1
|
Ghonaim AH, Rouby SR, Nageeb WM, Elgendy AA, Xu R, Jiang C, Ghonaim NH, He Q, Li W. Insights into Recent Advancements in Human and Animal Rotavirus Vaccines: Exploring New Frontiers. Virol Sin 2024:S1995-820X(24)00194-9. [PMID: 39672271 DOI: 10.1016/j.virs.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Rotavirus infections cause severe gastroenteritis and dehydration in young children and animals worldwide, leading to high rates of morbidity and mortality, predominantly in low- and middle-income countries. In the past decade, substantial progress has been made in the development and implementation of rotavirus vaccines, which have been essential in alleviating the global burden of this disease, not only in human being but also in livestock species like calves and piglets, where these infections can cause significant economic losses. By synthesizing the latest research and real-world evidence, this review article is designated to provide deep insights into the current state of rotavirus vaccine technology and its global implementation as well as the application of rotavirus vaccines in veterinary settings and their importance in controlling zoonotic transmission and maintaining food security.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Sherin R Rouby
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wedad M Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt
| | - Ashraf Ahmed Elgendy
- Department of Immunology, Faculty of Medicine, New Kaser Al-Aini Teaching Hospital, Cairo University, 11435, Egypt
| | - Rong Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Changsheng Jiang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Noha H Ghonaim
- Family Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
2
|
Omatola CA, Olaniran AO. Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:363-379. [PMID: 38914870 PMCID: PMC11422280 DOI: 10.1007/s12560-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2024] [Indexed: 06/26/2024]
Abstract
Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa.
| |
Collapse
|
3
|
Omatola CA, Olasehinde TA, Olaniran AO. Relative abundance and the fate of human rotavirus in wastewater during treatment processes: identification of potential infectious rotavirus in the final effluents and receiving aquatic milieu in Durban area, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:746. [PMID: 39023654 PMCID: PMC11258059 DOI: 10.1007/s10661-024-12888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
The occurrence and persistence of rotaviruses in raw and treated wastewater and their discharge into rivers represent a significant health risk for humans and animals, worldwide. In this study, samples were collected monthly from each of the four Durban wastewater treatment plants (DWWTPs) and receiving rivers for a period of 3 months. Rotavirus was quantified by real-time quantitative PCR (RT-qPCR), and viability was assessed using integrated cell culture (ICC)-qPCR. Rotavirus was detected consistently in 100% of influent wastewaters (mean concentration range, 4.36-4.46 log10 genome equivalent (GE) copies/L) and final effluent samples of three DWWTPs (range, 3.35-3.61 log10 GE copies/L). Overall, 94% (45/48) of the wastewater analyzed and 95% (20/21) of the associated river water samples were positive for rotavirus (range, 2.04-6.77 log10 GE copies/L). The activated sludge process with 0.10-0.43 log10 reduction values (LRV) only moderately reduced the viral loads. Similarly, one of the DWWTPs that operated the biofilter modality produced 0.20 LRV. Though the additional treatment with chlorine produced higher LRV (range, 0.31-0.53) than the corresponding activated sludge or biofilter process, the difference in viral removals was not significant (p > 0.05). The equivalent treatment efficiencies of the four DWWTPs varied from 19 to 43% decay in the population of rotavirus. Further, infectious rotavirus ranging from 66.67 to 100%, 50 to 100%, and 66.67 to 100% were detected in the post-activated sludge, final effluents, and river water samples, respectively. In conclusion, the findings of infectious rotavirus in both the final effluents and associated rivers represent an infection risk for humans or animals during contact. Thus, close monitoring for rotavirus and risk assessment studies under distinct exposure scenarios may further shed light on the health-related risks associated with water recovery and reuse in urban settings.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, Kwazulu-Natal Province, South Africa
| | - Tosin Abiola Olasehinde
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, Kwazulu-Natal Province, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, Kwazulu-Natal Province, South Africa.
| |
Collapse
|
4
|
Ortiz-Quintero J, Cabrera Y, Bourdett-Stanziola L, Ferrera A. Molecular Characterization of Enteric Viruses Causing Acute Gastroenteritis among Children under 5 Years Old in Distrito Central, Honduras. Intervirology 2024; 67:83-98. [PMID: 38981462 PMCID: PMC11326528 DOI: 10.1159/000540253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Diarrheal diseases constitute a significant public health problem in terms of mortality and morbidity. In Honduras and around the world, RVs have consistently emerged as the single most important etiologic agent in acute childhood diarrhea. However, other viruses, such as NoVs and HAstVs, have also been shown to be responsible for viral gastroenteritis. Unfortunately, the country has limited information concerning the etiologic role of these viral agents in acute gastroenteritis. This study investigated the frequency, genotypes, and epidemiological characteristics of RV-A, NoVs, and HAstVs among children under 5 years old in Distrito Central, Honduras. METHODS Stool samples and their corresponding epidemiological data were collected from children with acute gastroenteritis in three healthcare centers in Distrito Central. All samples were screened by immunoassays for RV-A and HAstVs. RV-A-positive samples were molecularly characterized by RT-PCR and genotyping assays. RT-PCR was also applied to confirm HAstVs positivity and to detect NoVs, followed by nucleotide sequencing to assign their genotypes. RESULTS Our results show that at least one viral agent was detected in 31% of the children. The frequency of RV-A, NoVs, and HAstVs was 14%, 13%, and 5%, respectively. The most frequent RV-A genotype was G2P[4], occurring in 93% of cases. 92.3% of NoVs-positive samples belonged to genogroup II, with GII.4 and GII.16 being the most common. HAstVs were clustered into three genotypes: HAstV-1, HAstV-2, and HAstV-8. Only one sample showed coinfection with NoVs and HAstVs. CONCLUSION This comprehensive molecular and epidemiological characterization of enteric viruses demonstrates the vast diversity of these agents and describes for the first time NoVs and HAstVs as causative agents of acute childhood gastroenteritis in Distrito Central, Honduras. This suggests that further in-depth studies of the pediatric population are necessary to develop and implement effective preventive and control measures in the country.
