Nora Khreba
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Doaa Khedr
- Diagnostic and Interventional Radiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Azza Abdel-Baky
- Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ghada El Kannishy
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt.
| |
Collapse
|
35
|
Schrauben SJ, Sapa H, Xie D, Zhang X, Anderson AH, Shlipak MG, Hsu CY, Shafi T, Mehta R, Bhat Z, Brown J, Charleston J, Chen J, He J, Ix JH, Rao P, Townsend R, Kimmel PL, Vasan RS, Feldman HI, Seegmiller JC, Brunengraber H, Hostetter TH, Schelling JR. Association of urine and plasma ADMA with atherosclerotic risk in DKD cardiovascular disease risk in diabetic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant 2023; 38:2809-2815. [PMID: 37230949 PMCID: PMC10689177 DOI: 10.1093/ndt/gfad103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with atherosclerotic cardiovascular disease (ASCVD) risk, especially among those with diabetes. Altered metabolism of solutes that accumulate in CKD [asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and trimethylamine N-oxide (TMAO)] may reflect pathways linking CKD with ASCVD. METHODS This case-cohort study included Chronic Renal Insufficiency Cohort participants with baseline diabetes, estimated glomerular filtration rate <60 mL/min/1.73 m2, and without prior history for each outcome. The primary outcome was incident ASCVD (time to first myocardial infarction, stroke or peripheral artery disease event) and secondary outcome was incident heart failure. The subcohort comprised randomly selected participants meeting entry criteria. Plasma and urine ADMA, SDMA and TMAO concentrations were determined by liquid chromatography-tandem mass spectrometry. Associations of uremic solute plasma concentrations and urinary fractional excretions with outcomes were evaluated by weighted multivariable Cox regression models, adjusted for confounding covariables. RESULTS Higher plasma ADMA concentrations (per standard deviation) were associated with ASCVD risk [hazard ratio (HR) 1.30, 95% confidence interval (CI) 1.01-1.68]. Lower fractional excretion of ADMA (per standard deviation) was associated with ASCVD risk (HR 1.42, 95% CI 1.07-1.89). The lowest quartile of ADMA fractional excretion was associated with greater ASCVD risk (HR 2.25, 95% CI 1.08-4.69) compared with the highest quartile. Plasma SDMA and TMAO concentration and fractional excretion were not associated with ASCVD. Neither plasma nor fractional excretion of ADMA, SDMA and TMAO were associated with incident heart failure. CONCLUSION These data suggest that decreased kidney excretion of ADMA leads to increased plasma concentrations and ASCVD risk.
Collapse
Affiliation(s)
- Sarah J Schrauben
- Department of Medicine, Perelman School of Medicine, Center for Clinical Epidemiology and Biostatistics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dawei Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoming Zhang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Hyre Anderson
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Chi-yuan Hsu
- Department of Medicine, Division of Nephrology, University of California, San Francisco, San Francisco, CA, USA
| | - Tariq Shafi
- Department of Medicine, Division of Nephrology, Houston Methodist Hospital, Houston, TX, USA
| | - Rupal Mehta
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University, Chicago, IL, USA
| | - Zeenat Bhat
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Julie Brown
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeanne Charleston
- Department of Internal Medicine, Section of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joachim H Ix
- Department of Medicine, Division of Nephrology-Hypertension, UC San Diego School of Medicine, San Diego, CA, USA
| | - Pandurango Rao
- Department of Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Ray Townsend
- Department of Medicine, Perelman School of Medicine, Center for Clinical Epidemiology and Biostatistics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic & Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Ramachandran S Vasan
- The University of Texas School of Public Health San Antonio, San Antonio, TX, USA
| | - Harold I Feldman
- Department of Medicine, Perelman School of Medicine, Center for Clinical Epidemiology and Biostatistics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Jesse C Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Henri Brunengraber
- Departments of Nutrition and Biochemistry, Case Western University School of Medicine, Cleveland, OH, USA
| | - Thomas H Hostetter
- Department of Medicine, Division of Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey R Schelling
- Departments of Physiology & Biophysics and Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
36
|
Altamura S, Pietropaoli D, Lombardi F, Del Pinto R, Ferri C. An Overview of Chronic Kidney Disease Pathophysiology: The Impact of Gut Dysbiosis and Oral Disease. Biomedicines 2023; 11:3033. [PMID: 38002033 PMCID: PMC10669155 DOI: 10.3390/biomedicines11113033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic kidney disease (CKD) is a severe condition and a significant public health issue worldwide, carrying the burden of an increased risk of cardiovascular events and mortality. The traditional factors that promote the onset and progression of CKD are cardiometabolic risk factors like hypertension and diabetes, but non-traditional contributors are escalating. Moreover, gut dysbiosis, inflammation, and an impaired immune response are emerging as crucial mechanisms in the disease pathology. The gut microbiome and kidney disease exert a reciprocal influence commonly referred to as "the gut-kidney axis" through the induction of metabolic, immunological, and endocrine alterations. Periodontal diseases are strictly involved in the gut-kidney axis for their impact on the gut microbiota composition and for the metabolic and immunological alterations occurring in and reciprocally affecting both conditions. This review aims to provide an overview of the dynamic biological interconnections between oral health status, gut, and renal pathophysiology, spotlighting the dynamic oral-gut-kidney axis and raising whether periodontal diseases and gut microbiota can be disease modifiers in CKD. By doing so, we try to offer new insights into therapeutic strategies that may enhance the clinical trajectory of CKD patients, ultimately advancing our quest for improved patient outcomes and well-being.
