1
|
Sarker A, Rahman MM, Khatun C, Barai C, Roy N, Aziz MA, Faruqe MO, Hossain MT. In Silico design of a multi-epitope vaccine for Human Parechovirus: Integrating immunoinformatics and computational techniques. PLoS One 2024; 19:e0302120. [PMID: 39630708 PMCID: PMC11616865 DOI: 10.1371/journal.pone.0302120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Human parechovirus (HPeV) is widely recognized as a severe viral infection affecting infants and neonates. Belonging to the Picornaviridae family, HPeV is categorized into 19 distinct genotypes. Among them, HPeV-1 is the most prevalent genotype, primarily associated with respiratory and digestive symptoms. Considering HPeV's role as a leading cause of life-threatening viral infections in infants and the lack of effective antiviral therapies, our focus centered on developing two multi-epitope vaccines, namely HPeV-Vax-1 and HPeV-Vax-2, using advanced immunoinformatic techniques. Multi-epitope vaccines have the advantage of protecting against various virus strains and may be preferable to live attenuated vaccines. Using the NCBI database, three viral protein sequences (VP0, VP1, and VP3) from six HPeV strains were collected to construct consensus protein sequences. Then the antigenicity, toxicity, allergenicity, and stability were analyzed after discovering T-cell and linear B-cell epitopes from the protein sequences. The fundamental structures of the vaccines were produced by fusing the selected epitopes with appropriate linkers and adjuvants. Comprehensive physicochemical, antigenic, allergic assays, and disulfide engineering demonstrated the effectiveness of the vaccines. Further refinement of secondary and tertiary models for both vaccines revealed promising interactions with toll-like receptor 4 (TLR4) in molecular docking, further confirmed by molecular dynamics simulation. In silico immunological modeling was employed to assess the vaccine's capacity to stimulate an immune reaction. In silico immunological simulations were employed to evaluate the vaccines' ability to trigger an immune response. Codon optimization and in silico cloning analyses showed that Escherichia coli (E. coli) was most likely the host for the candidate vaccines. Our findings suggest that these multi-epitope vaccines could be the potential HPeV vaccines and are recommended for further wet-lab investigation.
Collapse
Affiliation(s)
- Arnob Sarker
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Mahmudur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Chadni Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Chandan Barai
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Narayan Roy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
2
|
Mattiotti G, Micheloni M, Petrolli L, Rovigatti L, Tubiana L, Pasquali S, Potestio R. Molecular Dynamics Characterization of the Free and Encapsidated RNA2 of CCMV with the oxRNA Model. Macromol Rapid Commun 2024; 45:e2400639. [PMID: 39575684 DOI: 10.1002/marc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Indexed: 12/21/2024]
Abstract
The cowpea chlorotic mottle virus (CCMV) has emerged as a model system to assess the balance between electrostatic and topological features of single-stranded RNA viruses, specifically in the context of the viral self-assembly. Yet, despite its biophysical significance, little structural data on the RNA content of the CCMV virion is available. Here, the conformational dynamics of the RNA2 fragment of CCMV was assessed via coarse-grained molecular dynamics simulations, employing the oxRNA2 force field. The behavior of RNA2 was characterized both as a freely-folding molecule and within a mean-field depiction of the capsid. For the former, the role of the salt concentration, the temperature and of ad hoc constraints on the RNA termini was verified on the equilibrium properties of RNA2. For the latter, a multi-scale approach was employed to derive a potential profile of the viral cavity from atomistic structures of the CCMV capsid in solution. The conformational ensembles of the encapsidated RNA2 were significantly altered with respect to the freely-folding counterparts, as shown by the emergence of long-range motifs and pseudoknots. Finally, the role of the N-terminal tails of the CCMV subunits is highlighted as a critical feature in the construction of a proper electrostatic model of the CCMV capsid.
