1
|
Ritchie DL, Smith C. Pathological spectrum of sporadic Creutzfeldt-Jakob disease. Pathology 2024:S0031-3025(24)00289-7. [PMID: 39665904 DOI: 10.1016/j.pathol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Human prion diseases are a rare group of transmissible neurodegenerative conditions which are classified according to their aetiology as sporadic, genetic or acquired forms. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion disease, with the sporadic form accounting for ∼85% of all reported cases. While advances have been made in the development of clinical tools and biomarkers in the diagnosis of prion disease, allowing greater diagnostic certainty for surveillance purposes, definitive diagnosis requires neuropathological examination of the brain at postmortem. Since the 1990s, efforts have been made to develop a classification system for sporadic CJD (sCJD) based on observed differences in the clinical features and the pathological phenotype (the nature and degree of spongiform vacuolation, neuronal loss, astrogliosis and misfolded prion protein accumulation in the brain), also referred to as the 'histotype'. Six major clinicopathological subtypes of sCJD are internationally recognised, largely correlating with the combination of the two distinct types of the protease-resistant prion protein (PrPres type 1 or 2) and the methionine (M)/valine (V) polymorphism at codon 129 of the prion protein gene (PRNP): MM1/MV1, MM2-cortical, MM2-thalamic, MV2, VV1 and VV2. This classification system has been extended to recognise sCJD cases demonstrating both mixed PrPres types or mixed histotypes in the brain of the same individual, as well as including atypical or novel pathological phenotypes. In this review, we will provide an up-to-date overview of the current classification of sCJD based on the prominent neuropathological features. In addition, with levels of infectivity at their highest in the brain, we will also discuss the additional precautions that are recommended when handling and examining postmortem tissues from patients with suspected prion disease.
Collapse
Affiliation(s)
- Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom; Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
3
|
Medd MM, Cao Q. Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines 2024; 12:1725. [PMID: 39200190 PMCID: PMC11352000 DOI: 10.3390/biomedicines12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Although rare, the said diseases are always fatal; they commonly cause death within months of developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to delay the disease onset has been suggested to be a more feasible approach. In this perspective article, we summarize our current understandings of the origin, risk factors, and clinical manifestations of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting immunity to prion diseases in selected high-risk individuals, in particular, in individuals with familial PRNP mutations.
Collapse
Affiliation(s)
- Milan M. Medd
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Cao
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Cuadrado-Corrales N, Lopez-de-Andres A, Hernández-Barrera V, De-Miguel-Díez J, Jimenez-Sierra A, Carabantes-Alarcon D, Zamorano-Leon JJ, Jimenez-Garcia R. Creutzfeldt-Jakob Disease and Fatal Familial Insomnia: Demographics and In-Hospital Mortality in Spain. J Clin Med 2024; 13:4401. [PMID: 39124670 PMCID: PMC11312717 DOI: 10.3390/jcm13154401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI) are prion diseases characterized by severe neurodegenerative conditions and a short duration of illness. Methods: This study explores the characteristics of hospitalizations for CJD and FFI in Spain from 2016 to 2022 using the Spanish National Hospital Discharge Database (SNHDD). Results: We identified a total of 1063 hospital discharges, including 1020 for CJD and 43 for FFI. Notably, the number of hospitalized patients with FFI showed a significant peak in 2017. The average length of hospital stay (LOHS) was 13 days for CJD and 6 days for FFI, with in-hospital mortality rates (IHM) of 36.37% for CJD and 32.56% for FFI. Among CJD patients, the average LOHS was 14 days, with a significantly longer duration for those who experienced IHM. Conclusions: The presence of sepsis or pneumonia and older age were associated with a higher IHM rate among CJD patients. The total estimated cost for managing CJD and FFI patients over the study period was EUR 6,346,868. This study offers new insights into the epidemiology and healthcare resource utilization of CJD and FFI patients, which may inform future research directions and public health strategies.