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- PhD School in Medicine and Public Health, Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
| | - Francesca Lombardi
- Laboratory of Immunology and Immunopathology, Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Rita Del Pinto
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| |
Collapse
|
37
|
Falconi CA, Fogaça-Ruiz F, da Silva JV, Neres-Santos RS, Sanz CL, Nakao LS, Stinghen AEM, Junho CVC, Carneiro-Ramos MS. Renocardiac Effects of p-Cresyl Sulfate Administration in Acute Kidney Injury Induced by Unilateral Ischemia and Reperfusion Injury In Vivo. Toxins (Basel) 2023; 15:649. [PMID: 37999512 PMCID: PMC10674368 DOI: 10.3390/toxins15110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
The precise mechanisms underlying the cardiovascular complications due to acute kidney injury (AKI) and the retention of uremic toxins like p-cresyl sulfate (PCS) remain incompletely understood. The objective of this study was to evaluate the renocardiac effects of PCS administration in animals subjected to AKI induced by ischemia and reperfusion (IR) injury. C57BL6 mice were subjected to distinct protocols: (i) administration with PCS (20, 40, or 60 mg/L/day) for 15 days and (ii) AKI due to unilateral IR injury associated with PCS administration for 15 days. The 20 mg/L dose of PCS led to a decrease in renal mass, an increase in the gene expression of Cystatin C and kidney injury molecule 1 (KIM-1), and a decrease in the α-actin in the heart. During AKI, PCS increased the renal injury biomarkers compared to control; however, it did not exacerbate these markers. Furthermore, PCS did not enhance the cardiac hypertrophy observed after 15 days of IR. An increase, but not potentialized, in the cardiac levels of interleukin (IL)-1β and IL-6 in the IR group treated with PCS, as well as in the injured kidney, was also noticed. In short, PCS administration did not intensify kidney injury, inflammation, and cardiac outcomes after AKI.
Collapse
Affiliation(s)
- Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Fernanda Fogaça-Ruiz
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Carmen Lucía Sanz
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Lia Sumie Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Andréa Emília Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| |
Collapse
|
38
|
de Sequera P, Pérez-García R, Vega A, Martínez-Vaquera S, Acosta JG, Pérez Del Valle K, Fernández-Lucas M, García-Rubiales MA, García-Herrera AL, Coll E, Mérida E, Martínez-Miguel P, Castaño I, Gil-Casares B, Garro J, Maduell F. Trial design of the MOTheR HDx study: a multicenter, open-label, prospective, randomized study to explore the morbidity and mortality in patients dialyzed with the Theranova HDx in comparison with online hemodiafiltration. Clin Kidney J 2023; 16:2254-2261. [PMID: 37915938 PMCID: PMC10616438 DOI: 10.1093/ckj/sfad128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Indexed: 11/03/2023] Open
Abstract
Background Dialysis patients have been maintaining a high rate of cardiovascular morbidity and mortality. For this reason, it is to introduce necessary new technical advances in clinical practice. There is a relation between toxins retention and inflammation, mortality and morbidity. Medium cut-off (MCO) membranes are a new generation of membranes that allow the removal of a greater number of medium-sized molecules compared with high-flux hemodialysis (HF-HD), but retaining albumin. MCO membranes have an increased permeability and the presence of internal filtration. Because of these special properties, MCO generated a new concept of therapy called expanded HD (HDx). Until now, online hemodiafiltration (OL-HDF) has demonstrated its superiority, in terms of survival, compared with HF-HD. However, the comparison between OL-HDF and HDx remains an unsolved question. Methods The MOTheR HDx study trial (NCT03714386) is an open-label, multicenter, prospective, 1:1 randomized, parallel-group trial designed to evaluate the efficacy and safety of HDx compared with OL-HDF in patients treated for dialysis in Spain for up to 36 months. The main endpoint is to determinate whether HDx is non inferior to OL-HDF at reducing the combined outcome of all-cause death and stroke (ischemic or hemorrhagic), acute coronary syndrome (angina and myocardial infarction), peripheral arterial disease (amputation or revascularization) and ischemic colitis (mesenteric thrombosis). Results The trial has already started.
