1
|
Mandal T, Brandt N, Tempra C, Javanainen M, Fábián B, Chiantia S. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184388. [PMID: 39401729 DOI: 10.1016/j.bbamem.2024.184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Titas Mandal
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Nadine Brandt
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Unit of Physics, Tampere University, 33720 Tampere, Finland
| | - Balázs Fábián
- Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Street 3, 60438 Frankfurt am Main, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Mai LD, Wimberley SC, Champion JA. Intracellular delivery strategies using membrane-interacting peptides and proteins. NANOSCALE 2024; 16:15465-15480. [PMID: 39091235 PMCID: PMC11340348 DOI: 10.1039/d4nr02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
While the cellular cytosol and organelles contain attractive targets for disease treatments, it remains a challenge to deliver therapeutic biomacromolecules to these sites. This is due to the selective permeability of the plasma and endosomal membranes, especially for large and hydrophilic therapeutic cargos such as proteins and nucleic acids. In response, many different delivery systems and molecules have been devised to help therapeutics cross these barriers to reach cytosolic targets. Among them are peptide and protein-based systems, which have several advantages over other natural and synthetic materials including their ability to interact with cell membranes. In this review, we will describe recent advances and current challenges of peptide and protein strategies that leverage cell membrane association and modulation to enable cytosolic delivery of biomacromolecule cargo. The approaches covered here include peptides and proteins derived from or inspired by natural sequences as well as those designed de novo for delivery function.
Collapse
Affiliation(s)
- Linh D Mai
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
| | - Sydney C Wimberley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| |
Collapse
|
3
|
Feng Y, Wang J, Fan W, Huang B, Qin Z, Tian Z, Geng Y, Huang X, Ouyang P, Chen D, Lai W. Exploitation of multiple host-derived nutrients by the yellow catfish epidermal environment facilitates Vibrio mimicus to sustain infection potency and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109707. [PMID: 38885802 DOI: 10.1016/j.fsi.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jiao Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Wei Fan
- NeiJiang Academy of Agricultural Sciences, Neijiang, Sichuan, 641000, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| |
Collapse
|
4
|
Watanabe-Takahashi M, Kumoi K, Yamamoto H, Shimizu E, Motoyama J, Hamabata T, Nishikawa K. Tailored multivalent peptide targeting the B-subunit pentamer of cholera toxin inhibits its intestinal toxicity by inducing aberrant transport of the toxin in cells. Biochem Biophys Res Commun 2024; 716:149991. [PMID: 38704888 DOI: 10.1016/j.bbrc.2024.149991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.
Collapse
Affiliation(s)
- Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kahori Kumoi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroshi Yamamoto
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takashi Hamabata
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
5
|
Jia J, Lietz S, Barth H, Ernst K. The antiarrhythmic drugs amiodarone and dronedarone inhibit intoxication of cells with pertussis toxin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03247-9. [PMID: 38958734 DOI: 10.1007/s00210-024-03247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Pertussis toxin (PT) is a virulent factor produced by Bordetella pertussis, the causative agent of whooping cough. PT exerts its pathogenic effects by ADP-ribosylating heterotrimeric G proteins, disrupting cellular signaling pathways. Here, we investigate the potential of two antiarrhythmic drugs, amiodarone and dronedarone, in mitigating PT-induced cellular intoxication. After binding to cells, PT is endocytosed, transported from the Golgi to the endoplasmic reticulum where the enzyme subunit PTS1 is released from the transport subunit of PT. PTS1 is translocated into the cytosol where it ADP-ribosylates inhibitory α-subunit of G-protein coupled receptors (Gαi). We showed that amiodarone and dronedarone protected CHO cells and human A549 cells from PT-intoxication by analyzing the ADP-ribosylation status of Gαi. Amiodarone had no effect on PT binding to cells or in vitro enzyme activity of PTS1 but reduced the signal of PTS1 in the cell suggesting that amiodarone interferes with intracellular transport of PTS1. Moreover, dronedarone mitigated the PT-mediated effect on cAMP signaling in a cell-based bioassay. Taken together, our findings underscore the inhibitory effects of amiodarone and dronedarone on PT-induced cellular intoxication, providing valuable insights into drug repurposing for infectious disease management.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
6
|
Simpson MS, De Luca H, Cauthorn S, Luong P, Udeshi ND, Svinkina T, Schmieder SS, Carr SA, Grey MJ, Lencer WI. IRE1α recognizes a structural motif in cholera toxin to activate an unfolded protein response. J Cell Biol 2024; 223:e202402062. [PMID: 38578285 PMCID: PMC10996581 DOI: 10.1083/jcb.202402062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
IRE1α is an endoplasmic reticulum (ER) sensor that recognizes misfolded proteins to induce the unfolded protein response (UPR). We studied cholera toxin (CTx), which invades the ER and activates IRE1α in host cells, to understand how unfolded proteins are recognized. Proximity labeling colocalized the enzymatic and metastable A1 segment of CTx (CTxA1) with IRE1α in live cells, where we also found that CTx-induced IRE1α activation enhanced toxicity. In vitro, CTxA1 bound the IRE1α lumenal domain (IRE1αLD), but global unfolding was not required. Rather, the IRE1αLD recognized a seven-residue motif within an edge β-strand of CTxA1 that must locally unfold for binding. Binding mapped to a pocket on IRE1αLD normally occupied by a segment of the IRE1α C-terminal flexible loop implicated in IRE1α oligomerization. Mutation of the CTxA1 recognition motif blocked CTx-induced IRE1α activation in live cells, thus linking the binding event with IRE1α signal transduction and induction of the UPR.