Collapse
Affiliation(s)
- Natividad Cuadrado-Corrales
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Ana Lopez-de-Andres
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Valentín Hernández-Barrera
- Preventive Medicine and Public Health Teaching and Research Unit, Health Sciences Faculty, Rey Juan Carlos University, 28922 Alcorcón, Spain;
| | - Javier De-Miguel-Díez
- Respiratory Care Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28007 Madrid, Spain;
| | | | - David Carabantes-Alarcon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Jose J. Zamorano-Leon
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| | - Rodrigo Jimenez-Garcia
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.C.-C.); (D.C.-A.); (J.J.Z.-L.); (R.J.-G.)
| |
Collapse
|
5
|
Kothekar H, Chaudhary K. Kuru Disease: Bridging the Gap Between Prion Biology and Human Health. Cureus 2024; 16:e51708. [PMID: 38313950 PMCID: PMC10838565 DOI: 10.7759/cureus.51708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
This article explores the intriguing case of Kuru disease, a rare and fatal prion disease that once afflicted the Fore people of Papua New Guinea. Scientists are still perplexed as to the origins of Kuru because efforts to discover infectious agents like viruses have been ineffective. Initial research revealed similarities between Kuru and scrapie, a neurological disorder that affects sheep, suggesting potential similarities between the two diseases. In further research, experiments in which chimpanzee brain tissue from Kuru patients was implanted led to the development of Kuru-like symptoms in the animals, suggesting a transmissible component to the condition. Furthermore, data collected from epidemiological studies highlights a drop in Kuru transmission, especially after the Fore people stopped engaging in cannibalism, and the disease showed different incubation times that affected persons within particular age groups. Neuropathological tests in the infected brain tissue have found typical intracellular vacuoles, spongiform alterations, and amyloid plaques. According to studies, Kuru susceptibility has been linked genetically to particular PRNP gene variations. Kuru and other prion disorders have few effective treatments currently, underlining the vital need for early identification. Scientists have created sensitive detection techniques to stop the spread of prion diseases and looked into possible inhibitors. Hypochlorous acid, in particular, has shown potential in cleaning processes. Besides making great progress in understanding Kuru, there are still many unresolved issues surrounding its causes, transmission, and management. The terms "kuru disease," "human prion disease," "transmissible spongiform encephalopathies," and "Creutzfeldt-Jakob syndrome" were used to search the studies; papers unrelated to the review article were removed. Eighty-four articles are included in the review text to fully understand the complexities of this puzzling disease and its consequences for prion biology and human health; additional study is essential.
Collapse
Affiliation(s)
- Himanshu Kothekar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kirti Chaudhary
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Mishra S. Emerging Trends in Cryo-EM-based Structural Studies of Neuropathological Amyloids. J Mol Biol 2023; 435:168361. [PMID: 37949311 DOI: 10.1016/j.jmb.2023.168361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tauopathies, synucleinopathies, Aβ amyloidosis, TDP-43 proteinopathies, and prion diseases- these neurodegenerative diseases have in common the formation of amyloid filaments rich in cross-β sheets. Cryo-electron microscopy now permits the visualization of amyloid assemblies at atomic resolution, ushering a wide range of structural studies on several of these poorly understood amyloidogenic proteins. Amyloids are polymorphic with minor modulations in reaction environment affecting the overall architecture of their assembly, making amyloids an extremely challenging venture for structure-based therapeutic intervention. In 2017, the first cryo-EM structure of tau filaments from an Alzheimer's disease-affected brain established that in vitro assemblies might not necessarily reflect the native amyloid fold. Since then, brain-derived amyloid structures for several proteins across many neurodegenerative diseases have uncovered the disease-relevant amyloid folds. It has now been shown for tauopathies, synucleinopathies and TDP-43 proteinopathies, that distinct amyloid folds of the same protein might be related to different diseases. Salient features of each of these brain-derived folds are discussed in detail. It was also recently observed that seeded aggregation does not necessarily replicate the brain-derived structural fold. Owing to high throughput structure determination, some of these native amyloid folds have also been successfully replicated in vitro. In vitro replication of disease-relevant filaments will aid development of imaging ligands and defibrillating drugs. Towards this direction, recent high-resolution structures of tau filaments with positron emission tomography tracers and a defibrillating drug are also discussed. This review summarizes and celebrates the recent advancements in structural understanding of neuropathological amyloid filaments using cryo-EM.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
7
|
Napper S, Schatzl HM. Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations. Front Immunol 2023; 14:1156451. [PMID: 37122761 PMCID: PMC10140515 DOI: 10.3389/fimmu.2023.1156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
The Prion Basis of Progressive Neurodegenerative Disorders. Interdiscip Perspect Infect Dis 2023; 2023:6687264. [PMID: 36825209 PMCID: PMC9943612 DOI: 10.1155/2023/6687264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The discovery of proteinaceous infectious agents by Prusiner in 1982 was sensational. All previously known pathogens contained nucleic acids, the code of life, that enabled them to reproduce. In contrast, the proteinaceous agents of disease, called prion proteins (PrP), lacked nucleic acids and propagated by binding to the functional, endogenous form of cellular prion protein (referred to as PrPC) and altering its conformation to produce the infectious disease-causing misfolded protein (referred to as PrPSc). The accumulation and aggregation of these infectious prion proteins within the brain cause destruction of neural tissue and lead to fatal spongiform encephalopathies. In this review, we present the molecular pathology of prion-based diseases. These insights are of particular importance since the principles of prion pathogenesis apply to other neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Collectively, the global prevalence of these diseases is rapidly increasing while effective therapies against them are still lacking. Thus, the need to understand their etiology and pathogenesis is urgent, and it holds profound implications for societal health.