Collapse
Affiliation(s)
| | | | - Almudena Vega
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | - Elisabeth Coll
- Nephrology Department, Fundación Puigvert, Barcelona, Spain
| | - Evangelina Mérida
- Nephrology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Itziar Castaño
- Nephrology Department, Complejo Hospitalario de Navarra, Navarra, Spain
| | | | - Julia Garro
- Nephrology Department, Hospital Universitario Joan XXIII, Tarragona, Spain
| | | |
Collapse
|
39
|
Molina P, Goicoechea M, Huarte E, Maduell F, Valero A, Martín-Malo A. Hemodiafiltration with endogenous reinfusion of the regenerated ultrafiltrate (HFR): towards a convective, diffusive, and adsorptive dialysis. Nefrologia 2023; 43:688-702. [PMID: 38176980 DOI: 10.1016/j.nefroe.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 01/06/2024] Open
Abstract
Hemodiafiltration with endogenous reinfusion of the ultrafiltrate (HFR) is a dialysis technique characterized by a resin cartridge with adsorptive properties that combines the mechanisms of diffusion, convection, and adsorption in a single therapeutic regimen. After nearly 20 years of clinical experience with HFR, this article reviews the accumulated evidence with this technique, considering whether adsorption reduction, as a third purification mechanism, should be the next step in the treatment of hemodialysis patients. HFR, beyond producing an extensive removal of uremic toxins, has demonstrated to reduce the loss of nutrients and other physiological components during the dialysis session as compared to online hemodiafiltration, ameliorating the inflammatory state and oxidative stress in this population. In addition to its ease of use, the technique is also highly biocompatible and can be used in patients with a compromised vascular access. Based on these observations, HFR appears to be an especially useful therapy for high-comorbidity patients, including those with frailty, malnutrition, or cardiovascular disease. In this review, we, as a consensus panel of nephrologists experienced with HFR, survey existing literature and summarize our views on when to use this technique, which patients may be best suited for HFR, and how to effectively prescribe and monitor this modality of dialysis in daily clinical practice.
Collapse
Affiliation(s)
- Pablo Molina
- Servicio de Nefrología, Hospital Universitari Dr. Peset, Universitat de València, FISABIO, Valencia, Spain.
| | - Marian Goicoechea
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emma Huarte
- Servicio de Nefrología, Hospital de San Pedro, Logroño, Spain
| | - Francisco Maduell
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Alejandro Valero
- Servicio de Nefrología, Hospital Universitari Dr. Peset, Universitat de València, FISABIO, Valencia, Spain
| | - Alejandro Martín-Malo
- Servicio de Nefrología, Hospital Universitario Reina Sofía, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Red Nacional de Investigación en Nefrología (REDinREN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
40
|
Fernandes SR, Barreiros L, Sampaio-Maia B, Miró M, Segundo MA. Total analysis system for the determination of uremic toxins in human plasma based on bead injection solid phase extraction hyphenated to mass spectrometry. Anal Chim Acta 2023; 1277:341668. [PMID: 37604622 DOI: 10.1016/j.aca.2023.341668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Indoxyl sulfate (INDS) and p-cresol sulfate (pCS) are two of the most relevant uremic toxins that are recognized to have an essential role in chronic kidney disease (CKD) progression and associated cardiovascular risk. Thus, it is crucial to accurately assess their circulating levels in the body. Aiming at establishing an analytical strategy for quantification of INDS and pCS in human plasma, an automatic on-line micro-solid-phase extraction (μSPE) procedure hyphenated to tandem mass spectrometry (MS/MS) detection without previous chromatographic separation was herein developed. The bead injection (BI) concept was used to implement the μSPE procedure in the lab-on-valve (LOV) format. After studying the extraction conditions, the anion-exchange OASIS WAX sorbent beads (10 mg) and 99% ACN-H2O (15:85, v/v)-1% (v/v) NH4OH were chosen as sorbent and eluent, respectively, as they provided the highest analyte recoveries. Subsequently, the μSPE-BI-LOV system was hyphenated on-line to a MS/MS detector and the full analytical cycle, comprising sample preparation and analytes detection, was completed in <20 min. The developed μSPE-BI-LOV-MS methodology presented good linearity (r2 > 0.999) for quantification of the target analytes at concentrations ranging from 18 to 360 μg mL-1 in plasma. LOQ values were 2 μg mL-1 for INDS and 7 μg mL-1 for pCS in plasma. Human plasma samples from healthy subjects and individuals with CKD were successfully analyzed using the developed approach. The proposed automatic methodology can be described as an eco-friendly strategy, with a favorable score of 0.64 after greenness evaluation using the AGREE metric.