Collapse
Affiliation(s)
- Jafet Ortiz-Quintero
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- Departamento de Bioanálisis e Inmunología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Yessy Cabrera
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Lurys Bourdett-Stanziola
- Biomedicine Research Unit, Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas (INDICASAT-AIP), Panama City, Panama
| | - Annabelle Ferrera
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| |
Collapse
|
5
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
6
|
Omatola CA, Ogunsakin RE, Onoja AB, Okolo MLO, Abraham-Oyiguh J, Mofolorunsho KC, Akoh PQ, Adejo OP, Idakwo J, Okeme TO, Muhammed D, Adaji DM, Samson SO, Aminu RF, Akor ME, Edegbo E, Adamu AM. Enteropathogenic viruses associated with acute gastroenteritis among African children under 5 years of age: A systematic review and meta-analysis. J Infect 2024; 88:106169. [PMID: 38697269 DOI: 10.1016/j.jinf.2024.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.
Collapse
Affiliation(s)
| | - Ropo Ebenezer Ogunsakin
- School of Health Systems and Public Health, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| | | | | | - Joseph Abraham-Oyiguh
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | | | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | - Omebije Patience Adejo
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | - Joshua Idakwo
- Department of Animal and Environmental Biology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | | | - Danjuma Muhammed
- Department of Biology, Epidemiology, and Public Health Unit, Universiti Putra Malaysia, Malaysia
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, United States
| | | | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba P.M.B. 1008, Kogi State, Nigeria
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, 4811 Queensland, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, 4811 Queensland, Australia; Center for Tropical Biosecurity, James Cook University, 4811 Queensland, Australia.
| |
Collapse
|
7
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
8
|
Velderrain-Armenta F, González-Ochoa G, Tamez-Guerra P, Romero-Arguelles R, Romo-Sáenz CI, Gomez-Flores R, Flores-Mendoza L, Icedo-García R, Soñanez-Organis JG. Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells. Int J Mol Sci 2024; 25:5514. [PMID: 38791551 PMCID: PMC11122607 DOI: 10.3390/ijms25105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.
Collapse
Affiliation(s)
- Felizardo Velderrain-Armenta
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Guadalupe González-Ochoa
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Patricia Tamez-Guerra
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Ricardo Romero-Arguelles
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - César I. Romo-Sáenz
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Ricardo Gomez-Flores
- Laboratory of Immunology and Virology, Falculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza C.P. 66455, Mexico; (R.R.-A.); (C.I.R.-S.); (R.G.-F.)
| | - Lilian Flores-Mendoza
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - Ramona Icedo-García
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| | - José G. Soñanez-Organis
- Department of Chemistry-Biology and Agriculture, Interdisciplinary Faculty of Biology Sciences and Health, University of Sonora, Navojoa C.P. 85880, Mexico; (F.V.-A.); (L.F.-M.); (R.I.-G.); (J.G.S.-O.)
| |
Collapse
|
9
|
Graikini D, García L, Abad I, Lavilla M, Puértolas E, Pérez MD, Sánchez L. Antirotaviral activity of dairy byproducts enriched in fractions from hyperimmune bovine colostrum: the effect of thermal and high hydrostatic pressure treatments. Food Funct 2024; 15:2265-2281. [PMID: 38319687 DOI: 10.1039/d3fo05250h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Nowadays, rotaviruses remain a major health burden, especially in developing countries, and strategies complementary to vaccination are needed. In this view, dairy fractions have attracted great scientific interest, due to their high content of bioactive compounds. The objective of this study was to evaluate the antiviral activity of whey and buttermilk enriched in proteins from hyperimmune bovine colostrum (HBC) against rotavirus. The enriched fractions were spray-dried and subsequently tested for their neutralizing activity against the bovine rotavirus WC3 strain in vitro, using differentiated Caco-2/TC7 cells. The highest antirotaviral activity was observed when whey and buttermilk were enriched in purified immunoglobulin G (IgG), showing complete rotavirus neutralization at concentrations of 3 and 6 mg mL-1 for whey and buttermilk, respectively. Additionally, the use of a crude immunoglobulin fraction also gave satisfactory results. The inhibitory activities of all samples significantly decreased after the application of heat, except for the IgG-enriched buttermilk which showed a slight increase of activity following the application of short-time treatments (75 or 85 °C for 20 s). This sample also showed a significant increase of activity (13%) after the application of low-intensity high hydrostatic pressure treatment (400 MPa for 5 min). The maximum loss of bioactivity was observed at 600 MPa for 10 min (31 and 20% for whey- and buttermilk-based formulas, respectively). This study provides relevant information on the potential of whey, buttermilk, and HBC to be part of functional products as complementary strategies to combat rotavirus infections.
