1
|
Kamel W, Ruscica V, Embarc-Buh A, de Laurent ZR, Garcia-Moreno M, Demyanenko Y, Orton RJ, Noerenberg M, Madhusudhan M, Iselin L, Järvelin AI, Hannan M, Kitano E, Moore S, Merits A, Davis I, Mohammed S, Castello A. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024; 84:4896-4911.e7. [PMID: 39642884 DOI: 10.1016/j.molcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
RNA is a central molecule for viruses; however, the interactions that viral RNA (vRNA) establishes with the host cell is only starting to be elucidated. Here, we determine the ribonucleoprotein (RNP) composition of the prototypical arthropod-borne Sindbis virus (SINV). We show that SINV RNAs engage with hundreds of cellular proteins, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection. We demonstrate that these nuclear RBPs are selectively translocated to the cytoplasm after infection, where they accumulate in the viral replication organelles (ROs). These nuclear RBPs strongly suppress viral gene expression, with activities spanning viral species and families. Particularly, the U2 small nuclear RNP (snRNP) emerges as an antiviral complex, with both its U2 small nuclear RNA (snRNA) and protein components contributing to the recognition of the vRNA and the antiviral phenotype. These results suggest that the U2 snRNP has RNA-driven antiviral activity in a mechanism reminiscent of the RNAi pathway.
Collapse
Affiliation(s)
- Wael Kamel
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Vincenzo Ruscica
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Azman Embarc-Buh
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Zaydah R de Laurent
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yana Demyanenko
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Richard J Orton
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Marko Noerenberg
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Meghana Madhusudhan
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Louisa Iselin
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK; Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research,11, Oxford OX1 3SY, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maximilian Hannan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eduardo Kitano
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Samantha Moore
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK; Department of Chemistry, University of Oxford, Mansfield Road 16, Oxford OX1 3TA, UK.
| | - Alfredo Castello
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
2
|
Castello A, Álvarez L, Kamel W, Iselin L, Hennig J. Exploring the expanding universe of host-virus interactions mediated by viral RNA. Mol Cell 2024; 84:3706-3721. [PMID: 39366356 DOI: 10.1016/j.molcel.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
RNA is a central molecule in RNA virus biology; however, the interactions that it establishes with the host cell are only starting to be elucidated. In recent years, a methodology revolution has dramatically expanded the scope of host-virus interactions involving the viral RNA (vRNA). A second wave of method development has enabled the precise study of these protein-vRNA interactions in a life cycle stage-dependent manner, as well as providing insights into the interactome of specific vRNA species. This review discusses these technical advances and describes the new regulatory mechanisms that have been identified through their use. Among these, we discuss the importance of vRNA in regulating protein function through a process known as riboregulation. We envision that the elucidation of vRNA interactomes will open new avenues of research, including pathways to the discovery of host factors with therapeutic potential against viruses.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK.
| | - Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Louisa Iselin
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany; Department of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Álvarez L, Haubrich K, Iselin L, Gillioz L, Ruscica V, Lapouge K, Augsten S, Huppertz I, Choudhury NR, Simon B, Masiewicz P, Lethier M, Cusack S, Rittinger K, Gabel F, Leitner A, Michlewski G, Hentze MW, Allain FHT, Castello A, Hennig J. The molecular dissection of TRIM25's RNA-binding mechanism provides key insights into its antiviral activity. Nat Commun 2024; 15:8485. [PMID: 39353916 PMCID: PMC11445558 DOI: 10.1038/s41467-024-52918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
TRIM25 is an RNA-binding ubiquitin E3 ligase with central but poorly understood roles in the innate immune response to RNA viruses. The link between TRIM25's RNA binding and its role in innate immunity has not been established. Thus, we utilized a multitude of biophysical techniques to identify key RNA-binding residues of TRIM25 and developed an RNA-binding deficient mutant (TRIM25-m9). Using iCLIP2 in virus-infected and uninfected cells, we identified TRIM25's RNA sequence and structure specificity, that it binds specifically to viral RNA, and that the interaction with RNA is critical for its antiviral activity.
Collapse
Affiliation(s)
- Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Kevin Haubrich
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Louisa Iselin
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Laurent Gillioz
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Vincenzo Ruscica
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Karine Lapouge
- Protein expression and purification facility, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Sandra Augsten
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Ina Huppertz
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Nila Roy Choudhury
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Pawel Masiewicz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Mathilde Lethier
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble Cedex, France
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Frank Gabel
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut de Biologie Structurale, Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Gracjan Michlewski
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Infection Medicine, University of Edinburgh, The Chancellor's Building, Edinburgh, UK
| | - Matthias W Hentze
- Director's Research, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany
| | - Frédéric H T Allain
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117, Heidelberg, Germany.
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
4
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Bhattacharya T, Alleman EM, Noyola AC, Emerman M, Malik HS. A conserved opal termination codon optimizes a temperature-dependent tradeoff between protein production and processing in alphaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609082. [PMID: 39229031 PMCID: PMC11370586 DOI: 10.1101/2024.08.21.609082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.
Collapse
Affiliation(s)
| | - Eva M. Alleman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander C. Noyola
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael Emerman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
6
|
Bathula NV, Friesen JJ, Casmil IC, Wayne CJ, Liao S, Soriano SKV, Ho CH, Strumpel A, Blakney AK. Delivery vehicle and route of administration influences self-amplifying RNA biodistribution, expression kinetics, and reactogenicity. J Control Release 2024; 374:28-38. [PMID: 39097193 DOI: 10.1016/j.jconrel.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Self-amplifying RNA (saRNA) is a next-generation RNA platform derived from an alphavirus that enables replication in host cytosol, offering a promising shift from traditional messenger RNA (mRNA) therapies by enabling sustained protein production from minimal dosages. The approval of saRNA-based vaccines, such as the ARCT-154 for COVID-19 in Japan, underscores its potential for diverse therapeutic applications, including vaccine development, cancer immunotherapy, and gene therapy. This study investigates the role of delivery vehicle and administration route on saRNA expression kinetics and reactogenicity. Employing ionizable lipid-based nanoparticles (LNPs) and polymeric nanoparticles, we administered saRNA encoding firefly luciferase to BALB/c mice through six routes (intramuscular (IM), intradermal (ID), intraperitoneal (IP), intranasal (IN), intravenous (IV), and subcutaneous (SC)), and observed persistent saRNA expression over a month. Our findings reveal that while LNPs enable broad route applicability and stability, pABOL (poly (cystamine bisacrylamide-co-4-amino-1-butanol)) formulations significantly amplify protein expression via intramuscular delivery. Notably, the disparity between RNA biodistribution and protein expression highlight the nuanced interplay between administration routes, delivery vehicles, and therapeutic outcomes. Additionally, our research unveiled distinct biodistribution profiles and inflammatory responses contingent upon the chosen delivery formulation and route. This research illuminates the intricate dynamics governing saRNA delivery, biodistribution and reactogenicity, offering essential insights for optimizing therapeutic strategies and advancing the clinical and commercial viability of saRNA technologies.