Collapse
Affiliation(s)
- Mariska S. Simpson
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Heidi De Luca
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
| | - Sarah Cauthorn
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Phi Luong
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
| | | | | | - Stefanie S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Michael J. Grey
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| |
Collapse
|
7
|
Sasaki I, Fukuda-Ohta Y, Nakai C, Wakaki-Nishiyama N, Okamoto C, Okuzaki D, Morita S, Kaji S, Furuta Y, Hemmi H, Kato T, Yamamoto A, Tosuji E, Saitoh SI, Tanaka T, Hoshino K, Fukuda S, Miyake K, Kuroda E, Ishii KJ, Iwawaki T, Furukawa K, Kaisho T. A stress sensor, IRE1α, is required for bacterial-exotoxin-induced interleukin-1β production in tissue-resident macrophages. Cell Rep 2024; 43:113981. [PMID: 38520688 DOI: 10.1016/j.celrep.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1β (IL-1β), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1β production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1β production, indicating that IRE1α is required for CT- or CTB-induced IL-1β production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Chihiro Nakai
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Chizuyo Okamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Morita
- First Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shiori Kaji
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuki Furuta
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Emi Tosuji
- Department of Dermatology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shin-Ichiroh Saitoh
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Tanaka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| |
Collapse
|
8
|
Machin DC, Williamson DJ, Fisher P, Miller VJ, Arnott ZLP, Stevenson CME, Wildsmith GC, Ross JF, Wasson CW, Macdonald A, Andrews BI, Ungar D, Turnbull WB, Webb ME. Sortase-Modified Cholera Toxoids Show Specific Golgi Localization. Toxins (Basel) 2024; 16:194. [PMID: 38668619 PMCID: PMC11054894 DOI: 10.3390/toxins16040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.
Collapse
Affiliation(s)
- Darren C. Machin
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Daniel J. Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Peter Fisher
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Zoe L. P. Arnott
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Charlotte M. E. Stevenson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Gemma C. Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - James F. Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Christopher W. Wasson
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Andrew Macdonald
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Benjamin I. Andrews
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| |
Collapse
|
9
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
10
|
Verma A, De Pascalis R, Mocca CP, Li X, Burns DL. Visualization of immune pathways that enhance the neutralizing antibody response to vaccines after primary immunization. mBio 2024; 15:e0003724. [PMID: 38334423 PMCID: PMC10936199 DOI: 10.1128/mbio.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
We examined the relationship between the association of a vaccine antigen with immune cells in secondary lymphoid organs shortly after immunization and the resulting neutralizing antibody response induced by that antigen using three antigenic forms of anthrax protective antigen (PA) that induce qualitatively different antibody responses. The three PA forms used were wild-type PA, which binds to anthrax toxin receptors and elicits a robust antibody response that includes both neutralizing and non-neutralizing antibodies; a receptor-binding-deficient (RBD) mutant form of PA, which does not bind cellular receptors and elicits only barely detectable antibody responses; and an engineered chimeric form of PA, which binds cholera toxin receptors and elicits a robust total antibody response but a poor neutralizing antibody response. We found that both wild-type PA and the PA chimera associated with immune cells in secondary lymphoid organs after immunization, but the RBD mutant PA exhibited minimal association, revealing a relationship between antigen binding to toxin receptors on immune cells after immunization and subsequent antibody responses. A portion of wild-type PA that bound to immune cells was cell surface-associated and maintained its native conformation. Much lower amounts of conformationally intact PA chimera were associated with immune cells after immunization, correlating with the lower neutralizing antibody response elicited by the PA chimera. Thus, binding of an antigen to receptors on immune cells in secondary lymphoid organs after immunization and maintenance of conformational integrity of the cell-associated antigen help dictate the magnitude of the resulting neutralizing antibody response, but not necessarily the total antibody response.IMPORTANCEMany vaccines protect by the induction of antibodies that neutralize the action of the pathogen. Here, we followed the fate of three antigenic forms of a vaccine antigen in secondary lymphoid organs after immunization to investigate events leading to a robust neutralizing antibody response. We found that the magnitude of the neutralizing antibody response, but not the total antibody response, correlates with the levels of conformationally intact antigen associated with immune cells in secondary lymphoid organs after primary immunization. We believe that these results provide important insights into the genesis of neutralizing antibody responses induced by vaccine antigens and may have implications for vaccine design.
Collapse
Affiliation(s)
- Anita Verma
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher P. Mocca
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xiaohong Li
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Drusilla L. Burns
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Au CW, Manfield I, Webb ME, Paci E, Turnbull WB, Ross JF. The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity. Toxins (Basel) 2024; 16:133. [PMID: 38535799 PMCID: PMC10974167 DOI: 10.3390/toxins16030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.
Collapse
Affiliation(s)
- Cheuk W. Au
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Michael E. Webb
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Emanuele Paci
- Dipartimento di Fisica e Astronomia “Augusto Righi”, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - W. Bruce Turnbull
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - James F. Ross
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Jamgochian HH, Zamakhaev MV, Sluchanko NN, Goncharenko AV, Shumkov MS. Development of Heterologous Expression System and Optimization of the Method of Cholera Toxin β-Subunit Production in E. coli. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1304-1317. [PMID: 37770397 DOI: 10.1134/s0006297923090109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Cholera is a deadly infection disease, which is usually associated with low hygiene levels and limited access to high-quality drinking water. An effective way to prevent cholera is the use of vaccines. Among active vaccine components there is the CtxB protein (cholera toxin β-subunit). In the current work, we have developed a genetic system for production of the recombinant CtxB in E. coli cells and studied conditions for synthesis and purification of the target product at the laboratory scale. It has been found that the optimal algorithm for isolation of the recombinant protein is to grow E. coli culture in the synthetic M9 medium with glycerol, followed by CtxB purification out of the spent culture medium using Ni2+-chelate affinity chromatography techniques. Forty-eight hours after induction of CtxB expression, concentration of the target product could be up to 50 mg/liter in the culture medium. The CtxB protein retains its pentameric structure during expression and through purification. The latter makes it possible to consider the developed system as a promising tool for the industrial-level production of recombinant CtxB for medical and research purposes.