Collapse
Affiliation(s)
- Dimitra Graikini
- Departmento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
- Instituto Agroalimentario de Aragon (IA2), Zaragoza, Spain
| | - Laura García
- Departmento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
| | - Inés Abad
- Departmento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
- Instituto Agroalimentario de Aragon (IA2), Zaragoza, Spain
| | - María Lavilla
- AZTI-BRTA, Food Research-Parque Tecnológico de Bizkaia, Astondo Bidea, edificio 609, 48160 Derio, Spain
| | - Eduardo Puértolas
- AZTI-BRTA, Food Research-Parque Tecnológico de Bizkaia, Astondo Bidea, edificio 609, 48160 Derio, Spain
| | - María Dolores Pérez
- Departmento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
- Instituto Agroalimentario de Aragon (IA2), Zaragoza, Spain
| | - Lourdes Sánchez
- Departmento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
- Instituto Agroalimentario de Aragon (IA2), Zaragoza, Spain
| |
Collapse
|
10
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
11
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
12
|
Guo SC, Yu B, Jia Q, Yan HY, Wang LQ, Sun FF, Ma TH, Yang H. Loureirin C extracted from Dracaena cochinchinensis S.C. Chen prevents rotaviral diarrhea in mice by inhibiting the intestinal Ca 2+-activated Cl - channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117077. [PMID: 37625605 DOI: 10.1016/j.jep.2023.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Resina Draconis (RD) is the red resin of Dracaena cochinchinensis (Lour.) S.C. Chen and most used as a hemostatic drug in traditional Chinese medicine. Recent studies have reported that RD has a therapeutic effect on gastrointestinal diseases. Loureirin A, B, and C (LA, LB, and LC) are dihydrochalcone compounds isolated from RD. AIM OF THE STUDY Dehydration is the primary cause of death in rotaviral diarrhea. Inhibition of Ca2+-activated Cl- channels (CaCCs)-mediated Cl- secretion significantly reduced fluid secretion in rotaviral diarrhea. RD was used to treat digestive diseases such as diarrhea and abdominal pain; however, the pharmacological mechanism remains unclear. This study investigated the effects of RD and loureirin on intestinal Cl- channels and their therapeutic effects on rotavirus-induced diarrhea, aiming to reveal RD's molecular basis, targets, and mechanisms for treating rotaviral diarrhea. MATERIALS AND METHODS Cell-based fluorescence quenching assays were used to examine the effect of RD and loureirin on Cl- channels activity. Electrophysiological properties were tested using short-circuit current experiments in epithelial cells or freshly isolated mouse intestinal tissue. Fecal water content, intestinal peristalsis rate, and smooth muscle contraction were measured in neonatal mice infected with SA-11 rotavirus before and after LC treatment or adult mice. RESULTS RD, LA, LB, and LC inhibited CaCCs-mediated Cl- current in HT-29 cells and colonic epithelium. The inhibitory effect of LC on CaCCs was primarily on the apical side in epithelial cells, which may be partially produced by affecting cytoplasmic Ca2+ levels. LC significantly inhibited TMEM16A-mediated Cl- current. Characterization studies revealed that LC inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activity in the colonic epithelium. Although LC activated the cystic fibrosis transmembrane regulator in epithelial cells, its effect was not apparent in colonic epithelium. In vivo, LC significantly reduced the fecal water content, intestinal peristalsis rate, and smooth muscle contraction of mice infected with rotavirus. CONCLUSION RD and its active compound LC inhibit intestinal CaCCs activity, which might mediate the anti-rotaviral diarrheal effect of RD.
Collapse
Affiliation(s)
- Si-Cheng Guo
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Qian Jia
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Han-Yu Yan
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Li-Qin Wang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Fang-Fang Sun
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China; Nuclear Medicine Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, PR China.
| | - Tong-Hui Ma
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116082, PR China.
| |
Collapse
|
13
|
Sadiq A, Khan J. Rotavirus in developing countries: molecular diversity, epidemiological insights, and strategies for effective vaccination. Front Microbiol 2024; 14:1297269. [PMID: 38249482 PMCID: PMC10797100 DOI: 10.3389/fmicb.2023.1297269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Rotavirus (RV) causes the loss of numerous children's lives worldwide each year, and this burden is particularly heavy in low- and lower-middle-income countries where access to healthcare is limited. RV epidemiology exhibits a diverse range of genotypes, which can vary in prevalence and impact across different regions. The human genotypes that are most commonly recognized are G1P[8], G2P[4], G3P[8], G4P[8], G8P[8], G9P[8], and G12P[8]. The diversity of rotavirus genotypes presents a challenge in understanding its global distribution and developing effective vaccines. Oral, live-attenuated rotavirus vaccines have undergone evaluation in various contexts, encompassing both low-income and high-income populations, demonstrating their safety and effectiveness. Rotavirus vaccines have been introduced and implemented in over 120 countries, offering an opportunity to assess their effectiveness in diverse settings. However, these vaccines were less effective in areas with more rotavirus-related deaths and lower economic status compared to wealthier regions with fewer rotavirus-related deaths. Despite their lower efficacy, rotavirus vaccines significantly decrease the occurrence of diarrheal diseases and related mortality. They also prove to be cost-effective in regions with a high burden of such diseases. Regularly evaluating the impact, influence, and cost-effectiveness of rotavirus vaccines, especially the newly approved ones for worldwide use, is essential for deciding if these vaccines should be introduced in countries. This is especially important in places with limited resources to determine if a switch to a different vaccine is necessary. Future research in rotavirus epidemiology should focus on a comprehensive understanding of genotype diversity and its implications for vaccine effectiveness. It is crucial to monitor shifts in genotype prevalence and their association with disease severity, especially in high-risk populations. Policymakers should invest in robust surveillance systems to monitor rotavirus genotypes. This data can guide vaccine development and public health interventions. International collaboration and data sharing are vital to understand genotype diversity on a global scale and facilitate the development of more effective vaccines.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jadoon Khan
- Department of Allied and Health Sciences, IQRA University, Chak Shahzad Campus, Islamabad, Pakistan
| |
Collapse
|
14
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
15
|
Chowdhury K, Sinha S, Kumar S, Haque M, Ahmad R. Constipation: A Pristine Universal Pediatric Health Delinquent. Cureus 2024; 16:e52551. [PMID: 38249647 PMCID: PMC10797657 DOI: 10.7759/cureus.52551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Constipation suffered by children is a global public health problem. Functional constipation (FC) brings about deteriorating effects in the children's lives who suffer from it. The risk factors for the development of constipation include the consumption of a diet low in fiber and high in calories (such as the consumption of fast food), a sedentary lifestyle with a lack of exercise, a family history of constipation, and emotional and psychological stress endured by children in their families. It is one of the most common causes of stomachaches in children. FC may lead to fecal incontinence (FI), anal fissures, recurrent urinary tract infections (RUTI), and enuresis in children. Severe constipation may result in stool becoming rock-hard and inflexible in the rectum, which is clinically identified as fecal impaction. It is imperative to perform clinical evaluation and treatment, including pharmacological (the use of stimulant and osmotic laxatives) and non-pharmacological (education, changes in diet, intervention to promote positive behavior and address any emotional issues, toilet training, and physiotherapy for the pelvic floor) interventions. In the case of refractory patients, neuromodulation, the irrigation of the anal canal, and surgical management may be needed. It is essential to lead a healthy, stress-free lifestyle with plenty of exercise and a balanced diet rich in fiber (such as fruits and vegetables) so children can have regular bowel habits and thrive.