Collapse
Affiliation(s)
- Nuthan Vikas Bathula
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christopher J Wayne
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Suiyang Liao
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Shekinah K V Soriano
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chia Hao Ho
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Anneke Strumpel
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada; RWTH Aachen University, Templergraben 55, Aachen 52062, Germany
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
7
|
Ventoso I, Berlanga JJ, Toribio R, Díaz-López I. Translational Control of Alphavirus-Host Interactions: Implications in Viral Evolution, Tropism and Antiviral Response. Viruses 2024; 16:205. [PMID: 38399981 PMCID: PMC10893052 DOI: 10.3390/v16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.
Collapse
Affiliation(s)
- Iván Ventoso
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Juan José Berlanga
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA), 28049 Madrid, Spain;
| | | |
Collapse
|
8
|
Shi X, Sun K, Hu Y, Wang Q, Liao G, Li L, Wen P, Wong LE, Jia F, Xu F. The G285S mutation in nsP1 is sufficient to render Sindbis virus as a stable vector for gene delivery. Front Microbiol 2023; 14:1229506. [PMID: 37560523 PMCID: PMC10408454 DOI: 10.3389/fmicb.2023.1229506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
Neuroscience, gene therapy, and vaccine have all benefited from the increased use of viral vectors. Sindbis virus (SINV) is a notable candidate among these vectors. However, viral vectors commonly suffer from a loss of expression of the transgene, especially RNA viral vectors. In this study, we used a directed evolution approach by continuous passage of selection to identify adaptive mutations that help SINV to stably express exogenous genes. As a result, we found two adaptive mutations that are located at aa 285 (G to S) of nsP1 and aa 422 (D to G) of nsP2, respectively. Further study showed that G285S was sufficient for SINV to stabilize the expression of the inserted gene, while D422G was not. Combined with AlphaFold2 and sequence alignment with the genus Alphavirus, we found that G285S is conserved. Based on this mutation, we constructed a new vector for the applications in neural circuits mapping. Our results indicated that the mutant SINV maintained its anterograde transsynaptic transmission property. In addition, when the transgene was replaced by another gene, granulocyte-macrophage colony-stimulating factor (GM-CSF), the vector still showed stable expression of the inserted gene. Hence, using SINV as an example, we have demonstrated an efficient approach to greatly augment the gene delivery capacity of viral vectors, which will be useful to neuroscience and oncolytic therapy.
Collapse
Affiliation(s)
- Xiangwei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangyixin Sun
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - You Hu
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinghan Wang
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guoyang Liao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Li
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengjie Wen
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Leo E. Wong
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Jia
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Lin G, Zhang Y. Mutations in the non-structural protein coding region regulate gene expression from replicon RNAs derived from Venezuelan equine encephalitis virus. Biotechnol Lett 2023:10.1007/s10529-023-03379-7. [PMID: 37266878 DOI: 10.1007/s10529-023-03379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.
Collapse
Affiliation(s)
- Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
12
|
Castello A, Iselin L. Viral RNA Is a Hub for Critical Host-Virus Interactions. Subcell Biochem 2023; 106:365-385. [PMID: 38159234 DOI: 10.1007/978-3-031-40086-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Louisa Iselin
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Kim T, Abraham R, Pieterse L, Yeh JX, Griffin DE. Cell-Type-Dependent Role for nsP3 Macrodomain ADP-Ribose Binding and Hydrolase Activity during Chikungunya Virus Infection. Viruses 2022; 14:v14122744. [PMID: 36560748 PMCID: PMC9787352 DOI: 10.3390/v14122744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) causes outbreaks of rash, arthritis, and fever associated with neurologic complications, where astrocytes are preferentially infected. A determinant of virulence is the macrodomain (MD) of nonstructural protein 3 (nsP3), which binds and removes ADP-ribose (ADPr) from ADP-ribosylated substrates and regulates stress-granule disruption. We compared the replication of CHIKV 181/25 (WT) and MD mutants with decreased ADPr binding and hydrolase (G32S) or increased ADPr binding and decreased hydrolase (Y114A) activities in C8-D1A astrocytic cells and NSC-34 neuronal cells. WT CHIKV replication was initiated more rapidly with earlier nsP synthesis in C8-D1A than in NSC-34 cells. G32S established infection, amplified replication complexes, and induced host-protein synthesis shut-off less efficiently than WT and produced less infectious virus, while Y114A replication was close to WT. However, G32S mutation effects on structural protein synthesis were cell-type-dependent. In NSC-34 cells, E2 synthesis was decreased compared to WT, while in C8-D1A cells synthesis was increased. Excess E2 produced by G32S-infected C8-D1A cells was assembled into virus particles that were less infectious than those from WT or Y114A-infected cells. Because nsP3 recruits ADP-ribosylated RNA-binding proteins in stress granules away from translation-initiation factors into nsP3 granules where the MD hydrolase can remove ADPr, we postulate that suboptimal translation-factor release decreased structural protein synthesis in NSC-34 cells while failure to de-ADP-ribosylate regulatory RNA-binding proteins increased synthesis in C8-D1A cells.
Collapse
|
14
|
Aloise C, Schipper JG, de Groot RJ, van Kuppeveld FJM. Move and countermove: the integrated stress response in picorna- and coronavirus-infected cells. Curr Opin Immunol 2022; 79:102254. [PMID: 36274340 PMCID: PMC9515345 DOI: 10.1016/j.coi.2022.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 01/29/2023]
Abstract
Viruses, when entering their host cells, are met by a fierce intracellular immune defense. One prominent antiviral pathway is the integrated stress response (ISR). Upon activation of the ISR - typically though not exclusively upon detection of dsRNA - translation-initiation factor eukaryotic initiation factor 2 (eIF2) becomes phosphorylated to act as an inhibitor of guanine nucleotide-exchange factor eIF2B. Thus, with the production of ternary complex blocked, a global translational arrest ensues. Successful virus replication hinges on effective countermeasures. Here, we review ISR antagonists and antagonistic mechanisms employed by picorna- and coronaviruses. Special attention will be given to a recently discovered class of viral antagonists that inhibit the ISR by targeting eIF2B, thereby allowing unabated translation initiation even at exceedingly high levels of phosphorylated eIF2.
