1
|
Zhou H, Tao L, Tian W, Song Z, Yang Z, Li Q, Yu Y, Qi F. Development of a mesoporous polypyrrole nanofiber mat for simultaneous detection of multiple mycotoxins in various foods. Food Chem 2025; 463:141153. [PMID: 39255705 DOI: 10.1016/j.foodchem.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Due to health hazards and co-contamination of mycotoxins, efficient separation and detection of multiple mycotoxins in food is highly desirable yet challenging. In this study, we prepared a novel mesoporous polypyrrole nanofiber mat (M-PPy NFM) for extracting multiple mycotoxins from food. The mesoporous effects and multifunctional PPy contribute to higher recovery and purification efficiency of M-PPy NFM for mycotoxins by facilitating hydrogen bonding and π-π interaction. Under optimized conditions, a simple, eco-friendly solid phase extraction (SPE) method coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was developed for mycotoxin detection. This innovative method demonstrates good linearity (0.9991-0.9999), low detection limits (0.03-0.33 μg kg-1), satisfactory recoveries (92.0 %-108.0 %) and precision (0.3 %-11.7 %). Notably, it significantly reduces organic solvent consumption to 3.1 mL while minimizing adsorbent usage to 5.0 mg. Moreover, M-PPy NFM could be reused ten times. This study confirms the huge potential of M-PPy NFM for efficient applications in mycotoxin extraction and determination.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - LiMei Tao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenxin Tian
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhaojie Song
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zesha Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feifei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
2
|
Łozowicka B, Kaczyński P, Iwaniuk P, Rutkowska E, Socha K, Orywal K, Farhan JA, Perkowski M. Nutritional compounds and risk assessment of mycotoxins in ecological and conventional nuts. Food Chem 2024; 458:140222. [PMID: 39002506 DOI: 10.1016/j.foodchem.2024.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
This comprehensive study aimed to determine the level of nutritional compounds (20 amino acids, 11 phenolic acids, and 8 vitamins) and hazard compounds (14 mycotoxins) in ten types of conventional and ecological nuts from 25 countries. Moreover, chronic and acute toxicological risk assessment of mycotoxins was performed. Examined constituents were determined using LC-MS/MS. Ecological pine nuts showed the highest level of amino acids (233.87 g kg-1) compared to conventional (207 g kg-1), pecans-phenolic acids (816.6 mg kg-1 in ecological and 761 mg kg-1 in conventional), while pistachios-vitamins (3471.4 mg kg-1 in ecological and 3098.4 mg kg-1 in conventional). Increased concentration of mycotoxins was determined in conventional peanuts (54 μg kg-1) and walnuts (49.9 μg kg-1). Children were the most exposed population to acute intoxication with HT-2 toxin in conventional pistachios (20.66% ARfD). The results confirmed the nutritional importance of ecological nuts and emphasized the need for continuous screening of mycotoxins.
Collapse
Affiliation(s)
- Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222 Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269 Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| |
Collapse
|
3
|
Dias M, Gomes B, Pena P, Cervantes R, Gonçalves S, Carolino E, Twarużek M, Kosicki R, Ałtyn I, Caetano LA, Viegas S, Viegas C. Assessment of the microbial contamination in "Do It Yourself" (DIY) stores - a holistic approach to protect workers' and consumers' health. Front Public Health 2024; 12:1483281. [PMID: 39494078 PMCID: PMC11528695 DOI: 10.3389/fpubh.2024.1483281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction In "Do-It-Yourself" (DIY) stores, workers from the wood department are considered woodworkers. Given the health risks associated with woodworking, particularly from fungi and their metabolites, this study aims to assess microbial contamination and health risks for both workers and customers. Methods The study was developed in 13 DIY stores in Lisbon Metropolitan Area, Portugal. It employed a comprehensive sampling approach combining active (MAS-100, Andersen six-stage, Coriolis μ, and SKC Button Aerosol Sampler) and passive (electrostatic dust collectors, surface swabs, e-cloths, settled dust, filters from vacuumed dust, filtering respiratory protection devices, and mechanical protection gloves) methods to assess microbial contamination. A Lighthouse Handheld Particle Counter HH3016- IAQ was used to monitor the particulate matter size, temperature, and humidity. Results The wood exhibition area presented the highest fungal load, while the payment area exhibited the highest bacterial load. MAS-100 detected the highest fungal load, and surface swabs had the highest bacterial load. Penicillium sp. was the most frequently observed fungal species, followed by Aspergillus sp. Mycotoxins, namely mycophenolic acid, griseofulvin, and aflatoxin G1, were detected in settled dust samples and one filter from the vacuum cleaner from the wood exhibition area. Cytotoxicity evaluation indicates the wood-cutting area has the highest cytotoxic potential. Correlation analysis highlights relationships between fungal contamination and particle size and biodiversity differences among sampling methods. Discussion The comprehensive approach applied, integrating numerous sampling methods and laboratory assays, facilitated a thorough holistic analysis of this specific environment, enabling Occupational and Public Health Services to prioritize interventions for accurate exposure assessment and detailed risk management.
Collapse
Affiliation(s)
- Marta Dias
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Bianca Gomes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CE3C—Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Pena
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Sara Gonçalves
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Iwona Ałtyn
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Wei Y, Liang X, Wu Y, Zhang J, Cui X, Wu Y, Zhu D, Lv P, Meng W, Li W, Shen H. Dietary Aflatoxin G 1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117082. [PMID: 39317075 DOI: 10.1016/j.ecoenv.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Aflatoxin G1 (AFG1) is a mycotoxin commonly found in agricultural products, including dried fruits, meat, and milk products. Oral AFG1 administration induced tumor necrosis factor (TNF)-α-dependent chronic pulmonary inflammation, promoting AFG1-induced damage in alveolar epithelial cell, which is associated with lung adenocarcinoma. Pulmonary macrophages may be divided into tissue-resident alveolar macrophages (TRAMs) and monocyte-derived macrophages (MoMs), which involve in chronic lung inflammation. However, whether these macrophages contribute to AFG1-induced chronic pulmonary inflammation remains unknown. In this study, we found oral AFG1 administration disrupted the balance between TRAMs and MoMs, increasing MoMs infiltration and decreasing the number of TRAMs. AFG1 upregulated TNF-α expression in MoMs, but downregulated sialic acid binding Ig-like lectin F (Siglec-F) expression in TRAMs. Inhibition of TNF-α-dependent inflammation rescued the imbalance between TRAMs and MoMs in AFG1-treated lung tissues. Additionally, AFG1 stimulated MoMs differentiation to the proinflammatory M1 phenotype in vitro. Using a specific in vitro TRAM model, AFG1 downregulated Siglec-F and the M2 phenotypic markers arginase 1 and YM1, and upregulated the M1 phenotypic markers IL-6, iNOS and TNF-α, altering the TRAMs phenotype to the pro-inflammatory M1 phenotype in vitro. Additionally, mouse maternal dietary exposure to AFG1 caused an imbalance in pulmonary macrophages, decreasing TRAMs and increasing MoMs population in offspring, which was associated with proliferative lesions in the alveolar septa. Thus, dietary AFG1 exposure triggered an imbalance in pulmonary macrophages in both mother and offspring mice, and induced pro-inflammatory phenotypic alterations, which contributed to AFG1-induced chronic lung inflammation. These results provide clues to how AFG1-induced immunotoxicity and genotoxicity in humans might be prevented.