Collapse
Affiliation(s)
- Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| |
Collapse
|
16
|
Roier S, Mangala Prasad V, McNeal MM, Lee KK, Petsch B, Rauch S. mRNA-based VP8* nanoparticle vaccines against rotavirus are highly immunogenic in rodents. NPJ Vaccines 2023; 8:190. [PMID: 38129390 PMCID: PMC10739717 DOI: 10.1038/s41541-023-00790-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the availability of live-attenuated oral vaccines, rotavirus remains a major cause of severe childhood diarrhea worldwide. Due to the growing demand for parenteral rotavirus vaccines, we developed mRNA-based vaccine candidates targeting the viral spike protein VP8*. Our monomeric P2 (universal T cell epitope)-VP8* mRNA design is equivalent to a protein vaccine currently in clinical development, while LS (lumazine synthase)-P2-VP8* was designed to form nanoparticles. Cyro-electron microscopy and western blotting-based data presented here suggest that proteins derived from LS-P2-VP8* mRNA are secreted in vitro and self-assemble into 60-mer nanoparticles displaying VP8*. mRNA encoded VP8* was immunogenic in rodents and introduced both humoral and cellular responses. LS-P2-VP8* induced superior humoral responses to P2-VP8* in guinea pigs, both as monovalent and trivalent vaccines, with encouraging responses detected against the most prevalent P genotypes. Overall, our data provide evidence that trivalent LS-P2-VP8* represents a promising mRNA-based next-generation rotavirus vaccine candidate.
Collapse
Affiliation(s)
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
17
|
Kostina LV, Filatov IE, Eliseeva OV, Latyshev OE, Chernoryzh YY, Yurlov KI, Lesnova EI, Khametova KM, Cherepushkin SA, Savochkina TE, Tsibezov VV, Kryshen KL, Alekseeva LI, Zaykova ON, Grebennikova TV. [Study of the safety and immunogenicity of VLP-based vaccine for the prevention of rotavirus infection in neonatal minipig model]. Vopr Virusol 2023; 68:415-427. [PMID: 38156575 DOI: 10.36233/0507-4088-194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person. A promising approach is to create vaccines based on virus-like particles (VLPs). OBJECTIVE Study of the safety and immunogenicity of a vaccine against rotavirus infection based on virus-like particles of human rotavirus A in newborn minipigs with multiple intramuscular administration. MATERIALS AND METHODS Newborn minipigs were used as an animal model in this study. The safety of the tested vaccine was assessed based on thermometry data, clinical examination, body weight gain, clinical and biochemical blood parameters, as well as necropsy and histological examination. When studying the immunogenic properties of the Gam-VLP-rota vaccine in doses of 30 and 120 µg, the cellular, humoral and secretory immune response was studied. RESULTS The results of assessing the general condition of animals during the immunization period, data from clinical, laboratory and pathomorphological studies indicate the safety of the vaccine against human rotavirus infection based on VLP (Gam-VLP-rota) when administered three times intramuscularly. Good local tolerance of the tested vaccine was demonstrated. The results of the assessment of humoral immunity indicate the formation of a stable immune response after three-time immunization with Gam-VLP-rota, stimulation of the production of antigen-specific IgG antibodies and their functional activity to neutralize human rotavirus A. It was shown that following the triple immunization with the minimum tested concentration of 30 µg/dose, animals developed a cell-mediated immune response. The results of the IgA titer in blood serum and intestinal lavages indicate the formation of both a systemic immunological response and the formation of specific secretory immunity to human rotavirus A. CONCLUSION Thus, three-time intramuscular immunization of minipigs with the Gam-VLP-rota vaccine forms stable protective humoral and cellular immunity in experimental animals. Evaluated vaccine is safe and has good local tolerability.
Collapse
Affiliation(s)
- L V Kostina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - I E Filatov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O V Eliseeva
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - O E Latyshev
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - Y Y Chernoryzh
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - K I Yurlov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - E I Lesnova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - K M Khametova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - S A Cherepushkin
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - T E Savochkina
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - V V Tsibezov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | | | | | - O N Zaykova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| |
Collapse
|
18
|
Raev SA, Raque M, Kick MK, Saif LJ, Vlasova AN. Differential transcriptome response following infection of porcine ileal enteroids with species A and C rotaviruses. Virol J 2023; 20:238. [PMID: 37848925 PMCID: PMC10580564 DOI: 10.1186/s12985-023-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.