Collapse
|
15
|
Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov Today 2022; 27:103341. [PMID: 35988718 DOI: 10.1016/j.drudis.2022.103341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The mRNA-based vaccines are quality-by-design (QbD) immunotherapies that provide safe, tunable, scalable, streamlined and potent treatment possibilities against different types of diseases. The self-amplifying mRNA (saRNA) vaccines, as a highly advantageous class of mRNA vaccines, are inspired by the intracellular self-multiplication nature of some positive-sense RNA viruses. Such vaccine platforms provide a relatively increased expression level of vaccine antigen(s) together with self-adjuvanticity properties. Lined with the QbD saRNA vaccines, essential optimizations improve the stability, safety, and immunogenicity of the vaccine constructs. Here, we elaborate on the concepts and mode-of-action of mRNA and saRNA vaccines, articulate the potential limitations or technical bottlenecks, and explain possible solutions or optimization methods in the process of their design and development.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Azari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rais Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| |
Collapse
|
16
|
Yeh JX, Fan Y, Bartlett ML, Zhang X, Sadowski N, Hauer DA, Timp W, Griffin DE. Treatment of Sindbis Virus-Infected Neurons with Antibody to E2 Alters Synthesis of Complete and nsP1-Expressing Defective Viral RNAs. mBio 2022; 13:e0222122. [PMID: 36069441 PMCID: PMC9600605 DOI: 10.1128/mbio.02221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV), the prototype alphavirus, preferentially infects neurons in mice and is a model system for studying mechanisms of viral clearance from the nervous system. Antibody specific to the SINV E2 glycoprotein plays an important role in SINV clearance, and this effect is reproduced in cultures of infected mature neurons. To determine how anti-E2 antibody affects SINV RNA synthesis, Oxford Nanopore Technologies direct long-read RNA sequencing was used to sequence viral RNAs following antibody treatment of infected neurons. Differentiated AP-7 rat olfactory neuronal cells, an in vitro model for mature neurons, were infected with SINV and treated with anti-E2 antibody. Whole-cell RNA lysates were collected for sequencing of poly(A)-selected RNA 24, 48, and 72 h after infection. Three primary species of viral RNA were produced: genomic, subgenomic, and defective viral genomes (DVGs) encoding the RNA capping protein nsP1. Antibody treatment resulted in overall lower production of SINV RNA, decreased synthesis of subgenomic RNA relative to genomic RNA, and suppressed production of the nsP1 DVG. The nsP1 DVG was packaged into virus particles and could be translated. Because antibody-treated cells released a higher proportion of virions with noncapped genomes and transient transfection to express the nsP1 DVG improved viral RNA capping in antibody-treated cells, we postulate that one mechanism by which antibody inhibits SINV replication in neurons is to suppress DVG synthesis and thus decrease production of infectious virions containing capped genomes. IMPORTANCE Alphaviruses are important causes of viral encephalomyelitis without approved treatments or vaccines. Antibody to the Sindbis virus (SINV) E2 glycoprotein is required for immune-mediated noncytolytic virus clearance from neurons. We used direct RNA nanopore sequencing to evaluate how anti-E2 antibody affects SINV replication at the RNA level. Antibody altered the viral RNAs produced by decreasing the proportion of subgenomic relative to genomic RNA and suppressing production of a previously unrecognized defective viral genome (DVG) encoding nsP1, the viral RNA capping enzyme. Antibody-treated neurons released a lower proportion of SINV particles with capped genomes necessary for translation and infection. Decreased nsP1 DVG production in antibody-treated neurons led to lower expression of nsP1 protein, decreased genome capping efficiency, and release of fewer infectious virus particles. Capping was increased with exogenous expression of the nsP1 DVG. These studies identify a novel alphavirus DVG function and new mechanism for antibody-mediated control of virus replication.
Collapse
Affiliation(s)
- Jane X. Yeh
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Yunfan Fan
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Maggie L. Bartlett
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Xiaoyan Zhang
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Norah Sadowski
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Debra A. Hauer
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Winston Timp
- Johns Hopkins University Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, Maryland, USA
| | - Diane E. Griffin
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zhang K, Law MCY, Nguyen TM, Tan YB, Wirawan M, Law YS, Jeong LS, Luo D. Molecular basis of specific viral RNA recognition and 5'-end capping by the Chikungunya virus nsP1. Cell Rep 2022; 40:111133. [PMID: 35905713 DOI: 10.1016/j.celrep.2022.111133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses encode RNA-modifying enzymes to edit the 5' end of viral RNA to mimic the cellular mRNA for effective protein translation, genome replication, and evasion of the host defense mechanisms. Alphavirus nsP1 synthesizes the 5' end Cap-0 structure of viral RNAs. However, the molecular basis of the capping process remains unclear. We determine high-resolution cryoelectron microscopy (cryo-EM) structures of Chikungunya virus nsP1 in complex with m7GTP/SAH, covalently attached m7GMP, and Cap-0 viral RNA. These structures reveal details of viral-RNA-capping reactions and uncover a sequence-specific virus RNA-recognition pattern that, in turn, regulates viral-RNA-capping efficiency to ensure optimal genome replication and subgenomic RNA transcription. This sequence-specific enzyme-RNA pairing is conserved across all alphaviruses.
Collapse
Affiliation(s)
- Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Trinh Mai Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yee-Song Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
18
|
HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022; 14:v14051084. [PMID: 35632825 PMCID: PMC9146425 DOI: 10.3390/v14051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome—epigenetic immunity towards a cure.
Collapse
|
19
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
20
|
Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2. Cells 2021; 10:cells10123510. [PMID: 34944018 PMCID: PMC8700540 DOI: 10.3390/cells10123510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.
Collapse
|
21
|
Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 2021; 6:1219-1232. [PMID: 34471255 DOI: 10.1038/s41564-021-00958-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed millions of lives and caused a global economic crisis. No effective antiviral drugs are currently available to treat infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The medical need imposed by the pandemic has spurred unprecedented research efforts to study coronavirus biology. Every virus depends on cellular host factors and pathways for successful replication. These proviral host factors represent attractive targets for antiviral therapy as they are genetically more stable than viral targets and may be shared among related viruses. The application of various 'omics' technologies has led to the rapid discovery of proviral host factors that are required for the completion of the SARS-CoV-2 life cycle. In this Review, we summarize insights into the proviral host factors that are required for SARS-CoV-2 infection that were mainly obtained using functional genetic and interactome screens. We discuss cellular processes that are important for the SARS-CoV-2 life cycle, as well as parallels with non-coronaviruses. Finally, we highlight host factors that could be targeted by clinically approved molecules and molecules in clinical trials as potential antiviral therapies for COVID-19.
Collapse
|
22
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
23
|
Inhibitors of Venezuelan Equine Encephalitis Virus Identified Based on Host Interaction Partners of Viral Non-Structural Protein 3. Viruses 2021; 13:v13081533. [PMID: 34452398 PMCID: PMC8402862 DOI: 10.3390/v13081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.
Collapse
|
24
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 PMCID: PMC8142890 DOI: 10.1016/j.molcel.2021.05.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
25
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 DOI: 10.1101/2020.11.25.398008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
26
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
27
|
Contu L, Balistreri G, Domanski M, Uldry AC, Mühlemann O. Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLoS Pathog 2021; 17:e1009603. [PMID: 34019569 PMCID: PMC8174725 DOI: 10.1371/journal.ppat.1009603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.
Collapse
Affiliation(s)
- Lara Contu
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Balistreri
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
28
|
PERK Is Critical for Alphavirus Nonstructural Protein Translation. Viruses 2021; 13:v13050892. [PMID: 34065980 PMCID: PMC8151226 DOI: 10.3390/v13050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4–5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.
Collapse
|
29
|
Blakney AK, Ip S, Geall AJ. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines (Basel) 2021; 9:97. [PMID: 33525396 PMCID: PMC7911542 DOI: 10.3390/vaccines9020097] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects.