Collapse
Affiliation(s)
- Yangxuan Wei
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyan Liang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Hebei Reproductive Health Hospital, Shijiazhuang, China
| | - Yulin Wu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Jiayu Zhang
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Cui
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yutong Wu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Delin Zhu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Wei Meng
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The First Hospital of Handan, Handan, China.
| | - Wenbin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, China; Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, China.
| |
Collapse
|
5
|
He Y, Zhu X, Song H, Liu Y, Cao C. Sodium butyrate alleviates T-2 toxin-induced liver toxicity and renal toxicity in quails by modulating oxidative stress-related Nrf2 signaling pathway, inflammation, and CYP450 enzyme system. J Food Sci 2024. [PMID: 39363242 DOI: 10.1111/1750-3841.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024]
Abstract
T-2 toxin is a member of class A aspergilloides toxins, one of the most prevalent mycotoxins that contaminate feed and food. Direct ingestion of animals or feed contaminated by T-2 toxin can cause various animal diseases. Butyrate is an organic fatty acid featuring a four-carbon chain, which is commonly found in the form of sodium butyrate (NaB). NaB has several biological functions and pharmacological effects. However, the role of sodium butyrate in alleviating T-2 toxin-induced hepatorenal toxicity has not been explored. In this study, 240 juvenile quails were evenly assigned into 4 groups. The experimental setup comprised four groups: The control group received a standard diet; the toxin group received a diet containing 0.9 mg/kg T-2 toxin; the butyrate group received a diet containing 0.5 g/kg NaB; and the T-2 treatment group received a diet containing both 0.9 mg/kg T-2 toxin and 0.5 g/kg NaB. We evaluated the histopathological changes in the kidney and liver on Days 14 and 28 and explored the molecular mechanisms involving oxidative stress, inflammation, and expression of nuclear xenobiotic receptors (NXRs). Our results showed that T-2 toxin exposure-induced inflammation in the liver and kidney by activating the oxidative stress pathway and modulating expression of NXRs to regulate related CYP450 isoforms, ultimately leading to histopathological injury in the liver and kidney, whereas sodium butyrate ameliorated this injury. These results offer novel insights into the molecular mechanisms underlying the protective effects of sodium butyrate in mitigating T-2 toxin-induced hepatorenal injury in juvenile quails. PRACTICAL APPLICATION: The mechanisms of T-2 toxin toxicity have been well described in experimental animals, but studies in birds are limited. With the development of society, the market scale of quails farming has been expanding, and the value of quails meat and eggs is increasing; there is an urgent need to clarify the harm of T-2 toxin to quails and its mechanism.
Collapse
Affiliation(s)
- Yihao He
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Xueyan Zhu
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Huanni Song
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Marhaba M, Nagendla NK, Anjum S, Ganneru S, Singh V, Pal S, Mudiam MKR, Ansari KM. Liquid chromatography-high-resolution mass spectrometry-based metabolomics revealing the effects of zearalenone and alpha-zearalenol on human endometrial cancer cells. Toxicol Res (Camb) 2024; 13:tfae169. [PMID: 39417035 PMCID: PMC11474235 DOI: 10.1093/toxres/tfae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Human exposure to mycotoxins through food involve a mixture of compounds, which can be harmful to human health. The Fusarium fungal species are known to produce zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, and its metabolite alpha-zearalenol (α-ZEL), both of which possess endocrine-disruptive properties. Given their potential harm to human health through food exposure, investigating the combined effects of ZEN and α-ZEL becomes crucial. Hence, the combined impact of ZEN and α-ZEL study hold significant importance. This in vitro study delves into the critical area, examining their combined impact on the proliferation and metabolic profile of endometrial cancer Ishikawa cells via sulforhodamine, clonogenic, proliferating cell nuclear antigen (PCNA) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based untargeted metabolomics. Low concentrations of ZEN (25 nm), α-ZEL (10 nm), or a combination of both were observed to significantly enhance cell proliferation of Ishikawa cells, as evidenced by PCNA immunostaining, immunoblotting as well and clonogenic assays. The metabolomics revealed the perturbations in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and phenylalanine, tyrosine, tryptophan biosynthesis provides valuable insights into potential mechanism by which these mycotoxins may facilitate cell proliferation. However, further investigations are warranted to comprehensively understand the implications of these findings and their possible implications for human health.
Collapse
Affiliation(s)
- Marhaba Marhaba
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Narendra Kumar Nagendla
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Varsha Singh
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Saurabh Pal
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
- Advanced Research Methodologies, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
7
|
Hof H, Schrecker J. Fusarium spp.: infections and intoxications. GMS INFECTIOUS DISEASES 2024; 12:Doc04. [PMID: 39386384 PMCID: PMC11463004 DOI: 10.3205/id000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genus Fusarium, member of the Hypocreaceae family, comprises over 500 spp. with an ever-evolving taxonomy. These fungi, some highly pathogenic, primarily affect various plants, including major crops like maize, rice, cereals, and potatoes, leading to significant agricultural losses and contributing to human undernutrition in certain regions. Additionally, Fusarium spp. produce harmful mycotoxins like trichothecenes, fumonisins, zearalenones, etc., posing health risks to animals and humans. These toxins generally transferred to food items can cause diverse issues, including organ failure, cancer, and hormonal disturbances, with effects sometimes appearing years after exposure. The fungi's vast genetic repertoire enables them to produce a range of virulence factors, leading to infections in both animals and humans, particularly in immunocompromised individuals. Fusarium spp. can cause systemic infections and local infections like keratitis. Due to limited antifungal effectiveness and biofilm formation, these infections are often challenging to treat with poor outcomes.
Collapse
Affiliation(s)
- Herbert Hof
- Labor Limbach and colleagues, Heidelberg, Germany
| | - Jens Schrecker
- Department of Ophthalmology, Rudolf Virchow Klinikum Glauchau, Germany
| |
Collapse
|
8
|
Xu Y, Tang L, Xie Z, Duan X, Wang K, Zhu J, Huang Y, Yang K, Xu L, He H. Effects of mycotoxin-producing fungi on the fitness and gut bacterial community of the soil springtail Folsomia candida. Microbiol Spectr 2024:e0103524. [PMID: 39329523 DOI: 10.1128/spectrum.01035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Mycotoxin-producing fungi are widespread and their adverse effects on mammals have been investigated; however, their impacts on soil invertebrates are not fully understood. Folsomia candida is a model soil arthropod that represents an important part of the soil invertebrate community. This study investigated the consequences of F. candida grazing on mycotoxin-producing fungi Fusarium verticillioides, F. graminearum, Aspergillus ochraceus, and A. nidulans. Consuming mycotoxin-producing fungi affected the body size and reproductive ability of F. candida, and altered the gut bacterial composition, with decreased Proteobacteria and increased Actinobacteria (Microbacterium) abundances. Notably, the abundance of foodborne fungi can be detected. Furthermore, certain bacteria isolated from F. candida's gut inhibited the growth of corresponding mycotoxin-producing fungi. The gut bacteria that inhibited mycotoxin-producing fungi growth in Aspergillus groups were also associated with poor fitness parameters and larger disruption in gut microbiota. Importantly, switching back to yeast diets reversed both the fitness parameters and gut bacterial composition. Together, our study demonstrated that grazing of mycotoxin-producing fungi by F. candida resulted in reduced physiological parameters and disturbed the gut bacterial community, and those changes can be restored by switching back to yeast diets, which indicates a strong resilience of springtails to mycotoxin-producing fungi. IMPORTANCE Mycotoxin-producing fungi are widespread in nature and raise concerns for human and livestock health. Although they share the same ecosystem, interactions between mycotoxin-producing fungi and soil arthropods are not well understood. In this study, we report an unexpected finding that the soil arthropod Folsomia candida is rather tolerant to these mycotoxin-producing fungi. F. candida can survive solely on mycotoxin-producing fungi as a food source with reduced physiological parameters. Moreover, the gut microbial community is disturbed by mycotoxin-producing fungi, and some of the bacteria isolated from F. candida's gut can inhibit the growth of corresponding fungi. Notably, the altered physiological parameters and gut microbiota are restored when a normal diet is reintroduced, suggesting F. candida's resilience to mycotoxin-producing fungi. These findings clarify the impact of toxin-producing diets on F. candida, shedding light on how organisms can build resilience to environmental stimuli.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingxiao Tang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Xie
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingwei Duan
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaisha Wang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jialin Zhu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yangyang Huang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailang Yang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Atnafu B, Amare A, Garbaba CA, Lemessa F, Migheli Q, Sulyok M, Chala A. Co-occurrence of mycotoxins in stored maize from southern and southwestern Ethiopia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:261-274. [PMID: 38982744 DOI: 10.1080/19393210.2024.2372426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Maize grain samples collected from 129 small-scale farmers' stores in southern and southwestern Ethiopia were analysed by LC-MS/MS for a total of 218 mycotoxins and other fungal metabolites of which 15% were regulated mycotoxins. Mycotoxins produced by Penicillium, Aspergillus, and Fusarium accounted for 31%, 17%, and 12% of the metabolites, respectively. Most of the current samples were contaminated by masked and/or emerging mycotoxins with moniliformin being the most prevalent one, contaminating 93% of the samples. Each sample was co-contaminated by 3 to 114 mycotoxins/fungal metabolites. Zearalenone, fumonisin B1, and deoxynivalenol were the dominant mycotoxins, occurring in 78%, 61%, and 55% of the samples with mean concentrations of 243, 429, and 530 µg/kg, respectively. The widespread co-occurrence of several mycotoxins in the samples may pose serious health risks due to synergistic/additional effects.