Collapse
Affiliation(s)
- Giovanni Mattiotti
- Laboratoire Biologie Functionnelle et Adaptative, CNRS UMR 8251, Inserm ERL U1133, Université Paris Cité, 35 rue Hélène Brion, Paris, 75013, France
| | - Manuel Micheloni
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Lorenzo Petrolli
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Lorenzo Rovigatti
- Department of Physics, Sapienza University of Rome, p.le A. Moro 5, Rome, 00185, Italy
| | - Luca Tubiana
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Samuela Pasquali
- Laboratoire Biologie Functionnelle et Adaptative, CNRS UMR 8251, Inserm ERL U1133, Université Paris Cité, 35 rue Hélène Brion, Paris, 75013, France
| | - Raffaello Potestio
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| |
Collapse
|
3
|
Tresset G, Li S, Gargowitsch L, Matthews L, Pérez J, Zandi R. Glass-like Relaxation Dynamics during the Disorder-to-Order Transition of Viral Nucleocapsids. J Phys Chem Lett 2024; 15:10210-10218. [PMID: 39356145 DOI: 10.1021/acs.jpclett.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Nucleocapsid self-assembly is an essential yet elusive step in virus replication. Using time-resolved small-angle X-ray scattering on a model icosahedral ssRNA virus, we reveal a previously unreported kinetic pathway. Initially, RNA-bound capsid subunits rapidly accumulate beyond the stoichiometry of native virions. This is followed by a disorder-to-order transition characterized by glass-like relaxation dynamics and the release of excess subunits. Our molecular dynamics simulations, employing a coarse-grained elastic model, confirm the physical feasibility of self-ordering accompanied by subunit release. The relaxation can be modeled by an exponential integral decay on the mean squared radius of gyration, with relaxation times varying within the second range depending on RNA type and subunit concentration. A nanogel model suggests that the initially disordered nucleoprotein complexes quickly reach an equilibrium size, while their mass fractal dimension continues to evolve. Understanding virus self-assembly is not only crucial for combating viral infections, but also for designing synthetic virus-inspired nanocages for drug delivery applications.
Collapse
Affiliation(s)
- Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Javier Pérez
- SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Bukina V, Božič A. Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA. Biophys J 2024; 123:3397-3407. [PMID: 39118324 PMCID: PMC11480767 DOI: 10.1016/j.bpj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Collapse
Affiliation(s)
- Veronika Bukina
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Liu J, Ito M, Liu L, Nakashima K, Satoh S, Konno A, Suzuki T. Involvement of ribosomal protein L17 and Y-box binding protein 1 in the assembly of hepatitis C virus potentially via their interaction with the 3' untranslated region of the viral genome. J Virol 2024; 98:e0052224. [PMID: 38899899 PMCID: PMC11265288 DOI: 10.1128/jvi.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. In vitro assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation. IMPORTANCE Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.
Collapse
Affiliation(s)
- Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Liang Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinya Satoh
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Alu Konno
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
7
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna J, Piszczek G, Ott M, Schuck P. Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res 2024; 52:6647-6661. [PMID: 38587193 PMCID: PMC11194069 DOI: 10.1093/nar/gkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- HHMI, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Yue N, Jiang Z, Pi Q, Yang M, Gao Z, Wang X, Zhang H, Wu F, Jin X, Li M, Wang Y, Zhang Y, Li D. Zn2+-dependent association of cysteine-rich protein with virion orchestrates morphogenesis of rod-shaped viruses. PLoS Pathog 2024; 20:e1012311. [PMID: 38885273 PMCID: PMC11213338 DOI: 10.1371/journal.ppat.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengtong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuejiao Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menglin Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Luque A, Reguera D. Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses. Subcell Biochem 2024; 105:693-741. [PMID: 39738961 DOI: 10.1007/978-3-031-65187-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - David Reguera
- Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
| |
Collapse
|
10
|
Thongchol J, Lill Z, Hoover Z, Zhang J. Recent Advances in Structural Studies of Single-Stranded RNA Bacteriophages. Viruses 2023; 15:1985. [PMID: 37896763 PMCID: PMC10610835 DOI: 10.3390/v15101985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Positive-sense single-stranded RNA (ssRNA) bacteriophages (phages) were first isolated six decades ago. Since then, extensive research has been conducted on these ssRNA phages, particularly those infecting E. coli. With small genomes of typically 3-4 kb that usually encode four essential proteins, ssRNA phages employ a straightforward infectious cycle involving host adsorption, genome entry, genome replication, phage assembly, and host lysis. Recent advancements in metagenomics and transcriptomics have led to the identification of ~65,000 sequences from ssRNA phages, expanding our understanding of their prevalence and potential hosts. This review article illuminates significant investigations into ssRNA phages, with a focal point on their structural aspects, providing insights into the various stages of their infectious cycle.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.T.); (Z.L.); (Z.H.)