Collapse
Affiliation(s)
- Hamesd H Jamgochian
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail V Zamakhaev
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna V Goncharenko
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Mikhail S Shumkov
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
14
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
15
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
16
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Liu D, Zhan Y, Wu X, Qiao H, Zhang Y, Li B. Design, preparation and characterization of octopus-like self-releasing intracellular protein transporter LEB5 based on Escherichia coli heat-labile enterotoxin. Int J Biol Macromol 2023; 237:124172. [PMID: 36966860 DOI: 10.1016/j.ijbiomac.2023.124172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Despite the great potential of protein drugs as intracellular therapeutic agents, the unmet challenge in breaking through the cell membrane barrier and delivering them to intracellular targets remains. Therefore, developing safe and effective delivery vehicles is critical for fundamental biomedical research and clinical applications. In this study, we designed an octopus-like self-releasing intracellular protein transporter, the LEB5, based on the heat-labile enterotoxin. This carrier comprises five identical units, each of which has three main components: a linker, a self-releasing enzyme sensitivity loop, and the LTB transport domain. The LEB5 comprises five purified monomers that self-assemble to create a pentamer with ganglioside GM1 binding capacity. The fluorescent protein EGFP was used as a reporter system to identify the LEB5 features. The high-purity fusion protein ELEB monomer was produced from modified bacteria carrying pET24a(+)-eleb recombinant plasmids. EGFP protein could effectively detach from LEB5 by low dosage trypsin, according to electrophoresis analysis. The transmission electron microscopy results indicate that both LEB5 and ELEB5 pentamers exhibit a relatively regularly spherical shape, and the differential scanning calorimetry measurements further suggest that these proteins possess excellent thermal stability. Fluorescence microscopy revealed that LEB5 translocated EGFP into different cell types. Flow cytometry showed cellular differences in the transport capacity of LEB5. According to the confocal microscopy, fluorescence analysis and western blotting data, EGFP was transferred to the endoplasmic reticulum by the LEB5 carrier, detached from LEB5 by cleavage of the enzyme-sensitive loop, and released into the cytoplasm. Within the dosage range of LEB5 10-80 μg/mL, cell counting kit-8 assay revealed no significant changes in cell viability. These results demonstrated that LEB5 is a safe and effective intracellular self-releasing delivery vehicle capable of transporting and releasing protein medicines into cells.
Collapse
Affiliation(s)
- Di Liu
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China.
| | - Yafen Zhan
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Hongping Qiao
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Yeli Zhang
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
| | - Bo Li
- College of Biological Sciences and Technology and Center for Veterinary Medicine, Taiyuan Normal University, Jinzhong 030619, Shanxi, China; School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
18
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
19
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
20
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
21
|
Bader C, Taylor M, Banerjee T, Teter K. The cytopathic activity of cholera toxin requires a threshold quantity of cytosolic toxin. Cell Signal 2023; 101:110520. [PMID: 36371029 PMCID: PMC9722578 DOI: 10.1016/j.cellsig.2022.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
After binding to the surface of a target cell, cholera toxin (CT) moves to the endoplasmic reticulum (ER) by retrograde transport. In the ER, the catalytic CTA1 subunit dissociates from the rest of the toxin and is transferred to the cytosol where it is degraded by a ubiquitin-independent proteasomal mechanism. However, CTA1 persists long enough to induce excessive cAMP production through the activation of Gsα. It is generally believed that only one or a few molecules of cytosolic CTA1 are necessary to elicit a cytopathic effect, yet no study has directly correlated the levels of cytosolic toxin to the extent of intoxication. Here, we used the technology of surface plasmon resonance to quantify the cytosolic pool of CTA1. Our data demonstrate that only 4% of surface-bound CTA1 is found in the cytosol after 2 h of intoxication. This represented around 2600 molecules of cytosolic toxin per cell, and it was sufficient to produce a robust cAMP response. However, we did not detect elevated cAMP levels in cells containing less than 700 molecules of cytosolic toxin. Thus, a threshold quantity of cytosolic CTA1 is required to elicit a cytopathic effect. When translocation to the cytosol was blocked soon after toxin exposure, the pool of CTA1 already in the cytosol was degraded and was not replenished. The cytosolic pool of CTA1 thus remained below its functional threshold, preventing the initiation of a cAMP response. These observations challenge the paradigm that extremely low levels of cytosolic toxin are sufficient for toxicity, and they provide experimental support for the development of post-intoxication therapeutic strategies.