Collapse
Affiliation(s)
- Birhane Atnafu
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
- Department of Plant Sciences, Bule Hora University, Hagere Mariam, Ethiopia
| | - Asaminew Amare
- School of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| | | | - Fikre Lemessa
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Quirico Migheli
- Dipartimento di Agraria and Nucleo di Ricercasulla Desertificazione (NRD), Universita degli Studi di Sassari, Sassari, Italy
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alemayehu Chala
- School of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
10
|
Kumari A, Singh K, Uttam G. Tenuazonic acid-induced mycotoxicosis in an immunosuppressed mouse model and its prophylaxis with cinnamaldehyde. CHEMOSPHERE 2024; 363:142812. [PMID: 39004150 DOI: 10.1016/j.chemosphere.2024.142812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Patients with impaired immune systems are particularly vulnerable to infections. With the increasing number of immunocompromised patients, it becomes necessary to design studies that evaluate the effects of toxic contaminants that are a part of our daily lives. Simultaneously, the management of these toxic components also becomes essential. Therefore, the present study evaluated the possible protective role of cinnamaldehyde (Cin) against tenuazonic acid-induced mycotoxicosis in the immunosuppressed murine model. Tenuazonic acid (TeA), a toxin usually produced by Alternaria species, is a common contaminant in tomato and tomato-based products. Evaluating the potential toxicity of a hazardous chemical necessitates the use of in vitro, in vivo, and in silico methods. Here, the immunomodulatory effect of TeA was assessed in vitro using mouse splenocytes. In silico docking was carried out for the tumour markers of eight organs and TeA. The haematological, histopathological, and biochemical aspects were analysed in vivo. The sub-chronic intoxication of mice with TeA showed elevated malondialdehyde, reduced catalase, and superoxide dismutase production, along with abnormal levels of aspartate aminotransferase and alanine transaminase. The treatment with Cin prevented TeA-induced alterations of antioxidant defense enzyme activities and significantly forbade TeA-induced organ damage, showing therapeutic effects and toxicity reduction in TeA-induced mycotoxicosis.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Karuna Singh
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Gunjan Uttam
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Zhu Z, Guo W, Cheng H, Zhao H, Wang J, Abdallah MF, Zhou X, Lei H, Tu W, Wang H, Yang J. Co-contamination and interactions of multiple mycotoxins and heavy metals in rice, maize, soybeans, and wheat flour marketed in Shanghai City. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134695. [PMID: 38815395 DOI: 10.1016/j.jhazmat.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Mycotoxins and heavy metals extensively contaminate grains and grain products, posing severe health risks. This work implements validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) methods to quantify the concentration of 12 mycotoxins and five heavy metals in rice, maize, soybeans, and wheat flour samples marketed in Shanghai. The mixed contamination characteristics were analyzed using correlation cluster analysis and co-contamination index, and the probabilities of all cross combinations of contaminations were analyzed using a self-designed JAVA language program. The results showed that grains and grain products were frequently contaminated with both mycotoxins and heavy metals, mostly with deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), ochratoxin A (OTA), aflatoxins, fumonisin B1 (FB1), fumonisin B2 (FB2), fumonisin B3 (FB3), arsenic (As), chromium (Cr) and cadmium (Cd). All the samples (100 %) were contaminated with two or more contaminants, and 77.3 % of the samples were co-contaminated with more than four contaminants. In cereals and cereal products, the following combinations were closely associated: (FB3 +3-ADON), (FB1 +As), (FB1 +FB2), (DON+FB1), (DON+Cd), (As+Cd), (DON+Cd+As), (FB1 +FB2 +As), and (DON+3-ADON+15-ADON). The results indicated that mycotoxins and heavy metals frequently co-occurred in Shanghai grains and grain products, and they provided primary data for safety assessments, early warnings, and regulatory measures on these contaminants to protect public health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Haisheng Cheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hanke Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jie Wang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Belgium
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hulong Lei
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Weilong Tu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
12
|
Tian Y, Tian X, Yang B, Ma J, Shan J, Xing F. Analysis of the impact of drying on common wheat quality and safety. Heliyon 2024; 10:e33163. [PMID: 39021959 PMCID: PMC11253061 DOI: 10.1016/j.heliyon.2024.e33163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Mycotoxin contamination in grain has been an ongoing concern in the world. Wheat, as a staple crop in China, is particularly notable for its mycotoxin contamination. The main mycotoxins in wheat include deoxynivalenol (DON) and its derivates, zearalenone (ZEN) and aflatoxin B1 (AFB1). After harvest, drying process is an effective technique and a necessary step to ensure the long-term safe storage of wheat. In this study, the moisture content, the concentrations of total fungi and main mycotoxins in post-harvest wheat of three wheat growing areas in the North China Plain were examined, and the effect of different drying methods on wheat quality was evaluated. The results showed that 87.5% of wheat samples were simultaneously contaminated with two or more mycotoxins. Due to the pre-harvest heavy rainfall, the moisture content, the levels of total fungi and mycotoxins in wheat samples of Liaocheng city were significantly higher compared to other regions. Moreover, the effects of different drying methods on the starch gelatinization and viscosity properties of wheat were investigated. The results showed that both natural air drying and dryer drying altered the crystal structure within starch particles and affected the gelatinization and viscosity properties of wheat starch. However, there is no significant difference between the wheat samples treated with two drying methods.