| |
Collapse
|
11
|
Ranjan T, Ranjan Kumar R, Ansar M, Kumar J, Mohanty A, Kumari A, Jain K, Rajani K, Dei S, Ahmad MF. The curious case of genome packaging and assembly in RNA viruses infecting plants. Front Genet 2023; 14:1198647. [PMID: 37359368 PMCID: PMC10285054 DOI: 10.3389/fgene.2023.1198647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Genome packaging is the crucial step for maturation of plant viruses containing an RNA genome. Viruses exhibit a remarkable degree of packaging specificity, despite the probability of co-packaging cellular RNAs. Three different types of viral genome packaging systems are reported so far. The recently upgraded type I genome packaging system involves nucleation and encapsidation of RNA genomes in an energy-dependent manner, which have been observed in most of the plant RNA viruses with a smaller genome size, while type II and III packaging systems, majorly discovered in bacteriophages and large eukaryotic DNA viruses, involve genome translocation and packaging inside the prohead in an energy-dependent manner, i.e., utilizing ATP. Although ATP is essential for all three packaging systems, each machinery system employs a unique mode of ATP hydrolysis and genome packaging mechanism. Plant RNA viruses are serious threats to agricultural and horticultural crops and account for huge economic losses. Developing control strategies against plant RNA viruses requires a deep understanding of their genome assembly and packaging mechanism. On the basis of our previous studies and meticulously planned experiments, we have revealed their molecular mechanisms and proposed a hypothetical model for the type I packaging system with an emphasis on smaller plant RNA viruses. Here, in this review, we apprise researchers the technical breakthroughs that have facilitated the dissection of genome packaging and virion assembly processes in plant RNA viruses.
Collapse
Affiliation(s)
- Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Ravi Ranjan Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Mohammad Ansar
- Department of Plant Pathology, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Jitesh Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Auroshikha Mohanty
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Anamika Kumari
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Khushbu Jain
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Kumari Rajani
- Department of Seed Science and Technology, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Sailabala Dei
- Deputy Director Research, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Mohammad Feza Ahmad
- Department of Horticulture, Bihar Agricultural University, Bhagalpur, Bihar, India
| |
Collapse
|
12
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:1666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
Affiliation(s)
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (B.M.); (S.C.)
| |
Collapse
|
13
|
Comas-Garcia M. The role of packaging signals in virus assembly and interplay between the nucleation and elongation rates. Biophys J 2022; 121:2485-2486. [DOI: 10.1016/j.bpj.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
|
14
|
de Bruijn R, Wielstra PCM, Calcines-Cruz C, van Waveren T, Hernandez-Garcia A, van der Schoot P. A kinetic model for the impact of packaging signal mimics on genome encapsulation. Biophys J 2022; 121:2583-2599. [PMID: 35642255 DOI: 10.1016/j.bpj.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Inspired by recent experiments on the spontaneous assembly of virus-like particles from a solution containing a synthetic coat protein and double-stranded DNA, we put forward a kinetic model that has as main ingredients a stochastic nucleation and a deterministic growth process. The efficiency and rate of DNA packaging strongly increase after tiling the DNA with CRISPR-Cas proteins at predesignated locations, mimicking assembly signals in viruses. Our model shows that treating these proteins as nucleation-inducing diffusion barriers is sufficient to explain the experimentally observed increase in encapsulation efficiency, but only if the nucleation rate is sufficiently high. We find an optimum in the encapsulation kinetics for conditions where the number of packaging signal mimics is equal to the number of nucleation events that can occur during the time required to fully encapsulate the DNA template, presuming that the nucleation events can only take place adjacent to a packaging signal. Our theory is in satisfactory agreement with the available experimental data.
Collapse
Affiliation(s)
- René de Bruijn
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | | | - Carlos Calcines-Cruz
- Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Tom van Waveren
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Armando Hernandez-Garcia
- Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
15
|
Harati Taji Z, Bielytskyi P, Shein M, Sani MA, Seitz S, Schütz AK. Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein. J Am Chem Soc 2022; 144:8536-8550. [PMID: 35512333 PMCID: PMC9121876 DOI: 10.1021/jacs.1c12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.