Collapse
Affiliation(s)
- Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Tuhina Banerjee
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
22
|
Ohnishi Y, Tsuji D, Itoh K. Oxidative Stress Impairs Autophagy <i>via</i> Inhibition of Lysosomal Transport of VAMP8. Biol Pharm Bull 2022; 45:1609-1615. [DOI: 10.1248/bpb.b22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yukiya Ohnishi
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
23
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
24
|
Maki Y, Kawata K, Liu Y, Goo KY, Okamoto R, Kajihara Y, Satoh A. Design and Synthesis of Glycosylated Cholera Toxin B Subunit as a Tracer of Glycoprotein Trafficking in Organelles of Living Cells. Chemistry 2022; 28:e202201253. [PMID: 35604098 DOI: 10.1002/chem.202201253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/15/2022]
Abstract
Glycosylation of proteins is known to be essential for changing biological activity and stability of glycoproteins on the cell surfaces and in body fluids. Delivering of homogeneous glycoproteins into the endoplasmic reticulum (ER) and the Golgi apparatus would enable us to investigate the function of asparagine-linked (N-) glycans in the organelles. In this work, we designed and synthesized an intentionally glycosylated cholera toxin B-subunit (CTB) to be transported to the organelles of mammalian cells. The heptasaccharide, the intermediate structure of various complex-type N-glycans, was introduced to the CTB. The synthesized monomeric glycosyl-CTB successfully entered mammalian cells and was transported to the Golgi and the ER, suggesting the potential use of synthetic CTB to deliver and investigate the functions of homogeneous N-glycans in specific organelles of living cells.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuki Kawata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yanbo Liu
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kang-Ying Goo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| |
Collapse
|
25
|
Detzner J, Püttmann C, Pohlentz G, Müthing J. Ingenious Action of Vibrio cholerae Neuraminidase Recruiting Additional GM1 Cholera Toxin Receptors for Primary Human Colon Epithelial Cells. Microorganisms 2022; 10:microorganisms10061255. [PMID: 35744773 PMCID: PMC9227022 DOI: 10.3390/microorganisms10061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
For five decades it has been known that the pentamer of B subunits (choleragenoid) of the cholera toxin (CT) of Vibrio cholerae binds with high preference to the ganglioside GM1 (II3Neu5Ac-Gg4Cer). However, the exact structures of CT-binding GM1 lipoforms of primary human colon epithelial cells (pHCoEpiCs) have not yet been described in detail. The same holds true for generating further GM1 receptor molecules from higher sialylated gangliosides with a GM1 core through the neuraminidase of V. cholerae. To avoid the artificial incorporation of exogenous gangliosides from animal serum harboring GM1 and higher sialylated ganglio-series gangliosides, pHCoEpiCs were cultured in serum-free medium. Thin-layer chromatography overlay binding assays using a choleragenoid combined with electrospray ionization mass spectrometry revealed GM1 lipoforms with sphingosine (d18:1) as the sole sphingoid base linked to C14:0, C16:0, C18:0 or C20:0 fatty acyl chains forming the ceramide (Cer) moieties of the main choleragenoid-binding GM1 species. Desialylation of GD1a (IV3Neu5Ac,II3Neu5Ac-Gg4Cer) and GT1b (IV3Neu5Ac,II3(Neu5Ac)2-Gg4Cer) of pHCoEpiCs by V. cholerae neuraminidase was observed. GD1a-derived GM1 species with stable sphingosine (d18:1) and saturated fatty acyl chains varying in chain length from C16:0 up to C22:0 could be identified, indicating the ingenious interplay between CT and the neuraminidase of V. cholerae recruiting additional GM1 receptors of pHCoEpiCs.
Collapse
|
26
|
Wu H, Shajahan A, Yang JY, Capota E, Wands AM, Arthur CM, Stowell SR, Moremen KW, Azadi P, Kohler JJ. A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Cell Chem Biol 2022; 29:84-97.e8. [PMID: 34331854 PMCID: PMC8792112 DOI: 10.1016/j.chembiol.2021.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
N-glycans are displayed on cell-surface proteins and can engage in direct binding interactions with membrane-bound and secreted glycan-binding proteins (GBPs). Biochemical identification and characterization of glycan-mediated interactions is often made difficult by low binding affinities. Here we describe the metabolic introduction of a diazirine photo-cross-linker onto N-acetylglucosamine (GlcNAc) residues of N-linked glycoproteins on cell surfaces. We characterize sites at which diazirine-modified GlcNAc is incorporated, as well as modest perturbations to glycan structure. We show that diazirine-modified GlcNAc can be used to covalently cross-link two extracellular GBPs, galectin-1 and cholera toxin subunit B, to cell-surface N-linked glycoproteins. The extent of cross-linking correlates with display of the preferred glycan ligands for the GBPs. In addition, covalently cross-linked complexes could be isolated, and protein components of cross-linked N-linked glycoproteins were identified by proteomics analysis. This method may be useful in the discovery and characterization of binding interactions that depend on N-glycans.