Collapse
Affiliation(s)
| | | | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jihao Shan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
13
|
Niamnuy C, Sungsinchai S, Jarernsamrit P, Devahastin S, Chareonpanich M. Synthesis and characterization of aluminosilicate and zinc silicate from sugarcane bagasse fly ash for adsorption of aflatoxin B1. Sci Rep 2024; 14:14562. [PMID: 38914625 PMCID: PMC11196643 DOI: 10.1038/s41598-024-65158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Sugarcane bagasse fly ash, a residual product resulting from the incineration of biomass to generate power and steam, is rich in SiO2. Sodium silicate is a fundamental material for synthesizing highly porous silica-based adsorbents to serve circular practices. Aflatoxin B1 (AFB1), a significant contaminant in animal feeds, necessitates the integration of adsorbents, crucial for reducing aflatoxin concentrations during the digestive process of animals. This research aimed to synthesize aluminosilicate and zinc silicate derived from sodium silicate based on sugarcane bagasse fly ash, each characterized by a varied molar ratio of aluminum (Al) to silicon (Si) and zinc (Zn) to silicon (Si), respectively. The primary focus of this study was to evaluate their respective capacities for adsorbing AFB1. It was revealed that aluminosilicate exhibited notably superior AFB1 adsorption capabilities compared to zinc silicate and silica. Furthermore, the adsorption efficacy increased with higher molar ratios of Al:Si for aluminosilicate and Zn:Si for zinc silicate. The N2 confirmed AFB1 adsorption within the pores of the adsorbent. In particular, the aluminosilicate variant with a molar ratio of 0.08 (Al:Si) showcased the most substantial AFB1 adsorption capacity, registering at 88.25% after an in vitro intestinal phase. The adsorption ability is directly correlated with the presence of surface acidic sites and negatively charged surfaces. Notably, the kinetics of the adsorption process were best elucidated through the application of the pseudo-second-order model, effectively describing the behavior of both aluminosilicate and zinc silicate in adsorbing AFB1.
Collapse
Affiliation(s)
- Chalida Niamnuy
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Sirada Sungsinchai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Prapaporn Jarernsamrit
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha U-Tid Road, Tungkru, Bangkok, 10140, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand
| | - Metta Chareonpanich
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
14
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
15
|
Lapris M, Errico M, Rocchetti G, Gallo A. The Potential of Multi-Screening Methods and Omics Technologies to Detect Both Regulated and Emerging Mycotoxins in Different Matrices. Foods 2024; 13:1746. [PMID: 38890974 PMCID: PMC11171533 DOI: 10.3390/foods13111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Mycotoxins are well-known secondary metabolites produced by several fungi that grow and occur in different crops during both pre-harvest and post-harvest conditions. The contamination and occurrence of mycotoxins currently represent some of the major issues in the entire agri-food system. The quantification of mycotoxins in different feeds and foodstuffs is extremely difficult because of the low concentration ranges; therefore, both sample collection and preparation are essential to providing accurate detection and reliable quantification. Currently, several analytical methods are available for the detection of mycotoxins in both feed and food products, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most reliable instrumental approach. In particular, the fast development of high-throughput methods has made it possible to screen and analyze, in the same analytical run and with high accuracy, multiple mycotoxins, such as those regulated, masked, or modified, and emerging ones. Therefore, the aim of this review is to provide an overview of the state of the art of mycotoxins occurrence, health-related concerns, and analyses, discussing the need to perform multi-screening approaches combined with omics technologies to simultaneously analyze several mycotoxins in different feed and food matrices. This approach is expected to provide more comprehensive information about the profile and distribution of emerging mycotoxins, thus enhancing the understanding of their co-occurrence and impact on the entire production chain.
Collapse
Affiliation(s)
| | | | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (M.L.); (M.E.); (A.G.)
| | | |
Collapse
|
16
|
Li W, Chen Z, Li X, Li X, Hui Y, Chen W. The Biosynthesis, Structure Diversity and Bioactivity of Sterigmatocystins and Aflatoxins: A Review. J Fungi (Basel) 2024; 10:396. [PMID: 38921382 PMCID: PMC11204465 DOI: 10.3390/jof10060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological activities. Studies have shown that sterigmatocystins and aflatoxins have a wide range of biological activities such as antitumour, antibacterial, anti-inflammatory, antiplasmodial, etc. The sterigmatocystins and aflatoxins had been shown to be hepatotoxic and nephrotoxic in animals. This review attempts to give a comprehensive summary of progress on the chemical structural features, synthesis, and bioactivity of sterigmatocystins and aflatoxins reported from 1954 to April 2024. A total of 72 sterigmatocystins and 20 aflatoxins are presented in this review. This paper reviews the chemical diversity and potential activity and toxicity of sterigmatocystins and aflatoxins, enhances the understanding of sterigmatocystins and aflatoxins that adversely affect humans and animals, and provides ideas for their prevention, research and development.
Collapse
Affiliation(s)
- Wenxing Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zhaoxia Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xize Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xinrui Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.L.); (Z.C.); (X.L.); (X.L.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
17
|
Plewa-Tutaj K, Twarużek M, Kosicki R, Soszczyńska E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden-Screening Research. Pathogens 2024; 13:294. [PMID: 38668249 PMCID: PMC11053870 DOI: 10.3390/pathogens13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The objective of this paper was to assess the airborne mold contamination, secondary metabolite profiles, and cytotoxicity of the dominant fungal species isolated from the air in selected rooms at a Zoological Garden. MATERIALS AND METHODS Fungal concentrations were measured with MAS-100 air samplers. The collected airborne fungi were identified using a combination of morphological and molecular methods. The cytotoxicity of 84 strains belonging to two Penicillium and Aspergillus genera was determined using the quantitative colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium salt) assay. The mycotoxins were detected using high-performance liquid chromatography (HPLC) with a mass spectrometry detector. RESULTS The ITS gene was amplified and sequenced to identify the 132 species. For mycotoxicological and cytotoxicity analyses, 52 Penicillium isolates and 32 Aspergillus representatives were selected. Cytotoxicity was confirmed in 97.6% of cases analyzed. Using the LC-MS/MS method, 42 out of 84 strains produced at least one of the following toxins: ochratoxin A, ochratoxin B, patulin, gliotoxin, roquefortine C, griseofulvin, sterigmatocystin, fumonisin B2, moniliformin, and mycophenolic acid. CONCLUSIONS Analytical methods for assessing the presence of mycotoxins in fungal isolates collected directly from the air have proven to be an effective tool. Our research provides new information on the occurrence of potentially toxin-producing molds within a zoo.
Collapse
Affiliation(s)
- Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.); (E.S.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.); (E.S.)
| | - Ewelina Soszczyńska
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.); (E.S.)
| |
Collapse
|
18
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
19
|
Okechukwu VO, Adelusi OA, Kappo AP, Njobeh PB, Mamo MA. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem 2024; 436:137775. [PMID: 37866099 DOI: 10.1016/j.foodchem.2023.137775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Aflatoxins (AFs) are toxic secondary metabolites prevalent in various food and agricultural products, posing significant challenges to global food safety. The detection and quantification of AFs through high-precision analytical techniques are crucial in mitigating AF contamination levels and associated health risks. Variousmethods,including conventional and emerging techniques, have been developed for detecting and quantifyingAFsinfood samples. This review provides an in-depth analysis of the global occurrence of AF in food commodities, covering their biosynthesis, mode of action, and effects on humans and animals. Additionally, the review discusses different conventional strategies, including chromatographic and immunochemical approaches, for AF quantification and identification in food samples. Furthermore, emerging AF detection strategies, such as solid-state gas sensors and electronic nose technologies, along with their applications, limitations, and future perspectives, were reviewed. Sample purification, along with their respective advantages and limitations, are also discussed herein.