Collapse
|
9
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
10
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ray A, Bonorden MJL, Pandit R, Nkhata KJ, Bishayee A. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med 2023; 57:28-42. [PMID: 36647284 PMCID: PMC9846011 DOI: 10.4132/jptm.2022.11.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
About one-fourth of the global population is either overweight or obese, both of which increase the risk of insulin resistance, cardiovascular diseases, and infections. In obesity, both immune cells and adipocytes produce an excess of pro-inflammatory cytokines that may play a significant role in disease progression. In the recent coronavirus disease 2019 (COVID-19) pandemic, important pathological characteristics such as involvement of the renin-angiotensin-aldosterone system, endothelial injury, and pro-inflammatory cytokine release have been shown to be connected with obesity and associated sequelae such as insulin resistance/type 2 diabetes and hypertension. This pathological connection may explain the severity of COVID-19 in patients with metabolic disorders. Many studies have also reported an association between type 2 diabetes and persistent viral infections. Similarly, diabetes favors the growth of various microorganisms including protozoal pathogens as well as opportunistic bacteria and fungi. Furthermore, diabetes is a risk factor for a number of prion-like diseases. There is also an interesting relationship between helminths and type 2 diabetes; helminthiasis may reduce the pro-inflammatory state, but is also associated with type 2 diabetes or even neoplastic processes. Several studies have also documented altered circulating levels of neutrophils, lymphocytes, and monocytes in obesity, which likely modifies vaccine effectiveness. Timely monitoring of inflammatory markers (e.g., C-reactive protein) and energy homeostasis markers (e.g., leptin) could be helpful in preventing many obesity-related diseases.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, Philippi, WV, USA,Corresponding Author: Amitabha Ray, MD, PhD, College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA Tel: +1-304-457-6587, Fax: +1-304-457-6308, E-mail:
| | | | - Rajashree Pandit
- Division of Medical & Behavioral Health, Pueblo Community College, Pueblo, CO, USA
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
12
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
13
|
Koshy SM, Kincaid AE, Bartz JC. Transport of Prions in the Peripheral Nervous System: Pathways, Cell Types, and Mechanisms. Viruses 2022; 14:630. [PMID: 35337037 PMCID: PMC8954800 DOI: 10.3390/v14030630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Prion diseases are transmissible protein misfolding disorders that occur in animals and humans where the endogenous prion protein, PrPC, undergoes a conformational change into self-templating aggregates termed PrPSc. Formation of PrPSc in the central nervous system (CNS) leads to gliosis, spongiosis, and cellular dysfunction that ultimately results in the death of the host. The spread of prions from peripheral inoculation sites to CNS structures occurs through neuroanatomical networks. While it has been established that endogenous PrPC is necessary for prion formation, and that the rate of prion spread is consistent with slow axonal transport, the mechanistic details of PrPSc transport remain elusive. Current research endeavors are primarily focused on the cellular mechanisms of prion transport associated with axons. This includes elucidating specific cell types involved, subcellular machinery, and potential cofactors present during this process.
Collapse
Affiliation(s)
- Sam M. Koshy
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Anthony E. Kincaid
- Department of Pharmacy Science, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA;
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
14
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Krishnendu P R, Koyiparambath VP, Bhaskar V, Arjun B, Zachariah SM. Formulating The Structural Aspects Of Various Benzimidazole Cognates. Curr Top Med Chem 2021; 22:473-492. [PMID: 34852738 DOI: 10.2174/1568026621666211201122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes. OBJECTIVE To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold. METHODS About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied. CONCLUSION To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.