Collapse
Affiliation(s)
- Anna K. Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shell Ip
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| | - Andrew J. Geall
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| |
Collapse
|
30
|
Madden EA, Plante KS, Morrison CR, Kutchko KM, Sanders W, Long KM, Taft-Benz S, Cruz Cisneros MC, White AM, Sarkar S, Reynolds G, Vincent HA, Laederach A, Moorman NJ, Heise MT. Using SHAPE-MaP To Model RNA Secondary Structure and Identify 3'UTR Variation in Chikungunya Virus. J Virol 2020; 94:e00701-20. [PMID: 32999019 PMCID: PMC7925192 DOI: 10.1128/jvi.00701-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus associated with debilitating arthralgia in humans. RNA secondary structure in the viral genome plays an important role in the lifecycle of alphaviruses; however, the specific role of RNA structure in regulating CHIKV replication is poorly understood. Our previous studies found little conservation in RNA secondary structure between alphaviruses, and this structural divergence creates unique functional structures in specific alphavirus genomes. Therefore, to understand the impact of RNA structure on CHIKV biology, we used SHAPE-MaP to inform the modeling of RNA secondary structure throughout the genome of a CHIKV isolate from the 2013 Caribbean outbreak. We then analyzed regions of the genome with high levels of structural specificity to identify potentially functional RNA secondary structures and identified 23 regions within the CHIKV genome with higher than average structural stability, including four previously identified, functionally important CHIKV RNA structures. We also analyzed the RNA flexibility and secondary structures of multiple 3'UTR variants of CHIKV that are known to affect virus replication in mosquito cells. This analysis found several novel RNA structures within these 3'UTR variants. A duplication in the 3'UTR that enhances viral replication in mosquito cells led to an overall increase in the amount of unstructured RNA in the 3'UTR. This analysis demonstrates that the CHIKV genome contains a number of unique, specific RNA secondary structures and provides a strategy for testing these secondary structures for functional importance in CHIKV replication and pathogenesis.IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that causes febrile illness and debilitating arthralgia in humans. CHIKV causes explosive outbreaks but there are no approved therapies to treat or prevent CHIKV infection. The CHIKV genome contains functional RNA secondary structures that are essential for proper virus replication. Since RNA secondary structures have only been defined for a small portion of the CHIKV genome, we used a chemical probing method to define the RNA secondary structures of CHIKV genomic RNA. We identified 23 highly specific structured regions of the genome, and confirmed the functional importance of one structure using mutagenesis. Furthermore, we defined the RNA secondary structure of three CHIKV 3'UTR variants that differ in their ability to replicate in mosquito cells. Our study highlights the complexity of the CHIKV genome and describes new systems for designing compensatory mutations to test the functional relevance of viral RNA secondary structures.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth S Plante
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Clayton R Morrison
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrina M Kutchko
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin M Long
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon Taft-Benz
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Sanjay Sarkar
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace Reynolds
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather A Vincent
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alain Laederach
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathanial J Moorman
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Fox JM, Huang L, Tahan S, Powell LA, Crowe JE, Wang D, Diamond MS. A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathog 2020; 16:e1008743. [PMID: 32760128 PMCID: PMC7433899 DOI: 10.1371/journal.ppat.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/18/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Arthritogenic alphaviruses cause debilitating musculoskeletal disease and historically have circulated in distinct regions. With the global spread of chikungunya virus (CHIKV), there now is more geographic overlap, which could result in heterologous immunity affecting natural infection or vaccination. Here, we evaluated the capacity of a cross-reactive anti-CHIKV monoclonal antibody (CHK-265) to protect against disease caused by the distantly related alphavirus, Ross River virus (RRV). Although CHK-265 only moderately neutralizes RRV infection in cell culture, it limited clinical disease in mice independently of Fc effector function activity. Despite this protective phenotype, RRV escaped from CHK-265 neutralization in vivo, with resistant variants retaining pathogenic potential. Near the inoculation site, CHK-265 reduced viral burden in a type I interferon signaling-dependent manner and limited immune cell infiltration into musculoskeletal tissue. In a parallel set of experiments, purified human CHIKV immune IgG also weakly neutralized RRV, yet when transferred to mice, resulted in improved clinical outcome during RRV infection despite the emergence of resistant viruses. Overall, this study suggests that weakly cross-neutralizing antibodies can protect against heterologous alphavirus disease, even if neutralization escape occurs, through an early viral control program that tempers inflammation. The induction of broadly neutralizing antibodies is a goal of many antiviral vaccine programs. In this study, we show that cross-reactive monoclonal and polyclonal antibodies developed after CHIKV infection or immunization with relatively weak cross-neutralizing activity can protect against RRV-induced musculoskeletal disease in mice. Even though RRV rapidly escaped from neutralization, antibody therapy reduced inflammation in musculoskeletal tissues and decreased viral burden near the site of infection in a manner that required type I interferon signaling. These studies in mice show that broadly reactive antibodies with limited neutralizing activity still can confer protection against heterologous alphaviruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ling Huang
- MacroGenics, Rockville, Maryland, United States of America
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hermanns K, Marklewitz M, Zirkel F, Overheul GJ, Page RA, Loaiza JR, Drosten C, van Rij RP, Junglen S. Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World. J Gen Virol 2020; 101:96-104. [PMID: 31674898 PMCID: PMC7414432 DOI: 10.1099/jgv.0.001344] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genus Alphavirus harbours mostly insect-transmitted viruses that cause severe disease in humans, livestock and wildlife. Thus far, only three alphaviruses with a host range restricted to insects have been found in mosquitoes from the Old World, namely Eilat virus (EILV), Taï Forest alphavirus (TALV) and Mwinilunga alphavirus (MWAV). In this study, we found a novel alphavirus in one Culex declarator mosquito sampled in Panama. The virus was isolated in C6/36 mosquito cells, and full genome sequencing revealed an 11 468 nt long genome with maximum pairwise nucleotide identity of 62.7 % to Sindbis virus. Phylogenetic analyses placed the virus as a solitary deep rooting lineage in a basal relationship to the Western equine encephalitis antigenic complex and to the clade comprising EILV, TALV and MWAV, indicating the detection of a novel alphavirus, tentatively named Agua Salud alphavirus (ASALV). No growth of ASALV was detected in vertebrate cell lines, including cell lines derived from ectothermic animals, and replication of ASALV was strongly impaired above 31 °C, suggesting that ASALV represents the first insect-restricted alphavirus of the New World.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marco Marklewitz
- German Center for Infection Research (DZIF), Berlin, Germany.,Smithsonian Tropical Research Institute, Panama City, Republic of Panama.,Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Zirkel
- Present address: Biotest AG, Dreieich, Germany.,Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Jose R Loaiza
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama.,Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City, Republic of Panama.,Programa Centroamericano de Maestría en Entomología, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama, Republic of Panama
| | - Christian Drosten
- German Center for Infection Research (DZIF), Berlin, Germany.,Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sandra Junglen
- German Center for Infection Research (DZIF), Berlin, Germany.,Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
33
|
cis-Acting Sequences and Secondary Structures in Untranslated Regions of Duck Tembusu Virus RNA Are Important for Cap-Independent Translation and Viral Proliferation. J Virol 2020; 94:JVI.00906-20. [PMID: 32522848 DOI: 10.1128/jvi.00906-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 01/12/2023] Open
Abstract
Duck Tembusu virus (DTMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. The positive-strand RNA genomes of flaviviruses are commonly translated in a cap-dependent manner. However, dengue and Zika viruses also exhibit cap-independent translation. In this study, we show that RNAs containing 5' and 3' untranslated regions (UTRs) of DTMUV, mosquito-borne Tembusu virus (TMUV), and Japanese encephalitis virus can be translated in a cap-independent manner in mammalian, avian, and mosquito cells. The ability of the 5' UTRs of flaviviruses to direct the translation of a second open reading frame in bicistronic RNAs was much less than that observed for internal ribosome entry site (IRES) encephalomyocarditis virus, indicating a lack of substantial IRES activity. Instead, cap-independent translation of DTMUV RNA was dependent on the presence of a 3' UTR, RNA secondary structures located in both UTRs, and specific RNA sequences. Mutations inhibiting cap-independent translation decreased DTMUV proliferation in vitro and delayed, but did not prevent, the death of infected duck embryos. Thus, the 5' and 3' UTRs of DTMUV enable the virus to use a cap- and IRES-independent RNA genome translation strategy that is important for its propagation and virulence.IMPORTANCE The genus Flavivirus includes major human pathogens, as well as animal-infecting viruses with zoonotic potential. In order to counteract the threats these viruses represent, it is important to understand their basic biology to develop universal attenuation strategies. Here, we demonstrate that five different flaviviruses use cap-independent translation, indicating that the phenomenon is probably common to all members of the genus. The mechanism used for flavivirus cap-independent translation was found to be different from that of IRES-mediated translation and dependent on both 5' and 3' UTRs that act in cis As cap-independent translation was also observed in mosquito cells, its role in flavivirus infection is unlikely to be limited to the evasion of consequences of the shutoff of host translation. We found that the inhibition of cap-independent translation results in decreased viral proliferation, indicating that the strategy could be applied to produce attenuated variants of flaviviruses as potential vaccine candidates.