Collapse
Affiliation(s)
- Sara R Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| | - Benedita Sampaio-Maia
- INEB - Instituto Nacional de Engenharia Biomédica / i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
41
|
Bartolini D, Grignano MA, Piroddi M, Chiaradia E, Galeazzi G, Rende M, Ronco C, Rampino T, Libetta C, Galli F. Induction of Vesicular Trafficking and JNK-Mediated Apoptotic Signaling in Mononuclear Leukocytes Marks the Immuno-Proteostasis Response to Uremic Proteins. Blood Purif 2023; 52:737-750. [PMID: 37703866 DOI: 10.1159/000533309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Uremic retention solutes have been alleged to induce the apoptotic program of different cell types, including peripheral blood mononuclear leukocytes (PBL), which may contribute to uremic leukopenia and immune dysfunction. METHODS The molecular effects of these solutes were investigated in uremic PBL (u-PBL) and mononuclear cell lines (THP-1 and K562) exposed to the high molecular weight fraction of uremic plasma (u-HMW) prepared by in vitro ultrafiltration with 50 kDa cut-off microconcentrators. RESULTS u-PBL show reduced cell viability and increased apoptotic death compared to healthy control PBL (c-PBL). u-HMW induce apoptosis both in u-PBL and c-PBL, as well as in mononuclear cell lines, also stimulating cellular H2O2 formation and secretion, IRE1-α-mediated endoplasmic reticulum stress signaling, and JNK/cJun pathway activation. Also, u-HMW induce autophagy in THP-1 monocytes. u-PBL were characterized by the presence in their cellular proteome of the main proteins and carbonylation targets of u-HMW, namely albumin, transferrin, and fibrinogen, and by the increased expression of receptor for advanced glycation end-products, a scavenger receptor with promiscuous ligand binding properties involved in leukocyte activation and endocytosis. CONCLUSIONS Large uremic solutes induce abnormal endocytosis and terminal alteration of cellular proteostasis mechanisms in PBL, including UPR/ER stress response and autophagy, ultimately activating the JNK-mediated apoptotic signaling of these cells. These findings describe the suicidal role of immune cells in facing systemic proteostasis alterations of kidney disease patients, a process that we define as the immuno-proteostasis response of uremia.
Collapse
Affiliation(s)
- Desirée Bartolini
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Marta Piroddi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | | | - Gabriele Galeazzi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital, Vicenza, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesco Galli
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| |
Collapse
|
42
|
Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines 2023; 11:2408. [PMID: 37760849 PMCID: PMC10525416 DOI: 10.3390/biomedicines11092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.
Collapse
Affiliation(s)
- Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
43
|
Ahmed S, de Vries JC, Lu J, Stuart MHV, Mihăilă SM, Vernooij RWM, Masereeuw R, Gerritsen KGF. Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review. Int J Mol Sci 2023; 24:13197. [PMID: 37686004 PMCID: PMC10487432 DOI: 10.3390/ijms241713197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Joost C. de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Milan H. Verrijn Stuart
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Robin W. M. Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| |
Collapse
|
44
|
Faerber V, Kuhn KS, Garneata L, Kalantar-Zadeh K, Kalim S, Raj DS, Westphal M. The Microbiome and Protein Carbamylation: Potential Targets for Protein-Restricted Diets Supplemented with Ketoanalogues in Predialysis Chronic Kidney Disease. Nutrients 2023; 15:3503. [PMID: 37630693 PMCID: PMC10459041 DOI: 10.3390/nu15163503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.