Collapse
Affiliation(s)
- Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA,current affiliation: Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605
| | - Emanuela Capota
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA,Lead Contact:
| |
Collapse
|
27
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence 2021; 12:195-216. [PMID: 33356849 PMCID: PMC7808437 DOI: 10.1080/21505594.2020.1869441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Lipids are complex organic compounds made up of carbon, oxygen, and hydrogen. These play a diverse and intricate role in cellular processes like membrane trafficking, protein sorting, signal transduction, and bacterial infections. Both Gram-positive bacteria (Staphylococcus sp., Listeria monocytogenes, etc.) and Gram-negative bacteria (Chlamydia sp., Salmonella sp., E. coli, etc.) can hijack the various host-lipids and utilize them structurally as well as functionally to mount a successful infection. The pathogens can deploy with various arsenals to exploit host membrane lipids and lipid-associated receptors as an attachment for toxins' landing or facilitate their entry into the host cellular niche. Bacterial species like Mycobacterium sp. can also modulate the host lipid metabolism to fetch its carbon source from the host. The sequential conversion of host membrane lipids into arachidonic acid and prostaglandin E2 due to increased activity of cPLA-2 and COX-2 upon bacterial infection creates immunosuppressive conditions and facilitates the intracellular growth and proliferation of bacteria. However, lipids' more debatable role is that they can also be a blessing in disguise. Certain host-lipids, especially sphingolipids, have been shown to play a crucial antibacterial role and help the host in combating the infections. This review shed light on the detailed role of host lipids in bacterial infections and the current understanding of the lipid in therapeutics. We have also discussed potential prospects and the need of the hour to help us cope in this race against deadly pathogens and their rapidly evolving stealthy virulence strategies.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
28
|
Badshah SL, Naeem A. Computational Simulation of Conjugated Cholera Toxin Protein. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821050049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Sadeghi M, Noé F. Thermodynamics and Kinetics of Aggregation of Flexible Peripheral Membrane Proteins. J Phys Chem Lett 2021; 12:10497-10504. [PMID: 34677984 DOI: 10.1021/acs.jpclett.1c02954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomembrane remodeling is essential for cellular trafficking, with membrane-binding peripheral proteins playing a key role in it. Significant membrane remodeling as in endo- and exocytosis is often due to aggregates of many proteins with direct or membrane-mediated interactions. Understanding this process via computer simulations is extremely challenging: protein-membrane systems involve time and length scales that make atomistic simulations impractical, while most coarse-grained models fall short in resolving dynamics and physical effects of protein and membrane flexibility. Here, we develop a coarse-grained model of the bilayer membrane bestrewed with rotationally symmetric flexible proteins, parametrized to reflect local curvatures and lateral dynamics of proteins. We investigate the kinetics, equilibrium distributions, and the free energy landscape governing the formation and breakup of protein clusters on the surface of the membrane. We demonstrate how the flexibility of the proteins as well as their surface concentration play deciding roles in highly selective macroscopic aggregation behavior.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany
| |
Collapse
|
30
|
Zoued A, Zhang H, Zhang T, Giorgio RT, Kuehl CJ, Fakoya B, Sit B, Waldor MK. Proteomic analysis of the host-pathogen interface in experimental cholera. Nat Chem Biol 2021; 17:1199-1208. [PMID: 34675415 DOI: 10.1038/s41589-021-00894-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
The microbial cell surface is a site of critical microbe-host interactions that often control infection outcomes. Defining the set of host proteins present at this interface has been challenging. Here we used a surface-biotinylation approach coupled to quantitative mass spectrometry to identify and quantify both bacterial and host proteins present on the surface of diarrheal fluid-derived Vibrio cholerae in an infant rabbit model of cholera. The V. cholerae surface was coated with numerous host proteins, whose abundance were driven by the presence of cholera toxin, including the C-type lectin SP-D. Mice lacking SP-D had enhanced V. cholerae intestinal colonization, and SP-D production shaped both host and pathogen transcriptomes. Additional host proteins (AnxA1, LPO and ZAG) that bound V. cholerae were also found to recognize distinct taxa of the murine intestinal microbiota, suggesting that these host factors may play roles in intestinal homeostasis in addition to host defense.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Carole J Kuehl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
31
|
Jia X, Zhang Y, Wang T, Fu Y. Highly Efficient Method for Intracellular Delivery of Proteins Mediated by Cholera Toxin-Induced Protein Internalization. Mol Pharm 2021; 18:4067-4078. [PMID: 34672633 DOI: 10.1021/acs.molpharmaceut.1c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of functional proteins into cells may help us understand how specific protein influences cell behavior as well as treat diseases caused by protein deficiency or loss-of-function mutations. However, protein cannot enter cells by diffusion. In this work, a novel cell biology tool for delivering recombinant proteins into mammalian cells was developed. We hijacked the intracellular transport routes used by the cholera toxin and took advantage of recent development on split intein that is compatible with denatured conditions and shows an exceptional splicing activity to deliver a protein of interest into mammalian cells. Here, we used green fluorescent protein and apoptin as proofs-of-concept. The results demonstrate that the cholera toxin B subunit alone could deliver other recombinant proteins into cells through either covalent conjugation or noncovalent interaction. Our method offers more than 10-fold better delivery efficiency than the tat cell-penetrating peptide and is selective for ganglioside-rich cells. This study adds a useful tool to the receptor-mediated intracellular targeting toolkit and opens possibility for the selective delivery of therapeutic proteins into ganglioside-rich cells.
Collapse
Affiliation(s)
- Xiaofan Jia
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
32
|
Brown EM, Arellano-Santoyo H, Temple ER, Costliow ZA, Pichaud M, Hall AB, Liu K, Durney MA, Gu X, Plichta DR, Clish CA, Porter JA, Vlamakis H, Xavier RJ. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe 2021; 29:1351-1365.e11. [PMID: 34403684 DOI: 10.1016/j.chom.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Bacterial ADP-ribosyltransferases (ADPRTs) have been described as toxins involved in pathogenesis through the modification of host proteins. Here, we report that ADPRTs are not pathogen restricted but widely prevalent in the human gut microbiome and often associated with phage elements. We validated their biochemical activity in a large clinical isolate collection and further examined Bxa, a highly abundant ADPRT in Bacteroides. Bxa is expressed, secreted, and enzymatically active in Bacteroides and can ADP-ribosylate non-muscle myosin II proteins. Addition of Bxa to epithelial cells remodeled the actin cytoskeleton and induced secretion of inosine. Bxa-encoding B. stercoris can use inosine as a carbon source and colonizes the gut to significantly greater numbers than a bxa-deleted strain in germ-free and altered Schaedler flora (ASF) mice. Colonization correlated with increased inosine concentrations in the feces and tissues. Altogether, our results show that ADPRTs are abundant in the microbiome and act as bacterial fitness factors.