Collapse
Affiliation(s)
- Krishnendu P R
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - B Arjun
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| |
Collapse
|
16
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
17
|
Nochebuena J, Quintanar L, Vela A, Cisneros GA. Structural and electronic analysis of the octarepeat region of prion protein with four Cu 2+ by polarizable MD and QM/MM simulations. Phys Chem Chem Phys 2021; 23:21568-21578. [PMID: 34550129 PMCID: PMC8497436 DOI: 10.1039/d1cp03187b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prions have been linked to neurodegenerative diseases that affect various species of mammals including humans. The prion protein, located mainly in neurons, is believed to play the role of metal ion transporter. High levels of copper ions have been related to structural changes. A 32-residue region of the N-terminal domain, known as octarepeat, can bind up to four copper ions. Different coordination modes have been observed and are strongly dependent on Cu2+ concentration. Many theoretical studies carried out so far have focused on studying the coordination modes of a single copper ion. In this work we investigate the octarepeat region coordinated with four copper ions. Molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations using the polarizable AMOEBA force field have been carried out. The polarizable MD simulations starting from a fully extended conformation indicate that the tetra-Cu2+/octarepeat complex forms a globular structure. The globular form is stabilized by interactions between Cu2+ and tryptophan residues resulting in some coordination sites observed to be in close proximity, in agreement with experimental results. Subsequent QM/MM simulations on several snapshots suggests the system is in a high-spin quintet state, with all Cu2+ bearing one single electron, and all unpaired electrons are ferromagnetically coupled. NMR simulations on selected structures provides insights on the chemical shifts of the first shell ligands around the metals with respect to inter-metal distances.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Liliana Quintanar
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - Alberto Vela
- Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
18
|
Jankovska N, Rusina R, Bruzova M, Parobkova E, Olejar T, Matej R. Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic. Diagnostics (Basel) 2021; 11:1821. [PMID: 34679519 PMCID: PMC8534461 DOI: 10.3390/diagnostics11101821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann-Sträussler-Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic;
| | - Magdalena Bruzova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 12800 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| |
Collapse
|
19
|
Pogue AI, Lukiw WJ. microRNA-146a-5p, Neurotropic Viral Infection and Prion Disease (PrD). Int J Mol Sci 2021; 22:ijms22179198. [PMID: 34502105 PMCID: PMC8431499 DOI: 10.3390/ijms22179198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer’s disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host’s adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible.
Collapse
Affiliation(s)
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
20
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fernández Escámez P, Spiropoulos J, Iulietto MF, Ortiz‐Peláez A, Alvarez‐Ordóñez A. Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat ® process, AT). EFSA J 2021; 19:e06511. [PMID: 33889218 PMCID: PMC8048768 DOI: 10.2903/j.efsa.2021.6511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A new alternative method for the production of biodiesel from rendered fat, including animal by-product (ABP) Category 1 tallow, was evaluated. The method consists of a conversion phase, based on esterification and transesterification in a single step (at temperature ≥ 200°C, pressure ≥ 70 bar with a retention time ≥ 15 min), using MgO as a catalyst and in the presence of methanol (10-15%), followed by vacuum distillation (at ≥ 150°C, ≤ 10 mbar) of the end-product, biodiesel and the co-product, glycerine. Prions (PrPS c), which are abnormal isoforms of the prion protein, were considered by the applicant to be the most resistant hazard. In accordance with previous EFSA Opinions and current expert evaluation, a reduction in prion infectivity, or detectable PrPS c, of at least 6 log10 should be achieved for the process to be considered equivalent to the processing method laid down in the Regulation (EU) No 142/2011. Published data from an experimental replication of the conversion step of the biodiesel production process under consideration were provided, which showed an at least 6 log10 reduction in detectable PrPS c, by Western blot, in tallow that had been spiked with murine and human prion strains. In addition, it was demonstrated that the presence of methanol does not affect the recovery or detection of PrPS c from a biodiesel substrate. Based on scientific literature, the vacuum distillation step has been shown to be capable of achieving an additional 3 log10 reduction in PrPS c. Therefore, the proposed alternative method is considered to be at least equivalent to the processing method laid down in the legislation for the production of biodiesel from raw materials including Category 1 ABP.
Collapse
|
21
|
Pineau H, Sim VL. From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules 2021; 11:biom11010106. [PMID: 33466947 PMCID: PMC7830147 DOI: 10.3390/biom11010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.