Collapse
Affiliation(s)
- Valentin Faerber
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Katharina S. Kuhn
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Liliana Garneata
- “Dr. Carol Davila” Teaching Hospital of Nephrology, 4 Calea Grivitei, Sector 1, 010731 Bucharest, Romania;
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI), Orange, CA 90286, USA;
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC 20037, USA;
| | - Martin Westphal
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| |
Collapse
|
45
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Petrica L. Quantitative, Targeted Analysis of Gut Microbiota Derived Metabolites Provides Novel Biomarkers of Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomolecules 2023; 13:1086. [PMID: 37509122 PMCID: PMC10377254 DOI: 10.3390/biom13071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most debilitating complications of type 2 diabetes mellitus (T2DM), as it progresses silently to end-stage renal disease (ESRD). The discovery of novel biomarkers of early DKD becomes acute, as its incidence is reaching catastrophic proportions. Our study aimed to quantify previously identified metabolites from serum and urine through untargeted ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-ESI+-MS) techniques, such as the following: arginine, dimethylarginine, hippuric acid, indoxyl sulfate, p-cresyl sulfate, L-acetylcarnitine, butenoylcarnitine and sorbitol. The study concept was based on the targeted analysis of selected metabolites, using the serum and urine of 20 healthy subjects and 90 T2DM patients with DKD in different stages (normoalbuminuria-uACR < 30 mg/g; microalbuminuria-uACR 30-300 mg/g; macroalbuminuria-uACR > 300 mg/g). The quantitative evaluation of metabolites was performed with pure standards, followed by the validation methods such as the limit of detection (LOD) and the limit of quantification (LOQ). The following metabolites from this study resulted as possible biomarkers of early DKD: in serum-arginine, dimethylarginine, hippuric acid, indoxyl sulfate, butenoylcarnitine and sorbitol and in urine-p-cresyl sulfate.
Collapse
Affiliation(s)
- Lavinia Balint
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Carmen Socaciu
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Research Center for Applied Biotechnology and Molecular Therapy Biodiatech, SC Proplanta, Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Adrian Vlad
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Internal Medicine II-Division of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I-Division of Surgical Semiology I, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, Emergency Clinical Municipal Hospital, 300041 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Maria Mogos
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Dragos Catalin Jianu
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurosciences-Division of Neurology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
46
|
Silveira-Silva PC, Silva RE, Santos EC, Justino PB, Santos MP, Gonçalves RV, Novaes RD. Advanced glycosylation end products as metabolic predictors of systemic pro-inflammatory and prooxidant status in patients with end-stage renal disease. Cytokine 2023; 166:156189. [PMID: 37004469 DOI: 10.1016/j.cyto.2023.156189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Controlling systemic proinflammatory and prooxidant effectors is essential for mitigating cardiovascular risk and mortality in patients with end-stage renal disease (ESRD). However, monitoring these processes is still challenging due to the high uncertainty about their determinants and predictors. Thus, we investigated the relationship between advanced glycosylation end products (AGE), proinflammatory and prooxidant effectors in ESRD patients undergoing hemodialysis (HD). In addition to nutritional profile and dialysis efficiency, AGE, cytokines, chemokines, C-reactive protein (CRP), total (TAC) and non-protein (npAC) antioxidant capacity, lipid and protein oxidation were analyzed in blood samples from 43 HD patients. AGE, CRP, cytokines, chemokines, protein carbonyl (PCn), and malondialdehyde (MDA) were upregulated, while TAC and npAC were down-regulated in HD patients compared to heath subjects. Dialysis efficiency, TAC and npAC were reduced, while leucocytes counting, pre- and post-HD urea, TNF, IL-6, IL-10, CCL-2, MIP-1β, PCn, and MDA were increased in patients with higher AGE accumulation compared to those with lower AGE levels. Serum levels of CRP, protein carbonyl, malondialdehyde, and all cytokines and chemokines analyzed were correlated with AGE circulating levels for patients with higher AGE accumulation. AGE was inversely correlated with IL-10, TAC and npAC in patients with higher AGE accumulation. AGE exhibited predictive value (determination coefficient) to explain CRP, cytokines, chemokines, PCN, MDA, TAC and npAC variability in patients with higher AGE levels. Taken together, our findings provide evidence that AGE accumulation is associated with important proinflammatory and prooxidant effectors in patients with ESRD undergoing hemodialysis. Thus, AGE monitoring may be relevant to predict systemic inflammatory stress and the balance between oxidant and antioxidant status in these patients.