Collapse
Affiliation(s)
- Eric M Brown
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hugo Arellano-Santoyo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novartis Institutes for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Emily R Temple
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Matthieu Pichaud
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novartis Institutes for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - A Brantley Hall
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Xiebin Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Clary A Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Porter
- Novartis Institutes for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
34
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Li Z, Guan H, Wang W, Gao H, Feng W, Li J, Diao B, Zhao H, Kan B, Zhang J. Development of a Rapid and Fully Automated Multiplex Real-Time PCR Assay for Identification and Differentiation of Vibrio cholerae and Vibrio parahaemolyticus on the BD MAX Platform. Front Cell Infect Microbiol 2021; 11:639473. [PMID: 33718286 PMCID: PMC7947656 DOI: 10.3389/fcimb.2021.639473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae and Vibrio parahaemolyticus are common diarrheal pathogens of great public health concern. A multiplex TaqMan-based real-time PCR assay was developed on the BD MAX platform; this assay can simultaneously detect and differentiate V. cholerae and V. parahaemolyticus directly from human fecal specimens. The assay includes two reactions. One reaction, BDM-VC, targets the gene ompW, the cholera toxin (CT) coding gene ctxA, the O1 serogroup specific gene rfbN, and the O139 serogroup specific gene wbfR of V. cholerae. The other, BDM-VP, targets the gene toxR and the toxin coding genes tdh and trh of V. parahaemolyticus. In addition, each reaction contains a sample process control. When evaluated with spiked stool samples, the detection limit of the BD MAX assay was 195–780 CFU/ml for V. cholerae and 46–184 CFU/ml for V. parahaemolyticus, and the amplification efficiency of all genes was between 95 and 115%. The assay showed 100% analytical specificity, using 63 isolates. The BD MAX assay was evaluated for its performance compared with conventional real-time PCR after automated DNA extraction steps, using 164 retrospective stool samples. The overall percent agreement between the BD MAX assay and real-time PCR was ≥ 98.8%; the positive percent agreement was 85.7% for ompW, 100% for toxR/tdh, and lower (66.7%) for trh because of a false negative. This is the first report to evaluate the usage of the BD MAX open system in detection and differentiation of V. cholerae and V. parahaemolyticus directly from human samples.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongxia Guan
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Wei Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weihong Feng
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
36
|
Asadpoor M, Ithakisiou GN, Henricks PAJ, Pieters R, Folkerts G, Braber S. Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against Enterotoxin-Producing Bacteria and Their Toxins. Toxins (Basel) 2021; 13:175. [PMID: 33668708 PMCID: PMC7996226 DOI: 10.3390/toxins13030175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal epithelium causing long-term consequences such as hemorrhagic colitis. Multiple non-digestible oligosaccharides (NDOs), and short chain fatty acids (SCFA), as their metabolites produced by the gut microbiota, interact with enteropathogens and their toxins, which may result in the inhibition of the bacterial pathogenicity. NDOs characterized by diverse structural characteristics, block the pathogenicity of EPB either directly, by inhibiting bacterial adherence and growth, or biofilm formation or indirectly, by promoting gut microbiota. Apart from these abilities, NDOs and SCFA can interact with enterotoxins and reduce their cytotoxicity. These anti-virulent effects mostly rely on their ability to mimic the structure of toxin receptors and thus inhibiting toxin adherence to host cells. This review focuses on the strategies of EPB and related enterotoxins to impair host cell immunity, discusses the anti-pathogenic properties of NDOs and SCFA on EPB functions and provides insight into the potential use of NDOs and SCFA as effective agents to fight against enterotoxins.
Collapse
Affiliation(s)
- Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Georgia-Nefeli Ithakisiou
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Roland Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands;
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| |
Collapse
|
37
|
Young EC, Baumgartner JT, Karatan E, Kuhn ML. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. MICROBIOLOGY-SGM 2021; 167. [PMID: 33502310 DOI: 10.1099/mic.0.001023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.
Collapse
Affiliation(s)
- Erin C Young
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Jackson T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
38
|
cAMP-Independent Activation of the Unfolded Protein Response by Cholera Toxin. Infect Immun 2021; 89:IAI.00447-20. [PMID: 33199355 DOI: 10.1128/iai.00447-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cholera toxin (CT) is an AB5 protein toxin that activates the stimulatory alpha subunit of the heterotrimeric G protein (Gsα) through ADP-ribosylation. Activation of Gsα produces a cytopathic effect by stimulating adenylate cyclase and the production of cAMP. To reach its cytosolic Gsα target, CT binds to the plasma membrane of a host cell and travels by vesicle carriers to the endoplasmic reticulum (ER). The catalytic CTA1 subunit then exploits the quality control mechanism of ER-associated degradation to move from the ER to the cytosol. ER-associated degradation is functionally linked to another quality control system, the unfolded protein response (UPR). However, the role of the UPR in cholera intoxication is unclear. We report here that CT triggers the UPR after 4 h of toxin exposure. A functional toxin was required to induce the UPR, but, surprisingly, activation of the adenylate cyclase signaling pathway was not sufficient to trigger the process. Toxin-induced activation of the UPR coincided with increased toxin accumulation in the cytosol. Chemical activation of the heterotrimeric G protein or the UPR also enhanced the onset of CTA1 delivery to the cytosol, thus producing a toxin-sensitive phenotype. These results indicate there is a cAMP-independent response to CT that activates the UPR and thereby enhances the efficiency of intoxication.
Collapse
|
39
|
Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. Toxins (Basel) 2021; 13:toxins13010036. [PMID: 33418946 PMCID: PMC7825107 DOI: 10.3390/toxins13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few decades, proteins and peptides have become increasingly more common as FDA-approved drugs, despite their inefficient delivery due to their inability to cross the plasma membrane. In this context, bacterial two-component systems, termed AB toxins, use various protein-based membrane translocation mechanisms to deliver toxins into cells, and these mechanisms could provide new insights into the development of bio-based drug delivery systems. These toxins have great potential as therapies both because of their intrinsic properties as well as the modular characteristics of both subunits, which make them highly amenable to conjugation with various drug classes. This review focuses on the therapeutical approaches involving the internalization mechanisms of three representative AB toxins: botulinum toxin type A, anthrax toxin, and cholera toxin. We showcase several specific examples of the use of these toxins to develop new therapeutic strategies for numerous diseases and explain what makes these toxins promising tools in the development of drugs and drug delivery systems.