Collapse
Affiliation(s)
- Hailey Pineau
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Valerie L. Sim
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
22
|
Jankovska N, Olejar T, Matej R. Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int J Mol Sci 2020; 22:E7. [PMID: 33374972 PMCID: PMC7792617 DOI: 10.3390/ijms22010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| |
Collapse
|
23
|
Mysterud A, Ytrehus B, Tranulis MA, Rauset GR, Rolandsen CM, Strand O. Antler cannibalism in reindeer. Sci Rep 2020; 10:22168. [PMID: 33335134 PMCID: PMC7747554 DOI: 10.1038/s41598-020-79050-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases constitute a class of invariably fatal and degenerative encephalopathies. Chronic Wasting Disease (CWD) is a contagious prion disease among cervids, which is spreading and causing marked population declines in USA and Canada. The first outbreak of CWD in Europe was discovered in a reindeer population in Norway in 2016. In the worst-case scenario with continental-wide spreading of CWD in Eurasia, an annual harvest of around 4 million cervids is at stake only in Europe, with huge economic and cultural significance. An in situ origin of CWD was suspected, and it appear urgent to identify the likely cause to prevent future emergences. Here, we document the novel phenomenon of extensive antler cannibalism prior to shedding among reindeer in the CWD-infected population. The extent of antler cannibalism increased over the last decades when CWD emerged, and included ingestion of vascularized antlers. Ingestion of tissues from conspecifics is a risk factor for the emergence of prion diseases, where the presence of extensive antler cannibalism opens the intriguing possibility of a ‘Kuru-analogue’ origin of CWD among the reindeer in Europe. Based on general insight on pathology of prion diseases and strain selection processes, we propose an hypothesis for how contagious CWD may emerge from sporadic CWD under the unique epidemiological conditions we document here. More research is required to document the presence of prions in reindeer antlers, and whether antler cannibalism actually led to a strain selection process and the emergence of a contagious form of CWD from a sporadic form of CWD.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| |
Collapse
|
24
|
Oostland M, Brecht M. Kin-Avoidance in Cannibalistic Homicide. Front Psychol 2020; 11:2161. [PMID: 32982882 PMCID: PMC7488386 DOI: 10.3389/fpsyg.2020.02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Cannibalism in the animal kingdom is widespread and well characterized, whereas the occurrence of human cannibalism has been controversial. Evidence points to cannibalism in aboriginal societies, prehistory, and the closely related chimpanzees. We assembled a non-comprehensive list (121 offenders, ~631 victims) of cannibalistic homicides in modern societies (since 1900) through internet-searches, publications, and expert questioning. Cannibalistic homicides were exceedingly rare, and often sex-related. Cannibalistic offenders were mainly men and older than offenders of non-cannibalistic homicides, whereas victims were comparatively young. Cannibalistic offenders typically killed manually (stabbing, strangulating, and beating) rather than using a gun. Furthermore, they killed more strangers and fewer intimates than conventional offenders. Human cannibals, similar to cannibalism in other species, killed and ate conspecifics, occasionally vomited and only rarely (2.5% of victims) ate kin. Interestingly, cannibalistic offenders who killed their blood relatives had more severe mental problems than non-kin-cannibals. We conclude that cannibalistic homicides have a unique pattern of murder methods, offenders, and victims.
Collapse
Affiliation(s)
- Marlies Oostland
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Michael Brecht,
| |
Collapse
|
25
|
Gosal JS, Khatri D, Panda S, Bhaskar S, Das KK. Letter to the Editor: 'The Laughing Disease'-From Kuru to the Joker's Sinister Laugh and Madness. World Neurosurg 2020; 140:453-454. [PMID: 32797971 DOI: 10.1016/j.wneu.2020.05.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Jaskaran Singh Gosal
- Department of Neurosurgery, All India Institute of Medical Sciences, Jodhpur, India.
| | - Deepak Khatri
- Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Samhita Panda
- Department of Neurology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Kuntal Kanti Das
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
26
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
27
|
Comment on Liberski, Gajos, Sikorska, and Lindenbaum: “Kuru, the First Human Prion Disease” Viruses 2019, 11, 232. Viruses 2020; 12:v12030284. [PMID: 32150831 PMCID: PMC7150943 DOI: 10.3390/v12030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
I would like to comment on an unsupported charge published in Viruses [...]