Collapse
|
47
|
van den Berg TA, Nieuwenhuijs-Moeke GJ, Lisman T, Moers C, Bakker SJ, Pol RA. Pathophysiological Changes in the Hemostatic System and Antithrombotic Management in Kidney Transplant Recipients. Transplantation 2023; 107:1248-1257. [PMID: 36529881 PMCID: PMC10205120 DOI: 10.1097/tp.0000000000004452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, the main cause for early graft loss is renal graft thrombosis because kidney transplant outcomes have improved drastically owing to advances in immunological techniques and immunosuppression. However, data regarding the efficacy of antithrombotic therapy in the prevention of renal graft thrombosis are scarce. Adequate antithrombotic management requires a good understanding of the pathophysiological changes in the hemostatic system in patients with end-stage kidney disease (ESKD). Specifically, ESKD and dialysis disrupt the fine balance between pro- and anticoagulation in the body, and further changes in the hemostatic system occur during kidney transplantation. Consequently, kidney transplant recipients paradoxically are at risk for both thrombosis and bleeding. This overview focuses on the pathophysiological changes in hemostasis in ESKD and kidney transplantation and provides a comprehensive summary of the current evidence for antithrombotic management in (adult) kidney transplant recipients.
Collapse
Affiliation(s)
- Tamar A.J. van den Berg
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Ton Lisman
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
48
|
Mohinani A, Patel S, Tan V, Kartika T, Olson S, DeLoughery TG, Shatzel J. Desmopressin as a hemostatic and blood sparing agent in bleeding disorders. Eur J Haematol 2023; 110:470-479. [PMID: 36656570 PMCID: PMC10073345 DOI: 10.1111/ejh.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Intranasal, subcutaneous, or intravenous desmopressin can be utilized to release von Willebrand Factor and Factor VIII into circulation, enhance platelet adhesion and shorten bleeding time. Due to these properties, desmopressin can be effective in controlling bleeding in mild hemophilia A, certain subtypes of von Willebrand disease and in acute bleeding from uremia, end stage renal disease, and liver disease. Its use, however, can be complicated by hyponatremia and rarely arterial thrombotic events. While desmopressin has also been used as a prophylactic blood sparing agent in orthopedic, renal, and hepatic procedures, clinical studies have shown limited benefit in these settings. The purpose of this article is to review the evidence for desmopressin in primary hematologic disorders, discuss its mechanism of action and evaluate its utility as a hemostatic and blood sparing product in various bleeding conditions.
Collapse
Affiliation(s)
- Ajay Mohinani
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Sarah Patel
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Virginia Tan
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas Kartika
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Sven Olson
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas G. DeLoughery
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Shatzel
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
49
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
50
|
Osredkar J, Baškovič BŽ, Finderle P, Bobrowska-Korczak B, Gątarek P, Rosiak A, Giebułtowicz J, Vrhovšek MJ, Kałużna-Czaplińska J. Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. Int J Mol Sci 2023; 24:7078. [PMID: 37108238 PMCID: PMC10138607 DOI: 10.3390/ijms24087078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in which communication and behavior are affected. A number of studies have investigated potential biomarkers, including uremic toxins. The aim of our study was to determine uremic toxins in the urine of children with ASD (143) and compare the results with healthy children (48). Uremic toxins were determined with a validated high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS) method. We observed higher levels of p-cresyl sulphate (pCS) and indoxyl sulphate (IS) in the ASD group compared to the controls. Moreover, the toxin levels of trimethylamine N-oxide (TMAO), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were lower in ASD patients. Similarly, for pCS and IS in children classified, according to the intensity of their symptoms, into mild, moderate, and severe, elevated levels of these compounds were observed. For mild severity of the disorder, elevated levels of TMAO and comparable levels of SDMA and ADMA for ASD children as compared to the controls were observed in the urine. For moderate severity of ASD, significantly elevated levels of TMAO but reduced levels of SDMA and ADMA were observed in the urine of ASD children as compared to the controls. When the results obtained for severe ASD severity were considered, reduced levels of TMAO and comparable levels of SDMA and ADMA were observed in ASD children.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Žvar Baškovič
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Petra Finderle
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children’s Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia;
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|