Collapse
|
40
|
Guan H, Xue P, Zhou H, Sha D, Wang D, Gao H, Li J, Diao B, Zhao H, Kan B, Zhang J. A multiplex PCR assay for the detection of five human pathogenic Vibrio species and Plesiomonas. Mol Cell Probes 2020; 55:101689. [PMID: 33338586 DOI: 10.1016/j.mcp.2020.101689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
A multiplex PCR (mPCR) assay was established to detect five pathogenic Vibrio species and Plesiomonas shigelloides. Twelve genes were included: ompW, ctxA, rfbN, and wbfR from V. cholerae; tl, tdh, and trh from V. parahaemolyticus; toxR and vmhA from V. mimicus; toxR from V. fluvialis; vvhA from V. vulnificus; and the 23S rRNA gene from P. shigelloides. The specificity of the mPCR assay was 100% for the detection of 136 strains and the limits of detection (LoD) were 12.5-50 pg/reaction. The assay exhibited higher sensitivity than cultivation methods in the detection of APW cultures of 113 diarrhea samples. In the analysis of 369 suspected Vibrio populations from estuarine water samples, the specificity of the mPCR for V. cholerae and V. parahaemolyticus was 100% for both, while the sensitivities were 100% and 96.1%, respectively. The assay can be applied to screen enrichment cultures and suspected colonies from environmental and clinical samples.
Collapse
Affiliation(s)
- Hongxia Guan
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Panpan Xue
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dan Sha
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - He Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Baowei Diao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hongqun Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
41
|
van Berkel AA, Santos TC, Shaweis H, van Weering JRT, Toonen RF, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem 2020; 157:450-466. [PMID: 33259669 PMCID: PMC8247427 DOI: 10.1111/jnc.15256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
Loss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its target-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether loss of MUNC18-1 causes defects in intracellular membrane transport pathways in primary murine neurons that may explain neurodegeneration. Electron, confocal and super resolution microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall, ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. By synchronizing protein trafficking by conditional cargo retention in the endoplasmic reticulum using selective hooks (RUSH) and immunocytochemistry, we show that anterograde Endoplasmic Reticulum-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin B-subunit transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking in an antibody uptake assay. We conclude that MUNC18-1 deficient neurons have normal anterograde but reduced retrograde transport to the Golgi. The impairments in retrograde pathways suggest a role of MUNC18-1 in endosomal SNARE-dependent fusion and provide a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.
Collapse
Affiliation(s)
- Annemiek A van Berkel
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Tatiana C Santos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Hesho Shaweis
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Cross-Kingdom Activation of Vibrio Toxins by ADP-Ribosylation Factor Family GTPases. J Bacteriol 2020; 202:JB.00278-20. [PMID: 32900828 DOI: 10.1128/jb.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Vibrio species use many different approaches to subvert, attack, and undermine the host response. The toxins they produce are often responsible for the devastating effects associated with their diseases. These toxins target a variety of host proteins, which leads to deleterious effects, including dissolution of cell organelle integrity and inhibition of protein secretion. Becoming increasingly prevalent as cofactors for Vibrio toxins are proteins of the small GTPase families. ADP-ribosylation factor small GTPases (ARFs) in particular are emerging as a common host cofactor necessary for full activation of Vibrio toxins. While ARFs are not the direct target of Vibrio cholerae cholera toxin (CT), ARF binding is required for its optimal activity as an ADP-ribosyltransferase. The makes caterpillars floppy (MCF)-like and the domain X (DmX) effectors of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxin (MARTX) toxin also both require ARFs to initiate autoprocessing and activation as independent effectors. ARFs are ubiquitously expressed in eukaryotes and are key regulators of many cellular processes, and as such they are ideal cofactors for Vibrio pathogens that infect many host species. In this review, we cover in detail the known Vibrio toxins that use ARFs as cross-kingdom activators to both stimulate and optimize their activity. We further discuss how these contrast to toxins and effectors from other bacterial species that coactivate, stimulate, or directly modify host ARFs as their mechanisms of action.