Collapse
Affiliation(s)
- Viola O Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Oluwasola A Adelusi
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa.
| |
Collapse
|
20
|
Ali S, Battaglini Franco B, Theodoro Rezende V, Gabriel Dionisio Freire L, Lima de Paiva E, Clara Fogacio Haikal M, Leme Guerra E, Eliana Rosim R, Gustavo Tonin F, Savioli Ferraz I, Antonio Del Ciampo L, Augusto Fernandes de Oliveira C. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil. Food Res Int 2024; 180:114087. [PMID: 38395556 DOI: 10.1016/j.foodres.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| | - Bruna Battaglini Franco
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP) -Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Esther Lima de Paiva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Maria Clara Fogacio Haikal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Eloiza Leme Guerra
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Ivan Savioli Ferraz
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Luiz Antonio Del Ciampo
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
21
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
22
|
Jacobson T, Bae Y, Kler JS, Iyer R, Zhang R, Montgomery ND, Nunes D, Pleil JD, Funk WE. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3580-3594. [PMID: 38354120 PMCID: PMC10903514 DOI: 10.1021/acs.est.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.
Collapse
Affiliation(s)
- Tyler
A. Jacobson
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yeunook Bae
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jasdeep S. Kler
- University
of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ramsunder Iyer
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Runze Zhang
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan D. Montgomery
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Denise Nunes
- Galter
Health Sciences Library, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joachim D. Pleil
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - William E. Funk
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
23
|
Shen L, Wang Y, Li X, Hou Z, Mao J, Shi J, Battino M, Routledge MN, Gong Y, Zou X, Zhang D. Spatial-temporal distribution of deoxynivalenol, aflatoxin B 1, and zearalenone in the solid-state fermentation basin of traditional vinegar and their potential correlation with microorganisms. Food Chem 2024; 433:137317. [PMID: 37683481 DOI: 10.1016/j.foodchem.2023.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
This study revealed the spatial-temporal distribution of deoxynivalenol (DON), aflatoxin B1 (AFB1), and zearalenone (ZEN) during the acetic acid fermentation (AAF) of aromatic vinegar and the corresponding correlation with the microbial community. A total of 324 samples were collected during the AAF process to analyze the mycotoxin content. The average DON content fluctuated during the first 7 d, while the average AFB1 and ZEN levels increased at 5-7 d and 7-11 d, respectively, remaining stable until the end of fermentation. In addition, the significant AFB1 and ZEN content variation was limited to the cross-sectional sampling planes in the fermentation basin, while DON was heterogeneously distributed on the cross-sectional, horizontal, and vertical sampling planes. Furthermore, the redundancy analysis and Spearman correlation coefficients revealed close relationships between three mycotoxins and certain bacterial and fungal species. This study provides new information regarding the mycotoxins during solid-state fermentation of traditional vinegar.
Collapse
Affiliation(s)
- Lingqin Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziqing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Leicester Medical School, University of Leicester, Leicester, UK
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
24
|
Xu X, Xi N, Chen J, Zhou Z, Liu M, Yan G, Liu Y. Deoxynivalenol exposure induces oxidative stress and apoptosis in human keratinocytes via PI3K/Akt and MAPK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:277-288. [PMID: 37705238 DOI: 10.1002/tox.23943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. In the present study, we used human keratinocytes (HaCaT cells) as an in vitro model to explore the cytotoxic effect of DON. The results showed that the cells exhibited varying degrees of damage, including decreased cell number and viability, cell shrinkage and floating, when treated with 0.125, 0.25, and 0.5 μg/mL DON for 6, 12, and 24 h, respectively. Furthermore, exposure to DON for 24 h significantly increased the lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS), and prominently decreased the superoxide dismutase (SOD) and catalase (CAT) activity. Additionally, DON exposure induced mitochondrial damage and cell apoptosis through reducing mitochondrial membrane potential. Then, we performed RNA-sequencing to investigate the molecular changes in HaCaT cells after DON exposure. The RNA-sequencing results revealed that DON exposure altered the gene expression involved in apoptosis, MAPK signaling pathway, and PI3K/Akt signaling pathway. Moreover, DON exposure significantly decreased the mRNA and protein expression of Bcl-2, and increased the mRNA and protein expression of Bax, Caspase 3 and COX-2, the protein expression of PI3K, and the phosphorylation levels of Akt, ERK, p38, and JNK. Taken together, these findings suggest that DON exposure could induce cell damage, oxidative stress, and apoptosis in HaCaT cells through the activation of PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyu Zhou
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengjie Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals (Basel) 2023; 13:3345. [PMID: 37958101 PMCID: PMC10648343 DOI: 10.3390/ani13213345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ramunas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Mindaugas Televicius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
26
|
Kim YK, Baek I, Lee KM, Kim G, Kim S, Kim SY, Chan D, Herrman TJ, Kim N, Kim MS. Rapid Detection of Single- and Co-Contaminant Aflatoxins and Fumonisins in Ground Maize Using Hyperspectral Imaging Techniques. Toxins (Basel) 2023; 15:472. [PMID: 37505741 PMCID: PMC10467122 DOI: 10.3390/toxins15070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Aflatoxins and fumonisins, commonly found in maize and maize-derived products, frequently co-occur and can cause dangerous illness in humans and animals if ingested in large amounts. Efforts are being made to develop suitable analytical methods for screening that can rapidly detect mycotoxins in order to prevent illness through early detection. A method for classifying contaminated maize by applying hyperspectral imaging techniques including reflectance in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) regions, and fluorescence was investigated. Machine learning classification models in combination with different preprocessing methods were applied to screen ground maize samples for naturally occurring aflatoxin and fumonisin as single contaminants and as co-contaminants. Partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) with the radial basis function (RBF) kernel were employed as classification models using cut-off values of each mycotoxin. The classification performance of the SVM was better than that of PLS-DA, and the highest classification accuracies for fluorescence, VNIR, and SWIR were 89.1%, 71.7%, and 95.7%, respectively. SWIR imaging with the SVM model resulted in higher classification accuracies compared to the fluorescence and VNIR models, suggesting that as an alternative to conventional wet chemical methods, the hyperspectral SWIR imaging detection model may be the more effective and efficient analytical tool for mycotoxin analysis compared to fluorescence or VNIR imaging models. These methods represent a food safety screening tool capable of rapidly detecting mycotoxins in maize or other food ingredients consumed by animals or humans.
Collapse
Affiliation(s)
- Yong-Kyoung Kim
- Division of Safety Analysis, Experiment & Research Institute, National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea; (Y.-K.K.); (S.K.); (S.-Y.K.)
| | - Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Powder Mill Rd., Building 303 BARC-East, Beltsville, MD 20705, USA; (I.B.); (G.K.); (D.C.)
| | - Kyung-Min Lee
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77841, USA; (K.-M.L.); (T.J.H.)
| | - Geonwoo Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Powder Mill Rd., Building 303 BARC-East, Beltsville, MD 20705, USA; (I.B.); (G.K.); (D.C.)