Collapse
Affiliation(s)
- Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| | - Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| |
Collapse
|
19
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Cheminformatics bioprospection of selected medicinal plants metabolites against trypsin cleaved VP4 (spike protein) of rotavirus A. J Biomol Struct Dyn 2023; 42:10652-10671. [PMID: 37728550 DOI: 10.1080/07391102.2023.2258405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Rotaviruses have continued to be the primary cause of acute dehydrating diarrhoea in children under five years of age despite the global introduction of four World Health Organization (WHO) prequalified oral vaccines in over 106 countries. Currently, no medication is approved by the Food and Drug Administration (FDA) specifically for treating rotavirus A-induced diarrhoea. Consequently, it is important to focus on developing prophylactic and curative therapeutics to combat rotaviral infections. For the first time, this study computationally screened and identified metabolites from Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum as potential novel inhibitors with broad-spectrum activity against VP5* and VP8* (spike protein) of rotavirus A (RVA). The initial top 20 metabolites identified through molecular docking were further filtered using drug-likeness and pharmacokinetics parameters. The molecular properties of the resulting top-ranked compounds were predicted by conducting density functional theory (DFT) calculations, while molecular dynamics (MD) simulation revealed their thermodynamic compatibility with a significant affinity towards VP8* than VP5*. Except for ellagic acid (-11.78 kcal/mol), the lead compounds had higher binding free energy than the reference standard (VP5* (-11.81 kcal/mol), VP8* (-14.12 kcal/mol)) with 2SG (-20.98 kcal/mol) and apigenin-4'-glucoside (-23.56 kcal/mol) having the highest affinity towards VP5* and VP8*, respectively. Of all the top-ranked compounds, better broad-spectrum affinities for both VP5* and VP8* than tizoxanide were observed in 2SG (VP5* (-20.98 kcal/mol), VP8* (-20.13 kcal/mol)) and sericetin (VP5* (-20.46 kcal/mol), VP8* (-18.31 kcal/mol)). While the identified leads could be regarded as potential modulators of the investigated therapeutic targets for effective management of rotaviral infection, additional in vitro and in vivo evaluation is strongly recommended, and efforts are on-going in this regard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
20
|
Quilliam RS, Pow CJ, Shilla DJ, Mwesiga JJ, Shilla DA, Woodford L. Microplastics in agriculture - a potential novel mechanism for the delivery of human pathogens onto crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1152419. [PMID: 37636119 PMCID: PMC10448812 DOI: 10.3389/fpls.2023.1152419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Mulching with plastic sheeting, the use of plastic carriers in seed coatings, and irrigation with wastewater or contaminated surface water have resulted in plastics, and microplastics, becoming ubiquitous in agricultural soils. Once in the environment, plastic surfaces quickly become colonised by microbial biofilm comprised of a diverse microbial community. This so-called 'plastisphere' community can also include human pathogens, particularly if the plastic has been exposed to faecal contamination (e.g., from wastewater or organic manures and livestock faeces). The plastisphere is hypothesised to facilitate the survival and dissemination of pathogens, and therefore plastics in agricultural systems could play a significant role in transferring human pathogens to crops, particularly as microplastics adhering to ready to eat crops are difficult to remove by washing. In this paper we critically discuss the pathways for human pathogens associated with microplastics to interact with crop leaves and roots, and the potential for the transfer, adherence, and uptake of human pathogens from the plastisphere to plants. Globally, the concentration of plastics in agricultural soils are increasing, therefore, quantifying the potential for the plastisphere to transfer human pathogens into the food chain needs to be treated as a priority.
Collapse
Affiliation(s)
- Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Chloe J. Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Dativa J. Shilla
- Department of Chemistry, Dar es Salaam University College of Education (DUCE), Dar es Salaam, Tanzania
| | - James J. Mwesiga
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Daniel A. Shilla
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
21
|
Jiao Y, Han T, Qi X, Gao Y, Zhao J, Zhang Y, Li B, Zhang Z, Du J, Sun L. Human rotavirus strains circulating among children in the capital of China (2018-2022)_ predominance of G9P[8] and emergence ofG8P[8]. Heliyon 2023; 9:e18236. [PMID: 37554825 PMCID: PMC10404872 DOI: 10.1016/j.heliyon.2023.e18236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE This study aimed to update the genetic diversity of Rotavirus (RV) infections in children under five years old in Beijing, China. METHODS A 5-year active hospital-based surveillance for sporadic acute gastroenteritis (AGE) from January 2018 to December 2022 in the capital of China was performed. A total of 748 fecal samples from AGE patients were collected for followed by RV antigen detection by ELSIA, RNA detection by reverse transcription PCR, G/P genotyping and phylogenetic analyzing. RESULTS RV antigen was detected in 11.0% of the collected samples, with 54 samples confirmed to be RV RNA positive. G9 and G8 genotypes were identified in 43 (79.6%) and 7 (13.0%) samples, respectively, all of which were allocated to P[8]. The predominant G/P combination was G9P[8] (79.6%), following by G8P[8] (13.0%), G4P[8] (5.6%) and G3P[8] (1.9%). A significant change in G/P-type distribution was observed, with the G9P[8] being predominant from 2018 to 2021, followed by the emergence of an uncommon G8P[8] genotype, which was first reported in 2021 and became predominant in 2022. Blast analysis showed that one G1 isolate had a high similarity of 99.66% on nucleotide acid with RotaTeq vaccine strain with only one amino acid difference L150V. Additionally, one P[8] isolate was clustered into a branch together with RotaTeq vaccine strain G6P[8]. CONCLUSIONS The study reveals that G8P[8] has become the predominant genotype in pediatric outpatients in China for the first time, indicating a significant change in the composition of RV genetic diversity. The importance of RVA genotyping in surveillance is emphasized, as it provides the basis for new vaccine application and future vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Yang Jiao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Taoli Han