Collapse
|
28
|
Binns C, Kyung Lee M, Yun Low W. Kuru: As the Neurological Disease Fades From Memory, Shoe Advertising Takes Over. Asia Pac J Public Health 2019; 31:737-739. [DOI: 10.1177/1010539519889542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Colin Binns
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Mi Kyung Lee
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Wah Yun Low
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Asia-Europe Institute, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Jia G, Li Y, Zhang H, Chattopadhyay I, Boeck Jensen A, Blair DR, Davis L, Robinson PN, Dahlén T, Brunak S, Benson M, Edgren G, Cox NJ, Gao X, Rzhetsky A. Estimating heritability and genetic correlations from large health datasets in the absence of genetic data. Nat Commun 2019; 10:5508. [PMID: 31796735 PMCID: PMC6890770 DOI: 10.1038/s41467-019-13455-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
Typically, estimating genetic parameters, such as disease heritability and between-disease genetic correlations, demands large datasets containing all relevant phenotypic measures and detailed knowledge of family relationships or, alternatively, genotypic and phenotypic data for numerous unrelated individuals. Here, we suggest an alternative, efficient estimation approach through the construction of two disease metrics from large health datasets: temporal disease prevalence curves and low-dimensional disease embeddings. We present eleven thousand heritability estimates corresponding to five study types: twins, traditional family studies, health records-based family studies, single nucleotide polymorphisms, and polygenic risk scores. We also compute over six hundred thousand estimates of genetic, environmental and phenotypic correlations. Furthermore, we find that: (1) disease curve shapes cluster into five general patterns; (2) early-onset diseases tend to have lower prevalence than late-onset diseases (Spearman's ρ = 0.32, p < 10-16); and (3) the disease onset age and heritability are negatively correlated (ρ = -0.46, p < 10-16).
Collapse
Affiliation(s)
- Gengjie Jia
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu Li
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Hanxin Zhang
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ishanu Chattopadhyay
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Anders Boeck Jensen
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David R Blair
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lea Davis
- Division of Genetic Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Peter N Robinson
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Torsten Dahlén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - Mikael Benson
- Centre for Individualized Medicine, Department of Pediatrics, Linkoping University, Linkoping, 58183, Sweden
| | - Gustaf Edgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Andrey Rzhetsky
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Tian Y, Jennings J, Gong Y, Sang Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules 2019; 9:biom9110726. [PMID: 31726661 PMCID: PMC6920831 DOI: 10.3390/biom9110726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is now a prevalent disease worldwide and has a multi-factorial etiology. Several viruses or virus-like agents including members of adenoviridae, herpesviridae, slow virus (prion), and hepatitides, have been associated with obesity; meanwhile obese patients are shown to be more susceptible to viral infections such as during influenza and dengue epidemics. We examined the co-factorial role of viral infections, particularly of the persistent cases, in synergy with high-fat diet in induction of obesity. Antiviral interferons (IFNs), as key immune regulators against viral infections and in autoimmunity, emerge to be a pivotal player in the regulation of adipogenesis. In this review, we examine the recent evidence indicating that gut microbiota uphold intrinsic IFN signaling, which is extensively involved in the regulation of lipid metabolism. However, the prolonged IFN responses during persistent viral infections and obesogenesis comprise reciprocal causality between virus susceptibility and obesity. Furthermore, some IFN subtypes have shown therapeutic potency in their anti-inflammation and anti-obesity activity.
Collapse
|
31
|
Caughey B, Kraus A. Transmissibility versus Pathogenicity of Self-Propagating Protein Aggregates. Viruses 2019; 11:E1044. [PMID: 31717531 PMCID: PMC6893620 DOI: 10.3390/v11111044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The prion-like spreading and accumulation of specific protein aggregates appear to be central to the pathogenesis of many human diseases, including Alzheimer's and Parkinson's. Accumulating evidence indicates that inoculation of tissue extracts from diseased individuals into suitable experimental animals can in many cases induce the aggregation of the disease-associated protein, as well as related pathological lesions. These findings, together with the history of the prion field, have raised the questions about whether such disease-associated protein aggregates are transmissible between humans by casual or iatrogenic routes, and, if so, do they propagate enough in the new host to cause disease? These practical considerations are important because real, and perhaps even only imagined, risks of human-to-human transmission of diseases such as Alzheimer's and Parkinson's may force costly changes in clinical practice that, in turn, are likely to have unintended consequences. The prion field has taught us that a single protein, PrP, can aggregate into forms that can propagate exponentially in vitro, but range from being innocuous to deadly when injected into experimental animals in ways that depend strongly on factors such as conformational subtleties, routes of inoculation, and host responses. In assessing the hazards posed by various disease-associated, self-propagating protein aggregates, it is imperative to consider both their actual transmissibilities and the pathological consequences of their propagation, if any, in recipient hosts.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|