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju-si 52828, Republic of Korea
| | - Seyeon Kim
- Division of Safety Analysis, Experiment & Research Institute, National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea; (Y.-K.K.); (S.K.); (S.-Y.K.)
| | - Sung-Youn Kim
- Division of Safety Analysis, Experiment & Research Institute, National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea; (Y.-K.K.); (S.K.); (S.-Y.K.)
| | - Diane Chan
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Powder Mill Rd., Building 303 BARC-East, Beltsville, MD 20705, USA; (I.B.); (G.K.); (D.C.)
| | - Timothy J. Herrman
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77841, USA; (K.-M.L.); (T.J.H.)
| | - Namkuk Kim
- Division of Safety Analysis, Experiment & Research Institute, National Agricultural Products Quality Management Service, Gimcheon 39660, Republic of Korea; (Y.-K.K.); (S.K.); (S.-Y.K.)
| | - Moon S. Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Powder Mill Rd., Building 303 BARC-East, Beltsville, MD 20705, USA; (I.B.); (G.K.); (D.C.)
| |
Collapse
|
27
|
Stoev SD. Foodborne Diseases Due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins (Basel) 2023; 15:464. [PMID: 37505733 PMCID: PMC10467111 DOI: 10.3390/toxins15070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The subject of this review paper is to evaluate the underestimated hazard of multiple mycotoxin exposure of animals/humans for the appearance of foodborne ailments and diseases. The significance of joint mycotoxin interaction in the development of foodborne diseases is discussed, and appropriate conclusions are made. The importance of low feed/food levels of some target mycotoxins co-contaminations in food and feedstuffs for induction of target foodborne mycotoxicoses is also studied in the available literature. The appropriate hygiene control and the necessary risk assessment in regard to possible hazards for animals and humans are also discussed, and appropriate suggestions are made. Some internationally recognized prophylactic measures, management of the risk, and the necessity of elaboration of new international regulations in regard to the maximum permitted levels are also carefully discussed and analysed in the cases of multiple mycotoxin contaminations. The necessity of harmonization of mycotoxin regulations and control measures at international levels is also discussed in order to facilitate food trade between the countries and to ensure global food safety.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
28
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
29
|
Boudechicha A, Aouf A, Farouk A, Ali HS, Elkhadragy MF, Yehia HM, Badr AN. Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties. Molecules 2023; 28:5367. [PMID: 37513240 PMCID: PMC10384219 DOI: 10.3390/molecules28145367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Medicinal plant extracts are a promising source of bioactive minor contents. The present study aimed to evaluate the distinguished volatile content of Algerian Cymbopogon citratus (DC.) Stapf before and after the microfluidization process and their related antimicrobial and anti-mycotoxigenic impacts and changes. The GC-MS apparatus was utilized for a comparative examination of Algerian lemongrass essential oil (LGEO) with its microfluidization nanoemulsion (MF-LGEO) volatile content. The MF-LGEO was characterized using Zetasizer and an electron microscope. Cytotoxicity, antibacterial, and antifungal activities were determined for the LGEO and MF-LGEO. The result reflected changes in the content of volatiles for the MF-LGEO. The microfluidizing process enhanced the presence of compounds known for their exceptional antifungal and antibacterial properties in MF-LGEO, namely, neral, geranial, and carvacrol. However, certain terpenes, such as camphor and citronellal, were absent, while decanal, not found in the raw LGEO, was detected. The droplet diameter was 20.76 ± 0.36 nm, and the polydispersity index (PDI) was 0.179 ± 0.03. In cytotoxicity studies, LGEO showed higher activity against the HepG2 cell line than MF-LGEO. Antibacterial LGEO activity against Gram-positive bacteria recorded an inhibitory zone from 41.82 ± 2.84 mm to 58.74 ± 2.64 mm, while the zone ranged from 12.71 ± 1.38 mm to 16.54 ± 1.42 mm for Gram-negative bacteria. Antibacterial activity was enhanced to be up to 71.43 ± 2.54 nm and 31.54 ± 1.01 nm for MF-LGEO impact against Gram-positive and Gram-negative pathogens. The antifungal effect was considerable, particularly against Fusarium fungi. It reached 17.56 ± 1.01 mm and 13.04 ± 1.37 mm for LGEO and MF-LGEO application of a well-diffusion assay, respectively. The MF-LGEO was more promising in reducing mycotoxin production in simulated fungal growth media due to the changes linked to essential compounds content. The reduction ratio was 54.3% and 74.57% for total aflatoxins (AFs) and ochratoxin A (OCA) contents, respectively. These results reflect the microfluidizing improvement impact regarding the LGEO antibacterial, antifungal and anti-mycotoxigenic properties.
Collapse
Affiliation(s)
- Amel Boudechicha
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif 19000, Algeria
| | - Abdelhakim Aouf
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif 19000, Algeria
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt
| | - Hatem S Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt
| | - Manal F Elkhadragy
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany M Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Helwan 11611, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
30
|
Tabarani A, Zinedine A, Rocha JM, Sanaa M, Abdennebi EH. Comparative Study of Ochratoxin A Exposure through the Intake of Cereal Products in Two Climatic Moroccan Regions. Toxins (Basel) 2023; 15:452. [PMID: 37505721 PMCID: PMC10467127 DOI: 10.3390/toxins15070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
The present study aims to compare ochratoxin A (OTA) exposure through the intake of three cereal derivative products (bread, pasta and semolina) in two different Moroccan climatic regions (littoral and continental). OTA weekly intakes from cereal products were calculated using a deterministic approach for each region. Results showed a statistically significant difference (p < 0.05) of OTA exposure between the two regions. Indeed, the median OTA exposure was estimated at 48.97 ng/kg b.w./week in the littoral region, while it was estimated at 6.36 ng/kg b.w./week in the continental region. The probabilistic approach showed that, due to uncertainties, the 95th percentile of weekly OTA exposure associated with the three cereal products ranged from 66.18 to 137.79 (95% CI) with a median of 97.44 ng/kg body weight (b.w.)/week. Compared to the threshold of 100 ng/kg b.w./week, 95% of the cumulative distributions predicted an exceedance frequency between 0.42 and 17.30% (95% CI), with an exceedance frequency median of 4.43%. Results showed that cereal derivatives constitute an important vector of OTA exposure and cause a significant exceedance of toxicological reference value among large consumers in the littoral region, which suggests the urgency of reconsidering the maximum regulatory limit (MRL) set for OTA (3 µg/kg) in cereal derivatives by Moroccan authorities.
Collapse
Affiliation(s)
- Ahmed Tabarani
- Department of Biological and Pharmaceutical Sciences, Hassan II Institute of Agronomy and Veterinary Medicine (IAV), Rabat P.O. Box 6202, Morocco; (A.T.); (E.H.A.)
| | - Abdellah Zinedine
- BIOMARE Laboratory, Faculty of Sciences P.O. Box 20, Chouaib Doukkali University, El Jadida 24000, Morocco;
| | - João Miguel Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Moez Sanaa
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701 Maisons-Alfort, France;
| | - El Hassane Abdennebi
- Department of Biological and Pharmaceutical Sciences, Hassan II Institute of Agronomy and Veterinary Medicine (IAV), Rabat P.O. Box 6202, Morocco; (A.T.); (E.H.A.)
| |
Collapse
|
31
|
Zuzarte M, Girão H, Salgueiro L. Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases. Molecules 2023; 28:5130. [PMID: 37446792 DOI: 10.3390/molecules28135130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Aromatic plants and their essential oils have shown beneficial effects on the cardiovascular system and, therefore, are potential raw materials in the development of functional foods. However, despite their undeniable potential, essential oils present several limitations that need to be addressed, such as stability, poor solubility, undesirable sensory effects, and low bioavailability. The present review provides a current state-of-the-art on the effects of volatile extracts obtained from aromatic plants on the cardiovascular system and focuses on major challenges that need to be addressed to increase their use in food products. Moreover, strategies underway to overcome these limitations are pointed out, thus anticipating a great appreciation of these extracts in the functional food industry.