Collapse
|
34
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
35
|
Kaur P, Lello LS, Utt A, Dutta SK, Merits A, Chu JJH. Bortezomib inhibits chikungunya virus replication by interfering with viral protein synthesis. PLoS Negl Trop Dis 2020; 14:e0008336. [PMID: 32469886 PMCID: PMC7286522 DOI: 10.1371/journal.pntd.0008336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/10/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness accompanied by myalgia and arthralgia. Despite having re-emerged as a significant public health threat, there are no approved therapeutics or prophylactics for CHIKV infection. In this study, we explored the anti-CHIKV effects of proteasome inhibitors and their potential mechanism of antiviral action. A panel of proteasome inhibitors with different functional groups reduced CHIKV infectious titers in a dose-dependent manner. Bortezomib, which has been FDA-approved for multiple myeloma and mantle cell lymphoma, was further investigated in downstream studies. The inhibitory activities of bortezomib were confirmed using different cellular models and CHIKV strains. Time-of-addition and time-of-removal studies suggested that bortezomib inhibited CHIKV at an early, post-entry stage of replication. In western blot analysis, bortezomib treatment resulted in a prominent decrease in structural protein levels as early as 6 hpi. Contrastingly, nsP4 levels showed strong elevations across all time-points. NsP2 and nsP3 levels showed a fluctuating trend, with some elevations between 12 to 20 hpi. Finally, qRT-PCR data revealed increased levels of both positive- and negative-sense CHIKV RNA at late stages of infection. It is likely that the reductions in structural protein levels is a major factor in the observed reductions in virus titer, with the alterations in non-structural protein ratios potentially being a contributing factor. Proteasome inhibitors like bortezomib likely disrupt CHIKV replication through a variety of complex mechanisms and may display a potential for use as therapeutics against CHIKV infection. They also represent valuable tools for studies of CHIKV molecular biology and virus-host interactions.
Collapse
Affiliation(s)
- Parveen Kaur
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sujit Krishna Dutta
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Collaborative and Translational Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- * E-mail:
| |
Collapse
|
36
|
Fatma B, Kumar R, Singh VA, Nehul S, Sharma R, Kesari P, Kuhn RJ, Tomar S. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antiviral Res 2020; 179:104808. [PMID: 32380148 DOI: 10.1016/j.antiviral.2020.104808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus and currently, no antiviral drug is available to combat it. Capsid protein (CP) of alphaviruses present at the N-terminus of the structural polyprotein possesses auto-proteolytic activity which is essential for initiating the structural polyprotein processing. We are reporting for the first time antiviral molecules targeting capsid proteolytic activity. Structure-assisted drug-repositioning identified three molecules: P1,P4-Di(adenosine-5') tetraphosphate (AP4), Eptifibatide acetate (EAC) and Paromomycin sulphate (PSU) as potential capsid protease inhibitors. A FRET-based proteolytic assay confirmed anti-proteolytic activity of these molecules. Additionally, in vitro cell-based antiviral studies showed that EAC, AP4, and PSU drastically stifled CHIKV at the post-entry step with a half-maximal effective concentration (EC50) of 4.01 μM, 10.66 μM and 22.91 μM; respectively. Interestingly, the inhibitors had no adverse effect on viral RNA synthesis and treatment of cells with inhibitors diminished levels of CP in virus-infected cells, which confirmed inhibition of capsid auto-proteolytic activity. In conclusion, the discovery of antiviral molecules targeting capsid protease demystifies the alphavirus capsid protease as a potential target for antiviral drug discovery.
Collapse
Affiliation(s)
- Benazir Fatma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rajesh Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Richard J Kuhn
- Department of Biological Sciences, And Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
37
|
Nilaratanakul V, Hauer DA, Griffin DE. Visualization of cell-type dependent effects of anti-E2 antibody and interferon-gamma treatments on localization and expression of Broccoli aptamer-tagged alphavirus RNAs. Sci Rep 2020; 10:5259. [PMID: 32210257 PMCID: PMC7093546 DOI: 10.1038/s41598-020-61015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/20/2020] [Indexed: 11/23/2022] Open
Abstract
Sindbis virus (SINV) is an alphavirus that causes age-dependent encephalomyelitis in mice. Within 7-8 days after infection infectious virus is cleared from neurons through the antiviral effects of antibody and interferon-gamma (IFNγ), but RNA persists. To better understand changes in viral RNA associated with immune-mediated clearance we developed recombinant strains of SINV that have genomic and subgenomic viral RNAs tagged with the Broccoli RNA aptamer that binds and activates a conditional fluorophore for live cell imaging of RNA. Treatment of SINV-Broccoli-infected cells with antibody to the SINV E2 glycoprotein had cell type-specific effects. In BHK cells, antibody increased levels of intracellular viral RNA and changed the primary location of genomic RNA from the perinuclear region to the plasma membrane without improving cell viability. In undifferentiated and differentiated AP7 (dAP7) neuronal cells, antibody treatment decreased levels of viral RNA. Occasional dAP7 cells escaped antibody-mediated clearance by not expressing cell surface E2 or binding antibody to the plasma membrane. IFNγ decreased viral RNA levels only in dAP7 cells and synergized with antibody for RNA clearance and improved cell survival. Therefore, analysis of aptamer-tagged SINV RNAs identified cell type- and neuronal maturation-dependent responses to immune mediators of virus clearance.