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiao Qi
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yan Gao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jianhong Zhao
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yue Zhang
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Beibei Li
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zheng Zhang
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jialiang Du
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lingli Sun
- Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| |
Collapse
|
22
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
23
|
Jampanil N, Kumthip K, Maneekarn N, Khamrin P. Genetic Diversity of Rotaviruses Circulating in Pediatric Patients and Domestic Animals in Thailand. Trop Med Infect Dis 2023; 8:347. [PMID: 37505643 PMCID: PMC10383398 DOI: 10.3390/tropicalmed8070347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Rotavirus A is a highly contagious virus that causes acute gastroenteritis in humans and a wide variety of animals. In this review, we summarized the information on rotavirus described in the studies in the last decade (2008 to 2021) in Thailand, including the prevalence, seasonality, genetic diversity, and interspecies transmission. The overall prevalence of rotavirus infection in humans ranged from 15-33%. Rotavirus infection was detected throughout the year and most frequently in the dry and cold months, typically in March. The diversity of rotavirus genotypes varied year to year and from region to region. From 2008 to 2016, rotavirus G1P[8] was detected as the most predominant genotype in Thailand. After 2016, G1P[8] decreased significantly and other genotypes including G3P[8], G8P[8], and G9P[8] were increasingly detected from 2016 to 2020. Several uncommon rotavirus strains such as G1P[6], G4P[6], and G3P[10] have also been occasionally detected. In addition, most studies on rotavirus A infection in animals in Thailand from 2011 to 2021 reported the detection of rotavirus A in piglets and canine species. It was reported that rotavirus could cross the host species barrier between humans and animals through interspecies transmission and genetic reassortment mechanisms. The surveillance of rotavirus infection is crucial to identify the trend of rotavirus infection and the emergence of novel rotavirus genotypes in this country. The data provide information on rotavirus infection and the diversity of rotavirus genotypes circulating in the pre-vaccination period, and the data will be useful for the evaluation of the effectiveness of rotavirus vaccine implementation in Thailand.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Raque M, Raev SA, Guo Y, Kick MK, Saif LJ, Vlasova AN. Host Cell Response to Rotavirus Infection with Emphasis on Virus-Glycan Interactions, Cholesterol Metabolism, and Innate Immunity. Viruses 2023; 15:1406. [PMID: 37515094 PMCID: PMC10385841 DOI: 10.3390/v15071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.
Collapse
Affiliation(s)
- Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Yusheng Guo
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| |
Collapse
|
25
|
Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch Virol 2023; 168:173. [PMID: 37269384 DOI: 10.1007/s00705-023-05803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
26
|
Anderson C, Baha H, Boghdeh N, Barrera M, Alem F, Narayanan A. Interactions of Equine Viruses with the Host Kinase Machinery and Implications for One Health and Human Disease. Viruses 2023; 15:v15051163. [PMID: 37243249 DOI: 10.3390/v15051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens that are vector-transmitted have and continue to contribute to several emerging infections globally. In recent years, spillover events of such zoonotic pathogens have increased in frequency as a result of direct contact with livestock, wildlife, and urbanization, forcing animals from their natural habitats. Equines serve as reservoir hosts for vector-transmitted zoonotic viruses that are also capable of infecting humans and causing disease. From a One Health perspective, equine viruses, therefore, pose major concerns for periodic outbreaks globally. Several equine viruses have spread out of their indigenous regions, such as West Nile virus (WNV) and equine encephalitis viruses (EEVs), making them of paramount concern to public health. Viruses have evolved many mechanisms to support the establishment of productive infection and to avoid host defense mechanisms, including promoting or decreasing inflammatory responses and regulating host machinery for protein synthesis. Viral interactions with the host enzymatic machinery, specifically kinases, can support the viral infectious process and downplay innate immune mechanisms, cumulatively leading to a more severe course of the disease. In this review, we will focus on how select equine viruses interact with host kinases to support viral multiplication.
Collapse
Affiliation(s)
- Carol Anderson
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Niloufar Boghdeh
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Michael Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
27
|
Romero-Arguelles R, Tamez-Guerra P, González-Ochoa G, Romo-Sáenz CI, Gomez-Flores R, Flores-Mendoza L, Aros-Uzarraga E. Bifidobacterium longum and Chlorella sorokiniana Improve the IFN Type I-Mediated Antiviral Response in Rotavirus-Infected Cells. Microorganisms 2023; 11:1237. [PMID: 37317211 DOI: 10.3390/microorganisms11051237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
Probiotics are effective to treat or prevent gastrointestinal infections, and microalgae have demonstrated important health-promoting effects and in some cases function as prebiotics. In this regard, the anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana by reducing viral infectivity is well known. However, their effect on immune response against rotavirus has not yet been investigated. Therefore, the aim of this study was to determine the role of Bifidobacterium longum and/or Chlorella sorokiniana in influencing an IFN type I-mediated antiviral response in rotavirus-infected cells. In pre-infection experiments, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection, whereas in post-infection assays, HT-29 cells were treated after infection. The cells' mRNA was then purified to determine the relative expression level of IFN-α, IFN-β, and precursors of interferons such as RIG-I, IRF-3, and IRF-5 by qPCR. We showed that combination of B. longum and C. sorokiniana significantly increased IFN-α levels in pre-infection and IFN-β in post-infection assays, as compared with individual effects. Results indicate that B. longum, C. sorokiniana, or their combination improve cellular antiviral immune response.