Collapse
Affiliation(s)
- Mónica Zuzarte
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- University Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- University Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Lígia Salgueiro
- University Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- University Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Jia R, Tian S, Yang Z, Sadiq FA, Wang L, Lu S, Zhang G, Li J. Tuning Thermostability and Catalytic Efficiency of Aflatoxin-Degrading Enzyme by Error-prone PCR. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12610-4. [PMID: 37300712 DOI: 10.1007/s00253-023-12610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
In our previous work, a recombinant aflatoxin-degrading enzyme derived from Myxococcus fulvus (MADE) was reported. However, the low thermal stability of the enzyme had limitations for its use in industrial applications. In this study, we obtained an improved variant of recombinant MADE (rMADE) with enhanced thermostability and catalytic activity using error-prone PCR. Firstly, we constructed a mutant library containing over 5000 individual mutants. Three mutants with T50 values higher than the wild-type rMADE by 16.5 °C (rMADE-1124), 6.5 °C (rMADE-1795), and 9.8 °C (rMADE-2848) were screened by a high-throughput screening method. Additionally, the catalytic activity of rMADE-1795 and rMADE-2848 was improved by 81.5% and 67.7%, respectively, compared to the wild-type. Moreover, structural analysis revealed that replacement of acidic amino acids with basic amino acids by a mutation (D114H) in rMADE-2848 increased the polar interactions with surrounding residues and resulted in a threefold increase in the t1/2 value of the enzyme and made it more thermaltolerate. KEY POINTS: • Mutant libraries construction of a new aflatoxins degrading enzyme by error-prone PCR. • D114H/N295D mutant improved enzyme activity and thermostability. • The first reported enhanced thermostability of aflatoxins degrading enzyme better for its application.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| | - Senmiao Tian
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Zhaofeng Yang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Faizan Ahmed Sadiq
- Fisheries and Food, Technology & Food Science Unit, Flanders Research Institute for Agriculture, 9090, Melle, Belgium
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Simeng Lu
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Jianhui Li
- College of Animal Sciences, Shanxi Agriculture University, Taigu, 030801, China
| |
Collapse
|
33
|
Sungsinchai S, Niamnuy C, Devahastin S, Chen XD, Chareonpanich M. Effect of the Structure of Highly Porous Silica Extracted from Sugarcane Bagasse Fly Ash on Aflatoxin B1 Adsorption. ACS OMEGA 2023; 8:19320-19328. [PMID: 37305267 PMCID: PMC10249115 DOI: 10.1021/acsomega.2c08299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
Sugarcane bagasse fly ash is industrial waste produced by incinerating biomass to generate power and steam. The fly ash contains SiO2 and Al2O3, which can be used to prepare aluminosilicate. This latter material exhibits high potential as an adsorbent in various applications, including the livestock industry where issues related to contamination of aflatoxins in animal feeds need to be addressed; addition of adsorbents can help decrease the concentration of aflatoxins during feed digestion. In this study, the effect of the structure of silica prepared from sugarcane bagasse fly ash on physicochemical properties and aflatoxin B1 (AFB1) adsorption capability compared with that of bentonite was investigated. BPS-5, Xerogel-5, MCM-41, and SBA-15 mesoporous silica supports were synthesized using sodium silicate hydrate (Na2SiO3) from sugarcane bagasse fly ash as a silica source. BPS-5, Xerogel-5, MCM-41, and SBA-15 exhibited amorphous structures, while sodium silicate possessed a crystalline structure. BPS-5 possessed larger pore size, pore volume, and pore size distribution with a bimodal mesoporous structure, while Xerogel-5 exhibited lower pore size and pore size distribution with a unimodal mesoporous structure. BPS-5 with a negatively charged surface exhibited the highest AFB1 adsorption capability compared with other porous silica. However, the AFB1 adsorption capability of bentonite was superior to those of all porous silica. Sufficient pore diameter with high total pore volume as well as high intensity of acid sites and negative charge on the surface of the adsorbent is required to increase AFB1 adsorption in the in vitro gastrointestinal tract of animals.
Collapse
Affiliation(s)
- Sirada Sungsinchai
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chalida Niamnuy
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology and Its Applications in Chemical,
Food and Agricultural Industries, Kasetsart
University, 50 Ngam Wong
Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Sakamon Devahastin
- Advanced
Food Processing Research Laboratory, Department of Food Engineering,
Faculty of Engineering, King Mongkut’s
University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok 10140, Thailand
- The
Academy of Science, The Royal Society of
Thailand, Dusit, Bangkok 10300, Thailand
| | - Xiao Dong Chen
- School
of Chemical and Environmental Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, P. R. China
| | - Metta Chareonpanich
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology and Its Applications in Chemical,
Food and Agricultural Industries, Kasetsart
University, 50 Ngam Wong
Wan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
34
|
Awuchi CG, Nwozo OS, Aja PM, Odongo GA. High-pressure acidified steaming with varied citric acid dosing can successfully detoxify mycotoxins. Food Sci Nutr 2023; 11:2677-2685. [PMID: 37324899 PMCID: PMC10261742 DOI: 10.1002/fsn3.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Mycotoxins are toxic fungal metabolites that exert various toxicities, including leading to death in lethal doses. This study developed a novel high-pressure acidified steaming (HPAS) for detoxification of mycotoxins in foods and feed. The raw materials, maize and peanut/groundnut, were used for the study. The samples were separated into raw and processed categories. Processed samples were treated using HPAS at different citric acid concentrations (CCC) adjusted to pH 4.0, 4.5, and 5.0. The enzyme-linked immunosorbent assay (ELISA) kit method for mycotoxins analysis was used to determine the levels of mycotoxins in the grains, with specific focus on total aflatoxins (AT), aflatoxins B1 (AFB1), aflatoxin G1 (AFG1), ochratoxin A (OTA), and citrinin. The mean values of the AT, AFB1, AFG1, OTA, and citrinin in the raw samples were 10.06 ± 0.02, 8.21 ± 0.01, 6.79 ± 0.00, 8.11 ± 0.02, and 7.39 ± 0.01 μg/kg for maize, respectively (p ≤ .05); and for groundnut (peanut), they were 8.11 ± 0.01, 4.88 ± 0.01, 7.04 ± 0.02, 6.75 ± 0.01, and 4.71 ± 0.00 μg/kg, respectively. At CCC adjusted to pH 5.0, the AT, AFB1, AFG1, OTA, and citrinin in the samples significantly reduced by 30%-51% and 17%-38% for maize and groundnut, respectively, and were reduced to 28%-100% when CCC was adjusted to pH 4.5 and 4.0 (p ≤ .05). The HPAS process either completely detoxified the mycotoxins or at least reduced them to levels below the maximum limits of 4.00-6.00, 2.00, 2.00, 5.00, and 100 μg/kg for AT, AFB1, AFG1, OTA, and citrinin, respectively, set by the European Union, WHO/FAO, and USDA. The study clearly demonstrates that mycotoxins can be completely detoxified using HPAS at CCC adjusted to pH 4.0 or below. This can be widely applied or integrated into many agricultural and production processes in the food, pharmaceutical, medical, chemical, and nutraceutical industries where pressurized steaming can be applied for the successful detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | - Onyenibe Sarah Nwozo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryUniversity of IbadanIbadanNigeria
| | - Patrick Maduabuchi Aja
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Grace Akinyi Odongo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- International Agency for Research on CancerWorld Health OrganizationLyonFrance
| |
Collapse
|
35
|
Zhang C, Jiang J, Li J, Zhang J, Zhang X, Wang H. Long transportation duration affects nutrient composition, mycotoxins and microbial community in whole-plant corn silage. Front Vet Sci 2023; 10:1189358. [PMID: 37275604 PMCID: PMC10234506 DOI: 10.3389/fvets.2023.1189358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Potential nutrient losses and mycotoxin accumulation caused by abnormal fermentation during transportation from cropland to dairy farms leads to the diseases incidence and threatens the health of dairy cows, then further causes financial losses. The aim of this study was to investigate the effects of different transportation times on the nutritional composition, mycotoxins, and microbial communities in whole-plant corn silage (WPCS). Methods Three groups were subjected to different transport times: DY, short (<200 min); ZY, medium time (300-500 min); and CY, long transport time (>600 min). WPCS were collected from the same field, and nutrient composition and microbial composition before and after transportation were analyzed. Results and discussion Our results showed that the temperature of WPCS was higher in the ZY and CY groups than in the DY group (P < 0.01). There were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE) and starch contents after different transportation times (P > 0.05), whereas the starch and water-soluble carbohydrates (WSC) contents in the CY group was significantly decreased after transport (P < 0.05). Similarly, the concentration of vomitoxin in the DY and CY groups declined markedly (P < 0.05) and the zearalenone content in the DY group also significantly decreased after transportation (P < 0.05). Regarding the analysis of microorganisms in WPCS, UniFrac-distance matrices and Shannon indices showed differences in the ZY group (P < 0.05), but fungal diversities were not influenced by the transport time (P > 0.05). In the ZY group, the relative abundance of Lactiplantibacillus decreased significantly after transportation (P > 0.05), but the relative abundances of unidentified_Chloroplast, Pantoea, Gluconobacter, unidentified Acetobacter and Acinetobacter increased markedly (P < 0.05). In addition, the relative abundances of Acetobacter and Gluconobacter in the CY group increased after transport (P < 0.05). Among fungal communities, a total of three, nine, and ten different fungal flora were observed in the DY, ZY, and CY groups, respectively, although no difference was found in fungal diversity. In conclusion, increased temperature, loss of starch, and mycotoxin variation were found with increased transport time. This might be the result of competition between bacteria and fungi, and novel technologies will need to be utilized for further exploration of the mechanism.