Collapse
Affiliation(s)
- Zahra Harati Taji
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| |
Collapse
|
16
|
Adlhart M, Poetsch F, Hlevnjak M, Hoogmoed M, Polyansky A, Zagrovic B. Compositional complementarity between genomic RNA and coat proteins in positive-sense single-stranded RNA viruses. Nucleic Acids Res 2022; 50:4054-4067. [PMID: 35357492 PMCID: PMC9023274 DOI: 10.1093/nar/gkac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 02/02/2023] Open
Abstract
During packaging in positive-sense single-stranded RNA (+ssRNA) viruses, coat proteins (CPs) interact directly with multiple regions in genomic RNA (gRNA), but the underlying physicochemical principles remain unclear. Here we analyze the high-resolution cryo-EM structure of bacteriophage MS2 and show that the gRNA/CP binding sites, including the known packaging signal, overlap significantly with regions where gRNA nucleobase-density profiles match the corresponding CP nucleobase-affinity profiles. Moreover, we show that the MS2 packaging signal corresponds to the global minimum in gRNA/CP interaction energy in the unstructured state as derived using a linearly additive model and knowledge-based nucleobase/amino-acid affinities. Motivated by this, we predict gRNA/CP interaction sites for a comprehensive set of 1082 +ssRNA viruses. We validate our predictions by comparing them with site-resolved information on gRNA/CP interactions derived in SELEX and CLIP experiments for 10 different viruses. Finally, we show that in experimentally studied systems CPs frequently interact with autologous coding regions in gRNA, in agreement with both predicted interaction energies and a recent proposal that proteins in general tend to interact with own mRNAs, if unstructured. Our results define a self-consistent framework for understanding packaging in +ssRNA viruses and implicate interactions between unstructured gRNA and CPs in the process.
Collapse
Affiliation(s)
- Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Center for Medical Research, Johannes Kepler University of Linz, Huemerstraße 3-5, 4020 Linz, Austria
| | - Mario Hlevnjak
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Megan Hoogmoed
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| |
Collapse
|
17
|
Zhang Q, Guo HL, Wang J, Zhang Y, Deng PJ, Li FF. Structural Genomic Analysis of SARS-CoV-2 and Other Coronaviruses. Front Genet 2022; 13:801902. [PMID: 35464844 PMCID: PMC9024071 DOI: 10.3389/fgene.2022.801902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. In this study, we conducted a comparative analysis of the structural genes of SARS-CoV-2 and other CoVs. We found that the sequence of the E gene was the most evolutionarily conserved across 200 SARS-CoV-2 isolates. The E gene and M gene sequences of SARS-CoV-2 and NC014470 CoV were closely related and fell within the same branch of a phylogenetic tree. The absolute diversity of E gene and M gene sequences of SARS-CoV-2 isolates was similar to that of common CoVs (C-CoVs) infecting other organisms. The absolute diversity of the M gene sequence of the KJ481931 CoV that can infect humans was similar to that of SARS-CoV-2 and C-CoVs infecting other organisms. The M gene sequence of KJ481931 CoV (infecting humans), SARS-CoV-2 and NC014470 CoV (infecting other organisms) were closely related, falling within the same branch of a phylogenetic tree. Patterns of variation and evolutionary characteristics of the N gene and S gene were very similar. These data may be of value for understanding the origins and intermediate hosts of SARS-CoV-2.
Collapse
Affiliation(s)
- Qiong Zhang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
| | - Huai-Lan Guo
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Jing Wang
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Yao Zhang
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Ping-Ji Deng
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, China
- *Correspondence: Fei-Feng Li, ; Ping-Ji Deng,
| | - Fei-Feng Li
- Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Hubei University of Medicine, Shiyan, China
- School of Public Health, Hubei University of Medicine, Shiyan, China
- *Correspondence: Fei-Feng Li, ; Ping-Ji Deng,
| |
Collapse
|
18
|
Abstract
Simple RNA viruses self-assemble spontaneously and encapsulate their genome into a shell called the capsid. This process is mainly driven by the attractive electrostatics interaction between the positive charges on capsid proteins and the negative charges on the genome. Despite its importance and many decades of intense research, how the virus selects and packages its native RNA inside the crowded environment of a host cell cytoplasm in the presence of an abundance of nonviral RNA and other anionic polymers has remained a mystery. In this paper, we perform a series of simulations to monitor the growth of viral shells and find the mechanism by which cargo-coat protein interactions can impact the structure and stability of the viral shells. We show that coat protein subunits can assemble around a globular nucleic acid core by forming nonicosahedral cages, which have been recently observed in assembly experiments involving small pieces of RNA. We find that the resulting cages are strained and can easily be split into fragments along stress lines. This suggests that such metastable nonicosahedral intermediates could be easily reassembled into the stable native icosahedral shells if the larger wild-type genome becomes available, despite the presence of a myriad of nonviral RNAs.