Collapse
Affiliation(s)
- Ricardo Romero-Arguelles
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Patricia Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| | - César I Romo-Sáenz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Ricardo Gomez-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Lilian Flores-Mendoza
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| | - Elizama Aros-Uzarraga
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa 85880, Mexico
| |
Collapse
|
28
|
Hikita T, Phan T, Okitsu S, Hayakawa S, Ushijima H. A Comparative Study of Acute Gastroenteritis Symptoms in Single- versus Multiple-Virus Infections. Int J Mol Sci 2023; 24:ijms24098364. [PMID: 37176070 PMCID: PMC10179108 DOI: 10.3390/ijms24098364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Many different enteric viruses can cause acute gastroenteritis in humans worldwide. While a single virus can indeed cause disease, multiple-virus infections are commonly reported. However, data regarding a comparison between single- and multiple-virus infections upon clinical manifestations of acute gastroenteritis are relatively limited. In this study, a total of 2383 fecal specimens were collected from children with acute gastroenteritis during June 2014-July 2017 in a pediatric clinic in Japan and tested for 11 viruses by multiplex RT-PCR. At least 1 virus was found in 1706 (71.6%) specimens and norovirus GII was the most frequent agent, followed by rotavirus A and other viruses. Multiple-virus infections were identified in 565 cases (33.1%). While major clinical symptoms were found to be significantly different in some single- vs. multiple-virus infections, the disease severity was statistically non-significant. Our study highlights the burden of multiple-virus infections for acute gastroenteritis and the clinical features of patients with multiple-virus infections.
Collapse
Affiliation(s)
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Bunkyo City 113-8602, Tokyo, Japan
| |
Collapse
|
29
|
Mungmunpuntipantip R, Wiwanitkit V. Rotavirus epidemiology adjusted pattern in a tropical setting: mathematical correction for false positive problem relating to primary immunochromatography test surveillance. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 13:54-59. [PMID: 36721841 PMCID: PMC9884340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Rotaviruses are the most common cause of acute gastroenteritis in neonates and young children worldwide. Human rotaviruses are the leading cause of acute gastroenteritis in neonates and young children worldwide. The immunochromatography test is frequently used in clinical practice to detect rotavirus infection. When the immunochromatography test is incorrectly positive, there may be a discrepancy between the two tests, the immunochromatography test and the nucleic acid test. As a result, when interpreting the findings of basic rotavirus monitoring in a system based on immunochromatography tests, we must made adjustments to address the issue of accuracy. METHODS The findings on the expected pattern of rotavirus epidemiology in a tropical setting was presented. The modified rotavirus pattern was created to address the issue of false positives. To solve the false positive issue, the modified rotavirus pattern derived from mathematical model-based correction by extracting false positivity was predicted. RESULTS We demonstrated an altered rotavirus epidemiology pattern in the setting studied in this study. Rotavirus has been detected in up to 19.3% of patients with rotavirus-like symptoms, with G4P[8] accounting for 6% of those infected. CONCLUSION As a result, the rotavirus remains an important problem that must be addressed in the framework of this study.
Collapse
Affiliation(s)
| | - Viroj Wiwanitkit
- Adjunct Professor, Joseph Ayobabalola UniversityIkeji-Arakeji, Nigeria,Honorary Professor, Dr DY Patil UniversityPune, India,Visiting Professor, Hainan Medical UniversityChina,Visiting Professor, Faculty of Medicine, University of NisSerbia,Adjunct ProfessorPakistan,Adjunct Professor, Department of Eastern Medicine, Government College University FaisalabadPakistan
| |
Collapse
|
30
|
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022; 10:microorganisms10122392. [PMID: 36557645 PMCID: PMC9781831 DOI: 10.3390/microorganisms10122392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Enteric viruses, including the rotavirus, norovirus, and adenoviruses, are the most common cause of acute gastroenteritis. The rotavirus disease is especially prevalent among children, and studies over the past decade have revealed complex interactions between rotaviruses and the gut microbiota. One way to treat and prevent dysbiosis is the use of probiotics as an antiviral agent. This review focuses on the latest scientific evidence on the antiviral properties of probiotics against rotavirus gastroenteric infections in children. A total of 19 studies exhibited a statistically significant antiviral effect of probiotics. The main probiotics that were effective were Saccharomyces cerevisiae var. boulardii, Lacticaseibacillus rhamnosus GG, and various multi-strain probiotics. The underlying mechanism of the probiotics against rotavirus gastroenteric infections in children included immune enhancement and modulation of intestinal microbiota leading to shortening of diarrhoea. However, several clinical studies also found no significant difference in the probiotic group compared to the placebo group even though well-known strains were used, thus showing the importance of correct dosage, duration of treatment, quality of probiotics and the possible influence of other factors, such as the production process of probiotics and the influence of immunisation on the effect of probiotics. Therefore, more robust, well-designed clinical studies addressing all factors are warranted.