Collapse
Affiliation(s)
- Voraphoj Nilaratanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Debra A Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Komar AA, Merrick WC. A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2. Int J Mol Sci 2020; 21:E2054. [PMID: 32192132 PMCID: PMC7139343 DOI: 10.3390/ijms21062054] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,β,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - William C. Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
39
|
NF-κB Activation Promotes Alphavirus Replication in Mature Neurons. J Virol 2019; 93:JVI.01071-19. [PMID: 31554691 DOI: 10.1128/jvi.01071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Alphaviruses are enveloped, positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) infects the neurons of rodents and is a model for studying factors that regulate infection of neuronal cells. The outcome of alphavirus infection of the central nervous system is dependent on neuronal maturation status. Differentiated mature neurons survive and control viral replication better than undifferentiated immature neurons. The cellular factors involved in age-dependent susceptibility include higher levels of antiapoptotic and innate immune factors in mature neurons. Because NF-κB pathway activation is required for the initiation of both apoptosis and the host antiviral response, we analyzed the role of NF-κB during SINV infection of differentiated and undifferentiated rat neuronal cells. SINV infection induced canonical NF-κB activation, as evidenced by the degradation of IκBα and the phosphorylation and nuclear translocation of p65. Inhibition or deletion of the upstream IκB kinase substantially reduced SINV replication in differentiated but not in undifferentiated neuronal cells or mouse embryo fibroblasts. NF-κB inhibition did not affect the establishment of infection, replication complex formation, the synthesis of nonstructural proteins, or viral RNA synthesis in differentiated neurons. However, the translation of structural proteins was impaired, phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) was decreased, and host protein synthesis was maintained, suggesting that NF-κB activation was involved in the regulation of translation during infection of mature neurons. Inhibition or deletion of double-stranded RNA-activated protein kinase (PKR) also decreased eIF2α phosphorylation, the translation of viral structural proteins, and virus production. Therefore, canonical NF-κB activation synergizes with PKR to promote SINV replication in differentiated neurons by facilitating viral structural protein translation.IMPORTANCE Mosquito-borne alphaviruses are a significant and growing cause of viral encephalomyelitis worldwide. The outcome of alphaviral neuronal infections is host age dependent and greatly affected by neuronal maturation status, with differentiated, mature neurons being more resistant to infection than undifferentiated, immature neurons. The biological factors that change during neuronal maturation and that influence the outcome of viral infection are currently only partially defined. These studies investigated the role of NF-κB in determining the outcome of alphaviral infection in mature and immature neurons. Inhibition of canonical NF-κB activation decreased alphavirus replication in mature neurons by regulating protein synthesis and limiting the production of the viral structural proteins but had little effect on viral replication in immature neurons or fibroblasts. Therefore, NF-κB is a signaling pathway that influences the maturation-dependent outcome of alphaviral infection in neurons and that highlights the importance of cellular context in determining the effects of signal pathway activation.
Collapse
|
40
|
Clearance of Chikungunya Virus Infection in Lymphoid Tissues Is Promoted by Treatment with an Agonistic Anti-CD137 Antibody. J Virol 2019; 93:JVI.01231-19. [PMID: 31578287 DOI: 10.1128/jvi.01231-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
CD137, a member of the tumor necrosis factor receptor superfamily of cell surface proteins, acts as a costimulatory receptor on T cells, natural killer cells, B cell subsets, and some dendritic cells. Agonistic anti-CD137 monoclonal antibody (MAb) therapy has been combined with other chemotherapeutic agents in human cancer trials. Based on its ability to promote tumor clearance, we hypothesized that anti-CD137 MAb might activate immune responses and resolve chronic viral infections. We evaluated anti-CD137 MAb therapy in a mouse infection model of chikungunya virus (CHIKV), an alphavirus that causes chronic polyarthritis in humans and is associated with reservoirs of CHIKV RNA that are not cleared efficiently by adaptive immune responses. Analysis of viral tropism revealed that CHIKV RNA was present preferentially in splenic B cells and follicular dendritic cells during the persistent phase of infection, and animals lacking B cells did not develop persistent CHIKV infection in lymphoid tissue. Anti-CD137 MAb treatment resulted in T cell-dependent clearance of CHIKV RNA in lymphoid tissue, although this effect was not observed in musculoskeletal tissue. The clearance of CHIKV RNA from lymphoid tissue by anti-CD137 MAb was associated with reductions in the numbers of germinal center B cells and follicular dendritic cells. Similar results were observed with anti-CD137 MAb treatment of mice infected with Mayaro virus, a related arthritogenic alphavirus. Thus, anti-CD137 MAb treatment promotes resolution of chronic alphavirus infection in lymphoid tissues by reducing the numbers of target cells for infection and persistence.IMPORTANCE Although CHIKV causes persistent infection in lymphoid and musculoskeletal tissues in multiple animals, the basis for this is poorly understood, which has hampered pharmacological efforts to promote viral clearance. Here, we evaluated the therapeutic effects on persistent CHIKV infection of an agonistic anti-CD137 MAb that can activate T cell and natural killer cell responses to clear tumors. We show that treatment with anti-CD137 MAb promotes the clearance of persistent alphavirus RNA from lymphoid but not musculoskeletal tissues. This occurs because anti-CD137 MAb-triggered T cells reduce the numbers of target germinal center B cells and follicular dendritic cells, which are the primary reservoirs for CHIKV in the spleen and lymph nodes. Our studies help to elucidate the basis for CHIKV persistence and begin to provide strategies that can clear long-term cellular reservoirs of infection.
Collapse
|
41
|
Liu L, Weiss E, Panas MD, Götte B, Sellberg S, Thaa B, McInerney GM. RNA processing bodies are disassembled during Old World alphavirus infection. J Gen Virol 2019; 100:1375-1389. [DOI: 10.1099/jgv.0.001310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA processing bodies (P-bodies) are non-membranous cytoplasmic aggregates of mRNA and proteins involved in mRNA decay and translation repression. P-bodies actively respond to environmental stresses, associated with another type of RNA granules, known as stress granules (SGs). Alphaviruses were previously shown to block SG induction at late stages of infection, which is important for efficient viral growth. In this study, we found that P-bodies were disassembled or reduced in number very early in infection with Semliki Forest virus (SFV) or chikungunya virus (CHIKV) in a panel of cell lines. Similar to SGs, reinduction of P-bodies by a second stress (sodium arsenite) was also blocked in infected cells. The disassembly of P-bodies still occurred in non-phosphorylatable eIF2α mouse embryonal fibroblasts (MEFs) that are impaired in SG assembly. Studies of translation status by ribopuromycylation showed that P-body disassembly is independent of host translation shutoff, which requires the phosphorylation of eIF2α in the SFV- or CHIKV-infected cells. Labelling of newly synthesized RNA with bromo-UTP showed that host transcription shutoff correlated with P-body disassembly at the same early stage (3–4 h) after infection. However, inhibition of global transcription with actinomycin D (ActD) failed to disassemble P-bodies as effectively as the viruses did. Interestingly, blocking nuclear import with importazole led to an efficient P-bodies loss. Our data reveal that P-bodies are disassembled independently from SG formation at early stages of Old World alphavirus infection and that nuclear import is involved in the dynamic of P-bodies.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Eva Weiss
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Benjamin Götte
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Stina Sellberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| |
Collapse
|
42
|
Huysmans H, Zhong Z, De Temmerman J, Mui BL, Tam YK, Mc Cafferty S, Gitsels A, Vanrompay D, Sanders NN. Expression Kinetics and Innate Immune Response after Electroporation and LNP-Mediated Delivery of a Self-Amplifying mRNA in the Skin. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:867-878. [PMID: 31472371 PMCID: PMC6722285 DOI: 10.1016/j.omtn.2019.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Abstract
In this work, we studied the expression kinetics and innate immune response of a self-amplifying mRNA (sa-RNA) after electroporation and lipid-nanoparticle (LNP)-mediated delivery in the skin of mice. Intradermal electroporation of the sa-RNA resulted in a plateau-shaped expression, with the plateau between day 3 and day 10. The overall protein expression of sa-RNA was significantly higher than that obtained after electroporation of plasmid DNA (pDNA) or non-replication mRNAs. Moreover, using IFN-β reporter mice, we elucidated that intradermal electroporation of sa-RNA induced a short-lived moderate innate immune response, which did not affect the expression of the sa-RNA. A completely different expression profile and innate immune response were observed when LNPs were used. The expression peaked 24 h after intradermal injection of sa-RNA-LNPs and subsequently showed a sharp drop. This drop might be explained by a translational blockage caused by the strong innate immune response that we observed in IFN-β reporter mice shortly (4 h) after intradermal injection of sa-RNA-LNPs. A final interesting observation was the capacity of sa-RNA-LNPs to transfect the draining lymph nodes after intradermal injection.