Collapse
Affiliation(s)
- Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Siyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Chhajer H, Rizvi VA, Roy R. Life cycle process dependencies of positive-sense RNA viruses suggest strategies for inhibiting productive cellular infection. J R Soc Interface 2021; 18:20210401. [PMID: 34753308 PMCID: PMC8580453 DOI: 10.1098/rsif.2021.0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus. Stochastic simulations demonstrate infection extinction if all seeding (inoculating) viral RNA degrade before establishing robust replication critical for infection. The probability of this productive cellular infection, 'cellular infectivity', is affected by virus-host processes and defined by early life cycle events and viral seeding. An increase in cytoplasmic RNA degradation and delay in vesicular compartment formation reduces infectivity, more so when combined. Synergy among these parameters in limiting (+)RNA virus infection as predicted by our model suggests new avenues for inhibiting infections by targeting the early life cycle bottlenecks.
Collapse
Affiliation(s)
- Harsh Chhajer
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Vaseef A. Rizvi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rahul Roy
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
20
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
21
|
Marichal L, Gargowitsch L, Rubim RL, Sizun C, Kra K, Bressanelli S, Dong Y, Panahandeh S, Zandi R, Tresset G. Relationships between RNA topology and nucleocapsid structure in a model icosahedral virus. Biophys J 2021; 120:3925-3936. [PMID: 34418368 PMCID: PMC8511167 DOI: 10.1016/j.bpj.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The process of genome packaging in most of viruses is poorly understood, notably the role of the genome itself in the nucleocapsid structure. For simple icosahedral single-stranded RNA viruses, the branched topology due to the RNA secondary structure is thought to lower the free energy required to complete a virion. We investigate the structure of nucleocapsids packaging RNA segments with various degrees of compactness by small-angle x-ray scattering and cryotransmission electron microscopy. The structural differences are mild even though compact RNA segments lead on average to better-ordered and more uniform particles across the sample. Numerical calculations confirm that the free energy is lowered for the RNA segments displaying the larger number of branch points. The effect is, however, opposite with synthetic polyelectrolytes, in which a star topology gives rise to more disorder in the capsids than a linear topology. If RNA compactness and size account in part for the proper assembly of the nucleocapsid and the genome selectivity, other factors most likely related to the host cell environment during viral assembly must come into play as well.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Kalouna Kra
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| |
Collapse
|
22
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
23
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
24
|
Li D, Lin MH, Rawle DJ, Jin H, Wu Z, Wang L, Lor M, Hussain M, Aaskov J, Harrich D. Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity. Commun Biol 2021; 4:557. [PMID: 33976375 PMCID: PMC8113447 DOI: 10.1038/s42003-021-02064-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mazhar Hussain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
25
|
Calcines-Cruz C, Finkelstein IJ, Hernandez-Garcia A. CRISPR-Guided Programmable Self-Assembly of Artificial Virus-Like Nucleocapsids. NANO LETTERS 2021; 21:2752-2757. [PMID: 33729813 PMCID: PMC9724498 DOI: 10.1021/acs.nanolett.0c04640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designer virus-inspired proteins drive the manufacturing of more effective, safer gene-delivery systems and simpler models to study viral assembly. However, self-assembly of engineered viromimetic proteins on specific nucleic acid templates, a distinctive viral property, has proved difficult. Inspired by viral packaging signals, we harness the programmability of CRISPR-Cas12a to direct the nucleation and growth of a self-assembling synthetic polypeptide into virus-like particles (VLP) on specific DNA molecules. Positioning up to ten nuclease-dead Cas12a (dCas12a) proteins along a 48.5 kbp DNA template triggers particle growth and full DNA encapsidation at limiting polypeptide concentrations. Particle growth rate is further increased when dCas12a is dimerized with a polymerization silk-like domain. Such improved self-assembly efficiency allows for discrimination between cognate versus noncognate DNA templates by the synthetic polypeptide. CRISPR-guided VLPs will help to develop programmable bioinspired nanomaterials with applications in biotechnology as well as viromimetic scaffolds to improve our understanding of viral self-assembly.