Collapse
Affiliation(s)
- Caixia Zhang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Jiang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Junfeng Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jiming Zhang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xinyue Zhang
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hairong Wang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
36
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
37
|
Wu Q, You L, Wu W, Long M, Kuca K. Mycotoxins: Emerging toxic mechanisms, and unanswered research questions. Food Chem Toxicol 2023; 174:113673. [PMID: 36796619 DOI: 10.1016/j.fct.2023.113673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Recently, a series of toxic mechanisms have been explored in mycotoxins. Emerging evidence show that mycotoxins may induce human neurodegenerative diseases (ND); however, this idea is still unproven. Besides to identify this hypothesis, some questions, for example, how the mycotoxins induce this disease and what the molecular mechanism is, as well as whether the brain-gut axis is involved in this context, should be answered. Very recent studies further reported an "immune evasion" mechanism in trichothecenes; moreover, hypoxia seems to play important function in this process; nevertheless, whether this "immune evasion" process is present in other mycotoxins, especially in aflatoxins, should be tested. In this work, we mainly discussed some key scientific questions that need to be answered in the toxic mechanisms of mycotoxins. We especially focused on the research questions in the key signaling pathways, balance mechanism of immunostimulatory and immunosuppressive effects, and the relationship between autophagy and apoptosis. Interesting topics such as mycotoxins and aging, cytoskeleton and immunotoxicity are also discussed. More importantly, we compile a special issue: "New insight into mycotoxins and bacterial toxins: toxicity assessment, molecular mechanism and food safety" for Food and Chemical Toxicology. Researchers are encouraged to submit their newest work to this special issue.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
38
|
Zhang Z, Fan K, Meng J, Nie D, Zhao Z, Han Z. Deoxynivalenol hijacks the pathway of Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT-3) to drive caspase-3-mediated apoptosis in intestinal porcine epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161058. [PMID: 36565876 DOI: 10.1016/j.scitotenv.2022.161058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Deoxynivalenol (DON) can easily injure the intestinal tract, which represents the first barrier against food contaminants. The intestinal toxicity induced by DON was mainly focused on mitogen-activated protein kinase (MAPK) activation, however, the underlying mechanisms by which DON triggers apoptosis by other pathways remain poorly understood. In this study, the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT-3) pathway was proposed to regulate the intrinsic apoptosis induced by DON and thoroughly investigated in intestinal porcine epithelial cells (IPEC-J2). First, DON was found to be able to efficiently inhibit cell viability and increase the release of lactate dehydrogenase. It could also enhance the activity of the cleaved caspase-3 in a time-dependent manner, accompanied by a loss of mitochondrial membrane potential and an up-regulation of the apoptosis rate. Then, the expression of genes associated with inflammation and apoptosis were investigated. DON increased the expression of IL-6, IL-1β, TNF-α, SOCS3 and Bax, but decreased the expression of Bcl-2 and Bcl-xL. Moreover, we discovered that DON robustly inhibited STAT-3 activity together with the down-regulation of JAK2, Bcl-2 and Bcl-xL, paralleling the increase in p38 phosphorylation. Furthermore, a pharmacological activation of JAK2/STAT-3 alleviated DON induced-apoptosis. Concurrent with the apoptotic pathway, during the initial exposure to DON (first 4 h), a survival pathway involving phosphorylated Erk1/2, Akt, and FoxO1 was also observed. Thus, apoptosis induced by DON was Janus faced: although the survival pathway was activated, the DON-induced apoptotic JAK2/STAT-3/caspase-3 pathway dominated, leading to an imbalance in cell homeostasis. This study provides a novel avenue to comprehensively reveal the pathological mechanisms of DON-induced intestinal disorders, which is promising for future applications to other contaminants in food and feed.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
39
|
Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G, Wolska L. Intensive poultry farming: A review of the impact on the environment and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160014. [PMID: 36368402 DOI: 10.1016/j.scitotenv.2022.160014] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.
Collapse
Affiliation(s)
- Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland.
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Lidia Piechowicz
- Department of Microbiology, Faculty of Medicine, Medical University of Gdansk, Dębowa Str. 25, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
40
|
Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food. Molecules 2023; 28:molecules28020703. [PMID: 36677761 PMCID: PMC9861586 DOI: 10.3390/molecules28020703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Aflatoxins (AFs) are fungi secondary metabolites produced by the Aspergillus family. These compounds can enter the food chain through food contamination, representing a risk to human health. Commercial immunoaffinity columns are widely used for the extraction and cleanup of AFs from food samples; however, their high cost and large solvent consumption create a need for alternative strategies. In this work, an alternative strategy for producing molecularly imprinted polymers (MIPs) was proposed to extract aflatoxins AFB1, AFB2, AFG1, and AFG2 from complex food samples, using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The MIPs were synthesized via a low-cost and rapid (5 min) sonochemical free-radical polymerization, using 1-hydroxy-2-naphthoic acid as a dummy template. MIPs-based solid phase extraction performance was tested on 17 dietary supplements (vegetables, fruits, and cereals), obtaining appreciable recovery rates (65-90%) and good reproducibility (RSD ≤ 6%, n = 3); the selectivity towards other mycotoxins was proved and the data obtained compared with commercial immunoaffinity columns. The proposed strategy can be considered an alternative affordable approach to the classical immunoaffinity columns, since it is more selective and better performing.
Collapse
|
41
|
YU M, LIU P. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
43
|
Tahir MA, Abbas A, Muneeb M, Bilal RM, Hussain K, Abdel-Moneim AME, Farag MR, Dhama K, Elnesr SS, Alagawany M. Ochratoxicosis in poultry: occurrence, environmental factors, pathological alterations and amelioration strategies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muhammad A. Tahir
- Department of Pathobiology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asghar Abbas
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Muhammad Muneeb
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Rana M. Bilal
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Islamia University, Bahawalpur, Pakistan
| | - Kashif Hussain
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | | | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|