Collapse
Affiliation(s)
- Hanne Huysmans
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Zifu Zhong
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Séan Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, Ghent, Belgium
| | - Arlieke Gitsels
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
43
|
Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, de Carvalho RVH, dos Santos CA, da Rós N, Oliveira Ú, Costa DD, dos Santos CLS, Cunha MDP, Oliveira MLS, Alves JC, Océa RADLC, Ribeiro DR, Gonçalves ANA, Gonzalez-Dias P, Suhrbier A, Zanotto PMDA, de Azevedo IJ, Zamboni DS, Almeida RP, Ho PL, Kalil J, Nishiyama MY, Nakaya HI. Systems analysis of subjects acutely infected with the Chikungunya virus. PLoS Pathog 2019; 15:e1007880. [PMID: 31211814 PMCID: PMC6599120 DOI: 10.1371/journal.ppat.1007880] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions. The Chikungunya virus (CHIKV) has infected millions of people worldwide and presents a serious public health issue. Acute symptomatic infections caused by contracting this mosquito-transmitted arbovirus are typically associated with an abrupt onset of fever and often debilitating polyarthralgia/ polyarthritis, as well as prolonged periods of disability in some patients. These dramatic effects call for a careful evaluation of the molecular mechanisms involved in this puzzling infection. By analyzing the blood transcriptome of adults acutely infected with CHIKV, we were able to provide a detailed picture of the early molecular events induced by the infection. Additionally, the systems biology approach revealed genes that can be investigated extensively as probable therapeutic targets for the disease.
Collapse
Affiliation(s)
| | - Natália Baptista Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luíza Antunes de Castro-Jorge
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renan Villanova Homem de Carvalho
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cliomar Alves dos Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | - Nancy da Rós
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Úrsula Oliveira
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Danuza Duarte Costa
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | | | - Marielton dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Cardoso Alves
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | | | - Danielle Rodrigues Ribeiro
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - André Nicolau Aquime Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dario S. Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roque Pacheco Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - Paulo Lee Ho
- Bacteriology Service, Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
44
|
Götte B, Panas MD, Hellström K, Liu L, Samreen B, Larsson O, Ahola T, McInerney GM. Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery. PLoS Pathog 2019; 15:e1007842. [PMID: 31199850 PMCID: PMC6594655 DOI: 10.1371/journal.ppat.1007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/26/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs. In order to repel viral infections, cells activate stress responses. One such response involves inhibition of translation and restricted availability of the translation machinery via the formation of stress granules. However, the host translation machinery is absolutely essential for synthesis of viral proteins and consequently viruses have developed a broad spectrum of strategies to circumvent this restriction. Old World alphaviruses, such as Semliki Forest virus (SFV) and chikungunya virus (CHIKV), interfere with stress granule formation by sequestration of G3BP, a stress granule nucleating protein, mediated by the viral non-structural protein 3 (nsP3). Here we show that nsP3:G3BP complexes engage factors of the host translation machinery, which during the course of infection accumulate in the vicinity of viral replication complexes. Accordingly, we demonstrate that the nsP3:G3BP interaction is required for high localized translational activity around viral replication complexes. We find the RGG domain of G3BP to be essential for the recruitment of the host translation machinery. In cells expressing mutant G3BP lacking the RGG domain, SFV replication was attenuated, but detectable, while CHIKV was essentially non-viable. Our data demonstrate a novel mechanism by which viruses can recruit factors of the translation machinery in a G3BP-dependent manner.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Chikungunya Fever/genetics
- Chikungunya Fever/metabolism
- Chikungunya Fever/pathology
- Chikungunya virus/physiology
- Cricetinae
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Humans
- Peptide Chain Initiation, Translational
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Protein Domains
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Recognition Motif Proteins/genetics
- RNA Recognition Motif Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Semliki forest virus/physiology
- Virus Replication
Collapse
Affiliation(s)
- Benjamin Götte
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kirsi Hellström
- University of Helsinki, Department of Microbiology, Faculty of Agriculture and Forestry, Helsinki, Finland
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Baila Samreen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tero Ahola
- University of Helsinki, Department of Microbiology, Faculty of Agriculture and Forestry, Helsinki, Finland
- * E-mail: (GMM); (TA)
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (GMM); (TA)
| |
Collapse
|
45
|
Presence of Antibodies against Sindbis Virus in the Israeli Population: A Nationwide Cross-Sectional Study. Viruses 2019; 11:v11060542. [PMID: 31212605 PMCID: PMC6630228 DOI: 10.3390/v11060542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023] Open
Abstract
Sindbis virus (SINV) is a mosquito-borne alphavirus circulating globally. SINV outbreaks have been mainly reported in North-European countries. In Israel, SINV was detected in 6.3% of mosquito pools; however, SINV infection in humans has rarely been diagnosed. A serologic survey to detect SINV IgG antibodies was conducted to evaluate the seroprevalence of SINV in the Israeli population. In total, 3145 serum samples collected in 2011-2014, representing all age and population groups in Israel, were assessed using an indirect ELISA assay, and a neutralization assay was performed on all ELISA-positive samples. The prevalence rates of SINV IgG antibodies were calculated. Logistic regressions models were applied to assess the association between demographic characteristics and SINV seropositivity. Overall, 113 (3.6%) and 59 (1.9%) samples were positive for ELISA and neutralization SINV IgG, respectively. Multivariable analysis demonstrated that SINV seropositivity was significantly associated with older age and residence outside metropolitan areas. These results demonstrate that, despite no outbreaks or clinical presentation, SINV infects the human population in Israel. Seropositivity is countrywide, more frequent in people of older age, and less diffuse in Israel's metropolitan areas. Seroprevalence studies from other countries will add to our understanding of the global burden of SINV and the risk for potential SINV outbreaks.