Collapse
Affiliation(s)
- Andrej Steyer
- National Laboratory of Health, Environment and Food, Division of Public Health Microbiology, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Dušanka Mičetić-Turk
- Department of Paediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Sabina Fijan
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
31
|
Omatola CA, Olaniran AO. Genetic heterogeneity of group A rotaviruses: a review of the evolutionary dynamics and implication on vaccination. Expert Rev Anti Infect Ther 2022; 20:1587-1602. [PMID: 36285575 DOI: 10.1080/14787210.2022.2139239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Human rotavirus remains a major etiology of acute gastroenteritis among under 5-year children worldwide despite the availability of oral vaccines. The genetic instability of rotavirus and the ability to form different combinations from the different G- and P-types reshapes the antigenic landscape of emerging strains which often display limited or no antigen identities with the vaccine strain. As evidence also suggests, the selection of the antigenically distinct novel or rare strains and their successful spread in the human population has raised concerns regarding undermining the effectiveness of vaccination programs. AREAS COVERED We review aspects related to current knowledge about genetic and antigenic heterogeneity of rotavirus, the mechanism of genetic diversity and evolution, and the implication of genetic change on vaccination. EXPERT OPINION Genetic changes in the segmented genome of rotavirus can alter the antigenic landscape on the virion capsid and further promote viral fitness in a fully vaccinated population. Against this background, the potential risk of the appearance of new rotavirus strains over the long term would be better predicted by a continued and increased close monitoring of the variants across the globe to identify any change associated with disease dynamics.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, Republic of South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, Republic of South Africa
| |
Collapse
|
32
|
Fan Q. A Clinical Nursing Care Study on the Prevalence of Rotavirus Infection and Acute Diarrhea in Vaccinated Chinese Pediatric Population from 2019-2022. Infect Drug Resist 2022; 15:6129-6142. [PMID: 36277240 PMCID: PMC9585908 DOI: 10.2147/idr.s383979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose To investigate the prevalence of rotavirus infection and acute diarrhea after immunization and further assess the quality of nursing care provided by the nurses to such patients. Methods A total of 432 children aged 3–36 months with acute diarrhea between February 2019 and March 2022 were enrolled, and rotavirus testing was performed within 24 h using a rotavirus enzyme immunoassay kit. Clinical characteristics were evaluated, and regression analysis was performed. Results Eighty vaccinated children (18.5%) were confirmed to have rotavirus infection out of 432 children. The prevalence of rotavirus positivity was the highest at 20–28 months (22 cases, 24.44%) and 11–19 months age group (27 cases, 22.50%). There is a significant association between rotavirus infection and hygiene score (p = 0.009). Based on the association with quality of nursing care, rotavirus infection was association with “appropriate care” (p = 0.001). Conclusion Rotavirus infection was strongly associated with poor hygiene score which may be due to the hygienic nature of the mother and her family. Nursing care assessments revealed a huge gap between nurses and the guardians, which reflects the behavior of Chinese nurses. Thus, an intervention is required by the policymakers for implementing effective strategies of quality nursing for the improvement of the pediatric patients with rotavirus gastroenteritis.
Collapse
Affiliation(s)
- Qiuhua Fan
- Clinical Medical Laboratory Center, Shanxi Children’s Hospital (Shanxi Maternal and Child Health Hospital), Taiyuan, 030000, People’s Republic of China,Correspondence: Qiuhua Fan, Clinical Medical Laboratory Center, Shanxi Children’s Hospital (Shanxi Maternal and Child Health Hospital), Taiyuan, 030000, People’s Republic of China, Tel/Fax +86-13-834209526, Email
| |
Collapse
|
33
|
Patić A, Vuković V, Kovačević G, Petrović V, Ristić M, Djilas M, Knežević P, Pustahija T, Štrbac M, Djekić Malbaša J, Rajčević S, Hrnjaković Cvjetković I. Detection and Molecular Characterization of Rotavirus Infections in Children and Adults with Gastroenteritis from Vojvodina, Serbia. Microorganisms 2022; 10:2050. [PMID: 36296326 PMCID: PMC9607116 DOI: 10.3390/microorganisms10102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Rotaviruses (RV) are the leading cause of gastroenteritis in infants, young children, and adults, responsible for serious disease burden. In the period 2012-2018, a cross-sectional study was conducted using stool samples collected from patients with acute gastroenteritis from Vojvodina, Serbia. We described age and gender distribution, as well as seasonal patterns of RV prevalence. Out of 1853 included stool samples, RV was detected in 29%. Hospitalized children between 1-2 years old were especially affected by RV infection (45%). The highest prevalence of infection was observed during the colder, winter/spring months. We compared sequenced representative G and P genotypes circulating in Serbia with vaccine strains and determined their genetic similarity. Genotype combination G2P[4] was the most prevalent (34.6%), followed by G2P[8] (24.1%) and G1P[8] (21.1%). Given that several epitopes were conserved, neutralization motifs among circulating strains can be characterized as sufficiently matching vaccine strains Rotarix™ and RotaTeq™, but existing antigenic disparities should not be overlooked. The present results contribute to a better insight into the prevalence of rotavirus infection in our region and point out the need for epidemiological surveillance of rotaviruses before the introduction of vaccines. These data can help formulate future vaccine strategies in Serbia.
Collapse
Affiliation(s)
- Aleksandra Patić
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Vladimir Vuković
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | - Vladimir Petrović
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mioljub Ristić
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Djilas
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Petar Knežević
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Tatjana Pustahija
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mirjana Štrbac
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Jelena Djekić Malbaša
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Smiljana Rajčević
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Hrnjaković Cvjetković
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
34
|
Wu H, Li B, Miao Z, Hu L, Zhou L, Lu Y. Codon usage of host-specific P genotypes (VP4) in group A rotavirus. BMC Genomics 2022; 23:518. [PMID: 35842571 PMCID: PMC9288207 DOI: 10.1186/s12864-022-08730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08730-2.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|