Collapse
Affiliation(s)
- Carlos Calcines-Cruz
- Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | | | | |
Collapse
|
26
|
Tian L, Qiang T, Liang C, Ren X, Jia M, Zhang J, Li J, Wan M, YuWen X, Li H, Cao W, Liu H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem 2021; 213:113201. [PMID: 33524687 PMCID: PMC7826122 DOI: 10.1016/j.ejmech.2021.113201] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/14/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The widespread nature of several viruses is greatly credited to their rapidly altering RNA genomes that enable the infection to persist despite challenges presented by host cells. Within the RNA genome of infections is RNA-dependent RNA polymerase (RdRp), which is an essential enzyme that helps in RNA synthesis by catalysing the RNA template-dependent development of phosphodiester bonds. Therefore, RdRp is an important therapeutic target in RNA virus-caused diseases, including SARS-CoV-2. In this review, we describe the promising RdRp inhibitors that have been launched or are currently in clinical studies for the treatment of RNA virus infections. Structurally, nucleoside inhibitors (NIs) bind to the RdRp protein at the enzyme active site, and nonnucleoside inhibitors (NNIs) bind to the RdRp protein at allosteric sites. By reviewing these inhibitors, more precise guidelines for the development of more promising anti-RNA virus drugs should be set, and due to the current health emergency, they will eventually be used for COVID-19 treatment.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jiayun Zhang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an, 712046, PR China
| | - Xin YuWen
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| |
Collapse
|
27
|
Božič A, Kanduč M. Relative humidity in droplet and airborne transmission of disease. J Biol Phys 2021; 47:1-29. [PMID: 33564965 PMCID: PMC7872882 DOI: 10.1007/s10867-020-09562-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
A large number of infectious diseases are transmitted by respiratory droplets. How long these droplets persist in the air, how far they can travel, and how long the pathogens they might carry survive are all decisive factors for the spread of droplet-borne diseases. The subject is extremely multifaceted and its aspects range across different disciplines, yet most of them have only seldom been considered in the physics community. In this review, we discuss the physical principles that govern the fate of respiratory droplets and any viruses trapped inside them, with a focus on the role of relative humidity. Importantly, low relative humidity-as encountered, for instance, indoors during winter and inside aircraft-facilitates evaporation and keeps even initially large droplets suspended in air as aerosol for extended periods of time. What is more, relative humidity affects the stability of viruses in aerosol through several physical mechanisms such as efflorescence and inactivation at the air-water interface, whose role in virus inactivation nonetheless remains poorly understood. Elucidating the role of relative humidity in the droplet spread of disease would permit us to design preventive measures that could aid in reducing the chance of transmission, particularly in indoor environment.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
28
|
Chowdhury S, Bhuiya S, Haque L, Das S. Influence of position of hydroxyl group of flavonoids on their binding with single stranded polyriboadenylic acid: A spectroscopic evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119008. [PMID: 33038855 DOI: 10.1016/j.saa.2020.119008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Single stranded polyriboadenylic acid [poly (rA)] has been accepted widely as a suitable drug target owing to its vital role in the development of cancer since it controls gene expression during cell growth and differentiation. The biological properties of poly (rA) depend on its structural morphology. Pharmacologically active flavonoids can act as suitable binders to poly (rA) and significantly change its biophysical properties. Different factors favour flavonoid-poly (rA) binding. In our present work we have explored the role played by the position of hydroxyl groups in the flavonoids namely 3, 5, 6 and 7 hydroxyflavones in their course of interaction with poly (rA). A range of spectroscopic experiments reveal that 3HF binds best to poly (rA) among the four chosen flavonoids. This is probably due to the presence of a hydroxyl group in '3' position that enables it to exhibit ESIPT phenomenon which is missing for the other used flavonoids.
Collapse
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Lucy Haque
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India.