Collapse
|
43
|
Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, Wang AQ, Pradhan M, Hagen N, Chen L, Shen M, Luo Z, Xu X, Xu Y, Huang W, Zheng W, Ye Y. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov 2020; 6:80. [PMID: 33298900 PMCID: PMC7610239 DOI: 10.1038/s41421-020-00222-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-Cov and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, and facilitates the attachment of Spike-bearing viral particles to the cell surface to promote viral entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry and reveals drugs capable of targeting this important step in the viral life cycle.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Zhengzheng Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy Qiu Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Natalie Hagen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Zhiji Luo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, Wang AQ, Pradhan M, Hagen N, Chen L, Shen M, Luo Z, Xu X, Xu Y, Huang W, Zheng W, Ye Y. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.14.202549. [PMID: 32699847 PMCID: PMC7373127 DOI: 10.1101/2020.07.14.202549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-CoV and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, facilitates the attachment of viral particles to the cell surface to promote cell entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry, and reveals drugs capable of targeting this important step in the viral life cycle.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Amy Q. Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Natalie Hagen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Zhiji Luo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
45
|
Tsjokajev A, Røberg-Larsen H, Wilson SR, Dyve Lingelem AB, Skotland T, Sandvig K, Lundanes E. Mass spectrometry-based measurements of cyclic adenosine monophosphate in cells, simplified using reversed phase liquid chromatography with a polar characterized stationary phase. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122384. [PMID: 32971370 DOI: 10.1016/j.jchromb.2020.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
3', 5' - Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that is involved in many cellular functions and biological processes. In several cell types, cholera toxin will increase the level of cAMP, which mediates toxic effects on cells. In this context, we have developed a fast and simple method based on extraction with 5% trichloroacetic acid (TCA) and quantitation with liquid chromatography-mass tandem spectrometry (LC-MS/MS) for measuring cAMP in cells. A main feature of the LC-MS method was employing a reversed phase C18 column (2.1 mm × 50 mm, 1.6 µm particles) compatible with a 100% aqueous mobile phase, providing retention of the highly polar analyte. Isocratic separations allowed for fast subsequent injections. Negative mode electrospray ionization detection was performed with a triple quadrupole (QqQ)MS. cAMP was extracted from cell samples (~106 cells per well) and spiked with a labelled internal standard, using 200 µL of 5% TCA. The extraction solvent was fully compatible for direct injection onto the reversed phase column. After 10 min incubation, the supernatant was removed, and 10 µL of the supernatant was directly analysed by LC-MS. The method was characterized by the simplicity of the extraction, and the speed (3 min retention time of cAMP), sensitivity (250 pg/mL detection limit), and selectivity (separation from interferences e.g. isomeric compounds) of the LC-MS method, and could be used for quantitation of cAMP in the range 1-500 ng/mL cell extract.
Collapse
Affiliation(s)
- Ahmad Tsjokajev
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Hanne Røberg-Larsen
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anne-Berit Dyve Lingelem
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
46
|
Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc Natl Acad Sci U S A 2020; 117:14978-14986. [PMID: 32554490 DOI: 10.1073/pnas.2001119117] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AB5 bacterial toxins and polyomaviruses induce membrane curvature as a mechanism to facilitate their entry into host cells. How membrane bending is accomplished is not yet fully understood but has been linked to the simultaneous binding of the pentameric B subunit to multiple copies of glycosphingolipid receptors. Here, we probe the toxin membrane binding and internalization mechanisms by using a combination of superresolution and polarized localization microscopy. We show that cholera toxin subunit B (CTxB) can induce membrane curvature only when bound to multiple copies of its glycosphingolipid receptor, GM1, and the ceramide structure of GM1 is likely not a determinant of this activity as assessed in model membranes. A mutant CTxB capable of binding only a single GM1 fails to generate curvature either in model membranes or in cells, and clustering the mutant CTxB-single-GM1 complexes by antibody cross-linking does not rescue the membrane curvature phenotype. We conclude that both the multiplicity and specific geometry of GM1 binding sites are necessary for the induction of membrane curvature. We expect this to be a general rule of membrane behavior for all AB5 toxins and polyomaviruses that bind glycosphingolipids to invade host cells.
Collapse
|
47
|
Tsutsuki H, Zhang T, Harada A, Rahman A, Ono K, Yahiro K, Niidome T, Sawa T. Involvement of protein disulfide isomerase in subtilase cytotoxin-induced cell death in HeLa cells. Biochem Biophys Res Commun 2020; 525:1068-1073. [DOI: 10.1016/j.bbrc.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/01/2022]
|
48
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
49
|
Roy R, Ghosh B, Kar P. Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS OMEGA 2020; 5:3932-3942. [PMID: 32149220 PMCID: PMC7057322 DOI: 10.1021/acsomega.9b03398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Cholera is caused by Vibrio cholerae and is an example of a blood-group-dependent disease. Recent studies suggest that the receptor-binding B subunit of the cholera toxin (CT) binds histo-blood group antigens at a secondary binding site. Herein, we studied the conformational dynamics of Lewis Y (LeY) oligosaccharides, H-tetrasaccharides and A-pentasaccharides, in aqueous solution by conducting accelerated molecular dynamics (aMD) simulations. The flexible nature of both oligosaccharides was displayed in aMD simulations. Furthermore, aMD simulations revealed that for both oligosaccharides in the free form, 4C1 and 1C4 puckers were sampled for all but GalNAc monosaccharides, while either the 4C1 (GlcNAc, Gal, GalNAc) or 1C4 (Fuc2, Fuc3) pucker was sampled in the CT-bound forms. In aMD, the complete transition from the 4C1 to 1C4 pucker was sampled for GlcNAc and Gal in both oligosaccharides. Further, we have observed a transition from the open to closed conformer in the case of A-pentasaccharide, while H-tetrasaccharide remains in the open conformation throughout the simulation. Both oligosaccharides adopted an open conformation in the CT binding site. Moreover, we have investigated the molecular basis of recognition of LeY oligosaccharides by the B subunit of the cholera toxin of classical and El Tor biotypes using the molecular mechanics generalized Born surface area (MM/GBSA) scheme. The O blood group determinant, H-tetrasaccharide, exhibits a stronger affinity to both biotypes compared to the A blood group determinant, A-pentasaccharide, which agrees with the experimental data. The difference in binding free energy between O and A blood group determinants mainly arises due to the increased entropic cost and desolvation energy in the case of A-pentasaccharide compared to that of H-tetrasaccharide. Our study also reveals that the terminal Fuc3 contributes most to the binding free energy compared to other carbohydrate residues as it forms multiple hydrogen bonds with CT. Overall, our study might help in designing glycomimetic drugs targeting the cholera toxin.
Collapse
Affiliation(s)
- Rajarshi Roy
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Biplab Ghosh
- High
Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Parimal Kar
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- E-mail: . Phone: +91 731 2438700 (ext. 550)
| |
Collapse
|
50
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|