Collapse
|
46
|
Sanz MA, Almela EG, García-Moreno M, Marina AI, Carrasco L. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA (NEW YORK, N.Y.) 2019; 25:431-452. [PMID: 30659060 PMCID: PMC6426287 DOI: 10.1261/rna.068858.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Noncanonical translation, and particularly initiation on non-AUG codons, are frequently used by viral and cellular mRNAs during virus infection and disease. The Sindbis virus (SINV) subgenomic mRNA (sgRNA) constitutes a unique model system to analyze the translation of a capped viral mRNA without the participation of several initiation factors. Moreover, sgRNA can initiate translation even when the AUG initiation codon is replaced by other codons. Using SINV replicons, we examined the efficacy of different codons in place of AUG to direct the synthesis of the SINV capsid protein. The substitution of AUG by CUG was particularly efficient in promoting the incorporation of leucine or methionine in similar percentages at the amino terminus of the capsid protein. Additionally, valine could initiate translation when the AUG is replaced by GUG. The ability of sgRNA to initiate translation on non-AUG codons was dependent on the integrity of a downstream stable hairpin (DSH) structure located in the coding region. The structural requirements of this hairpin to signal the initiation site on the sgRNA were examined in detail. Of interest, a virus bearing CUG in place of AUG in the sgRNA was able to infect cells and synthesize significant amounts of capsid protein. This virus infects the human haploid cell line HAP1 and the double knockout variant that lacks eIF2A and eIF2D. Collectively, these findings indicate that leucine-tRNA or valine-tRNA can participate in the initiation of translation of sgRNA by a mechanism dependent on the DSH. This mechanism does not involve the action of eIF2, eIF2A, or eIF2D.
Collapse
MESH Headings
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Tumor
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Eukaryotic Initiation Factor-2/deficiency
- Eukaryotic Initiation Factor-2/genetics
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation
- Haploidy
- Host-Pathogen Interactions/genetics
- Humans
- Inverted Repeat Sequences
- Leucine/genetics
- Leucine/metabolism
- Methionine/genetics
- Methionine/metabolism
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Replicon
- Signal Transduction/genetics
- Sindbis Virus/genetics
- Sindbis Virus/metabolism
- Valine/genetics
- Valine/metabolism
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Esther González Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Ana Isabel Marina
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
47
|
Garcia-Moreno M, Noerenberg M, Ni S, Järvelin AI, González-Almela E, Lenz CE, Bach-Pages M, Cox V, Avolio R, Davis T, Hester S, Sohier TJM, Li B, Heikel G, Michlewski G, Sanz MA, Carrasco L, Ricci EP, Pelechano V, Davis I, Fischer B, Mohammed S, Castello A. System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Mol Cell 2019; 74:196-211.e11. [PMID: 30799147 PMCID: PMC6458987 DOI: 10.1016/j.molcel.2019.01.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/23/2022]
Abstract
The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed “comparative RIC” and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells. A quarter of the RBPome changes upon SINV infection Alterations in RBP activity are largely explained by changes in RNA availability Altered RBPs are crucial for viral infection efficacy GEMIN5 binds to the 5′ end of SINV RNAs and regulates viral gene expression
Collapse
Affiliation(s)
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Shuai Ni
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Esther González-Almela
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Caroline E Lenz
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Marcel Bach-Pages
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Victoria Cox
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Rosario Avolio
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Thibault J M Sohier
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Gregory Heikel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gracjan Michlewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK; Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Zhejiang University-University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, People's Republic of China
| | - Miguel A Sanz
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Emiliano P Ricci
- Université de Lyon, ENSL, UCBL, CNRS, INSERM, LBMC, 46 Allée d'Italie, 69007 Lyon, France
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK.
| |
Collapse
|
48
|
Henss L, Scholz T, Grünweller A, Schnierle BS. Silvestrol Inhibits Chikungunya Virus Replication. Viruses 2018; 10:v10110592. [PMID: 30380742 PMCID: PMC6266838 DOI: 10.3390/v10110592] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
Silvestrol, a natural compound that is isolated from plants of the genus Aglaia, is a specific inhibitor of the RNA helicase eIF4A, which unwinds RNA secondary structures in 5′-untranslated regions (UTRs) of mRNAs and allows translation. Silvestrol has a broad antiviral activity against multiple RNA virus families. Here, we show that silvestrol inhibits the replication of chikungunya virus (CHIKV), a positive single-stranded RNA virus. Silvestrol delayed the protein synthesis of non-structural (nsPs) and structural proteins, resulting in a delayed innate response to CHIKV infection. Interferon-α induced STAT1 phosphorylation was not inhibited nor did eIF2α become phosphorylated 16 h post infection in the presence of silvestrol. In addition, the host protein shut-off induced by CHIKV infection was decreased in silvestrol-treated cells. Silvestrol acts by limiting the amount of nsPs, and thereby reducing CHIKV RNA replication. From our results, we propose that inhibition of the host helicase eIF4A might have potential as a therapeutic strategy to treat CHIKV infections.
Collapse
Affiliation(s)
- Lisa Henss
- Paul-Ehrlich-Institut, Department of Virology, 63225 Langen, Germany.
| | - Tatjana Scholz
- Paul-Ehrlich-Institut, Department of Virology, 63225 Langen, Germany.
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
49
|
ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proc Natl Acad Sci U S A 2018; 115:E10457-E10466. [PMID: 30322911 DOI: 10.1073/pnas.1812130115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alphaviruses are plus-strand RNA viruses that cause encephalitis, rash, and arthritis. The nonstructural protein (nsP) precursor polyprotein is translated from genomic RNA and processed into four nsPs. nsP3 has a highly conserved macrodomain (MD) that binds ADP-ribose (ADPr), which can be conjugated to protein as a posttranslational modification involving transfer of ADPr from NAD+ by poly ADPr polymerases (PARPs). The nsP3MD also removes ADPr from mono ADP-ribosylated (MARylated) substrates. To determine which aspects of alphavirus replication require nsP3MD ADPr-binding and/or hydrolysis function, we studied NSC34 neuronal cells infected with chikungunya virus (CHIKV). Infection induced ADP-ribosylation of cellular proteins without increasing PARP expression, and inhibition of MARylation decreased virus replication. CHIKV with a G32S mutation that reduced ADPr-binding and hydrolase activities was less efficient than WT CHIKV in establishing infection and in producing nsPs, dsRNA, viral RNA, and infectious virus. CHIKV with a Y114A mutation that increased ADPr binding but reduced hydrolase activity, established infection like WT CHIKV, rapidly induced nsP translation, and shut off host protein synthesis with reduced amplification of dsRNA. To assess replicase function independent of virus infection, a transreplicase system was used. Mutant nsP3MDs D10A, G32E, and G112E with no binding or hydrolase activity had no replicase activity, G32S had little, and Y114A was intermediate to WT. Therefore, ADP ribosylation of proteins and nsP3MD ADPr binding are necessary for initiation of alphavirus replication, while hydrolase activity facilitates amplification of replication complexes. These observations are consistent with observed nsP3MD conservation and limited tolerance for mutation.
Collapse
|
50
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|