| |
Collapse
|
29
|
Sánchez-Zuno GA, Matuz-Flores MG, González-Estevez G, Nicoletti F, Turrubiates-Hernández FJ, Mangano K, Muñoz-Valle JF. A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. Int J Immunopathol Pharmacol 2021; 35:20587384211050199. [PMID: 34632844 PMCID: PMC8512237 DOI: 10.1177/20587384211050199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents an unprecedented global public health emergency with economic and social consequences. One of the main concerns in the development of vaccines is the antibody-dependent enhancement phenomenon, better known as ADE. In this review, we provide an overview of SARS-CoV-2 infection as well as the immune response generated by the host. On the bases of this principle, we also describe what is known about the ADE phenomenon in various viral infections and its possible role as a limiting factor in the development of new vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Guillermo González-Estevez
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Ferdinando Nicoletti
- Department of Biomedical and
Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Katia Mangano
- Department of Biomedical and
Biotechnological Sciences, University of Catania, Catania, Italy
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| |
Collapse
|
30
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|
31
|
Bond K, Tsvetkova IB, Wang JCY, Jarrold MF, Dragnea B. Virus Assembly Pathways: Straying Away but Not Too Far. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004475. [PMID: 33241653 DOI: 10.1002/smll.202004475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Non-enveloped RNA viruses pervade all domains of life. In a cell, they co-assemble from viral RNA and capsid proteins. Virus-like particles can form in vitro where virtually any non-cognate polyanionic cargo can be packaged. How only viral RNA gets selected for packaging in vivo, in presence of myriad other polyanionic species, has been a puzzle. Through a combination of charge detection mass spectrometry and cryo-electron microscopy, it is determined that co-assembling brome mosaic virus (BMV) coat proteins and nucleic acid oligomers results in capsid structures and stoichiometries that differ from the icosahedral virion. These previously unknown shell structures are strained and less stable than the native one. However, they contain large native structure fragments that can be recycled to form BMV virions, should a viral genome become available. The existence of such structures suggest the possibility of a previously unknown regulatory pathway for the packaging process inside cells.
Collapse
Affiliation(s)
- Kevin Bond
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
32
|
Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, Chellappan DK, Gupta G, Negi P, Goyal R, Sharma A, Mishra V, Dureja H, Dua K, Tambuwala MM. COVID-19: Underpinning Research for Detection, Therapeutics, and Vaccines Development. Pharm Nanotechnol 2020; 8:323-353. [PMID: 32811406 DOI: 10.2174/2211738508999200817163335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities. OBJECTIVES Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers. METHODS In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review. RESULTS The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures. Lay Summary An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 566, Jordan
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, United Kingdom
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Meenu Metha
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Raed M Ennab
- Department of Clinical sciences, Faculty of Medicine, Yarmouk University, Irbid 566, Jordan
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
33
|
Wu R, Prabhu R, Ozkan A, Sitharam M. Rapid prediction of crucial hotspot interactions for icosahedral viral capsid self-assembly by energy landscape atlasing validated by mutagenesis. PLoS Comput Biol 2020; 16:e1008357. [PMID: 33079933 PMCID: PMC7598928 DOI: 10.1371/journal.pcbi.1008357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/30/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Icosahedral viruses are under a micrometer in diameter, their infectious genome encapsulated by a shell assembled by a multiscale process, starting from an integer multiple of 60 viral capsid or coat protein (VP) monomers. We predict and validate inter-atomic hotspot interactions between VP monomers that are important for the assembly of 3 types of icosahedral viral capsids: Adeno Associated Virus serotype 2 (AAV2) and Minute Virus of Mice (MVM), both T = 1 single stranded DNA viruses, and Bromo Mosaic Virus (BMV), a T = 3 single stranded RNA virus. Experimental validation is by in-vitro, site-directed mutagenesis data found in literature. We combine ab-initio predictions at two scales: at the interface-scale, we predict the importance (cruciality) of an interaction for successful subassembly across each interface between symmetry-related VP monomers; and at the capsid-scale, we predict the cruciality of an interface for successful capsid assembly. At the interface-scale, we measure cruciality by changes in the capsid free-energy landscape partition function when an interaction is removed. The partition function computation uses atlases of interface subassembly landscapes, rapidly generated by a novel geometric method and curated opensource software EASAL (efficient atlasing and search of assembly landscapes). At the capsid-scale, cruciality of an interface for successful assembly of the capsid is based on combinatorial entropy. Our study goes all the way from resource-light, multiscale computational predictions of crucial hotspot inter-atomic interactions to validation using data on site-directed mutagenesis' effect on capsid assembly. By reliably and rapidly narrowing down target interactions, (no more than 1.5 hours per interface on a laptop with Intel Core i5-2500K @ 3.2 Ghz CPU and 8GB of RAM) our predictions can inform and reduce time-consuming in-vitro and in-vivo experiments, or more computationally intensive in-silico analyses.
Collapse
Affiliation(s)
- Ruijin Wu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Rahul Prabhu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Aysegul Ozkan
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Meera Sitharam
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
34
|
Liang C, Tian L, Liu Y, Hui N, Qiao G, Li H, Shi Z, Tang Y, Zhang D, Xie X, Zhao X. A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir. Eur J Med Chem 2020; 201:112527. [PMID: 32563812 PMCID: PMC7834743 DOI: 10.1016/j.ejmech.2020.112527] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Remdesivir (GS-5734), a viral RNA-dependent RNA polymerase (RdRP) inhibitor that can be used to treat a variety of RNA virus infections, is expected to be an effective treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. On May 1, 2020, The U.S. Food and Drug Administration (FDA) has granted Emergency Use Authorization (EUA) for remdesivir to treat COVID-19 patients. In light of the COVID-19 pandemic, this review presents comprehensive information on remdesivir, including information regarding the milestones, intellectual properties, anti-coronavirus mechanisms, preclinical research and clinical trials, and in particular, the chemical synthesis, pharmacology, toxicology, pharmacodynamics and pharmacokinetics of remdesivir. Furthermore, perspectives regarding the use of remdesivir for the treatment of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Guaiping Qiao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, PR China
| | - Yonghong Tang
- Xi'an Taikomed Pharmaceutical Technology Co., Ltd., Xi'an, 710077, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
35
|
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online 2020; 22:19. [PMID: 32774178 PMCID: PMC7402395 DOI: 10.1186/s12575-020-00128-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
In December 2019, a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or (2019-nCoV) with unknown origin spread in Hubei province of China. The epidemic disease caused by SARS-CoV-2 called coronavirus disease-19 (COVID-19). The presence of COVID-19 was manifested by several symptoms, ranging from asymptomatic/mild symptoms to severe illness and death. The viral infection expanded internationally and WHO announced a Public Health Emergency of International Concern. To quickly diagnose and control such a highly infectious disease, suspicious individuals were isolated and diagnostic/treatment procedures were developed through patients' epidemiological and clinical data. Early in the COVID-19 outbreak, WHO invited hundreds of researchers from around the world to develop a rapid quality diagnosis, treatment and vaccines, but so far no specific antiviral treatment or vaccine has been approved by the FDA. At present, COVID-19 is managed by available antiviral drugs to improve the symptoms, and in severe cases, supportive care including oxygen and mechanical ventilation is used for infected patients. However, due to the worldwide spread of the virus, COVID-19 has become a serious concern in the medical community. According to the current data of WHO, the number of infected and dead cases has increased to 8,708,008 and 461,715, respectively (Dec 2019 -June 2020). Given the high mortality rate and economic damage to various communities to date, great efforts must be made to produce successful drugs and vaccines against 2019-nCoV infection. For this reason, first of all, the characteristics of the virus, its pathogenicity, and its infectious pathways must be well known. Thus, the main purpose of this review is to provide an overview of this epidemic disease based on the current evidence.
Collapse
Affiliation(s)
- Hanie Esakandari
- Department of Biology, Science and research branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Javad Fakkari-Afjadi
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | | | - Elham Bahreini
- Department of biology, Ashkezar branch, Islamic Azad University of Yazd, Ashkezar, Yazd Iran
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
36
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
37
|
Abstract
Context: In late December 2019, a new coronavirus, called COVID-19 (SARS-CoV-2/2019-nCoV), triggered the outbreak of pneumonia from Wuhan (Han’s seafood market) in China, which is now possessing major public health threats to the world. The objective of this review was to describe the epidemiology of COVID-19 in different chronic diseases and understand the pathophysiological mechanisms by which the virus can lead to the progression of these diseases. Results: The prevalence of COVID-19 infection has become a clinical threat to the general population and healthcare staff around the world. However, knowledge is limited about this new virus. The most commonly reported conditions are diabetes mellitus, chronic lung disease, and cardiovascular disease. Conclusions: Effective antiviral therapy and vaccination are currently being evaluated and under-development. What we can do now is the aggressive implementation of infection control measures to prevent the human-human transmission of SARS-CoV-2. Public health services should also monitor the situation. The more the knowledge about this new virus and its prevalence, the better the ability of us to deal with it. It is hoped that we will overcome COVID-19 soon with the discovery of effective vaccines, drugs, and treatments.
Collapse
|
38
|
Buzón P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1613. [PMID: 31960585 PMCID: PMC7317356 DOI: 10.1002/wnan.1613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/01/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|